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This paper describes a new soft clustering algorithm in which each cluster is modelled by a one-
class support vector machine (OC-SVM). The proposed algorithm extends a previously proposed hard
clustering algorithm, also based on OC-SVM representation of clusters. The key building block of our
method is the weighted OC-SVM (WOC-SVM), a novel tool introduced in this paper, based on which an
expectation–maximization-type soft clustering algorithm is defined. A deterministic annealing version
of the algorithm is also introduced, and shown to improve the robustness with respect to initialization.
Experimental results show that the proposed soft clustering algorithm outperforms its hard clustering
counterpart, namely in terms of robustness with respect to initialization, as well as several other state-
of-the-art methods.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Kernel-based methods [1–4] have emerged in the last decade as
a flexible and effective approach for addressing pattern recognition
problems. These methods have been largely employed in supervised
learning contexts (e.g., support vector classification and regression
[1–4]) but their application in unsupervised learning represents a
more recent and less explored trend [5–9].

Recently Camastra and Verri [8] have presented a hard clustering
scheme which uses one-class support vector machines (OC-SVMs) to
represent the clusters. An OC-SVM is a binary classification machine
which is trained using only “positive examples” (i.e., examples from
one class). In the version of Tax and Duin [10], training the OC-SVM
consists in determining the smallest hyper-sphere containing the
training data. In the version of Schölkopf et al. [11,12], the OC-SVM
training algorithmworks by finding themaximummargin separation
between the training points and the origin. Both approaches involve
only inner products between pairs of data points, thus being easily
kernelizable via the famous “kernel-trick” [3,4]. After training, an
OC-SVM is able to provide an answer to the question: “Was this
new data point generated by the same distribution that generated
the training data, or is it an outlier?” In fact, using its soft output,
an OC-SVM is also able to provide a soft (or fuzzy) answer to this
question, in the form of a real number which expresses a degree
of confidence with which a new data point belongs to the same
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class (i.e., density) as the training data. The OC-SVM was proposed
mainly to address (in a non-parametric way) problems of outlier (or
novelty) detection.

The clustering scheme of Camastra and Verri is an iterative pro-
cedure, similar to the well-known K-means algorithm [13], which
learns a set of K OC-SVMs. In each iteration, every data point is
assigned to the “nearest” cluster, and then the clusters are updated
using the assigned points. Specifically, the distance measure based
on which the “nearest” cluster is found is provided by the OC-SVMs.
For example, with the Tax and Duin OC-SVM, the “distance” be-
tween a point and a given cluster is simply the distance between
that point and the center of the hyper-sphere of the corresponding
OC-SVM. After all the points have been assigned to the clusters,
each OC-SVM is retrained using only the corresponding points and
the procedure is repeated until some convergence criterion is met.
This corresponds to a hard clustering (K-means-type) scheme since,
in each iteration, each pattern is assigned to a single cluster. It is
known that iterative hard clustering schemes, namely K-means, are
very sensitive to initialization. In Ref. [8], the authors skip this prob-
lem by manually initializing the method using a subset of points;
the resulting method is thus not a fully unsupervised learning
procedure.

Higher robustness to initialization is typically exhibited by
soft clustering methods, such as finite mixture fitting using the
expectation–maximization (EM) algorithm [14,15], which tend to
be more effective than K-means in avoiding local minima of the
underlying criteria. The robustness to initialization can be further
improved by resorting to deterministic annealing strategies [17,18],
in which the smoothness of the assignments is initially very high
and then slowly decreased until some desired value.
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In this paper we present two contributions to OC-SVM-based
clustering:

• We extend the concept of OC-SVM by defining a novel variant,
which we call weighted OC-SVM (WOC-SVM). The WOC-SVM can
be trained using a set of points and associated weights, where
each weight indicates the importance to be given to the corre-
sponding point. We define weighted versions of both the Tax and
Duin and the Schölkopf et al. OC-SVM formulations. To the best of
our knowledge, no method had been proposed for incorporating
weights into OC-SVM training, although this problem had been al-
ready addressed in standard two-class (binary) SVMs; see, e.g., Ref.
[16].
• We introduce a soft clustering method based on the WOC-SVM,

which can be considered as a soft version of the method of Ca-
mastra and Verri [8]. The proposed method is similar to an EM
algorithm for fitting a finite mixture, in which the density of each
component is a function of the soft output of the corresponding
WOC-SVM. The proposed approach depends on a scale parameter,
which can be used to control the softness of the cluster assign-
ments. This parameter opens the door to a deterministic annealing
version of the basic scheme, which is shown to be more robust to
initialization.

Experimental results on different UCI ML-Repository datasets
demonstrate that the proposed soft clustering algorithm compares
favorably with its hard clustering counterpart (an implementation of
the method of Camastra and Verri [8] with similar characteristics),
particularly in terms of robustness with respect to initialization.
Moreover, when compared with other state-of-the-art methods, its
performance is very competitive.

The remaining sections of the paper are organized as follows. In
Section 2, we introduce the weighted versions of the OC-SVM for-
mulations of Tax and Duin and of Schölkopf et al. Section 3 contains
the description of the new soft clustering algorithm based on the
WOC-SVM as well as the description of its deterministic annealing
variant; Section 4 reports experiments, and, finally, Section 5 con-
cludes the paper.

2. Weighted One-Class Support Vector Machines

In this section, after briefly reviewing the OC-SVM formulations
of Tax and Duin [10] and of Schölkopf et al. [11,12], namely to es-
tablish the necessary notation, we introduce the proposed weighted
versions.

2.1. The Tax and Duin OC-SVM

In the OC-SVM formulation of Tax and Duin [10], the goal is
to find the smallest sphere containing the data points {x1, . . . ,x�},
with some relaxation given by the so-called slack variables.
This goal is formulated as a constrained convex optimization
problem:

min
R,a,�1,. . .,��

R2 + C
�∑

i=1
�i

s.t. ‖xi − a‖2�R2 + �i, i= 1, . . . , �,

�i�0, i= 1, . . . , �, (1)

where R and a are, respectively, the radius and center of the sphere,
‖ · ‖ denotes the Euclidean norm, the �i are the slack variables, and
C is a trade-off parameter controlling how much the slack variables

are penalized. The Wolfe dual of this problem is

min
�1,. . .,��

�∑
i=1

�i〈xi,xi〉 −
�∑

i=1

�∑
j=1

�i�j〈xi,xj〉

s.t. 0��i�C, i= 1, . . . , �,

�∑
i=1

�i = 1, (2)

where 〈·, ·〉 is the inner product, and {�1, . . . ,��} are Lagrange multi-
pliers. Denoting the solution to problem (2) as �∗1, . . . ,�

∗
�
, the sphere

center is given by a=∑
i�
∗
i xi, thus the squared distance between a

given test point x and a is

‖x− a‖2 = 〈x,x〉 − 2
�∑

i=1
�∗i 〈xi,x〉 +

�∑
i=1

�∑
j=1

�∗i �∗j 〈xi,xj〉, (3)

i.e., it only involves inner products. Typically, the decision of whether
x belongs to the same class as the training data or not is obtained
by comparing ‖x− a‖2 with some threshold. Clearly ‖x− a‖2 can be
seen as a squared distance measure between x and the class defined
by the training data.

The fact that Eqs. (2) and (3) only depend on the data via inner
products allows using the kernel-trick to obtain a kernelized version
of the OC-SVM [10]: simply replace all the inner products 〈xi,xj〉 in
Eqs. (2) and (3) by the kernel function K(xi,xj). In the kernel version,
the hyper-sphere lives in a high (maybe infinite) dimensional space
induced by the kernel [3].

2.2. The Schölkopf et al. OC-SVM

In the OC-SVM formulation of Schölkopf et al. [11,12], the idea is
to find a hyper-plane 〈w,x〉 +�= 0 that separates the data from the
origin with maximal margin. This goal is also formulated as a convex
problem:

min
w,�1,. . .,�� ,�

1
2
‖w‖2 + 1

��

�∑
i=1

�i − �

s.t. 〈w,xi〉��− �i, i= 1, . . . , �,

�i�0, i= 1, . . . , �, (4)

where the �i are the slack variables and � controls the amount of
penalization incurred by these slack variables. The corresponding
Wolfe dual is

min
�1,. . .,��

�∑
i=1

�∑
j=1

�i�j〈xi,xj〉

s.t. 0��i�1/(��), i= 1, . . . , �,

�∑
i=1

�i = 1, (5)

where {�1, . . . ,��} are Lagrange multipliers. Denoting the solu-
tion of Eq. (5) as �∗1, . . . ,�

∗
�
, and since w = ∑

i�
∗
1xi, the (directed)

distance from a given point x to the separating hyper-plane is
given by

d(x)=
�∑

i=1
�∗i 〈xi,x〉 − �. (6)
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Parameter � can be obtained from the fact that, for any �∗i such that
0 <�∗i <1/(��), the corresponding data point xi satisfies

�=
�∑

j=1
�∗j 〈xi,xj〉. (7)

The decision of whether some point x belongs to the same class
as the training data is obtained by comparing d(x) with zero. The
function d(x) can be seen as a measure of similarity between its
argument and the learnt class. The fact that this formulation only
involves inner products also allows for easy kernelization, sim-
ply by replacing each inner product 〈xi,xj〉 by the kernel function
K(xi,xj).

2.3. Weighted OC-SVM

The weighted version of the OC-SVM is able to take into account
a set of weights {w1, . . . ,w�}, where wi ∈ [0, 1], for i = 1, . . . , �, in-
dicating the importance assigned to each point of the training set
{x1, . . . ,x�}.

Consider first the Tax and Duin formulation. The introduction of
weights into the OC-SVM formulation is carried out by letting the
penalty on slack variable �i (which corresponds to the pattern xi) be
proportional to the weight wi. The rationale is straightforward: if a
point xi has a small weight, wi>1, the corresponding slack variable
�i has a small penalty, thus being able to have a large value, which
will allow that point to be far from the center of the sphere, having
a weak influence on its location and radius. With this modification,
the optimization problem in Eq. (1) becomes

min
R,a,�1,. . .,��

R2 + C
�∑

i=1
wi�i

s.t. ‖xi − a‖2�R2 + �i, i= 1, . . . , �,

�i�0, i= 1, . . . , �, (8)

where the variables R, a,�1, . . . ,��, and C have the exact same mean-
ing as in Eq. (1). The Lagrangian for problem (8) is given by

L(R, a,�1, . . . ,��,�1, . . . ,��,�1, . . . ,��))

= R2 −
∑
i
(R2 + �i − ‖xi − a‖2)�i −

∑
i

�i�i + C
∑
i

�iwi, (9)

where �1, . . . ,�� and �1, . . . ,�� are the Lagrange multipliers associ-
ated with the two sets of constraints in Eq. (8). Finally, the dual
problem is obtained by minimizing L with respect to R, a,�1, . . . ,��,
and �1, . . . ,��, which leads to

min
�1,. . .,��

�∑
i=1

�i〈xi,xi〉 −
�∑

i=1

�∑
j=1

�i�j〈xi,xj〉

s.t. 0��i�wiC, i= 1, . . . , �,
�∑

i=1
�i = 1. (10)

Notice that the objective function in Eq. (10) is the same as the
one in Eq. (2); only the constrains are changed. In particular, each
�i is constrained to being less than wiC rather than C. This is in
agreement with the desired behavior: a weightwi close to zero forces
the corresponding �i to also be close to zero, thus contributing very
weakly to the definition of the distance between any point x and the
center of the sphere, which is still given by Eq. (3). This behavior is
reenforced by the last constraint (the sum of the �i has to be equal
to one), since by limiting some of the �i to small values forces the
others to have larger values to keep the total sum equal to one.

Finally, notice that to guarantee that the feasible set is not empty,
the weights have to satisfy

�∑
i=1

wi�
1
C
,

otherwise, even if each �i equaled its allowed maximum wiC, their
sum would be less than one.

The exact same approach can be applied to the Schölkopf et al.
formulation, leading to the dual problem

min
�1,. . .,��

�∑
i=1

�∑
j=1

�i�j〈xi,xj〉

s.t. 0��i�wi/(��), i= 1, . . . , �,

�∑
i=1

�i = 1. (11)

As in the previous case, the sole change is in the constraints and
all the comments in the previous paragraph are still valid. Namely,
to guarantee that the feasible set is not empty, the weights have to
satisfy

�∑
i=1

wi���.

The distance function d(x) and the expression for � are, of course,
still given by Eqs. (6) and (7), where �∗1, . . . ,�

∗
�
are now the solution

of Eq. (11).
Finally, as in the original (non-weighted) versions, kernelization

is obtained by replacing each inner product 〈xi,xj〉 by the adopted
kernel function K(xi,xj).

3. The soft clustering scheme

In this section, the proposed soft clustering algorithm is pre-
sented. The key ideas are that each cluster is represented by one
WOC-SVM and that the algorithm has an EM-type structure. After
initialization (more on this below), the two following steps are cycli-
cally repeated until some convergence criterion is met (or a maxi-
mum number of iterations is reached): the E-type step computes a
degree of similarity between every data point and each cluster; the
M-type step uses these degrees of similarity as weights to retrain
the WOC-SVM representing the clusters.

3.1. The similarities

In the standard EM algorithm for a finite mixture model, the class
likelihood represents the “similarity” between some point x and the
class, namely how well the point x is modelled by a specific compo-
nent of the mixture. Likewise, in our algorithm we need a function
measuring the closeness of a point to a cluster, given that the cluster
is modelled with the WOC-SVM. Of course, unlike in a finite mixture
model, the “mixture” of WOC-SVM does not correspond to a gen-
erative model of the data. Although the WOC-SVM is intrinsically a
classifier (with a binary output), we can consider the “soft” output
(namely the output before thresholding) as a measure of the degree
with which a given point belongs to the corresponding cluster. The
notion that the similarities should behave similarly to cluster likeli-
hoods suggests that the soft outputs of the WOC-SVM can be used
as follows to obtain these similarities/“likelihoods”.

• In the Tax and Duin formulation, the WOC-SVM can provide the
squared distance between a point x and the center of its sphere, via
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Eq. (3) or its kernelized version. A natural choice for the similarity
between point x and cluster k is thus

STD(x, k)= exp

{
−‖x− ak‖2

�

}
, (12)

where ak is the center of the sphere of the WOC-SVM representing
cluster k, and the subscript TD in STD stands for “Tax and Duin”.
Parameter � controls how the similarity scales with the distance,
much as the variance of a Gaussian density; its impact will be
analyzed in Section 3.3.
• In the Schölkopf et al. formulation, the WOC-SVM provides, via Eq.
(6) or its kernel version, the signed distance between some point
x and the hyper-plane associated with cluster k. Since positive
(respectively, negative) values correspond to high (respectively,
low) similarities, a natural choice for the similarity between point
x and cluster k is thus

SS(x, k)= exp
{
dk(x)

�

}
, (13)

where dk is the signed distance function (6) corresponding to the
WOC-SCM of the k-th cluster and the subscript S in SS stands for
“Schölkopf et al”. Again � controls the scale of the distance.

3.2. The algorithm

With the similarity functions defined above, we are now ready
to describe the soft clustering algorithm in detail. Consider a set
of � points, {x1, . . . ,x�}, to be clustered in K groups. The proposed
algorithm proceeds as follows:

• Initialization: For k= 1, . . . ,K, initialize the k-th WOC-SVM; for ex-
ample, train each WOC-SVM using all points as positive examples,
each with a different random weight. Three different initialization
methods are described in the experimental section. Similarly to the
EM algorithm for finite mixtures, we need to employ in the algo-
rithm the mixing coefficients �k, which we call “cluster weights”;
such weights are initialized as �k = 1/K, for k= 1, . . . ,K.
• E-type step: Compute the cluster membership weights

zki =
�kS(xi, k)∑K
r=1�rS(xi, r)

for i= 1, . . . , �, k= 1, . . . ,K, (14)

where S(xi, k) is given by Eq. (12) or (13), computed with the
current WOC-SVM of each cluster, and �k is the current estimate
of the weight of cluster k. Notice that, naturally,

∑
kz

k
i = 1.

• M-type step: For k=1, . . . ,K, update the k-th WOC-SVM by training
it using as positive examples all the points in the dataset, each
weighted according to the set of weights {zk1, . . . , zk�}, and update
the cluster weight parameters according to

�k =
1
�

�∑
i=1

zki . (15)

Notice that this definition guarantees, exactly as in EM formixtures,
that the �k parameters sum to one:

K∑
k=1

�k =
1
�

K∑
k=1

�∑
i=1

zki =
1
�

�∑
i=1

K∑
k=1

zki

︸ ︷︷ ︸
1

=1.

• Stopping criterion: If a maximum number of iterations has been
reached, or some other convergence criterion is satisfied, stop;
otherwise, go back to the step.

In our implementation, we used as stopping criterion the con-
vergence of the following function fLL, which takes inspiration from
the log-likelihood computed in the mixture EM case:

fLL =
�∑

i=1
log

⎛
⎝ K∑
k=1

�kS(xi, k)

⎞
⎠ . (16)

If wanted, a final hard partition can be obtained by assigning each
point xi to the cluster

arg max
k
{zki , k= 1, . . . ,K},

or simply to the closest cluster.
We would like to stress again that although we have used EM

terminology and our algorithm has an EM-type structure, it is not
an EM algorithm, namely due to the absence of an underlying prob-
abilistic generative model. For this same reason, we cannot directly
import the monotonicity and convergence properties of EM to our
algorithm. In the experiments described in the next section, the al-
gorithm almost always converged. In some rare cases, the function
continued to oscillate between two values; this behavior is currently
under study.

3.3. The scale parameter and deterministic annealing

This section investigates the effect on the proposed algorithm of
the scale parameter � of Eqs. (13) and (12), introducing a variant of
the presented clustering scheme exploiting that effect.

First of all, it is important to notice that � controls the “softness” of
the clustering scheme. Let us clarify this statement: a soft clustering
scheme, by definition, assigns to each pattern a membership vector,
which describes its similarities to every cluster. On the other hand,
a hard clustering algorithm assigns a pattern just to one cluster (i.e.,
uses membership vectors with just one non-zero entry). Consider
the membership vector for pattern i, obtained by the E-type step,
denoted as zi(�) = [z1i (�), . . . , z

K
i (�)] (where we have used notation

that explicitly indicates the dependency on �). Now, noting that we
can write

exp

{
−‖x− a‖2

�

}
= (exp{−‖x− a‖2})1/�,

exp
{
dk(x)

�

}
= (exp{dk(x)})1/�,

it is easy to show that

lim
�→∞[z1i (�), . . . , z

K
i (�)]= [�1, . . . , �K ]

and

lim
�→0

zki (�)=
{
1 if k= arg maxjS(xi, j),
0 otherwise.

These limits show that when � is very large, the memberships are
essentially controlled by the cluster weights �k, whereas when �
becomes very small themembership vector specifies a hard partition.

The above described effect suggests the use of a determinist an-
nealing version of the algorithm, controlled by the scale parameter
�, which is potentially able to improve robustness with respect to
initialization [17,18]. The basic idea is to start the algorithm with
a large �: in this case the algorithm is working in a regime where
the clustering is very soft (since the cluster weights are initialized
to �k = 1/K), so there are no local minima. Subsequently, � is grad-
ually decreased, thus hardening the assignment vectors. A similar
approach has been exploited in Ref. [17], in order to improve the
robustness of the standard EM with respect to initialization, and in
Ref. [18] for vector quantization (equivalently K-means) algorithms.
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The application of this idea to our algorithm leads to the insertion
of an outer loop (the annealing loop), as follows:

(1) Initialization: as in the EM-like algorithm described in Section
3.2.

(2) set �= �max;
(3) repeat E-type and M-type steps until convergence;
(4) decrease �;
(5) if � >�min go to step (3), otherwise stop.

4. Experiments

4.1. Basic algorithm: fixed �

The experimental evaluation was based on five well-known real
datasets: the Iris dataset, the Wisconsin breast cancer (referred to
as WSC), the Wine data set—all from the USC Machine Learning
Repository1 —the Pima Indian diabetes dataset2 (referred to simply
as Pima), and the Biomed dataset.3

The analyzed methods were implemented in Matlab, except the
OC-SVM and WOC-SVM training algorithms. For the OC-SVM, we
have used the LIBSVM software [19], which implements the version
of Schölkopf et al. [11,12]. The training algorithm for the WOC-SVM
was obtained by modifying the OC-SVM code from LIBSVM. When
computing the similarity (13), the scale parameter � was set to 1.

In the experiments, we compare our soft clustering method
(which we named WOC-SVM soft clustering —WOC-SVM SC) with
its hard clustering counterpart—which we call OC-SVM hard cluster-
ing (OC-SVM HC). In particular, in order to have a precise and fair
comparison with our algorithm, we slightly adapted the algorithm
in Ref. [8] to our case. The main modifications were: first, in our
implementation we did not use the parameter �, which was used
in Ref. [8] to discard the elements that are too distant in feature
space. Second, in Ref. [8] the initialization was obtained by manu-
ally assigning some points to each cluster, whereas in the OC-SVM
HC two different automatic initializations were introduced: one ini-
tializes each OC-SVM using random points (called “Random Init” in
the table), while in the other (called “K-means init” in the table) a
preliminary K-means algorithm is run, and the points assigned to
each cluster are used to initialize the corresponding OC-SVM. All the
experiments use a standard Gaussian radial basis function (GRBF)
kernel of width 	. Different values for parameters � and 	 have been
tested, choosing those leading to the best results. In particular, for
each dataset, the optimal pair (	, �) was the same for all the kernel
methods: (0.85, 0.97) for Iris; (0.2, 0.99) for WBC; (0.01, 0.98) for
Wine; (0.1, 0.69) for Pima and (0.002, 0.95) for Biomed.

All the algorithms were run 20 times and we report in Tables
1 and 2 the average, the minimum, and the maximum accuracies
obtained over these 20 runs, for the proposed technique and for the
corresponding hard clustering version, respectively. Since true labels
are known, clustering accuracies could be quantitatively assessed.
In particular, given a specific group, an error is considered when a
pattern does not belong to the most frequent class inside the group.
For the proposed soft clustering method (results shown in Table 1),
we have considered several initialization methods: “Rand Pnts Init”,
in which each WOC-SVM is initialized using as positive examples
a randomly selected subsect of points; “Rand Wghts Init”, in which
each WOC-SVM is initialized using as positive examples all points
with different random weights; and “GMM Init”, in which a standard
Gaussian mixture model is used to find the clusters, and the likeli-

1 Available at http://archive.ics.uci.edu/ml/datasets.html
2 Available at www.stats.ox.ac.uk/pub/PRNN/
3 Available at http://lib.stat.cmu.edu/datasets/

Table 1
Percentage accuracies of the experimental evaluation for the proposed WOC-SVM
SCscheme, for three different initialization: initialization using random points (“Rand
Pnts Init”), using random weights (“Rand Wghts Init”) and using GMM clustering
(“GMM Init”)

Dataset Accuracy (max–min)

Rand Pnts Init Rand Wghts Init GMM Init

Iris 92.0% (93.3–66.7%) 93.1% (93.3–90.7%) 93.3% (93.3–93.3%)
WBC 97.1% (97.1–97.1%) 96.5% (97.1–93.9%) 97.1% (97.1–97.1%)
Wine 94.5% (96.1–67.4%) 96.1% (96.1–96.1%) 96.1% (96.1–96.1%)
Pima 68.3% (77.0–37.0%) 71.8% (76.0–58.5%) 75.0% (75.0–75.0%)
Biomed 84.6% (90.2–72.2%) 84.3% (90.7–50.5%) 88.2% (88.7–88.1%)

Table 2
Percentage accuracies of the experimental evaluation for the OC-SVM HC scheme,
for two different initialization: random initialization (“Random Init”) and K-means
initialization (“K-means init”)

Dataset Accuracy (max–min)

Random Init K-Means Init

Iris 87.1% (96.0–33.3%) 91.6% (96.0–42.7%)
WBC 94.0% (97.1–35.0%) 97.1% (97.1–97.1%)
Wine 77.4% (96.1–41.6%) 96.1% (96.1–96.1%)
Pima 68.5% (70.0–65.5%) 70.0% (70.0–70.0%)
Biomed 81.2% (83.0–65.5%) 83.0% (83.0–83.0%)

Table 3
Average accuracies for different methods on the Iris and WBCdatasets

Method Iris (%) WBC (%)

Self organizing mapsa 81.0 96.7
Neural gasa 91.7 96.1
Spectral clusteringa 84.3 95.5
K-meansa 89.0 96.1
GMM 89.3 94.6
Camastra–Verria 94.7 97.0
Proposed method 93.3 97.1

aThe results are taken from Ref. [8].

hoods are used as initial weights. From the tables it can be concluded
that for random initializations, the proposed approach outperforms
its hard version in all dataset (except Pima where it performs in
line). Further, for clever initializations (K-means or GMM), the pro-
posed method performs in line (in three cases) or above the hard
clustering scheme (in two cases). Moreover, the differences between
the maximum and minimum accuracies show that the proposed soft
clustering algorithm is more stable and robust with respect to ini-
tialization (except in the Pima case). With three of these datasets
(Iris, WBC and Wine), it seems that all initializations methods work
equally well. For the other two, clever initializations lead to more
stable results. The sensitivity of the hard clustering scheme with re-
spect to initialization is confirmed by comparing results on Iris and
WBC in Table 2 with the results reported in Ref. [8], where the vari-
ations were lower than those we found; recall that, in their method,
a manual initialization was used. As a general comment, we have to
say that parameter settings for kernel methods was quite difficult,
confirming the need of proper model selection techniques.

In order to further assess the performance of the proposed al-
gorithm in comparison with other methods, we include in Table 3
the average accuracy values reported in Ref. [8], obtained for the Iris
and WBC datasets by other recent state-of-the-art algorithms: self-
organizing maps (SOM) [20], neural gas [21], the Ng–Jordan spec-
tral clustering algorithm [22]. Results of the classical GMM-based
clustering and K-means clustering are also reported. It can be ob-
served that the proposed approach is very competitive on these two
datasets, achieving the best performance for WBC and the second
best for Iris.

http://archive.ics.uci.edu/ml/datasets.html
http://www.stats.ox.ac.uk/pub/PRNN/
http://lib.stat.cmu.edu/datasets/
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Table 4
Percentage accuracies of the experimental evaluation for the deterministic annealing
variant of the proposed WOC-SVM SC scheme, described in Section 3.3

Dataset Accuracy (max–min)

Rand Pnts Init Rand Wghts Init GMM Init

Iris 93.3% (93.3–93.3%) 93.3% (93.3–93.3%) 93.3% (93.3–93.3%)
WBC 97.1% (97.1–97.1%) 97.1% (97.1–97.1%) 97.1% (97.1–97.1%)
Wine 96.1% (96.1–96.1%) 96.1% (96.1–96.1%) 96.1% (96.1–96.1%)
Pima 70.0% (71.0–69.0%) 70.0% (70.5–69.0%) 70.0% (70.0–70.0%)
Biomed 81.3% (85.6–70.1%) 80.7% (86.1–69.6%) 85.6% (85.6–85.6%)

All the experimental conditions are the same.

4.2. Deterministic annealing version

In order to assess the suitability of the presented deterministic
annealing version of the algorithm, we repeated the experiments
described in the previous subsection, using the same configuration;
note that, in order to have a fair comparison, exactly the same ini-
tializations were used by both versions of the algorithm. We set
�max = 5, �min = 0.1, and the update rule of step 4 as �← � ∗ 0.95.
The results obtained are reported in Table 4.

Comparing Tables 4 and 1, we can observe that in general there
is not a substantial improvement in the averaged accuracies. Nev-
ertheless, note that the minimum accuracy is almost always higher
when applying the deterministic annealing version, thus showing an
increased robustness with respect to initialization.

5. Concluding remarks and ongoing work

In this paper we have introduced a soft clustering algorithm based
on one-class SVM (OC-SVM) representations of the clusters. The pro-
posedmethod is based on a weighted version of the OC-SVM (termed
WOC-SVM) which we have also introduced in this paper, and is in-
spired by the OC-SVM-based hard clustering algorithm proposed in
Ref. [8]. Due to the use of WOC-SVM, the algorithm is directly ker-
nelizable, thus constituting a kernel-based soft clustering method.
Experimental results reported have shown that the proposed soft
clustering algorithm outperforms the hard clustering counterpart,
namely in what concerns robustness with respect to initialization.
The proposed algorithm performs competitively with several state-
of-the-art methods, including the spectral clustering algorithm of
Ng and Jordan [22]. A deterministic annealing version has been also
proposed, and shown to be able to provide robustness with respect
to initialization.

As with most kernel-based methods, the performance of our
method depends critically on the choice (and tuning of parameters)
of the kernel. We are currently investigating approaches to adjust
the kernel to the data in a more automatic way. Another research

front concerns the development of model selection criteria under
which the algorithm can select the number of clusters in the data.
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