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Abstract—In this paper a novel approach for dissimilarity-
based representation is presented, which combines local image
descriptors with several dissimilarity functions. The basic idea
consists of defining the set of prototypes in terms of local
descriptors of image parts, namely feature points extracted from
the training set. Therefore, according to the dissimilarity-based
approach, a new image can be characterized on the basis of its
dissimilarity with each of the given prototypes. This leads to a
new class of Local Kernels which exploits the use of dissimilarities
between image parts. In particular, we show that the classic Bag-
of-Feature (BoF) kernel can be revised as a special case of our new
formulation, and better performance can be obtained when new
dissimilarity functions are employed. Moreover, we observe that
any variants of the basic BoF kernel can take advantage from
our approach as we show for the case of the Pyramid Match
kernel. Promising results are shown for image categorization on
the ETH-80 database.

I. INTRODUCTION

In recent years, the dissimilarity-based representation
paradigm [1], [2], [3], [4], [5], [6], [7] has aroused a lively
interest in the pattern recognition community. This paradigm
differs from typical pattern recognition approaches where
objects to be classified are represented by feature vectors.
In the dissimilarity-based paradigm, objects are described
using pairwise (dis)similarities. In this way, objects are not
constrained to be explicitly represented in a feature space,
and all that is necessary is a way to compute (dis)similarities
between pairs of objects. The goal is then to learn a classifier
only from these relational data. The general idea is the
following: given a set of pairwise dissimilarity values, a new
representation space can be built, in which each object is
described by these values. In [5], a simple synthetic experiment
shows that a complex problem in a 2D space (requiring
a quadratic classifier to achieve almost correct separation),
becomes a linearly separable problem in a dissimilarity space.
In the original versions, a given object was characterized
with dissimilarities/similarities from other objects in the data
set, the so-called prototypes – obviously the choice of the
prototypes represents a crucial issue (see for example [8]).
This idea has been then refined and generalized, considering
also dissimilarities from class-models [9], [10], cluster models
[11], or even components of a model [12].

In this paper, a novel contribution in this direction is
proposed, considering and exploiting dissimilarities between
parts of a given object. The basic idea consists of defining the
set of prototypes in terms of relevant object subparts extracted
from the training set.

Part-based characterization of patterns has been largely
applied in many computer vision applications, e.g., object

categorization and image retrieval, where an image is decom-
posed into parts (or local features). Here, we focus on the
object classification problem in which the objects are images
described in term of local parts.

The typical approach to extract image parts is to employ an
interest region detector [13]. Such parts are then characterized
using a proper descriptor (like SIFT [14], shape context [15],
or others [16]). The number of parts may vary from image
to image and there is no ordering among features in a single
image. As a result images are represented as variable-sized
sets of unordered features, which makes not possible to apply
standard vector-based classification algorithms.

In the literature, this problem has been addressed by the
family of the so-called Local Kernels [17], [18], [19], [20],
[21], [22]. In [17], the authors propose to look for explicit
correspondences between image features [17]. However, al-
though results are satisfying, the method leads to a non-Mercer
kernel [20]) and therefore, it is not safely usable as a kernel
function without special wariness. In [19], the intermediate
matching kernel is proposed by introducing an intermediary
set of so-called virtual local features to select the pairs of
image subparts to be matched. In this fashion, the intermediate
matching kernel mimics matching algorithms while being
positive definite. In [18], a widely applied technique has
been introduced, namely the Bag of Keypoints (BoK). Being
inspired by the Bag-of-Words approach for text classification,
this method consists in transforming the set of features in a
histogram, which counts the number occurrences in that image
of a given set of visual words (i.e., prototype features). The
Bag-of-Feature approach has been extended in [20], [21] by
combining the number of bins in a hierarchical fashion leading
to the so called Pyramid-kernel-matching paradigm. Similarly,
such hierarchical approach has been successfully exploited
also in the spatial domain in [22].

In this paper, we will approach the above mentioned prob-
lem using concepts and tools of the dissimilarity-based repre-
sentation paradigm, showing that some of the Local Kernels
(like BoK) are just special cases of our methodology. This
may also open the new possibility of directly applying some of
the results recently proposed in the general dissimilarity-based
classification paradigm to the image classification problem.
Some experiments on a scene categorization task (using the
ETH-80 dataset [23]) show the effectiveness of the proposed
approach, also in comparison to other Local Kernels present
in the state of the art.

The rest of the paper is organized as follows. In Section II,
we analyze the problem in detail and describe the proposed

2010 2nd International Workshop on Cognitive Information Processing

978-1-4244-6459-3/10/$26.00 ©2010 IEEE 299



methodology; in Section III, we present the experimental
results, and Section IV concludes the paper with a discussion
of future research.

II. THE PROPOSED METHODOLOGY

In this section, the proposed methodology is presented in
three main stages. We firstly define the new image representa-
tion and, then, we define some possible kernels based on such
a representation, taking inspiration from the literature on Local
Kernels. Finally, we show the relations between the proposed
approach and other Local Kernels [18], [19], [20].

A. Dissimilarity-based representation of images

In the part-based formulation, an image is represented as a
set of unordered feature vectors Xj =

{
xj

1, . . . , x
j
Nj

}
where

xj
i ∈ Rd i = 1, . . . , Nj are local descriptors belonging to a
d-dimensional space (e.g., 128-dimensional SIFT [14]). The
cardinality Nj =

∣∣Xj
∣∣ may vary across images. The point

sets (images) come from the input space X :

X =
{
Xj
}

(1)

Using the dissimilarity based representation paradigm [7],
each image is then represented as vectors of dissimilarities. As
explained in Introduction, the dissimilarity may be computed
with respect to different entities, like other images, models
or others. Here, we adopt an alternative vision, computing
dissimilarities with respect to local parts. The underlying idea
is the following: first, we define a global set of prototypes
P = {P1, · · · , PV }, which encodes and describes all different
local parts of the images of the considered problem. Second,
each image is represented as the set of local dissimilarities
between the set of image features Xj and each prototype Pk.
Such dissimilarities are computed by a certain dissimilarity
function d(Xj , Pk), thus resulting in a feature vector of
fixed size. The idea is that such vector reflects how many
(and which) local features are present in the image, thus
representing a significant signature. This is very similar to
the basic assumption under the Bag-of-Keypoints approach,
which nevertheless, just “counts” the presence of the features,
without taking into account the degree of the presence (which
is actually encoded by the dissimilarity measure).

More formally, we define a mapping

φ (·,P) : X → RV (2)

φ
(
Xj ,P

)
=
[
d
(
Xj , P1

)
, . . . , d

(
Xj , PV

)]
(3)

which defines a V -dimensional vector space, on which a stan-
dard vector-based classifier (like a Support Vector Machine)
may be used.

As in every dissimilarity-based approach, there are two main
problems to be solved:

1) The choice of the prototypes P .
2) The choice of the local dissimilarity function d(Xj , Pk).

The literature on dissimilarity-based representation contains
several proposals and suggestions to tackle these tasks. Here,
we present some possible options, derived from the specific

task we are addressing (image characterization for classifica-
tion).

1) The choice of the prototypes: We adopt the scheme
used in the BoK approach and its variants ([18], [19], [21]),
i.e., we use a clustering technique to find out a relevant
visual vocabulary. In particular, we define P = C, where
C = {C1, . . . , CV } – Ck, k = 1, . . . , V – is a cluster of
feature vectors. The clustering is computed on the whole set
of feature vectors extracted from all the images of the training
set. We denote cluster centroids as ck, k = 1, . . . , V .

2) The choice of the dissimilarity: Given our choice of
prototypes, the problem of computing the mapping φ

(
Xj ,P

)
relies on the computation of the distance d

(
Xj , Ck

)
, that is,

a distance measure between the two sets. If we represent each
cluster Ck with the centroid ck, we have a simple distance
“point to set”.

d
(
Xj , Ck

)
= d

(
Xj , ck

)
(4)

There are different choices for the distance in (4) (min, mean,
median, over all distances). After a preliminary evaluation,
in our experiments it turned out that the optimal was the
following

dcentr
avr

(
Xj , Ck

)
= dcentr

avr

(
Xj , ck

)
=

1
Nj

Nj∑
h=1

∥∥∥xj
h − ck

∥∥∥
(5)

If we do not assume that the cluster is represented with its
centroid, then the distance is a general “set to set” distance. In
[24], the authors presented some modification of the Hausdorff
distance for object matching. After a preliminary experimental
evaluation, we decided to adopt the following one (consistently
with the previous case): given two sets A and B,

davr (A,B) =
1
Na

∑
a∈A

d (a,B) (6)

where the distance between a point a ∈ A and the point set
B is commonly defined as d (a,B) = minb∈B ‖a− b‖ and
‖a− b‖ is the distance between two points that we assume to
be defined as the Euclidean distance [24].

In our case, A and B represent the image Xj and the
cluster Ck ∈ C, respectively. The distances defined in [24]
are asymmetric: we can use them as they are or we can try to
symmetrize them by applying the following fmin, fmax, favr,
fwavr operators:

fmin (d (A,B) , d (B,A)) = min (d (A,B) , d (B,A)) (7)

fmax (d (A,B) , d (B,A)) = max (d (A,B) , d (B,A)) (8)

favr (d (A,B) , d (B,A)) =
d (A,B) + d (B,A)

2
(9)

fwavr (d (A,B) , d (B,A)) =
Nad (A,B) +Nbd (B,A)

Na +Nb
(10)
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B. Kernels on dissimilarity-based representations

To solve the classification task, different classifiers may
be used in the dissimilarity space. In this paper, in order to
contextualize and compare the proposed approach in the Local
Kernels domain, we chose Support Vector Machines (SVM)
[25]. Different kernels may be defined, and the most popular
are:

1) Gaussian Radial Basis Function (RBF) kernel [25]

KRBF (Xi, Xj) = kRBF

(
φ
(
Xi, C

)
, φ
(
Xj , C

))
=

= e−
‖φ(Xi,C)−φ(Xj,C)‖2

2σ2

(11)

2) Histogram Intersection kernel [26]

KHI(Xi, Xj) = kHI

(
φ
(
Xi, C

)
, φ
(
Xj , C

))
=

=
V∑

k=1

min
(
d
(
Xi, Ck

)
, d
(
Xj , Ck

))
(12)

Other kernels may be used, taking into account the fact that
the dissimilarity-based representation we employed is related
to distances between sets, but they will not be explored in this
work.

C. Relation to other Local Kernels

The BoK [18] approach, for both RBF kernel and Histogram
Intersection kernel, defines the matching between two images
in terms of histograms of local features. It is interesting to
note that the histogram representation may be considered just
a special case of our general dissimilarity representation. More
in detail, the choice of the prototypes is the same, namely,
the visual vocabulary itself. Moreover, the local dissimilarity
function can be defined as:

dBoK

(
Xj , Ck

)
=

∑
xjh∈Xj

d
(
xj

h, Ck

)
(13)

and

d
(
xj

h, Ck

)
=
{

1 if xj
h ∈ Ck

0 otherwise
(14)

where xj
h ∈ Ck if

∥∥∥xj
h − ck

∥∥∥ ≤ ∥∥∥xj
h − cv

∥∥∥ ∀v = 1, . . . , V ,
v 6= k.

Moreover, it is worth to note that some strategies appeared
in the literature to improve the basic BoK method can easily
be extended also in our dissimilarity-based representation. For
instance, in the context of the Local Kernels, a recent and quite
performing extension has been proposed with the Pyramid
Match Kernels [20], [21], which extend the visual vocabulary
of the basic BoK by considering a hierarchy of clusterings.

It is evident that also our methodology can be extended
similarly in this way. Actually, we can define a novel kernel
considering a hierarchical clustering as a set of L levels of
prototypes. Then, the following kernel can be defined:

KPMK

(
Xi, Xj

)
=

L−1∑
l=0

wlkHI

(
φ
(
Xi, Cl

)
,
(
Xj , Cl

))
(15)

where Cl is the set of prototypes at level l with V l elements
and wl are weights (see [20], [21] for more details). As in
[20], [21], the Histogram Intersection kernel has been chosen
as basic kernel. Again, when Equation 13 is employed as
a dissimilarity function the proposed kernel becomes very
close to the standard Pyramid Match Kernel. In particular,
we considered a variation of Pyramid Match Kernel because
in Equation 15 we counted all matchings at every level of the
clustering hierarchy, and not just the new matchings as in [20],
[21]. Moreover, in the so called vocabulary-guided version
of Pyramid Match Kernel [21] a further level of weights
is introduced for each bin of the various histograms. Here,
we exploit the dissimilarity representation by adopting the
proposed dissimilarity function as defined in Equation 6.

III. RESULTS

We report some experimental results on a standard object
categorization task using objects from the ETH-80 data set 1

[23]. This data set is made up of eight object classes, with 10
unique objects and 41 views for each. In our experiments, we
used five widely separated views of each object (i.e. a subset
of the whole ETH-80 data set), for a total of 400 images (see
Figure 1).

The standard validation protocol, as described in [27], has
been adopted. The Harris affine [13] detector is used to find
interest points in each image and SIFT local descriptors are
applied to generate the feature set (i.e., xj

i , i = 1, . . . , Nj , is a
SIFT descriptor with 128 dimensions). A one-versus-all SVM
classifier is trained, and performance is measured via cross-
validation2, where all five views of an object are held out at
once. Since no instances of a test object are ever present in
the training set, this is a categorization task (as opposed to
recognition of the same specific object).

We compared the proposed kernels with the original BoK
[18] and Pyramid Match Kernel (PMK) [20], [21], which
represents the state of the art for this dataset. To run exper-
iments, we used the original C++ implementation of PMK 3

and extended it to implement the new proposed kernels based
on the dissimilarity representations.

The first set of experiments was devoted to compare the
standard BoK rule with its generalization (note that the basic
kernel is the same, the only change is in the definition of
the feature vector – histogram vs dissimilarities). We used the
distance davr defined in Equation 6 with operators defined in
Equations 7–10. For the clustering, we employed K-means,
ranging the number of clusters from 100 to 300.

Figure 2 shows the performance of results by using the
RBF kernel as basic kernel. It is evident that the proposed
generalization4 outperforms the classic BoK approach.

As can be seen from Fig. 2 the best accuracy is reached
with davr used in conjunction with favr operator for almost

1http://www.mis.informatik.tu-darmstadt.de/Research/Projects/categorization/eth80-db.html
2Also parameter C of the SVM is estimated by cross-validation.
3LIBPMK: A Pyramid Match Toolkit – http://people.csail.mit.edu/jjl/

libpmk/
4We excluded the rule of Equation 7 since it produces very bad results.
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Fig. 1. Example images from the ETH-80 objects database. Five images
from each of the eight object classes (apple, cow, dog, pear, car, cup, horse,
and tomato) are shown here.

all clusters.
As a second set of tests, we repeated the previous exper-

iments but considering the Histogram Intersection kernel as
basic kernel. The obtained results are shown in Fig. 3. Also in
this case, it is evident the beneficial effect of employing the
proposed representation.

In summary, from the proposed results we noted that,
independently from the basic kernel (RBF or HI), davr with
operators fmin, favr, fwavr leads to comparable performances
resulting in an improvement over classical binary represen-
tation (histograms). Note that the computational cost of the
proposed methods depends by the chosen similarity measure.
Of course, when a set-to-set distance is employed the compu-
tational efforts increase.

A final test has been made in order to compare the Pyra-
mid Match Kernel with our hierarchical version, defined in

Fig. 2. Classification accuracy for the ETH-80 data set: comparison between
the BoK and the proposed dissimilarity representation using distance davr

with operators fmin, favr , fwavr [24], for number of clusters ranging from
100 to 300. The RBF kernel is used as basic kernel.

Fig. 3. Classification accuracy for the ETH-80 data set: comparison between
the BoK and the proposed dissimilarity representation using distance davr

with operators fmin, favr , fwavr , for number of clusters ranging from 100
to 300. The histogram intersection kernel is used as basic kernel.

Equation 15. It is worth noting that we did not define a
weighting scheme as in [20], [21], i.e. we considered wl = 1
∀l = 1, . . . , L. Note that this is coherent with the dissimilarity
variation introduced by our method. Actually, in the original
formulation the weights of the PMK are necessary in order to
assign a higher score to the matching at the finest levels and
viceversa. Conversely, in our approach this principle is not
applicable since the score is accumulated by the dissimilarity
functions and not by binary values. A more sophisticated
approach can be applied by exploiting recent methods on
multiple kernel learning [28].
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Using the original C++ implementation of PMK5 and
our extension of it to implement the proposed kernels, the
experimental protocol of [27] and 149 SIFT per image on
average, our method reached a classification accuracy of
81.5%, whereas the vocabulary-guided (i.e., all the weights
are properly estimated) PMK reached a classification rate of
77%.

IV. CONCLUSIONS

In this paper, a new approach for learning from pairwise
relationships is proposed by showing the effectiveness of the
dissimilarity-based approach to encode images in terms of
local parts. Our approach leads to a new class of dissimilarity-
based Local Kernels which are able to compare images
represented by unordered set of feature points with variable
size. Our approach can be considered as a generalization of
the BoK approach, and its extension for which, instead of
simply notifying the presence of the features in a set, we
consider also the degree of the presence. To this aim, we tested
several variations of Hausdorff distance between feature sets
as dissimilarity function. Pomising results have been achieved
on a standard benchmark data set for image categorization,
namely the ETH-80. The proposed framework outperforms
the Bag-of-Feature approach for all the presented dissimilarity
representations. Moreover, our method outperforms also the
state-of-the art Local Kernels, i.e., the Pyramid Match Kernel.
Future work will be devoted to the application of other
dissimilarity-based classification strategies on the Local Ker-
nels domain for the image classification problem. In particular,
new choices of the prototypes will be investigated in order
to exploit the dissimilarity between models (i.e., generative
models) estimated from local parts, or the model components.
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