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Hidden Markov models (HMMs) have been successfully applied to a wide range of sequence modeling
problems. In the classification context, one of the simplest approaches is to train a single HMM per
class. A test sequence is then assigned to the class whose HMM yields the maximum a posterior (MAP)
probability. This generative scenario works well when the models are correctly estimated. However, the
results can become poor when improper models are employed, due to the lack of prior knowledge, poor
estimates, violated assumptions or insufficient training data.
To improve the results in these cases we propose to combine the descriptive strengths of HMMs with
discriminative classifiers. This is achieved by training feature-based classifiers in an HMM-induced vector
space defined by specific components of individual hidden Markov models.
We introduce four major ways of building such vector spaces and study which trained combiners are
useful in which context. Moreover, we motivate and discuss the merit of our method in comparison to
dynamic kernels, in particular, to the Fisher Kernel approach.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Hidden Markov models (HMMs) represent a powerful statistical
learning technique, widely applied to sequence modeling. They have
been successful in a variety of fields such as natural language pro-
cessing (including speech recognition [1,2], speech translation [3]
or parsing [4]), pattern recognition and computer vision [5] (includ-
ing shape recognition [6,7], face and gesture recognition [8,9], image
analysis [10]) and also computational biology and genomics [11–13].

HMMs are stochastic finite state machines which generate a se-
quence of observations, symbols or vectors, by moving among (hid-
den) states, as governed by transition probabilities. It is assumed
that the probability distribution of the current state is conditionally
independent of the path of past states (first order Markov property).
A symbol is emitted according to the emission probabilities each
time a state is visited. Hence, in order to model the underlying struc-
ture of a set of sequences one needs to specify the emission prob-
ability functions, state transition probabilities and the initial state
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probabilities. HMMs are computationally efficient to train and eval-
uate thanks to the assumption of the first order Markov property
and the availability of efficient algorithms [1,12].

In the classical HMM-based classification scenario each class �c

from a set of classes � = {�1, . . . ,�C} is modeled by a single HMM.
The generative HMM kc describes the probability density function
for an example sequence O associated with �c, i.e. P(O|�c;kc). Typ-
ically, each model kc is trained iteratively via the Baum–Welch
re-estimation procedure [14,15], i.e. its parameters are updated to
maximize the likelihood of the training sequences Oc. Having de-
termined the model parameters kc, sequences can now be ran-
domly generated from the distribution of this model, and, more
importantly, the sequence likelihood can be calculated for an ex-
ample O. Given the prior distribution over the classes, P(�c), c =
1, . . . ,C, Bayes rule is used to estimate the posterior probabilities:
P(�c|O;kc) = P(O|�c;kc)P(�c)/P(O). Classification of an unlabeled
sequence O is performed by the MAP (maximum a posteriori) ap-
proach: y=arg maxc{P(O|�c;kc)P(�c)}, where y is the label assigned
to O. The evidence P(O) is omitted as it does not influence the de-
cision. So, we deal with a generative approach to classification, in
which probability density models are learned per class, and the class
of the largest P(O|�c;kc)P(�c)is picked for the assignment.

Even if this Bayes rule represents the theoretical optimal decision
rule (i.e. leading to the minimum probability of error [16]), in prac-
tice, generative HMMs may suffer from poor discriminative abilities.
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This is likely to occur in one of the following scenarios:

• poorly estimated class models, e.g. due to insufficient learning
examples,

• improper models, e.g. due to bad model definition or conditional
dependence of the states and

• possible class overlap, as may occur in for instance medical prob-
lems where patient diagnoses may not be consistent between dif-
ferent medical doctors.

Some of these issues can be addressed by improving and extending
the classical HMMs. Many such approaches have been proposed
in the past; a non-exhaustive list includes hierarchical HMM [17],
input–output HMM [18], factorial hidden Markov models [19], cou-
pled HMM [20] and others. These offer solutions to inhomogeneous
class structures, as they are flexible enough to model complex
classes. They however become infeasible for small sample size prob-
lems, because there is far too little information for the estimation of
their parameters. Alternatively, the discriminative skills can be en-
hanced by training HMMs with discriminative criteria. Two popular
examples are based on maximum mutual information (MMI) [21]
and minimum Bayes risk (MBR) [22], but other extensions are avail-
able, such as [23,24] or the lattice-based framework presented in
[25]. See also [26] for an overview. In the context of speech recogni-
tion, we read in [25]: “The key issue [with discriminative criteria] is
one of generalization and this is affected by the amount of training
data available, the number of HMM parameters estimated, and the
training scheme used. [..] if steps are taken to improve generaliza-
tion performance, MMI-trained systems can indeed outperform the
best ML-trained systems for even the most complex large vocabu-
lary speech recognition tasks.” One must however remember that
although discriminative criteria try to reduce the recognition error
directly, they require sufficient amount of training data.

Furthermore, there exist generalizations of HMMs towards prob-
abilistic discriminative models. These are conditional random fields
(CRFs) [27] and hidden CRFs (HCRFs) [28], in which conditional max-
imum likelihood is often used to estimate the parameters. In the
application to phone classification, Gunawardana [28] shows that
HCRFs outperform comparable generative HMMs (trained by ML)
andMMI-trained HMMs. Discriminative learning procedures can also
be based on a maximum/soft margin criterion [29], a perceptron-
like algorithm [30], or a recursive scheme that maximizes the lower
bound of the regularized cross-entropy [31]. All these discrimina-
tive techniques need complex training procedures, whereas the final
classification still relies on the MAP approach: a sequence is assigned
to the class whose HMM yields the highest maximum a posterior
probability.

In this paper we propose a simpler method to improve the dis-
criminative power of the MAP approach, i.e. to apply discriminative
classifiers to features that are extracted from individual HMM class
descriptions. This utilizes the lesson from Multiple Classifier Sys-
tems that a back-end discriminative classifier is able to compensate
for the weak generalization power of individual class-related hidden
Markovmodels; see also [32–34]. We therefore focus on situations in
which classical HMMs are “good enough” to capture characteristics
of the classes, but the classes are either weakly discriminative (due
to the problem definition) or described by poorly estimated models
(due to insufficient complexity or small sample size problems).

Our proposal is to map each sequence into an HMM-induced vec-
tor space (HHMVS), whose features are derived from specific com-
ponents of individual HMMs. Every feature measures the relevance
of a specific component (like states or transitions) of a given HMM
when an input sequence O is fed to this HMM, or, better, how a
specific component contributes to the explanation of O. Discrimina-
tive classifiers are then designed in these vector spaces. This paper

shows that this method is robust and may drastically improve the
standard HMM-based classification scheme. This is particularly evi-
dent when the original models are insufficient to solve the problem,
usually due to small training sets, incorrect model topology or bad
model assumptions. The described approach may be really useful
in another crucial scenario, namely when different models—already
trained on different data sets—are available, and new data (from a
novel class) come. In this case, instead of training the models again
(or training new models), we can just build the discriminant on the
new data projected to the feature space through the already trained
models. This is illustrated in Section 4, where a feature space derived
from a model of a single class is good enough to enable discrimina-
tion between different classes not modeled by HMMs. Such a sce-
nario could be useful for using generic models in different cultural
areas (e.g. for speech recognition), and also when a time adaption is
required.

The approach proposed here is an extension of some previous
work [35–37], in which features were defined as functionsmeasuring
similarity between patterns and classes (or clusters). In this paper,
we go a step further and define features that describe relevance of
particular components of the HMMs for explaining input sequences.
It is related to the family of dynamic kernels [38–40], in particular
the Fisher Score approach [38,41–43] and its variants, e.g. [44], as
well as further generalizations to score spaces [45]. In the classical
Fisher Score approach, features are gradients of the log-likelihood
with respect to the model's parameters. Even though HMM-induced
spaces proposed by us share some structure with variants of the
Fisher Score space, the spaces are different because they are derived
based on fundamentally different assumptions. We describe both
similarities and differences between HMM-induced vector spaces
and (Fisher) Score spaces, showing experimentally how and when
they differ.

The remainder of the paper is organized as follows. Section 2
describes the proposed generative-discriminative approach, while
Section 3 presents an experimental evaluation. Section 4 discusses
dimensionality issues. Section 5 focuses on a comparison with the
Fisher Score approach. Finally, conclusions are drawn and future
perspectives are envisaged in Section 6.

2. Learning in HMM-induced vector spaces

Before introducing our framework, we will first start with some
notation.

2.1. Hidden Markov models

A discrete-time first order hidden Markov model [1] is a stochas-
tic finite state machine defined over a set of K states S={S1, S2, . . . , SK}.
The states are hidden, i.e. not directly observable. Each state has
an associated probability density function encoding the probabil-
ity of observing a certain symbol being output from that state. Let
Q =(Q1,Q2, . . . ,QT ) be a fixed state sequence of length Twith the cor-
responding observations O = (O1,O2, . . . ,OT ). An HMM is described
by a model k, determined by a triple {A,B,p} such that:

• A= (aij) is a matrix of transition probabilities, in which aij =P(Qt =
Sj|Qt−1 = Si) denotes the probability of state Sj following state Si.

• B=(bj(o)) consists of emission probabilities, in which bj(o)=P(Ot=
o|Qt =Sj) is the probability of emitting the symbol o when being in
state Sj. We deal with a discrete HMM if the emitted symbol comes
from a finite alphabet, and we deal with a continuous HMM, if the
emission probability density is modeled by a continuous function
as emitted observations are vectors.

• p=(�i) is the initial state probability distribution, i.e. �i=P(Q1=Si).
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There are two additional assumptions that an HMM should obey, first
order Markov property and output independence. The former prop-
erty states that information in the current state is conditionally inde-
pendent from the previous states, i.e. P(Qt|Qt−1, . . . ,Q1)= P(Qt|Qt−1).
The second assumption, P(Ot|Qt ,Qt−1, . . . ,Q1,Ot−1, . . . ,O1) = P(Ot|Qt),
demands that the output at time t depends only on the current state.

A crucial procedure is the so-called forward–backward procedure
[1], used to recursively compute the probability P(O|kc) for a test
sequence O, i.e. the probability of generating O by model kc via the
most likely path. This algorithm is used multiple times to derive the
quantities needed in our proposal; see Appendix A.2 for details.

2.2. Our methodology

We will now describe a framework for combing the strengths
of one-class HMMs with discriminative feature-based learners via
the use of component-based HMM-induced vector spaces. Let O =
{O1, . . . ,On} be a set of observation sequences (of variable lengths)
with the corresponding labels Y={y1, . . . , yn}, indicating class mem-
berships to one of C classes, �1, . . . ,�C . Let O

c = {Oc
1, . . . ,O

c
nc } denote

sequences of the class �c. The HMM-based discriminative classifica-
tion relies on the following steps:

1. Training individual HMMs.
2. Definition of an HMM-induced vector space.
3. Classifier training: data projection to HMMVS and training a

feature-based classifier.
4. Classifier testing: data projection to HMMVS and testing.

2.3. Training individual HMMs

Each class �c is described by a generative K-state hidden Markov
model kc, with the states Sc={Sc1, Sc2, . . . , ScK}, trained on the sequences
from Oc. Each kc is estimated via the Baum–Welch re-estimation
algorithm such that P(Oc

i |kc) is maximized for all Oc
i [1]. This results

in a battery of C HMMs {k1,k2, . . . ,kC}.

2.4. HMM-induced vector space

The HMMs are fitted to model a single class well, but this may
lead to poor discrimination as themodels are not optimized to differ-
entiate among the classes. We propose to derive a fixed-dimensional
feature space from the trained generative HMMs, in which discrimi-
native classifiers are trained. We call this an HMMVS, equipped with
the traditional norm and Euclidean metric. Every feature is extracted
from a specific HMM and conveys information about the correspond-
ing class. In essence, this approach maps variable-length observa-
tion sequences into a vector space, and by doing this it integrates
the modeling potential of one-class models with discriminative
classifiers.

HMMVS are based on “Component Information” features, CIs,
which describe some relevant information extracted from particu-
lar components of the models, in relation to the input sequence O.
A CI feature either characterizes some properties of the genera-
tion path of the sequence O through the model kc or the strength
with which a specific component of kc “responds” to O. More for-
mally, FCI(·,kc) : Oc → Rmc is a model-dependent mapping de-
fined by mc components derived from kc. The final HMM-induced
vector space is a Cartesian product of all CI-spaces (one for each
class), FCI(·,k1) × · · · ×FCI(·,kC) such that

FHMM(O) = [FCI(O,k1),FCI(O,k2), . . . ,FCI(O,kC)]
T . (1)

We introduce now four different CI-mappings, leading to four dif-
ferent HMM-induced spaces (see Appendix A.2 on how to compute

the relevant quantities):

1. LL-space (log-likelihood space): This is our reference space, similar
to the ones proposed in [35,36,45]. The CI-feature becomes the
logarithm of the probability that the model kc has generated the
sequence O, i.e. CILL(O,kc)= log P(O|kc). So, the extracted Com-
ponent Information tells us how well a sequence is modeled by
the given HMM. The resulting C-dimensional vector in HMMVS is
defined as FLL

HMM(O) = [log P(O|k1), . . . , log P(O|kC)]T .
2. state-space: Here wemeasure the contribution of individual states

to the most likely generation of the observation sequence. The
CI-feature describes how often (and with which probability) the
model kc passes through a particular state Sci when observing the
sequenceO. We start by considering the variable �ti , obtained from
the forward–backward procedure. It represents the probability of
being in state Sci at time t, given the sequence O of the length T
and the model kc. We have

�ti (O,kc) = P(Qt = Sci |O,kc). (2)

The relevant information for the state Sci of a given model kc
is therefore the sum over time of the probability that kc passes
through that state while emitting O, i.e.

�̄i(O,kc) =
T∑

t=1

P(Qt = Sci |O,kc) =
T∑

t=1

�ti (O,kc). (3)

Notice that �̄i(O,kc), the sum of �ti over time t, can be interpreted
as the expected number of transitions from Sci [1]. It is therefore
a natural measure of the importance of state Sci in the process of
deriving P(O|kc). Hence, our CI-feature is defined as �̄i(O,kc). If
�̄i(O,kc) is scaled by T, then theCI-feature becomes independent
of sequence length. We, however, do not follow this idea here.
It appears that sequence length can be very informative in the
experiments, because it captures complexity of the structure en-
coded in a sequences. We are not disturbed by variable-length se-
quences as the resulting CI-features can appropriately be scaled
for the use of discriminative classifiers.
The total Component Information for the class �c is captured by
a K-element vector:

FS
CI(O,kc) = [�̄1(O,kc), . . . , �̄K(O,kc)]

T . (4)

Finally, each sequence is mapped into a CK-dimensional feature
vector which summarizes the importance of each state Sci for every

model kc with respect to the input sequence O, i.e. FS
HMM(O) =

[FS
CI(O,k1), . . . ,F

S
CI(O,kC)].

3. trans-space: We focus now on the importance of individual tran-
sitions in an HMM. Hence, we characterize the property of kc by
the frequency with which each connection is used in the pro-
cess of generating O. The basic variable, easily computed from the
forward–backward algorithm, is �t

(i,j). It represents the probabil-
ity of passing from state Sci at time t to state Scj at time (t + 1),
given the observations and the model, i.e.

�t
(i,j)(O,kc) = P(Qt = Sci ,Qt+1 = Scj |O,kc). (5)

Similarly to the previous case we compute the sum over t,
deriving:

�̄(i,j)(O,k) =
T−1∑
t=1

P(Qt = Sci ,Qt+1 = Scj |O,kc) =
T−1∑
t=1

�t
(i,j)(O,kc). (6)

�̄(i,j)(O,kc) can be interpreted as the expected number of transi-
tions from state Sci to state Scj [1]. Therefore, our CI-feature is
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�̄(i,j)(O,kc). The total Component Information for the class �c be-
comes now a K2-dimensional vector, defined as

FT
CI(O,kc) = [�̄(1,1)(O,kc), . . . , �̄(1,K)(O,kc), �̄(2,1)(O,kc), . . . , �̄(K,K)(O,kc)]

T . (7)

The HMMVS is defined by all models, hence each sequence is
mapped into a CK2-dimensional feature vector, summarizing the
importance of all transitions {Sci → Scj } for each model kc and a

sequence O, i.e. FT
HMM(O) = [FT

CI(O,k1), . . . ,F
T
CI(O,kC)].

4. emit-space: In some applications, emission probabilities may
represent themostmeaningful part of an HMM. Hence, we charac-
terize the property of kc by the sum of emission probabilities at a
given state. The CI-feature is defined as �̃i(O,kc)=

∑T
t=1b(Ot|Sci ).

The total Component Information for the class �c is a K-
dimensional vector,

FE
CI(O,kc) = [�̃1(O,kc), . . . , �̃K(O,kc)]

T . (8)

The final HMMVS is described by all models, hence each
sequence is mapped into a CK-dimensional feature vector,
FE

HMM(O) = [FE
CI(O,k1), . . . ,F

E
CI(O,kC)].

The spaces presented above are the ones most intuitively de-
rived from HMMs. Other spaces can be defined by following the
same principle, e.g. such that Component Information is summa-
rized over a couple of states or over a set of transitions entering a
particular state. Another possible extension is a fusion of (parts of)
the spaces. The flexibility in the definition of Component Informa-
tion can be utilized to tailor this generic approach into a specific
application.

The main problem in our approach is the high dimensionality of
some HMM-induced vector spaces, in particular the trans-space. Any
traditional feature reduction technique, such as principal component
analysis (PCA) can be applied to diminish the impact of curse of
dimensionality [16] on classifier performance. Section 4 discusses a
few methods that effectively deal with this issue.

2.5. Classifier training in HMMVS

The classification model is now an ensemble {{k1, . . . ,kC},
FHMM ,C}, where {k1, . . . ,kC} are the individual HMMs describing
the classes, FHMM is a specific HMM-induced vector space, and C
is the final classifier. Since the original sequences are mapped as
vectors to an HMMVS via Component Information derived from the
trained models, these resulting vectors do not follow independent
distributions. Discriminative classifiers are therefore preferred here,
because they directly focus on estimating class posterior probabili-
ties instead of modeling class distributions. Such classifiers should
also be less affected by the curse of dimensionality.

Ideally, the training set is split into two independent subsets, one
used for learning HMMs and the other used for training a classifier
in the HMMVS. In practice, however, there is often insufficient data
to allow for this. In our study we use a single set, both to determine
the HMMs and to train the final classifier. Such data re-use may lead
to overtraining. The practice of Multiple Classifier Systems shows,
however, thatwe can still benefit from this generative-discriminative
combining scheme, provided that the basic generative HMMs are
capable of characterizing informative features (however poorly they
may be estimated) and the combiner is simple enough not to overfit.
The main task is, therefore, to get sufficiently rich CI-features; see
also [34].

Feature normalization in HMMVS can be important depending
on the chosen classifier. Two usual techniques are standardization
(zero mean and unit variance) and linear scaling to the [0, 1] do-
main. Normalization is necessary for the LL-space, as it relies on un-
bounded logarithms of probabilities, which may become very large

Α =

0.10 0.40 0.40 0.10

0.20 0.40 0.40 0.00

0.10 0.40 0.30 0.20

0.50 0.30 0.10 0.10
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0.25

0.25

0.25

Β =

μ1=1 σ1=12

μ2=3 σ2=12

μ3=5 σ3=12

μ4=7 σ4=12

Parameters of the HMM generating sequences of class1.

Α =

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25
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0.25

0.25

0.25

0.25

Β =

μ1=1.1 σ1=12

μ2=3.1 σ2=12

μ3=5.1 σ3=12

μ4=7.1 σ4=12

Parameters of the HMM generating sequences of class2.

Fig. 1. Two-class synthetic data; sequences are generated by two HMMs. A is a
probability transition matrix, p denotes the initial state probabilities and (�,r) are
the parameters of the Gaussian emission density function.

in modulus for small probabilities. state-, emit- and trans-spaces are
bounded, because their features are summations over sequences of
probabilities of a fixed maximal length. In this case, it is not clear
whether normalization is required. In our experiments we compare
normalized and non-normalized spaces, showing that the useful-
ness of this operation strictly depends on the chosen application
and the classifier. Nevertheless, we remove non-informative fea-
tures in HMMVS with zero (or close to zero in the machine preci-
sion) variances as judged on the training set. This may especially
be the case, e.g. for trans-space when particular transitions never
occur.

2.6. Illustrative synthetic example

Now we illustrate both the advantages and drawbacks of the
proposed approach with a synthetic example. Our goal is to highlight
the situations for which classifiers in HMMVS are superior to the
traditional MAP approach. If the training set is sufficiently large and
class models are well estimated (i.e. with the correct number of
states and topology, and well estimated probability functions), then
the MAP approach is more beneficial.

We consider a two-class problem, in which sequences of length
10 are generated from the two 4-state Gaussian HMMs specified in
Fig. 1. Since these two models are very similar (especially in the
emission probability density models), the discrimination becomes
difficult. Our experimental evaluation is specified as follows:

• Disjoint training and test sets are randomly generated. The training
set varies from 2 to 500 sequences per class. The test set contains
1000 sequences, 500 examples per class.

• Standard either 4-state or 8-state HMMs are trained per class, stop-
ping at the likelihood convergence. The former case corresponds
to a perfect model topology, while the latter simulates an incorrect
model.

• Non-normalized state- and trans-spaces are constructed on the
training set. The state-space is either 8D or 16D, while the trans-
space is either 32D or 128D, depending on the number of states
in the HMMs.

• Test sequences are classified either by the MAP approach ap-
plied to the two trained HMMs, or by classifiers trained in the
HMM-induced vector spaces. The classifiers are chosen such that
they do not suffer much from high-dimensional feature spaces
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Fig. 2. Averaged classification accuracy (in %) for the synthetic data as a function of the training size ntr . Note that x-axis has a logarithmic scale. Concerning the correct
4-state class models (left), the standard errors of the average accuracy vary from 1.0% to 1.2% for ntr = 6, via 0.9% (trans-space) or 1.2% (state-space) for ntr = 20% to 0.55%
for ntr = 100 and, finally, 0.3–0.45% for large ntr . Concerning the incorrect 8-state class models (right), the standard errors of the average [49] results vary from 0.9% to 1.1%
for ntr = 6, via 0.7–0.8% for ntr = 20 to ≈ 0.5% for ntr = 100 and, finally, 0.3–0.4% for large ntr .

Table 1
Characteristics of the data.

Data C Size No. per class (min–max) Taining/test Sequences Sq. length (min–max) K

Chicken 5 446 61–117 20× 50–50% holdout Discr. chain-codes 167–48 3
Chicken 5 446 61–117 20× 50–50% holdout 1D curvature 10–81 3
Auslan 10 270 27 20× fivefold CV 22D sensors data 30–102 3
Japan-Vowel 9 640 61–118 Fixed: 270/370 12D LPC coef. 7–29 5
Alcoholic 2 600 300 Fixed: 600–600 2D EEG signals 256 9

C denotes the number of classes. K is the number of states in the HMMs.

(zero-valued features that occur during training are neglected).
The classifiers are:
◦ the naive Bayes classifier (NBC—[48]), assuming that features

are conditionally independent; individual class-conditional
marginal densities are estimated by 1D histograms;

◦ the support vector machine (SVM—[50]) with a Gaussian ker-
nel. � is estimated by the leave-one-out nearest neighbor error
on the training set, the scale 	 of the Gaussian kernel is deter-
mined in a 20-step optimization based on the fivefold cross-
validation error estimation; and

◦ the k-nearest neighbor rule (k-NN—[47]). k is estimated on
the training set by minimizing the leave-one-out classification
error.

• The experiments are repeated 30 times and the average accuracy
is reported.

Fig. 2 shows curves of average classification accuracy. We can
observe that classification performance increases with the increas-
ing training size, and that the state-space is inferior to trans-space,
especially when SVM is trained. Most importantly, given the cor-
rect model topology (K = 4, left subplot), we can observe that the
MAP results become increasingly better with a growing number of
training sequences, finally outperforming the classifier in the HM-
MVS. For small sample size situations, however, the classifiers in
the trans-space outperform the MAP approach. The right subplot of
Fig. 2 shows the results for the situation where an incorrect model
topology, 8-state HMMs, is used. In this case, the accuracy deteri-
orates for all classification strategies, but the MAP is suffering the

most. The trained classifiers are capable of recovering from the im-
proper estimates by using supervised training information in their
discriminative learning. The k-NN and SVM trained in the trans-
space provide a substantial improvement over the baseline MAP re-
sult for small and moderate training sizes and a similar result for
large training sizes. This experiment supports the idea that our ap-
proach can be recommended for small training sets or when the
chosen HMMs do not fit to the observed phenomena.

3. Experimental evaluation

The usefulness of HMMVS is evaluated on four applications:
shape recognition (Chicken data), gesture classification (Auslan data),
speaker verification (Japan-Vowel data) and EEG signal classification
(Alcoholic data). These problems represent various scenarios, such
as discrete symbol sequences versus continuous signals, difficult
tasks versus easy tasks, small versus large number of classes, and
finally, small or moderate training sets. The data sets are summa-
rized in Table 1 and their further descriptions (including derivation
of sequences) are given in Appendix A.1.

3.1. Experimental details and parameter setting

We assume that we deal with fully ergodic HMMs. Initializa-
tion is random both for the transition probabilities and initial state
probabilities. In case of continuous signals, the emission probability
models are initialized by a Gaussian Mixture clustering. In case
of discrete symbol sequences, 20 independent training runs are
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Table 2
Average classification accuracy (in %) in HMM-induced vector spaces for the Chicken data.

Classifier LL (N) 5D state (N) 15D state 15D trans (N) 45D trans 45D emit (N) 15D emit 15D

Discrete sequences
lda 62.2 (1.0) 72.2 (0.8) 72.2 (0.8) 82.6 (0.6) 82.8 (0.6) 72.3 (0.7) 72.3 (0.7)
loglc 64.2 (0.9) 72.3 (0.8) 72.3 (0.8) 46.6 (4.7) 49.5 (5.0) 73.0 (0.5) 73.0 (0.5)
nbc 53.5 (0.7) 62.5 (0.7) 62.5 (0.7) 80.7 (0.6) 80.7 (0.6) 64.7 (0.5) 64.7 (0.5)
svm 61.9 (1.0) 68.7 (1.1) 64.2 (0.7) 80.4 (0.6) 69.4 (0.8) 69.0 (0.6) 62.6 (0.7)
rbsvm 62.0 (0.7) 72.8 (0.7) 71.3 (0.7) 81.1 (0.5) 74.9 (0.5) 75.8 (0.6) 74.0 (0.7)
knn 55.9 (0.7) 67.8 (0.7) 67.8 (0.9) 72.7 (0.9) 68.2 (0.7) 69.4 (0.7) 69.2 (0.5)

Continuous sequences
lda 70.7 (0.5) 72.5 (0.5) 72.5 (0.5) 75.5 (0.4) 76.1 (0.4) 73.0 (0.8) 73.0 (0.8)
loglc 69.5 (0.6) 71.9 (0.7) 71.9 (0.7) 36.5 (2.5) 36.0 (2.5) 71.9 (0.7) 71.9 (0.7)
nbc 58.0 (0.9) 70.0 (0.7) 70.0 (0.7) 71.5 (0.9) 71.5 (0.9) 68.9 (0.9) 68.9 (0.9)
svm 63.8 (0.8) 69.9 (0.8) 55.7 (0.9) 75.2 (0.6) 65.8 (0.8) 73.7 (0.6) 60.0 (0.9)
rbsvm 75.5 (0.5) 79.9 (0.6) 79.1 (0.5) 80.0 (0.6) 79.8 (0.4) 80.1 (0.5) 78.4 (0.5)
knn 71.0 (0.7) 77.4 (0.5) 77.3 (0.5) 74.4 (0.5) 77.0 (0.7) 77.2 (0.4) 75.2 (0.5)

The numbers in parenthesis describe the standard errors of the mean results. (N) denotes a normalized vector space.

Table 3
Average classification accuracy (in %) in HMM-induced vector spaces for the Auslan data.

Classifier LL (N) 10D state (N) 30D state 30D trans (N) 90D trans 90D emit (N) 30D emit 30D

lda 87.2 (0.4) 82.7 (0.6) 82.7 (0.6) 85.1 (0.4) 85.2 (0.5) 51.1 (0.6) 10.0 (0.0)
loglc 82.7 (0.5) 59.9 (2.0) 59.9 (2.0) 70.3 (1.1) 70.3 (1.1) 11.6 (0.4) 11.6 (0.4)
nbc 63.8 (0.5) 77.1 (0.6) 77.1 (0.6) 84.4 (0.5) 84.4 (0.5) 30.2 (0.7) 10.0 (0.0)
svm 84.5 (0.5) 78.5 (0.5) 52.2 (0.9) 82.2 (0.5) 51.3 (0.9) 60.6 (0.5) 17.1 (0.5)
rbsvm 86.1 (0.4) 82.1 (0.5) 77.1 (0.6) 84.5 (0.6) 77.3 (0.5) 62.0 (0.6) 11.4 (0.4)
knn 79.2 (0.5) 70.4 (0.9) 62.8 (1.0) 72.0 (0.7) 63.0 (1.0) 47.1 (0.5) 11.5 (0.4)

The numbers in parenthesis describe the standard errors of the mean results. (N) indicates a normalized vector space.

performed, starting from a random initialization, picking the best
likelihood model as the representative. Our implementation relies
on the Murphy's Matlow hidden Markov model toolbox.1

For simplicity, the number of states is fixed for all classes in each
problem. It is chosen beforehand by using some preliminary analysis
or based on a priori knowledge (e.g. published papers). The same
HMMs are used in the MAP scheme as in the proposed generative-
discriminative framework.

Different strategies are used to estimate classification accuracy for
each problem in order to make valid comparisons with the already
published results. Various classifiers, as implemented in Prtools
[46], are tested in our HMM-induced vector spaces:

lda linear discriminant analysis [47]: It assumes identical class
conditional densities, modeled by Gaussians. The linear decision
function is determined by the Bayes rule.

loglc logistic linear classifier [48]: It models the log-odds (loga-
rithm of the ratio of class posterior probabilities) as linear functions.
The weights are optimized by ML.

nbc naive Bayes classifier [48]: It assumes that features are condi-
tionally independent. Here the individual class-conditional marginal
densities are estimated by 1D histograms.

knn k-nearest neighbor rule [47]: k is estimated on the training
set by minimizing the leave-one-out classification error.

svm linear support vector machine [50]: This is the �-SVM rule
applied to a linear kernel. � is estimated by the leave-one-out nearest
neighbor error on the training set.

rbsvm radial basis support vector machine [50]: This is the �-SVM
rule applied to a Gaussian kernel. � is estimated by the leave-one-
out nearest neighbor error on the training set. The scale 	 of the
Gaussian kernel is determined in a 20-step optimization based on
the fivefold cross-validation error estimation.

1 Downloadable from http://www.cs.ubc.ca/∼murphyk/Software/HMM/hmm.html

1-svm 1-norm Support Vector Machine [51]: This is a linear pro-
gramming machine optimizing the �1-norm of the weights. It may
serve as a feature selector.

lda, loglc and nbc are not affected by a linear scaling of fea-
tures, in contrast to classifiers that depend on a distance or inner
product. Note also that both lda and nbc cannot be any longer con-
sidered as purely generative classifiers in our framework. The reason
is that every feature in the HMMVS conveys information related to a
specific class. If all models are used, features provide class-related re-
sponses of the trained HMMs. So, even if we model class-conditional
densities, they incorporate information from all the classes thanks
to the class-related features. The final classifier is trained in the HM-
MVS, after removing features with zero variances, which also reduces
the space dimension.

3.2. Results and discussion

Tables 2–5 report the results of our experimental evaluation.
When appropriate (in case of cross-validation or hold-out experi-
ments), averaged classification accuracies and their standard errors
are displayed. The tables present classification performance in both
normalized (by unit variance) and non-normalized state-, emit- and
trans-spaces for the Chicken, Auslan, Japan-Vowel and Alcoholic data,
correspondingly. The performance of the traditional MAP approach
and the best performances in the proposed framework are shown in
Table 6. While analyzing all results, the following observations can
be made:

• Discriminative classifiers in the HMMVS versus MAP: In general, the
proposed approach is better than the standard MAP classification
scheme. The improvement is negligible when HMMs are perform-
ing very well, as observed for the Japan-Vowel data. Improvements
in accuracy are impressive when the estimated HMMs are weak,
either undertrained or badly estimated, as it can be observed for
the Chicken data.

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
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Table 4
Average classification accuracy (in %) in HMM-induced vector spaces for the Japan-Vowel data.

Classifier LL (N) 9D state (N) 45D state 45D trans (N) 225D trans 225D emit (N) 45D emit 45D

lda 95.7 89.7 89.7 83.2 84.6 66.5 61.9
loglc 94.6 86.5 86.5 80.5 80.5 24.1 24.1
nbc 90.0 86.0 86.0 84.9 84.9 66.0 66.0
svm 96.8 90.0 68.1 90.0 64.3 83.2 65.7
rbsvm 96.2 91.1 92.2 89.5 91.6 87.6 88.1
knn 94.1 84.9 85.7 85.7 85.7 84.1 90.0

The training and test sets are fixed. (N) indicates a normalized vector space.

Table 5
Average classification accuracy (in %) in HMM-induced vector spaces for the Alcoholic data.

Classifier LL (N) 2D state (N) 18D state 18D trans (N) 162D trans 162D emit (N) 18D emit 18D

lda 58.8 59.0 59.0 59.8 60.0 58.2 58.2
loglc 57.0 59.5 59.5 46.2 46.2 60.0 60.0
nbc 54.7 61.8 61.8 61.5 61.5 60.8 60.8
svm 57.0 60.5 60.5 59.2 60.2 59.8 60.3
rbsvm 58.8 61.8 62.5 58.3 64.2 65.0 62.2
knn 58.3 62.3 63.2 61.5 59.2 62.2 58.5

The training and test sets are fixed. (N) indicates a normalized vector space.

Table 6
Comparison between the standard MAP results and the best results of the proposed scenario.

Problem MAP Best Type 2nd best Type

Chicken (chain-code) 51.0 (0.8) 82.8 (0.6) lda+ trans-space 81.1 (0.5) rbsvm+ trans-space
Chicken (curvature) 57.4 (0.8) 80.1 (0.5) rbsvm+ emit-space 80.0 (0.6) rbsvm+ trans-space
Auslan 82.2 (0.4) 87.2 (0.4) lda+ LL-space 86.1 (0.4) rbsvm+ LL-space
Japan-Vowel 97.6 96.8 svm+ LL-space 96.2 rbsvm+ LL-space
Alcoholic 56.7 65.0 rbsvm+ emit-space 64.2 rbsvm+ trans-space

• Comparison between HMM-induced vector spaces: Given C classes,
each modeled by a K-state HMM, the dimensions of the LL-space,
state-space, emit-space and trans-space are C, CK, CK and CK2,
respectively. If the number of classes is large and/or generative
HMMs are well estimated, then the LL-space captures sufficient
discriminative information in order to enable a very good classi-
fication performance. For instance, the best results for the 9-class
Japan-Vowel data are reached in the LL-space. In this case, the
high increase of the number of features in the state- and trans-
spaces does not improve discrimination. On the other hand, when
the HMMs are poor, then building an HMMVS via the model com-
ponents works very well, as can clearly be observed for the Chicken
and Alcoholic data. The best results are achieved by rbsvm in the
emit-space and trans-space. Obviously, trans-space is the most
flexible, but may also be inadvisable when the dimensionality
grows exponentially (due to a high number of states and many
classes). emit-space or state-space should be considered in such
a case.

• Normalization: Normalization in the LL-space is recommended to
prevent unbounded feature values. In other cases, normalization
can be useful, depending on the task and the classifier. For instance,
svm, the linear �-SVM seems to especially benefit from feature
scaling, as observed for the Chicken, Auslan and Japan-Vowel data.

• Choice of classifier: There is no single best classifier, although �-
SVM based either on linear (svm) or Gaussian kernel (rbsvm) often
performs best or close to the best. In addition, also lda gives very
good results.

4. Dealing with space dimensionality

A potential drawback of using HMM-induced vector spaces is
the curse of dimensionality [52]. The log-likelihood space is C-
dimensional, state-space and emit-space are CK-dimensional, while

trans-space is CK2-dimensional. The problem is even more enhanced
when two or more feature spaces are fused via Cartesian product.
This is relevant for density-based classifiers, such as the linear or
quadratic discriminant, which suffer from a large number of features.
In the trans-space, the training size has to increase exponentially in
order to permit a reliable estimation of the class-conditional densi-
ties. Supervised and unsupervised feature reduction techniques are
standard solutions to diminish the negative effect of high dimen-
sionality [47]. Here, we will perform both unsupervised and super-
vised reduction, by using principal component analysis and forward
feature selection (FFS) based on the 1-NN classification criterion.

Other classifiers are less affected by the curse of dimensionality.
The most notable example is SVM [53], whose complexity depends
on the number of support vectors instead of the space dimension. It
appears to performwell in high-dimensional spaces. A variant of SVM
is a 1-norm SVM [51,54], optimizing the �1-norm of its weight vector,
which leads to a sparse solution. Hence, this method implements a
feature selection mechanism inside the classifier training.

An alternative possibility of feature reduction is to focus on a
single HMM to represent the information on sequences from all the
classes. If an HMM is trained on a particular class such that it can cap-
ture the class characteristics well, then sequences from other classes
may respond in a way that reflects the differences between the
classes, hence provide discriminative information. Some substruc-
tures in a new sequence may be similar to the HMM-description of
the chosen class, while other substructures may be very different. As
a result, a few states or transitions may have very high Component
Information, while others will have a low one. For a sufficiently rich
HMM, several classes may respond fundamentally differently to this
HMM, and may therefore be separable in the vector space induced
by a single one-class HMM. This is in line with recent outcomes ob-
tained for the Fisher Score approach presented in [55], where a sub-
set of models have been successfully employed to build the space.
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Table 7
Classification performance in the normalized LL+ trans-space (in %) for the Chicken
data (curvature sequences).

HMMVS Dim lda knn 1-svm svm rbsvm

HMMs are 2-state models
Original 25 76.8 (0.5) 75.0 (0.8) 75.3 (0.6) 75.9 (0.6) 79.7 (0.5)
FeatSel 11 73.4 (0.7) 73.2 (0.5) 69.0 (1.1) 71.6 (1.2) 77.9 (0.5)
PCA99 11 73.9 (0.8) 74.8 (0.8) 71.2 (1.0) 76.5 (0.6) 79.4 (0.6)
HMM-1 5 59.1 (0.8) 68.8 (0.6) 41.4 (1.4) 58.9 (0.9) 69.4 (0.5)
HMM-2 5 61.5 (0.7) 65.0 (0.6) 45.8 (1.2) 61.3 (0.8) 67.6 (0.6)
HMM-3 5 59.7 (0.9) 67.4 (0.7) 41.4 (1.5) 59.8 (1.3) 69.3 (0.6)
HMM-4 5 60.1 (0.8) 68.2 (0.8) 47.8 (1.0) 60.4 (0.9) 69.1 (0.5)
HMM-5 5 65.0 (0.7) 68.6 (0.7) 47.8 (1.4) 67.5 (0.8) 70.9 (0.6)

HMMs are 5-state models
Original 130 66.1 (0.6) 77.6 (0.6) 75.0 (2.6) 79.0 (0.6) 79.6 (0.6)
FeatSel 74 68.8 (0.8) 76.0 (0.9) 72.8 (2.5) 71.7 (1.7) 77.9 (0.9)
PCA99 33 76.1 (0.6) 77.8 (0.4) 76.5 (0.6) 81.9 (0.6) 79.3 (0.5)
HMM-1 26 73.8 (0.4) 74.7 (0.6) 72.4 (0.7) 75.4 (0.9) 73.3 (0.8)
HMM-2 26 72.9 (0.8) 73.5 (0.8) 71.4 (0.8) 72.7 (0.7) 73.1 (0.9)
HMM-3 26 74.2 (0.7) 74.2 (0.6) 71.8 (2.5) 75.4 (0.7) 76.3 (0.7)
HMM-4 26 73.2 (0.7) 74.7 (0.8) 73.8 (0.6) 75.5 (0.6) 75.8 (0.8)
HMM-5 26 75.1 (0.6) 73.8 (0.7) 74.0 (0.7) 74.3 (0.7) 74.1 (0.7)

The best performance per classifier (and the ones that are not significantly worse)
are indicated in bold. Results are averaged over 20 cross-validation runs.

We use Chicken data to investigate the usefulness of the above-
discussed feature reduction approaches for the construction of
HMMVS. Table 7 shows the classification performances of sev-
eral classifiers in the normalized LL + trans-space (obtained by a
Cartesian product of the LL-space and trans-space with features
scaled to unit variances) for different feature reduction techniques.
HMMs are either 2-state or 5-state models. First, the results in the
upper part show the performance in the original HMM-induced
space based on 2-state HMMs and in the spaces reduced by forward
feature selection (FeatSel) and PCA retaining 99% of the variance
(PCA99). On average, these techniques reduce the dimension to
11 (depending on the fold in the cross-validation runs). Next, we
present results when just a single HMM, trained on a particular
class, is used to build HMMVS.

The performances of five classifiers, lda, knn, 1-svm, svm and
rbsvm, indicate that feature reduction is counterproductive for these
HMM-induced spaces. Due to the low number of states in the HMMs
(K = 2), the original HMMVS space has a relatively low dimension
(25D), and complex and flexible models such as knn and rbsvm per-
form well in this space. The best classification performance is ob-
tained by rbsvm and svm. The 1-svm classifier is somewhat too
aggressive in dimensionality reduction as it often finds solutions
based on 2–3 features only.

Surprisingly, the performance in vector spaces induced by a sin-
gle HMM is very high. Although such spaces are only 5D, knn and
rbsvm reach more than 68% accuracy. This is very competitive with
the standard MAP performance of ≈ 57%. The HMM trained for the
fifth class, HMM-5, seems to provide the best discrimination; the
other class models work similarly well.

The performance can be improved further by increasing the
complexity of individual HMM models. The bottom part in Table 7
shows classification accuracies for HMM-induced spaces with 5-
state HMMs. The original 130D LL+trans-space is relatively “empty”,
which enhances the separability between the classes for classifiers
that can handle such high-dimensional spaces. The linear SVM, svm,
is overall the best. lda fails in this space. When the dimension is
reduced by PCA, all classifiers achieve their best performance.

Good results are also obtained in an HMM-induced vector space
defined by a single model; the performance reaches more than 76%.
A single 5-state HMM can encode the most important characteris-
tics of all the classes in the resulting HMMVS, such that each class
has a different fit to the submodels (components) in the HMM. By

using all models, the performance is improved from 76% to ≈ 81%,
indicating that different HMMs are only somewhat complementary.
Some HMMs seem to have a wider range of submodels (components)
than other HMMs, and are therefore more suitable for encoding all
the classes. For instance, the HMM-4 seems to lead to somewhat bet-
ter performance than other models do. A subset selection of HMMs
may therefore be a worthwhile effort.

In summary, the experiments demonstrate that a hidden Markov
model of a single class can be used to differentiate between classes
in the HMM-induced space, provided that it is a sufficiently complex
model. This holds even for the classes for which the model was never
trained. This is possible because of different class-related responses
to the model, as the extracted component features are informative
enough to discriminate between the classes. This alleviates the de-
mand of estimating an HMM for each class separately, which be-
comes hard to satisfy when many classes are present, or when new
classes may appear. In these cases one or just a few generic HMMs
can be used to represent all the objects from all the classes.

This opens the possibility of a very general class description, with-
out using specific characteristics of the class at hand. In the case of
2D shape recognition, one complex HMM may be trained on a very
large data set that contains most of the possible variations in curves
that may be expected. This HMM is then hoped to characterize typi-
cal substructures in these data, that later can be used as features for
a discriminative classifier trained on the HMM outputs.

5. Comparison with the Fisher Score approach

Our approach exploits a set of generative models (namely
HMMs) to derive a feature space, in which a discriminative classifier
is trained. It is therefore related to the family of dynamic kernels
[38–40,56,57], in which functions describing the similarity between
variable-length sequences are proposed. Such kernels, employed
with kernel-based methods, are shown to be useful and appropriate
in several different scenarios. The most famous and investigated one
is the so-called Fisher Kernel [38], first advocated in the context of
protein sequence analysis and proposed as a general way of mixing
generative and discriminative models for classification. The basic
idea is to employ a generative model to project objects to a suit-
able feature space, where a meaningful similarity/distance measure
could be defined, leading to a kernel. In particular, the Fisher Kernel
approach measures the relation between the objects by comparing
them in the tangent space induced by the trained generative model.
This space has a number of desirable characteristics, such as the
possibility of measuring geodesic distances between points along
the manifold (leading to the concept of natural gradients [58]).
In practice, each object is represented by a feature vector, whose
components are called Fisher Scores, defined by derivatives of the
log-likelihood of the generative model with respect to all param-
eters; the dimensionality equals the number of parameters. The
kernel can be defined in different ways in the resulting space; the
inner product was used in [38].

Some interesting extensions of the basic Fisher Kernel approach
have been proposed in order to enhance the scheme: e.g. in [41] the
derivatives were computed on the ratio of the likelihoods of gen-
erative models (this increasing the discriminative information); in
[45], different derivative-based feature spaces (called Score Spaces)
were obtained by exploiting high order Taylor expansions; in [44],
finally, higher order derivatives were also considered when building
the spaces.

It is evident that the proposed HMM-induced spaces share some
structure with these spaces, because all rely on the generative mod-
els for extracting suitable features. Nevertheless, the spaces are dif-
ferent in a more general setting because they are derived based on
fundamentally different assumptions. In the Fisher Score approach
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Table 8
Percentage improvements of the HMM-induced vector space over the Fisher Score space.

Classifier Chicken (chain-code) Chicken (curvature) Auslan Japan-Vowel Alcoholic Average over experiments

lda +1.2 −0.4 +77.2 +87.3 +2.2 +33.5
loglc +22.6 +5.5 −14.0 +11.6 +5.3 +6.2
nbc +32.8 −1.0 +44.1 +81.6 −3.0 +30.9
svm +1.1 −3.9 −11.3 +7.6 −0.8 −1.5
rbsvm +0.1 −1.5 −10.7 +13.5 +4.2 +1.1
knn +2.5 +0.7 −14.5 +6.8 +1.7 −0.5

Avr. over classifiers +10.0 −0.1 +11.8 +34.7 +1.6 +11.6

(and in almost all its extensions) the basic tool is differentiation,
namely features are obtained through the gradient of the model's
log-likelihood, whereas in our case the basic tool is marginalization,
namely we compute marginalized probabilities through the genera-
tive models (which, depending on the case, may resemble gradients).

We will now compare the proposed spaces with the Fisher Score
spaces, as the latter represent the baseline approach, and their use-
fulness has been largely demonstrated in the HMM-based classifica-
tion [38,42,43].

5.1. Fisher Score space versus HMM-induced spaces

In order to have a thorough comparison, we repeat the experi-
ments described in Section 3 by using a normalized version of the
Fisher Score space. This is achieved by a normalization step applied
to the space defined in [38], as proposed in [41]. In the original work,
the typical application scenario is a two-class case: positive class
versus negative class. A single generative model is trained on the ex-
amples of the positive class (or on both classes) and used to define
a Fisher Score space, in which a linear SVM is employed. Although
proposals exist that effectively exploit the multi-class scenario, e.g.
[26], here we use a simple extension, which permits us to have a
direct and clear comparison between the information extracted by
Fisher Scores and Component Information features in our approach.
In particular, we train one HMM per class, mapping each object to
a Fisher Score vector depending on all models. Different classifiers
are trained in the resulting space.

For each experiment, the Fisher Score space is computed by us-
ing exactly the same HMMs as in our HMM-induced spaces. To have
a direct comparison, Table 8 shows the improvements obtained by
our best spaces with respect to the Fisher Score approach, in terms
of percentage. A positive value means that the proposed approach is
able to improve the accuracy with respect to the Fisher Score. The
accuracies are shown for all experiments and all classifiers. More-
over, the averages among experiments and among classifiers are also
noted.

We can see that our HMM-induced space is generally better than
the Fisher Score space, depending on the classifier. The latter is very
competitive when using support vector machines (similarly as in
[38]) as observed for the 10-class Auslan data. In other cases, the
Fisher Score approach possibly suffers from the high dimensionality
of the space, leading to very bad classifiers. This is especially evi-
dent for lda, which estimates singular covariance matrices. Actu-
ally, it should be noted that in the Fisher Score case, the features are
explicitly linked to the model parameters (because they are deriva-
tives with respect to model parameters), whereas in our approach
they can also be derived from general components, such as states or
emission functions, leading to more manageable space dimensions.

In addition, we also want to emphasize that normalization of
the original Fisher Score spaces [38] is essential. Without normal-
ization, the classification performance deteriorates significantly for
rbsvm and svm as well as for other classifiers. When we compared
classification performance in both original Fisher Score spaces and

HMM-induced spaces (not reported due to lack of space), the latter
led to far better results. As such, normalization is not always neces-
sary in HMMVS.

6. Final discussion and future perspectives

Hidden Markov models are traditionally applied to sequence
modeling problems that occur in a variety of fields. In the standard
classification context, a model is trained per class and a sequence is
assigned to the class based on the maximum a posteriori probability.
This works well provided that the HMMs characterize the classes
well. The accuracy of the HMM-based classification usually deteri-
orates when imperfect models are estimated, typically due to the
lack of knowledge or insufficient training data. As a simple solution,
we propose to use an integrated generative-discriminative frame-
work leading to a component-based discriminative classification.
This provides a simple alternative to sophisticated and already well
addressed complex extensions of hidden Markov models [17–20],
discriminatively trained HMMs [21–24] and further generalizations
towards probabilistic discriminative models [27,28].

The essence of our proposal is to train feature-based classifiers in
a vector space induced by the HMMs, trained individually per class.
The features are chosen to encode meaningful information about
specific components of the models. Given K-state one-class HMMs,
kc, c = 1, 2, . . . ,C, four spaces are studied here:

1. C-dimensional log-likelihood space, in which every feature con-
veys the importance, i.e. the log-likelihood, of a particular HMM.

2. CK-dimensional state-space, in which each feature derived from
kc encodes the importance of state Sci while computing P(O|kc)
for a test sequence O. The feature describes the expected number
of transitions from Sci .

3. CK-dimensional emit-space, in which each feature derived from
kc encodes the importance of the emission probability of a given
state Sci .

4. CK2-dimensional trans-space, in which each feature derived from
kc encodes the importance of the transition Sci → Scj while com-
puting P(O|kc) for a test sequence O. The feature describes the
expected number of transitions from Sci to Scj .

In our experimental evaluation on four different applications we ob-
serve that the proposed approach outperforms the standard MAP
scheme. The improvements are particularly significant when classi-
cal HMMs are not suitable to solve the problem, due to bad assump-
tions, incorrect model definition or small training sets. When HMMs
work properly, the proposed scheme leads to a comparable classifi-
cation accuracy. The main drawback of our approach lies in a pos-
sibly high dimension of the resulting HMM-induced vector spaces,
especially trans-space. Some ways of dealing with this issue include
linear feature extraction, such as PCA, or forward feature selection.

In addition, we also compare discriminative power of HMM-
induced vector spaces with that of the Fisher Score spaces. In essence,
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both proposals train a discriminative classifier in a fixed-dimensional
vector space derived from generative HMMs. Nevertheless, in the
case of Fisher Score space, the features are explicitly linked to the
model parameters, whereas in our approach they are derived from
general components (such as states). These components can be as-
sociated with either a single parameter (trans-space) or a group of
parameters (state-space), which leads to spaces with better man-
ageable sizes. Moreover, SVM is often the only classifier used in
the Fisher Score space, while other classifiers may be more effec-
tive. However, the most significant difference is the procedure used
to derive the features. In the Fisher Score approach they are ob-
tained through differentiation, while in our case, they are obtained
through marginalization. Experimentally, we found that the Fisher
Score spaces are competitive to HMM-induced vector spaces for SVM,
but generally inferior with respect to other classifiers, such as lda,
loglc, nbc and knn. Note that normalized Fisher Score spaces are
employed in our experimental comparison as otherwise simply poor
results were obtained.

In summary, the proposed component-based discriminative clas-
sification for hidden Markov models can be recommended as a good
alternative to the classical HMM-based classification, especially for
imperfect models or small sample size problems. In particular, this
schememay be successfully exploited in the applications, where pre-
trained models are already available (for example when new data
arrive) or are partially known (due to partial prior knowledge on
the problem). Another possible field is the set of applications where
some of the models are appropriate and others are not, due to ei-
ther partial or poor knowledge about the problem or due to par-
tial/inequal observability of the phenomenon. In such a scenario it
seems possible to enrich the discrimination by building a good dis-
criminative space from only the accurate models.

New interesting questions, of both immediate and further scope,
can now be posed. These are:

• Is it sufficient to build one or a few complex models in the gener-
ative step, or is it preferred to train many simple models, instead?
When a few models are chosen, this may also effectively address
the issue of the dimensionality reduction in the HMM-induced
vector spaces.

• Is it a sound strategy to employ models trained on many different
data and classes, such as a “general shape HMM”, for example?

• How can we benefit by incorporating label information in the gen-
erative step?

• How big should the representation set (i.e. the set used to learn the
HMMs and to build the corresponding vector space) be with re-
spect to the set used for training the classifiers? Moreover, should
these be disjoint?

• Which are the best components to be employed for a given
problem?

Some of these issues are currently under investigation.
Finally, our proposed framework of deriving fixed-dimensional

vector spaces from HMMs can naturally be employed for other
generative models: this is especially recommended with respect
to the Fisher Score spaces (and its derivation) when component-
based marginalization is possible and easier than computation of
derivatives of the log-likelihood with respect to the parameters.

Acknowledgments

We acknowledge financial support from the FET programme
within the EU FP7, under the SIMBAD project (Contract 213250).
This research is also supported by the Dutch Technology Founda-
tion STW, applied science division of Netherlands Organization for
Scientific Research (NWO), the technology program of the Dutch

Ministry of Economic Affairs and the Engineering and Physical Sci-
ences Research Council fellowship no. EP/D066883/1 in the UK.
El �zbieta P �ekalska wishes to thank Magnus Rattray for clarifying
some issues on emission probabilities in HMMs. Manuele Bicego
wants to thank Marco Cristani for helpful discussions.

Appendix A.

A.1. Description of data sets

In this section some details about the classification problems
addressed in the experimental evaluation are given.

A.1.1. The 2D shape recognition
Recognition of 2D shapes is an unconventional application of

HMMs, even though promising results have been reported [6,7,59].
Here, we choose to study the Chicken Pieces Database, http://algoval.
essex.ac.uk:8080/data/sequence/chicken/, denoted also as Chicken
data [60]. This set consists of 446 binary images of chicken pieces.
Each piece belongs to one of the five classes, representing specific
parts of a chicken: wing (117 samples), back (76), drumstick (96),
thigh and back (61), and breast (96). The shapes are usually first
described by contours, which are further encoded by suitable se-
quences. This poses a difficult classification task. The results pub-
lished in [61] report a baseline leave-one-out accuracy of ≈ 66% by
using the 1-NN on the Levenshtein (non-cyclic) edit distance.

In our experiments, two different sequence representations are
used to model contours, chain codes and curvature angles. In the
first case, a standard 8-direction chain encoding procedure is applied
to each image. The resulting chain codes are then transformed into
rotation-invariant representations. Finally, discrete HMMs are used
to model these classes of symbol sequences. In the second case, we
derive curvature sequences as in [7]. First, contours are extracted by
using the Canny edge detector; the boundary is then approximated
by segments of approximately fixed length. Then, at any given point
x the curvature value is derived as an angle between two consecutive
segments intersecting at x. The initial point is the rightmost point
lying on the horizontal line passing through the object centroid,
following the boundary in a counterclockwise manner. Classes of
curvature sequences are finally modeled by continuous Gaussian
HMMs.

After a preliminary evaluation, HMMs are trainedwith K=3 states
for all classes and both representations. The original set is split into
the training and test sets, in the ratio of 50–50%. The classification
runs are averaged over 20 hold-out experiments.

A.1.2. Gesture recognition
We study here high-quality recordings of Australian sign lan-

guage signs. This data set consists of sample of Australian signs
[62]; see http://kdd.ics.uci.edu/databases/auslan2/auslan.data.html.
We will denote it Auslan data. Samples from a single native signer
were collected over a period of nine weeks, using high-quality po-
sition trackers and instrumented gloves (resulting in 22-D observa-
tions). Twenty-seven samples per sign were collected, the average
recording length of each sign is approximately 57 frames. In the ref-
erence paper [63], two different scenario are considered: (1) 95 sign-
classes, with 2565 signs in total and (2) 10 sign-classes. We follow
the second scenario here, i.e. C = 10.

Continuous Gaussian 3-state HMMs are employed, directly mod-
eling the signals acquired from the sensors. In order to get compa-
rable results to the ones presented in [63], the performance of our
classification schemes is computed by using 20 repetitions of a five-
fold cross-validation.

http://algoval.essex.ac.uk:8080/data/sequence/chicken/
http://algoval.essex.ac.uk:8080/data/sequence/chicken/
http://kdd.ics.uci.edu/databases/auslan2/auslan.data.html
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A.1.3. Speaker verification
Speech analysis is the historical application of HMMs, with a

plethora of available publications. We address here a speaker recog-
nition problem by using the Japanese Vowel data, http://kdd.ics.uci.
edu/databases/JapaneseVowels/JapaneseVowels.html, denoted also
as Japan-Vowel data. Nine male speakers uttered two Japanese vow-
els /ae/ successively. For each utterance a discrete-time series with
12 LPC cepstrum coefficients was obtained; see [64]. Time series
length lies in the range of 7–29. The number of the time series is
640 in total. Subdivision into the training and test sets is already
performed: the former is composed of 270 series (30 utterances for
nine speakers), whereas the latter contains 370 series (24–88 utter-
ances by the same nine speakers in different conditions). All HMMs,
modeling the nine classes, are chosen to have K=5 states, as in [64].

A.1.4. EEG signal recognition
This application aims at the examination of EEG signals in

order to distinguish between alcoholic and control subjects,
http://kdd.ics.uci.edu/databases/eeg. Each subject was exposed to
either a single stimulus (S1) or two stimuli (S1 and S2) which were
pictures of objects chosen from the 1980s Snodgrass and Vanderwart
picture set. When two stimuli were shown, they were presented
in either a matched condition where S1 was identical to S2 or in a
non-matched condition where S1 differed from S2. There are three
different versions of the data. In our case, we use the Large Data Set,
denoted here denote it as Alcoholic data, in which the training and
test sets are already pre-defined. The training set contains data for
10 alcoholic and 10 control subjects, with 10 runs per subject per
paradigm. This results in 600 training sequences. The test data use
the same alcoholic and control subjects, but with 10 out-of-sample
runs per subject per paradigm. This results in 600 test sequences.

Each data set contains measurements from 64 electrodes placed
on the scalp sampled at 256Hz (3.9-ms epoch) for 1 s. We select
the first two channels only, as they permitted an almost perfect
discrimination in the case of “small dataset”. All HMMs are trained
with the same number of states, K = 9.

A.2. Computation of the relevant quantities for building HMMVS

The computation of the quantities needed for the construction
of the HMMVS is based on two variables, the forward variable 
t(i)
and the backward variable �t(i). The former (
t(i)) is defined as


t(i) = P(O1 . . .Ot ,Qt = Sci |kc) (9)

and represents the probability to have observed the sequence
O1 . . .Ot up to time t, and being in state Sci . It is recursively computed
by the following formulas:


1(i) = �ib(O1|Sci ), 1� i�K,


t+1(i) =
⎡
⎣

K∑
j=1


t(j)aji

⎤
⎦ b(Ot+1|Sci ), 1� t�T − 1, 1� i�K.

The backward variable is defined as

�t(i) = P(Ot+1 . . .OT |Qt = Sci ,kc) (10)

and represents the probability to observe the symbols Ot+1 . . .OT ,
being in the state Sci at time t. This variable is recursively computed:

�T (i) = 1, 1� i�K,

�t(i) =
K∑
j=1

aijb(Ot+1|Scj )�t+1(j), t = T − 1, . . . , 1, 1� i�K.

Given the variables above, the required quantities are computed as
follows:

1. Likelihood P(O|kc):

P(O|kc) =
K∑
i=1


t(i)�t(i) ∀t. (11)

By fixing t = T we obtain

P(O|kc) =
K∑
i=1


T (i). (12)

2. Variable �t
(i,j) :

�t
(i,j) = P(Qt = Sci ,Qt+1 = Scj |O,kc)

=
P(Qt = Sci ,Qt+1 = Scj ,O|kc)

P(O|kc)

=

t(i)aijb(Ot+1|Scj )�t+1(j)

P(O|kc)

=

t(i)aijb(Ot+1|Scj )�t+1(j)∑
i
∑

j
t(i)aijb(Ot+1|Scj )�t+1(j)
. (13)

Note that the sum of �t
(i,j) over time t can be interpreted as the

expected number of transitions from state Sci to state Scj .
3. Variable �ti :

�ti = P(Qt = Sci |O,kc)

= P(Qt = Sci ,O|kc)
P(O|kc)

= 
t(i)�t(i)∑
i
t(i)�t(i)

. (14)

The variable �ti can also be expressed in terms of the variable �t
(i,j),

giving

�ti =
K∑
j=1

�t
(i,j). (15)
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