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Abstract

Generative embeddings use generative probabilistic
models to project objects into a vectorial space of reduced
dimensionality – where the so-called generative kernels can
be defined. Some of these approaches employ generative
models on latent variables to project objects into a fea-
ture space where the dimensions are related to the latent
variables. Here, we propose to enhance the discriminative
power of such spaces by performing a non-linear mapping
of space dimensions leading to the formulation of novel gen-
erative kernels. In this paper, we investigate one possible
non-linear mapping, based on a powering operation, able
to equilibrate the contributions of each latent variable of
the model, thus augmenting the entropy of the latent vari-
ables vectors. The validity of the idea has been shown in the
case of two generative kernels, which have been evaluated
with tests on shape recognition and gesture classification,
with really satisfying results that outperform state-of-the-
art methods.

1. Introduction

Subspace methods [24, 14] allow to embed objects living
in the problem space into a vectorial space of limited dimen-
sionality. In the case when the original problem space is a
vectorial space, many techniques have been proposed in the
literature, like Principal Component Analysis, Independent
Component Analysis, Non-Negative Matrix Factorization
and others [21], each one characterized by different char-
acteristics, like linearity, optimized criteria, computational
effectiveness, and others. In some problems, the original
space is not a vectorial space, for example when the objects
have a structural form, like sequences (of different length),
graphs, sets, and the like. In this case, the reduced vectorial
space may be obtained by a different class of approaches,
generally called embeddings.

Embeddings may be performed in different ways: the
most used is to compute pairwise proximity measures be-
tween the objects and to create a vector space where these

proximities are preserved. One widely applied example in
this class is the so-called Multidimensional Scaling [22],
and several generalizations have been proposed (e.g. Lapla-
cian embeddings [2]). Another class of such approaches,
whose interest has drastically grown in the last years, is rep-
resented by the so-called generative embeddings [4, 5, 19].
In this class, the idea is to employ a generative probabilis-
tic model (like Hidden Markov Models or Bayesian Net-
works) to encode and model the structural information of
the objects; then, a vector space is obtained by using fea-
tures extracted from this model. The dimensionality of the
resulting space is drastically reduced if compared with that
of the original input space. When a classification problem
is addressed, an effective solution is to define a similarity
measure between points in this novel space, leading to the
definition of a kernel between the original objects (called
generative kernel [8, 9, 23]), to be employed in discrimina-
tive kernel-based classifiers like Support Vector Machines
(SVMs).

Generative embeddings allow to mix generative methods
(like Hidden Markov Models or Bayesian Networks) and
discriminative methods (like SVMs), merging the descrip-
tion capabilities of the former class of approaches with the
discriminative skills of the latter class [13].

Different generative kernels can be built starting from
different vectorial spaces obtained through generative em-
beddings. Depending on which (dis)similarity measure be-
tween distributions is used, one obtains the Fisher Kernel
[8], the Probability Product Kernel and the Bhattacharyya
affinity kernel [9], and the Marginalized Kernel [23], among
the others.

In this paper, we focus on a particular class of gener-
ative embeddings, namely embeddings defined on genera-
tive models with latent variables (for example, the states in
a Hidden Markov Model), leading to generative kernels de-
fined as inner product on the resulting vectorial space. A
famous example of such kernels is the Marginalized Kernel
[23] – even if in the original paper an explicit definition of
the space and a derivation of the kernel as inner product are
missing. Very recently, another kernel has been proposed
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to be used with Hidden Markov Models, called State-Space
Kernel [5]. The idea at the basis of generative embeddings
for this class of kernels is to map the objects of the problem
in a space where each dimension (or a set of dimensions)
describes the contribution of one of the latent variables of
the model. For example, in the State-Space each direction
represents the averaged probability of being in a particular
state given the model and the observation. The inner prod-
uct in such generative-derived space represents the kernel.
Even if the success of these approaches has been proven
on many applications there is still room for improvement.
Actually, the different directions of the derived generative
space (which are related to latent variables) could have dif-
ferent characteristics in terms of discriminative and descrip-
tive power. These characteristics could not be completely
highlighted by a simple inner product, and some space
transformations may be useful. Actually, a space normaliza-
tion step (centering and scaling) has been proposed in [20]
that leads to an improved version of the well-known Fisher
Kernel. Moreover, it should also be noted that the Marginal-
ized Kernel, in its original formulation [23], needed a re-
scaling of the Kernel Matrix (centering and division by the
Frobenius norm) for working properly. The common char-
acteristic of these space transformations is however the lin-
earity of the scaling function. Nevertheless, there are situ-
ations where the linearity assumption is too restrictive, and
a benefit may be obtained from a non-linear scaling via a
non-linear mapping.

In this paper, we propose to investigate the latter alter-
native, proposing a non-linear transformation of the origi-
nal vectorial space, obtained through generative embedding,
into another vectorial space, namely a non-linear mapping
of space dimensions able to highlight or exploit their dis-
criminative characteristics. New kernels are then defined as
inner products on the transformed space: the specific form
of such kernels depends on the choice of the non-linear
mapping and on the latent variable model it relies upon.
Diverse non-linear mappings are indeed possible, and we
propose one possible, very simple choice of a non-linear
mapping, able to balance the contributions of each latent
variable of the model, thus augmenting the entropy of the
latent variables vectors. The basic tool is a powering op-
eration, able to equilibrate the contributions of each latent
variable. We apply this idea to the Marginalized Kernel and
to the State-Space Kernel, giving the kernel formulation in
closed form for a HMM generative model.

The effectiveness of the proposed non-linear mapping
has been evaluated in a classification framework, compar-
ing the performance of an SVM classifier based on kernels
defined on the transformed space to its standard counterpart
based on kernels defined on the original space. Two differ-
ent sequence classification problems (2-D shape recognition
and gesture recognition) are addressed with really satisfy-

ing results that outperform those presented in the literature
reaching a mean classification accuracy of 85.52%, largely
above the best results in the state of the art, for the 2-D
shape recognition problem, and a mean classification accu-
racy of 93.24% for the gesture classification problem using
raw sequences without extracting quite elaborated features.
Moreover, it is important to note that the best results are
obtained projecting the input objects in vectorial spaces of
very low dimensionality, since the number of HMM states
ranges from 3 to 8.

The remainder of this paper is organized as follows. In
Section 2, we first analyze the problem in detail and the pro-
posed methodology is described. In Section 3, the specific
formulation in the case of HMM-based generative embed-
dings is presented. Section 4 presents the experimental re-
sults, while Section 5 concludes the paper with a discussion
of future research.

2. The proposed methodology

We consider a particular class of generative embeddings
relying on latent variables and propose a non-linear trans-
formation of the resulting vectorial space into another one,
where a more discriminative similarity measure can be de-
fined. Given an object x in the input spaceX , the generative
embedding can be based on model components, i.e. latent
variables. The objects x are then projected into a vectorial
space of reduced dimensionality. Features of the resulting
space H summarize information about how latent variables
describe the observation x. We will call this information in
the resulting space as gh – the pedix h highlights the de-
pendence of such information from the latent variables h –
where h = {h1, . . . , hN} denotes the set of hidden vari-
ables of generative latent model.

A kernel can be defined on the resulting space as a sum of
inner products, each one related to a specific latent variable:

K (x, x′) = 〈gh (x) , gh (x′)〉 =
N∑
i=1

〈ghi (x) , ghi (x
′) 〉

(1)
where ghi (x) = [g1hi (x) , g2hi (x) , . . . , gShi (x)] denotes a
vector of features related to a particular hidden variable hi.
In other words, we are grouping together in the vector ghi
all the directions 1, . . . , S of the feature space relative to
a particular latent variable hi (all these grouped directions
may for example be derived from other quantities of the
model).

This formulation can in principle be applied to any gen-
erative model with latent variables which are used to form
features. Examples of such kernels are the well-known
Marginalized Kernel [23] and the recently proposed State-
Space Kernel [5]. In the former case ghi is a vector of
length equal to the number of symbols in the alphabet, while
in the second case ghi is a single scalar value.
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Even if their success has been proven on many appli-
cations there is still room for improvement. Actually, the
different directions of the derived generative space could
have different characteristics in terms of discriminative and
descriptive power. These characteristics cannot be com-
pletely highlighted by a simple inner product, and some
space transformations may be useful. Here we investigate
the possibility of employing a non-linear scaling of space
dimensions able to highlight their discriminative charac-
teristics. This results in performing a non-linear mapping
f of dimensions of the original Hilbert space: f

(
ghi

)
,

∀i = 1, . . . , N . The kernel formulation as inner product
on this transformed space is then defined as:

NK (x, x′) =
N∑
i=1

〈f (
ghi (x)

)
, f

(
ghi (x

′)
)〉 (2)

NK represents an inner product in a new space whose di-
mensions are obtained from dimensions of the original la-
tent variable space through a non-linear mapping f . If well
designed, non-linear mapping can unravel hidden structures
and balance for not equally important directions. In this pa-
per we propose a non-linear mapping able to enhance the
expressiveness of the kernel. In particular we adopt the fol-
lowing function f 1:

f
(
ghi (x)

)
=

(
ghi (x)

)ρ ∀i = 1, . . . , N (3)

where ρ is a positive real value. We notice that for ρ = 1
the original kernel is reobtained. The choice of ρ is clearly
crucial. Different values assume different significance. In
this study we do not propose any systematic method for the
choice of the value ρ, considering it as a free parameter of
the kernel (we performed an experimental study on find-
ing the best value of ρ – see Section 4.4). In any case we
assume ρ ≤ 1, since this choice has some appealing char-
acteristics. Actually, the effect of such powering is to raise
the contribution of smaller components of ghi and to re-
duce the contribution of larger components (see Fig. 1),
thus re-equilibrating the contributions of each latent vari-
able. This may be seen as a way of augmenting the entropy
of the contributions of latent variables. On the contrary, as-
suming ρ > 1 may have the opposite behavior, sparsifying
the contributions of the latent variables.

A final remark: it should be noted that the powering op-
eration is not new in the kernel scenario, even if our use
is innovative. The most famous example is the polynomial
kernel [18] where the powering of the inner product is con-
sidered – while here we propose the powering of each sin-
gle component of the vectors involved in the inner products.
Further, another example can be found in [9], where the def-
inition of the so-called Probability Product Kernel is given –

1If ghi
is a vector, we consider the element-wise powering operation.
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which implies the powering of probability products. Also in
this case there is a remarkable difference, since the defini-
tion in [9] relies on powering the components of an integral
over the observation space of two known probability dis-
tributions – whereas our approach considers the integration
(summation) in the latent variable space, namely the inte-
gration is over the model components.

3. Non-linear mapping of HMM-based genera-
tive embeddings

In this section, we will provide details about the non-
linear mapping of spaces obtained through generative em-
beddings based on a HMM modeling of the input data. The
counterparts of two kernels, namely the Marginalized Ker-
nel and the State-Space Kernel, will be defined in these
transformed spaces.

Some basics about HMM, Marginalized Kernel and
State-Space Kernel will first be reviewed, mainly to fix the
notation.

3.1. Basics

3.1.1 Hidden Markov Models

A discrete-time first order Hidden Markov Model [16] is
a stochastic finite state machine defined over a set of N
states h = {h1, h2, . . . , hN}. The states are hidden, i.e.
not directly observable. Each state has an associated prob-
ability density function encoding the probability of observ-
ing a certain symbol being output from that state. Let
q = (q1, q2, . . . , qT ) be a fixed state sequence of length T
with the corresponding observations x = (x1, x2, . . . , xT ).
A HMM is described by a model λ = {A, B, π} where
A = (aij) is a matrix of transition probabilities, in which
aij = P (qt=hj | qt−1=hi) denotes the probability of state
hj following state hi, B = (bj(s)) consists of emission
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probabilities, in which bj(s) = P (xt = s | qt = hj) is the
probability of emitting the symbol s when being in state hj ,
and π = (πi) is the initial state probability distribution, i.e.
πi = P (q1=hi).

A crucial procedure is the so-called forward-backward
procedure [16], used to recursively compute the probability
P (x|λ) for a test sequence x, i.e. the probability of gener-
ating x by model λ. This algorithm is used multiple times
to derive the quantities needed in our proposal.

3.1.2 Marginalized Kernel

The Marginalized Kernel was defined for discrete HMM in
[23], without explicitly relying on a vectorial space, as:

MK (x, x′) =
S∑
s=1

N∑
i=1

γshi (x) γshi (x
′) (4)

with

γshi (x) =
1
T

T∑
t=1

hN∑
qt=h1

P (qt|x) I (xt = s, qt = hi) (5)

where {1, . . . , S} is the discrete alphabet of emitted sym-
bols and the indicator function I(α = ᾱ) is 1 if the condi-
tion α = ᾱ is true, 0 otherwise.

3.1.3 State-Space Kernel

In [5], a finite-dimensional space is derived from the latent
variables of a generative HMM trained on data. This HMM-
induced vector space, called State-Space is equipped with
the traditional Euclidean metric. Here we define an inner
product on this space and take it as a similarity measure
(kernel) between sequences x and x′. Given one trained
HMM, the kernel is defined as:

SK (x, x′) =
N∑
i=1

(
T∑
t=1

P (qt = hi|x, λ)

)

·
⎛⎝ T ′∑
t′=1

P (qt′ = hi|x′, λ)
⎞⎠ (6)

3.2. Non-linear mapping of generative embeddings

In Section 2, we have explicitly defined the vectorial
spaces on which generative kernels based on latent vari-
ables, like Marginalized Kernel and State-Space Kernel,
rely. In such a way we have proposed an unified notation
for them that could also be used for other kernels on latent
variables. Indeed, it is straightforward to show that they ad-
here to our general formulation in Eq. (1) by rewriting the

Marginalized Kernel defined in Eq. (4) as:

MK (x, x′) =
N∑
i=1

S∑
s=1

(
1
T

T∑
t=1

P (qt = hi|x) · I (xt = s)

)

·
⎛⎝ 1

T ′

T ′∑
t′=1

P (qt′ = hi|x′) · I (xt′ = s)

⎞⎠
(7)

This is exactly in the form of Eq. (1), with

ghi (x) = [g1hi (x) , g2hi (x) , . . . , gShi (x)] (8)

and

gshi (x) =
1
T

T∑
t=1

P (qt = hi|x) · I (xt = s) (9)

For the State-Space Kernel, ghi (x) contains only one
component g1hi (x), which is defined as:

g1hi (x) =
T∑
t=1

P (qt = hi|x) (10)

More generally, we can write

gshi (x) =
T∑
t=1

ηsthi (x) (11)

with

ηsthi (x) =
1
T

P (qt = hi|x) · I (xt = s) (12)

for the Marginalized Kernel and

η1thi (x) = P (qt = hi|x) (13)

for the State-Space Kernel.
The general formulation in this case is then

K (x, x′) = 〈gh (x) , gh (x′)〉

=
N∑
i=1

S∑
s=1

gshi (x) · gshi (x′)

=
N∑
i=1

S∑
s=1

T∑
t=1

ηsthi (x) ·
T ′∑
t′=1

ηst′hi (x
′) (14)

When applying the non-linear mapping proposed in Eq.
(3), we obtain

NK (x, x′) =
N∑
i=1

S∑
s=1

(
gshi (x)

)ρ · (gshi (x′))ρ
=

N∑
i=1

S∑
s=1

(
T∑
t=1

ηsthi (x)

)ρ
·
⎛⎝ T ′∑
t′=1

ηst′hi (x
′)

⎞⎠ρ (15)
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Following [9], we also test the following variant:

ÑK (x, x′) =
N∑
i=1

S∑
s=1

T∑
t=1

(
ηsthi (x)

)ρ · T ′∑
t′=1

(
ηst′hi (x

′)
)ρ

(16)
This is exactly the Lρ-quasinorm sometimes introduced in
Functional Analysis for Lρ spaces with 0 < ρ < 1 [17]. We
will show in the experimental part that in some cases this
modification may improve the performance of the method.

A final remark: the generative embeddings presented in
this section assume one HMM modeling the whole prob-
lem. Clearly, in a C-class problem, more information may
be extracted if more than one generative model is estab-
lished, each one representing one single class (see [7] in
the Fisher Kernel case). Here we adopt the generalization
proposed in [7]: one HMM per class is built, and the fi-
nal kernel is then defined as the inner product in the space
obtained as cartesian product of the spaces resulting from
each model (namely concatenating all the spaces of all mod-
els). More in detail, given a C-class problem, C HMMs
λc, where c = 1, . . . , C, are trained. Then all the kernels
are re-formulated by adding an external summation over the
models; for example, Eq. (14) becomes

K (x, x′) =
C∑
c=1

N∑
i=1

S∑
s=1

gshic (x, λc) · gshic (x′, λc)

=
C∑
c=1

N∑
i=1

S∑
s=1

T∑
t=1

ηsthic (x, λc) ·
T ′∑
t′=1

ηst′hic (x
′, λc) (17)

where hic denotes the ith latent variable of the model
trained on the cth class.

4. Experiments

In this section, the HMM-based non-linear generative
embeddings proposed in the previous sections are evaluated
in a Support Vector Machine (SVM) classification frame-
work based on kernels defined on the transformed space,
and its performances are compared with their standard
counterpart based on kernels defined on the original space.

We addressed two different applications involving se-
quences, namely, 2-D shape recognition and gesture recog-
nition.

Data sets and implementation issues are described in de-
tail in Sections 4.1 and 4.2, respectively. In Sections 4.3 and
4.4 a discussion on results and on the choice of the parame-
ter ρ is provided.

4.1. Data sets

4.1.1 2-D shape recognition

Here we choose to study the Chicken Pieces Database, de-
noted also as Chicken data [1]. This set consists of 446

binary images of chicken pieces (with five classes). The
shapes are usually first described by contours, which are
further encoded by suitable sequences. This poses a diffi-
cult classification task.

In our experiments, two different sequence representa-
tions are used to model contours, chain codes and curva-
ture angles. In the first case, a standard 8-direction chain
encoding procedure is applied to each image. Then, dis-
crete HMMs are used to model these classes of symbol se-
quences. In the second case, we derive curvature sequences
as in [3, 12]. Classes of curvature sequences are finally
modeled by continuous Gaussian HMMs.

The original set is split into the training and test sets, in
the ratio of 50%−50%. The classification runs are averaged
over 20 hold-out experiments.

4.1.2 Gesture recognition

We study here high-quality recordings of Australian sign
language signs. This data set consists of samples of Aus-
tralian signs [10]. We will denote it Auslan data. Samples
from a single native signer were collected over a period of
nine weeks, using high-quality position trackers and instru-
mented gloves (resulting in 22-D observations). 27 sam-
ples per sign were collected, the average recording length of
each sign is approximately 57 frames. In the reference pa-
per [10], two different scenarios are considered: (1) 95 sign-
classes, with 2565 signs in total, and (2) 10 sign-classes. We
follow the second scenario here, i.e. C = 10.

Continuous Gaussian HMMs are employed, directly
modeling the signals acquired from the sensors. In order
to get comparable results to the ones presented in [10], the
performance of our classification schemes is computed by
using 20 repetitions of a 5-fold cross-validation.

4.2. Experimental details

In all our experiments we assume fully ergodic HMMs.
HMMs training has been performed using Baum-Welch re-
estimation procedure, stopping it at the likelihood conver-
gence. Initialization is random both for the transition prob-
abilities and initial state probabilities. In case of continuous
signals, the emission probability models are initialized by a
Gaussian Mixture clustering. In case of discrete symbol se-
quences, 20 independent training runs are performed, start-
ing from a random initialization, picking the best likelihood
model as the representative.

The number of states is fixed for all classes in each prob-
lem. Different numbers of states were tried, with results
reported. In particular a number of states ranging from
3 to 8 were tested for Chicken data and for Auslan data.
The HMM implementation relies on the Murphy’s Hidden
Markov Model Toolbox for Matlab 2. The SVM classifier,

2http://www.cs.ubc.ca/˜murphyk/Software/HMM/hmm.html
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as implemented in LibSvm 3, is used to estimate classifica-
tion accuracy for each problem.

The proposed non-linear mapping has been applied to
State-Space Kernel and to Marginalized Kernel4, both in the
original and in the modified formulation of Eqs. (15) and
(16). Different values of ρ, in the range (0, 1], have been
tested in order to study the influence of the parameter ρ over
the classification accuracies – more details in Section 4.4.

4.3. Experimental results and discussion

Classification accuracies of State-Space Kernel,
Marginalized Kernel and their extensions are reported in
Tables 1 and 2 for 2-D shape recognition (Chicken data)
and gesture recognition (Auslan data) applications. For
each number of states, the best performance is shown.
The corresponding ρ value the best performance has been
reached with varies depending on data. In Section 4.4,
details will be provided on experimental evaluation of
the optimal ρ value. Considering all the experiments, the
standard errors of the mean for the best ρ value are lower
than 0.79 for the SK extensions and than 0.69 for the MK
extensions in the case of Chicken with curvature, while
they are lower than 0.8 for the SK extensions and than 0.73
for the MK extensions in the case of Chicken with chain
codes and lower than 0.4 for the MK extensions and than
0.6 for the SK extensions in the case of Auslan data set.

From the tables it is evident that the proposed non-linear
mapping has a beneficial impact on the performances of
both the State-Space Kernel and the Marginalized Kernel
for all data sets and independently from the number of
HMM states. Moreover, in the Chicken case, the obtained
results are really competitive with the state of the art, con-
sidering the difficulty of the data set. Our proposed ap-
proach performs better than techniques at the state of the art,
as can be seen from Table 3, where results obtained in the
literature for the same data set are shown. Also in the Aus-
lan case our proposed approach is really competitive among
techniques employing raw sequences – for example, in [5],
authors provided a 87.2% of accuracy.

Concerning the two versions of the non-linear mapping
(Eqs. (15) and (16)), it is worth to notice that they differ
in performances dependently to the considered kernel, the
number of states and the examined problem. In general,
it seems that the State-Space Kernel performances are bet-
ter enhanced when applying the approximated extension of
Eq. (16), whereas for the Marginalized Kernel applying the
original version in Eq. (15) seems to be more appropriate.

3http://www.csie.ntu.edu.tw/˜cjlin/libsvm
4We extended in a straightforward way the Marginalized Kernel, pro-

posed in [23] in the discrete case, to the continuous case.

4.4. Study of ρ

The choice of ρ constituted a crucial point of our study.
In Section 2 we justified the choice of 0 < ρ ≤ 1. In our
experiments we tested different ρ values starting from 10−5

up to 1. Curves of the mean classification accuracy when ρ
varies from 10−5 to 1 are displayed in Fig. 2 for Marginal-
ized Kernel and in Fig. 3 for State-Space Kernel applied
to Chicken data and to Auslan data. As can be seen from
the figures, the curves follow a typical behavior, reaching a
maximum for a ρ value < 1, independently from the ker-
nel, the model (number of HMM states) and the problem.
This suggests that there exists an optimal value for ρ that
can unravel hidden structures of the latent variable (state)
space leading to a more effective similarity measure (ker-
nel) between objects. We are currently investigating how to
discover this value automatically from the data.
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Figure 2. Marginalized NK – Chicken data (chain-code se-
quences).

10e−5 10e−4 10e−3 10e−2 10e−1 1
0

10

20

30

40

50

60

70

80

90

ρ

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 

 

N = 3
N = 4
N = 5
N = 6
N = 7
N = 8

Figure 3. State-Space NK – Auslan data.
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Table 1. Comparison on the classification accuracy (in %) for the Chicken data obtained by standard SVM using Marginalized Kernel,
State-Space Kernel and our new kernels derived from them by non-linear mapping. In the table, K refers to the original kernel (Eq. (14)),
NK to the proposed extension (Eq. (15)) and ÑK to its variant given in Eq. (16). For each kernel, the best classification accuracy over
the number of states is in boldface. The standard errors of the mean for the best ρ value are lower than 0.79 for the SK extensions and than
0.69 for the MK extensions in the case of Chicken with curvature, while they are lower than 0.8 for the SK extensions and than 0.73 for
the MK extensions in the case of Chicken with chain codes.

Chicken data
No. of HMM states 3 4 5 6 7 8

Chain-code sequences
State-Space K 72.05 75.16 74.68 75.99 76.28 75.11
State-Space NK 73.2 75.72 75.52 75.86 76.28 76.15
State-Space ÑK 76.19 76.64 79.64 81.44 80.20 81.26
Marginalized K 68.2 69.28 68.83 74.32 76.58 77.5
Marginalized NK 82.14 81.64 81.82 83.67 84.68 85.52
Marginalized ÑK 76.85 77.39 77.79 78.60 78.38 79.46

Curvature sequences
State-Space K 73.92 75.11 73.58 71.37 71.33 72.05
State-Space NK 75.7 75.59 75.52 74.75 75.05 74.71
State-Space ÑK 78.9 80.9 80.7 80.11 80.32 79.84
Marginalized K 76.22 76.46 76.73 76.22 75.7 74.77
Marginalized NK 75.83 76.10 76.55 76.46 75.25 74.91
Marginalized ÑK 76.33 76.94 78.02 77.75 77.25 77.84

Table 2. Comparison on the classification accuracy (in %) for the Auslan data obtained by standard SVM using Marginalized Kernel,
State-Space Kernel and our new kernels derived from them by non-linear mapping. In the table, K refers to the original kernel (Eq. (14)),
NK to the proposed extension (Eq. (15)) and ÑK to its variant given in Eq. (16). For each kernel, the best classification accuracy over
the number of states is in boldface. The standard errors of the mean for the best ρ value are lower than 0.4 for the MK extensions and than
0.6 for the SK extensions.

Auslan data
No. of HMM states 3 4 5 6 7 8
State-Space K 79.82 76.84 73.42 71.56 69.93 67.52
State-Space NK 86.15 87.27 86.67 87.98 87.7 86.74
State-Space ÑK 90.4 87.65 85.69 83.87 81.6 80.5
Marginalized K 53.34 52.16 50.04 50.76 50.03 50.04
Marginalized NK 93.24 91.76 90.57 90.46 90.18 86.77
Marginalized ÑK 92.69 89.72 88.14 86.23 85.02 83.56

Table 3. Comparative Results on the Chicken data.
Methodology Protocol Accuracy (%) Reference

1-NN + Levenshtein edit distance Leave One Out ≈ 67 [11]
1-NN + approximated cyclic distance Leave One Out ≈ 78 [11]

KNN + cyclic string edit distance Train/Test/Valid 74.3 [12]
SVM + Edit distance-based kernel Train/Test/Valid 81.1 [12]

1-NN + mBm-based features Leave One Out 76.5 [6]
1-NN + Hmm-based distance Leave One Out 73.77 [6]

SVM + Hmm-based entropic features Leave One Out 81.21 [15]
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5. Conclusions

In this paper, a novel class of generative embeddings
has been proposed, representing an extension of the em-
beddings based on generative models with latent variables,
and able to project structural objects in a space with lim-
ited dimensionality. These embeddings have been obtained
through a non-linear mapping, namely, a non-linear scaling
of space dimensions able to highlight discriminative char-
acteristics. We proposed one specific non-linear mapping
whose basic tool is a powering operation, able to balance
the contributions of each latent variable of the model, thus
augmenting the entropy of the latent variables vectors. The
proposed non-linear mapping has been applied to the well-
known Marginalized Kernel and to the recently introduced
State-Space Kernel, presenting the kernel formulation in
closed form for the HMM case, in both the original and an
approximated formulation.

The proposed kernels have been evaluated and compared
to their standard counterparts in a classification framework
involving two different sequence classification problems (2-
D shape recognition and gesture recognition), with very sat-
isfying results that outperform state-of-the-art methods.

Future research directions include the study of the opti-
mal value for the power parameter, as well the analysis of
alternative non-linear mapping functions.
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