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ABSTRACT

Most approaches to learn classifiers for structured objects (e.g.,
images) use generative models in a classical Bayesian framework.
However, state-of-the-art classifiers for vectorial data (e.g., support
vector machines) are learned discriminatively. A generative embed-
ding is a mapping from the object space into a fixed dimensional
score space, induced by a generative model, usually learned from
data. The fixed dimensionality of these generative score spaces
makes them adequate for discriminative learning of classifiers,
thus bringing together the best of the discriminative and generative
paradigms. In particular, it was recently shown that this hybrid ap-
proach outperforms a classifier obtained directly for the generative
model upon which the score space was built.

Using a generative embedding involves two steps: (i) defining
and learning the generative model and using it to build the embed-
ding; (ii) discriminatively learning a (maybe kernel) classifier on the
adopted score space. The literature on generative embeddings is es-
sentially focused on step (i), usually using some standard off-the-
shelf tool for step (ii). In this paper, we adopt a different approach,
by focusing also on the discriminative learning step. In particular,
we combine two very recent and top performing tools in each of the
steps: (i) the free energy score space; (ii) non-extensive information
theoretic kernels. In this paper, we apply this methodology in scene
recognition. Experimental results on two benchmark datasets shows
that our approach yields state-of-the-art performance.

Index Terms— Scene categorization, generative embeddings,
score spaces, information theoretic kernels.

1. INTRODUCTION

Most approaches to the statistical learning of classifiers belong to
one of two classical paradigms: generative and discriminative [12,
15]. Generative approaches are based on probabilistic class models
and a priori class probabilities, learnt from training data and com-
bined via Bayes law to yield posterior probabilities. Discriminative
learning methods aim at learning class boundaries or posterior class
probabilities directly from data, without relying on generative class
models.

In the past decade, several hybrid generative-discriminative ap-
proaches have been proposed with the goal of taking advantage of
the best of both paradigms [5, 8]. In this context, significant interest
has been aroused by the so-called generative score space methods
(or generative embeddings), where the basic idea is to exploit a gen-
erative model to map the objects to be classified into a feature space,
where discriminative techniques, namely kernel-based, can be used.

This is particularly suitable to deal with non-vectorial data (strings,
trees, images), since it maps objects (maybe of different dimensions)
into a fixed dimension space.

The seminal work on generative embeddings is [5], where the
so-called Fisher score was introduced. In that work, the features of a
given object are the derivatives of the log-likelihood function under
the assumed generative model, with respect to the model parameters,
computed at that object. Other examples of generative embeddings
can be found in [1, 2, 13].

A very recent approach, termed free energy score space (FESS)
[13, 14], has shown to outperform other generative embeddings (in-
cluding those in [5] and [17]) in several applications. The FESS
expresses how well each data point fits different parts of the genera-
tive model, using the variational free energy as a lower bound on the
negative log-likelihood. It has been found that the FESS is highly
informative for discriminative learning, yielding state-of-the-art re-
sults in several computational biology and computer vision problems
(namely, scene/object recognition) [13, 14].

Typically, the feature vectors resulting from the generative em-
bedding (FESS or others) are used to feed some kernel-based clas-
sifier, namely, a support vector machine (SVM) with simple linear
or radial basis function (RBF) kernels. In this paper, we propose
to combine the FESS embedding with the recently introduced infor-
mation theoretic (IT) kernels [11]. These new kernels, which are
based on a non-extensive generalization of the classical Shannon in-
formation theory, are defined on (possibly unnormalized) probabil-
ity measures. In [11], they were successfully used in text catego-
rization tasks, based on multinomial (bag-of-words type) text repre-
sentations. Here, the idea is to consider the points of the FESS as
multinomial probability distributions, thus valid arguments for the
information theoretic kernels.

We illustrate the excellent performance of combining the FESS
embedding with the IT kernels on the scene classification problem
[2, 9]. For this problem, the FESS embedding is built on a topic-
based generative model known as probabilistic latent semantic anal-
ysis (pLSA) [4]. The good performance of pLSA in generative ap-
proaches to scene classification suggests that it is an adequate gen-
erative model for this problem. In [13, 14], it was shown that a clas-
sifier defined on the pLSA-based FESS outperforms a purely gen-
erative pLSA-based method. The experimental results reported in
this paper show that the improvement is even more significant when
the FESS is combined with the non-extensive IT kernels to build
SVM and K-nearest neighbors (K-NN) classifiers. On two chal-
lenging scene classification problems – the Vogel-Schiele dataset
(a.k.a. Corel, [18]) and the Fei Fei – Perona dataset [9] – our classi-
fiers significantly outperform the current state-of-the-art methods.
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The rest of the paper is organized as follows. Section 2, reviews
the FESS approach. Section 3 describes the IT kernels. The pro-
posed way of using the information theoretic kernels on the FESS
is formalized in Section 4. Experiments on scene classification are
reported in Section 5, and Section 6 concludes the paper.

2. FREE ENERGY SCORE SPACES

A generative model is essentially a joint distribution P (y, x|θ)
for a pair of (usually vector) random variables, where θ con-
tains the model parameters. Consider a set x = {x1, . . . , xT }
of i.i.d. observations from this distribution and the corresponding
set of y = {y1, . . . , yT } of hidden variables. Under the i.i.d.

assumption, P (y,x|θ) =
∏T

t=1 P (yt, xt|θ).
Given x, the usual goals are to estimate θ (learning) and the hid-

den variables y (inference), but these tasks may be computationally
intractable. Variational inference overcomes this difficulty by ap-
proximating the exact posterior P (y|x, θ) by a function Q(y) ∈ Q,
where Q is a family of distributions allowing tractable inference.
For example, under the i.i.d. assumption herein adopted, the com-
mon choice is to use factorized distributions Q(y) =

∏T
t=1 qt(y

t).
The so-called free energy F(Q, θ) [7] is simply the Kullback-Leibler
divergence (KLD) between the approximation Q and the exact pos-
terior P (y|x, θ), plus a function independent of Q, that is,

F(Q, θ) = DKL [Q(y)‖P (y|x, θ)] − ln P (x|θ)
=

∑
y

Q(y) ln
Q(y)

P (y,x|θ) . (1)

The KLD is always non-negative, it is zero iff its arguments are
equal, and is convex. Therefore, minimizing F(Q, θ) with respect
to Q leads to the best approximation in Q to the true posterior
P (y|x, θ). The minimization of F(Q, θ) is carried out by alter-
nating minimization with respect to Q and θ, while holding the
other fixed [7]. If P (y|x, θ) ∈ Q, this coincides with the standard
expectation-maximization (EM) algorithm.

As pointed out in [13, 14], in the presence of i.i.d. data, we
can assume P (y,x|θ) =

∏
t P (yt, xt|θ), and using a factorized

approximation Q(y) =
∏

t qt(y
t), the free energy in Eq. (1) can be

decomposed as F(Q, θ) =
∑

t F t(qt, θ), where

F t(qt, θ) =
∑
yt

qt(y
t) ln qt(y

t) −
∑
yt

qt(y
t) ln P (yt, xt|θ).

The first term in F t is the entropy of the variational approximation
to the posterior. The second term, which has the form of a cross-
entropy, measures how well observation xt is explained by the model
for that θ.

If the joint distribution P (y, x|θ) itself factorizes due to its in-
ternal conditional dependency structure, it is possible to further de-
compose each F t into a sum of local terms [13]. For example, if
the generative model is described by a Bayesian network, its joint
distribution can be written as

P (y, x|θ) = P (v|θ) =

M∏
i=1

P (vi|PAi, θ),

where v = {y, x} is the entire set of variables (hidden and visible),
and PAi is the set of parents of vi. Using this factorization, each F t

can then be written as a summation of terms

F t = E +
M∑

i=1

fi(x
t, θ),

where E represent the entropy and

fi(x
t, θ) = −

∑
yt

qt(y
t) ln P (vt

i |PAi, θ).

Notice that each vt
i is either a component of xt (an observed vari-

able) or of yt (a hidden variable). If it is a component of xt, it is
fixed at the observed value; if it is a component of yt, it is being
marginalized out by the summation.
The same idea can be used to write the entropy E as a summation
of terms fi(x

t, θ); differenlty from the cross-entropy, E is broken
following the factorization of the posterior distribution qt(y

t). For
further detail see [13, 14].

The decomposition shown in the previous paragraph suggests
the following feature extractor, as proposed in [13]: a function ζ
that, for a choice of θ, maps a given point x into R

M according to

ζ(x, θ) = [f1(x, θ), . . . , fM (x, θ)].

where each fi(x, θ) comes either from entropy or cross-entropy.
This feature extractor may be used in several different ways. For
example, in a classification problem, we learn a parameter esti-

mate θ̂n for each of the N classes, using the above mentioned
EM-type algorithm. Given this collection of parameter estimates,

Θ = {θ̂1, . . . , θ̂N}, the corresponding ζ functions are concatenated
to form the score vector (belonging to the free energy score space),

φFE
Θ (x) =

[
ζ(x, θ̂1), . . . , ζ(x, θ̂N )

]
∈ R

NM . (2)

In [13, 14], these feature vectors were used to build SVM classifiers
with classical radial basis function (RBF) kernels.

3. INFORMATION THEORETIC KERNELS

Kernels on probability measures have been shown very effective in
classification problems involving text, images, and other types of
data [3, 6]. Given two probability measures p1 and p2, represent-
ing two objects, several information theoretic kernels (ITKs) can be
defined [11]. The Jensen-Shannon kernel is defined as

k JS(p1, p2) = ln(2) − JS(p1, p2), (3)

with JS(p1, p2) being the Jensen-Shannon divergence

JS(p1, p2) = H
(p1 + p2

2

)
− H(p1) + H(p2)

2
, (4)

where H(p) is the usual Shannon entropy.
The Jensen-Tsallis (JT) kernel is given by

k JT
q (p1, p2) = lnq(2) − Tq(p1, p2), (5)

where lnq(x) = (x1−q − 1)/(1 − q) is the q-logarithm,

Tq(p1, p2) = Sq

(p1 + p2

2

)
− Sq(p1) + Sq(p2)

2q
(6)

is the Jensen-Tsallis q-difference, and Sq(r) is the Jensen-Tsallis
entropy, defined, for a multinomial r = (r1, ..., rL), with ri ≥ 0
and

∑
i ri = 1, as

Sq(r1, ..., rL) =
1

q − 1

(
1 −

L∑
i=1

rq
i

)
.
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In [11], versions of these kernels applicable to unnormalized
measures were also defined. Let μ1 = ω1p1 and μ2 = ω2p2 be
two unnormalized measures, where p1 and p2 are the normalized
counterparts (probability measures), and ω1 and ω2 arbitrary posi-
tive real numbers (weights). The weighted versions of the JT kernels
are defined as follows:

• The weighted JT kernel (version A) is given by

kA
q (μ1, μ2) = Sq(π) − T π

q (p1, p2), (7)

where π = (π1, π2) =
(

ω1
ω1+ω2

, ω2
ω1+ω2

)
and

T π
q (p1, p2)=Sq (π1p1 + π2p2)− (πq

1Sq(p1) + πq
2Sq(p2)) .

• The weighted JT kernel (version B) is defined as

kB
q (μ1, μ2) =

(
Sq(π) − T π

q (p1, p2)
)
(ω1 + ω2)

q. (8)

4. PROPOSED APPROACH

The approach herein proposed consists in defining a kernel between
two observed objects x and x′ as the composition of the free energy
score function with one of the JT kernels presented above. Formally,

k(x, x′) = ki
q

(
φFE

Θ (x), φFE
Θ (x′)

)
, (9)

where i ∈ {JT, A, B} indexes one of the Jensen-Tsallis kernels (5),
(7), or (8), and φFE

Θ is the free energy score function defined in (2).
Notice that this kernel is well defined because all the components of
φFE

Θ are non-negative.
We consider two types of kernel-based classifiers: K-NN and

SVM. Recall that positive definiteness is a key condition for the ap-
plicability of a kernel in SVM learning. It was shown in [11] that
kA

q is a positive definite kernel for q ∈ [0, 1], while kB
q is a positive

definite kernel for q ∈ [0, 2]. Standard results from kernel theory
[16, Proposition 3.22] guarantee that the kernel k defined in (9) in-
herits the positive definiteness of ki

q , thus can be safely used in SVM
learning algorithms.

Although this approach is applicable to any classification prob-
lem, in this paper we consider the image interpretation/analysis task
studied in [13]: scene categorization.

For each image, SIFT feature vectors [10] are computed from
16× 16 patches, centered on a grid with 8 pixels spacing. The SIFT
features obtained from a training set of images is clustered (using
K-means) to yield a codebook of W “visual words”. With this code-
book, a given image can be represented by a W -dimensional vector,
resembling a bag-of-words representation of a text document: the i-
th entry counts the number of SIFT vectors that are closer to the i-th
element of the codebook than to any other element.

As a generative model, we adopt pLSA [4], which has been
shown to yield good performance in scene classification with purely
generative approaches [9, 2]. The pLSA model is essentially a mix-
ture of Z multinomial components (usually called latent topics) rep-
resenting the joint distribution of words and document classes. In
each component of this mixture, the words and classes are condition-
ally independent, although of course they are globally dependent.

5. EXPERIMENTAL EVALUATION

The proposed approach has been firstly tested on the Vogel and
Schiele dataset [18], also known as Corel – sample images are

coast forest mountain

open country river/lake sky/clouds

Fig. 1. Sample images from the Corel dataset.

Table 1. Average (over 10 runs) classification accuracies (standard
deviation in parenthesis) for the COREL dataset.

SVM 1-NN K-NN

k JS = k JT
1 0.899 (0.007) 0.633 (0.012) 0.627 (0.015)

k JT
q (auto q) 0.931 (0.006) 0.629 (0.011) 0.610 (0.014)

k JT
q (best q) 0.928 (0.006) 0.635 (0.008) 0.628 (0.012)

kA
q (auto q) 0.943 (0.005) 0.639 (0.013) 0.634 (0.013)

kA
q (best q) 0.944 (0.005) 0.645 (0.012) 0.640 (0.010)

shown in Fig. 1. This dataset (with 6 classes) is originally divided
into training and testing subsets. We used one half of the training
subset to obtain a codebook of W = 175 “visual words” and to
estimate N pLSA models (each with Z = 40 latent topics), one for
each class. The FESS features (2) are straightforward to extract from
the description of pLSA in [4]. Finally, the second half of training
set is used to learn the classifier (or simply to define it, in the case of
K-NN). The constant C of the SVM learning algorithm is optimized
by 10-fold cross validation (CV); parameter K of K-NN is either
set to 1 or tuned by 10-fold CV.

The classification accuracies on the testing subset, shown in Ta-
ble 1, are averages over 10 repetitions of the experiments. In that
table, “best q” means that the value of q used in the JT kernels is
the one leading to the highest accuracy, while “auto q” means that
this parameter was adjusted by 10-fold CV. We omit results with kB

q ,

since kA
q always yielded better accuracies. These results show that

the SVM classifier clearly outperforms the K-NN. Another impor-
tant conclusion is that the performance with the value of q chosen by
CV (“auto-q”) is very close to that obtained with the “best-q”.

Figure 2 plots the SVM accuracies, for different kernels, as a
function of parameter q. The plot also shows the accuracies obtained
with q chosen by cross-validation. In line with the results from [11],
the best performances are obtained for q < 1.

Table 2 compares our results with others found in the literature
or computed by us. The accuracy obtained by the proposed method
is better than that of [13], which, to the best of our knowledge, was
the state-of-the-art on this dataset.
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Fig. 2. SVM accuracies, on the COREL dataset, with several ker-
nels, as a function of q.

A further set of experiments was performed using the Fei Fei –
Perona dataset [9], with the same experimental protocol proposed in
[13]. The results in Table 3 confirm the effectiveness of the proposed
approach, in comparison with the state-of-the-art.

Table 2. Accuracies of several classifiers on the COREL dataset.

Method Accuracy

[18] 0.751
[2] (pLSA) 0.857
[13] (pLSA + FESS + SVM-RBF) 0.903

pLSA + FESS + SVM-linear kernel 0.861
pLSA + FESS + SVM-polynomial kernel 0.830
pLSA + FESS + logistic regression 0.762
pLSA + FESS + sparse logistic regression 0.792

kB
q (best q, not usable in practice) 0.944

kB
q (auto q) 0.943

6. CONCLUSIONS

We have proposed using information theoretic kernels in combina-
tion with the free energy score space embedding for discriminative
learning of classifiers. We applied the proposed methodology to
scene categorization tasks, using SIFT features and a pLSA model
to build the FESS embedding. On challenging benchmark datasets
(Corel and Fei Fei – Perona), we obtained state-of-the-art accuracy.
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