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Abstract. Generative kernels represent theoretically grounded tools
able to increase the capabilities of generative classification through a
discriminative setting. Fisher Kernel is the first and mostly-used repre-
sentative, which lies on a widely investigated mathematical background.
The manufacture of a generative kernel flows down through a two-step se-
rial pipeline. In the first, “generative” step, a generative model is trained,
considering one model for class or a whole model for all the data; then,
features or scores are extracted, which encode the contribution of each
data point in the generative process. In the second, “discriminative” part,
the scores are evaluated by a discriminative machine via a kernel, exploit-
ing the data separability. In this paper we contribute to the first aspect,
proposing a novel way to fit the class-data with the generative models, in
specific, focusing on Hidden Markov Models (HMM). The idea is to per-
form model clustering on the unlabeled data in order to discover at best
the structure of the entire sample set. Then, the label information is re-
trieved and generative scores are computed. Experimental, comparative
test provides a preliminary idea on the goodness of the novel approach,
pushing forward for further developments.

1 Introduction

Hidden Markov Models (HMMs) represent a powerful and ductile statistical learn-
ing framework. In the classical HMM-based classification a single HMM is built
for each class and the Maximum A Posteriori (MAP) approach is used to classify
an unlabeled sequence O, thus following a pure generative classification scheme.

Even though the MAP rule represents the theoretically optimal decision rule
(i.e. leading to the minimum probability of error [1]), in practice, generative
classification may suffer from poor discriminative abilities. This is likely to oc-
cur in case of poorly estimated class models (e.g. due to insufficient learning
examples), improper model topologies, (e.g. due to a bad model definition or
conditional dependence of the states), or possible class overlap (as may occur
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e.g. in medical problems where patient diagnoses vary between medical doctors).
Some of these issues can be addressed by improving or/and extending classical
HMMs (e.g. Hierarchical HMM [2], Factorial Hidden Markov Models [3], Coupled
HMM [4] and others). Alternatively, the discriminative skills can be enhanced by
training HMMs with discriminative criteria. Two popular examples are based on
Maximum Mutual Information (MMI) [5] and Minimum Bayes Risk (MBR) [6],
but other extensions are available. One must however remember that although
discriminative criteria try to reduce the recognition error directly, they require
a rather large amount of training data. Furthermore, there exist generalizations
of HMMs towards probabilistic discriminative models. These are Conditional
Random Fields (CRFs) [7] and Hidden CRFs (HCRFs) [8], in which condi-
tional maximum likelihood is often used to estimate the parameters. All these
discriminative techniques need complex training procedures, whereas the final
classification still relies on the MAP approach.

In recent years, a new direction has aroused great interest in the Pattern
Recognition community: the hybrid generative-discriminative approach. The idea
is to merge the description abilities of the Hidden Markov Models (and more in
general of generative models) with the discriminative skills of discriminative
methods, i.e. methods that directly model the posterior probability and, by this,
focus on the class separability. Generally speaking, there is a proven comple-
mentarity of discriminative and generative estimations: asymptotically (in the
number of labeled training examples), discriminative methods lead to lower clas-
sification error than the generative ones [9], when comparing logistic regression to
naive Bayes classifiers. On the other hand, generative counterparts are effective
with less (and possibly unlabeled) data.

Different approaches have been proposed in this context. They may roughly
be divided into two classes: generative embeddings and generative kernels. In
the first case, the basic idea is to employ generative models in order to embed
objects to a vectorial feature space (where any discriminative classifier can be
trained – [10,11,12,13,14]). In the latter case a specific kernel is designed (which
may rely either on an explicit or implicit space), further used in the Support
Vector Machine scenario. Such examples can be found in [15,16,17,18]. In this
paper, we will focus on the second class of approaches.

The most famous and widely investigated generative kernel, defined not only
for HMM but for any generative model, is the Fisher Kernel [15], first advocated
in the context of protein sequence analysis. A generative model is used to build
a feature space in which a kernel is defined by suitable object comparisons. In
particular, the Fisher Kernel approach measures the relation between objects by
comparing them in the tangent space induced by the trained generative model.
In practice, each object is represented by a feature vector, whose components are
called Fisher scores. These scores are defined by derivatives of the log-likelihood
of the generative model with respect to all individual parameters. The resulting
kernel is then defined in such a feature space; the inner product was used in [15].

In order to define a generative kernel, the first step is to employ data to build
the generative model. Let us consider this problem in the Fisher Kernel case [15].



468 M. Bicego et al.

In the original scenario defined by Jaakkola and Haussler in [15], the Fisher Ker-
nel was computed on the basis of the log-likelihood of a single generative model,
representing both competing classes. Another early version, by Fine et al. [19],
defined the kernel on the basis of a generative model trained on a single class (the
positive class). However, if more than one generative model is established, each
representing a single class, more discriminative information may be extracted.
Smith and Gales [20] exploited such an idea in the binary classification case by
proposing to employ in Fisher Kernel the derivatives of the log-ratio of the two
likelihoods calculated from the two competing models. It has been shown in the
paper that this scheme may enhance the discriminative power of Fisher Kernel.
Other generalizations to multi-class models have been proposed, for example in
[21], where multiple per class generative models were trained and used to derive
Fisher kernel. In the paper, the authors also proposed a method to reduce the
number of needed models (by randomly selecting a subset of per class models),
in order to deal with the increased computational burden.

In this work a further contribution to the aforementioned scenario is made.
The idea is to allow a generative framework a free discovery of natural struc-
tures or groups in the training set. This is achieved with a preliminary step
of clustering, during which a large number of small hidden natural groups is
extracted from the data, disregarding class label information. Subsequently, a
single and simple generative model is trained for each group (as the groups tend
to be small). The underlying intuition is simple: generative models are not used
to discriminate between classes (this is left to the discriminative methods), but
are used to finely describe the local structure of the data as an ensemble of clus-
ters. In this way, the problem space is partitioned into small regions, each one
characterized by a simple but well trained generative model.

Even if the proposed methodology may be general (and applicable to any
generative kernel), here we will explore this direction focusing on the HMM-
based Fisher Kernel case, showing promising and comparative results obtained
from some preliminary experiments.

The remainder of the paper is organized as follows: in Sec. 2 basic theoretical
notions are provided and the notation is fixed. Sec. 3 proposes our generative
kernel, whose classification comparative performances are presented in Sec. 4.
Some considerations about the results are discussed in Sec.5. Finally, Sec. 6
closes the paper and opens for novel research perspectives.

2 Foundations

This section describes the basics of HMM and Fisher Kernel, mainly to fix the
notation.

2.1 Hidden Markov Models

A discrete-time hidden Markov model λ can be viewed as a Markov model
whose states are not directly observed: instead, each state is characterized by
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a probability distribution function, modeling the observations corresponding to
that state. More formally, an HMM is defined by the following entities [22]:

– S = {S1, S2, · · · , SN} the finite set of possible (hidden) states;
– the transition matrix A = {aij , 1 ≤ j ≤ N} representing the probability of

moving from state Si to state Sj ,

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N,

with aij ≥ 0,
∑N

j=1 aij = 1, and where qt denotes the state occupied by the
model at time t.

– the emission matrix B = {b(o|Sj)}, indicating the probability of emission of
symbol o ∈ V when the system state is Sj ; V can be a discrete alphabet or
a continuous set (e.g. V = IR), in which case b(o|Sj) is a probability density
function.

– π = {πi}, the initial state probability distribution,

πi = P [q1 = Si], 1 ≤ i ≤ N

with πi ≥ 0 and
∑N

i=1 πi = 1.

For convenience, we represent an HMM by a triplet λ = (A,B, π).
Learning the HMM parameters, given a set of observed sequences {Oi}, is

usually performed using the well-known Baum-Welch algorithm [22], which is
able to determine the parameters by maximizing the likelihood P ({Oi}|λ). One
of the steps of the Baum-Welch algorithm is an evaluation step, where it is
required to compute P (O|λ), given a model λ and a sequence O; this can be
computed using the forward-backward procedure [22].

2.2 Fisher Kernel

Fisher Kernel [15] was first advocated in the context of protein sequence analysis
and proposed as a general way of mixing generative and discriminative models
for classification. The basic idea is to employ a generative model to define feature
vectors and project objects to the resulting feature space. There a meaningful
similarity/distance measure is defined, leading to a kernel. In particular, the
Fisher kernel approach measures the relation between the objects by comparing
them in the tangent space induced by the trained generative model, which is
considered as a point in the Riemannian manifold defined by a family of gener-
ative models. This space has a number of desirable characteristics, such as the
possibility of measuring geodesic distances between points along the manifold
(leading to the concept of natural gradients [23]). In practice, each object is rep-
resented by a feature vector, whose components are called Fisher Scores, defined
by derivatives of the log-likelihood of the generative model with respect to all
parameters. The dimensionality of this space equals the number of parameters.
A kernel can be defined in various ways in the resulting space; the inner product
was used in [15].
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The general formulation is as follows: given two observations Oi and Oj , and
a generative model P(O|θ) — with θ being the vector of parameters of the
generative model — Fisher Kernel is defined as:

FK(Oi,Oj) =< FS(Oi, θ), FS(Oj , θ) >

where < ·, · > is the inner product, and FS(O, θ) is called Fisher Score and is
defined as

FS(O, θ) = ∇θ logP(O|θ)
In the HMM case, θ is replaced with λ, representing the trained HMM. The
vector parameter is composed by the transition probabilities, the emission prob-
abilities (the mean and the covariance in case of Gaussian models) and the
initial state probabilities. The derivation of such derivatives is not complex, and
is omitted here. Interested readers are referred to [21].

3 Methodology

The construction of our HMM-based generative kernel is realized in three steps:
(1) discovering the data groups, (2) building single HMM for each group, and (3)
calculating and exploiting the related generative scores in the kernel definition.
The three phases are reviewed in detail in the following.

3.1 HMM-Based Clustering of Sequences

The first step is to discover natural groups in the data by performing sequence
clustering. It is well known that data clustering is inherently a more difficult
task than supervised classification, and this difficulty worsens if sequential data
are considered: the structure of the underlying process is often difficult to infer,
and typically different length sequences have to be dealt with.

The sequence clustering step represents the most crucial part of the proposed
methodology: it seems very reasonable to employ a process able to explicitly
consider the generative model employed in the Fisher Kernel. In such sense, the
clustering methodology employed here is based on HMM. HMMs have not been
extensively employed for clustering sequences, with only a few papers exploring
this direction. More specifically, early approaches related to speech recognition
were presented in [24,25,26]. A relevant contribution was made by Li and Biswas
[27,28,29,30,31]). Basically, in their approach [27], the clustering problem is ad-
dressed by focusing on the model selection issue, i.e. the search for the HMM
topology best representing data, and the clustering structure issue, i.e. finding
the most likely number of clusters.

More advanced techniques have been proposed by Smyth [32] (see also the
more general and more recent [33]), where a series of sequential steps permits
to realize a block-wise HMM, modeling the whole data set. Other interesting
examples can be found in [34], where HMMs are used as cluster prototypes, with
the clustering obtained with the rival penalized competitive learning (RPCL)
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algorithm, and in [35], where HMMs were employed to derive a feature space
where standard vector-based clustering algorithms have been applied.

In any case, the simplest and most widely used class of approaches for HMM-
based clustering is the proximity-based clustering, where the main effort of the
clustering process lies in devising good similarity or distance measures between
sequences. With such measures, any standard distance-based method (as agglom-
erative clustering) can be applied. Within this context, HMMs are employed to
compute similarities between sequences, using different approaches (see for exam-
ple [36,37]), and standard pairwise distance-based approaches (as agglomerative
hierarchical) are then used for the final data clusters.

In our study, we chose a simple yet effective clustering method, belonging to
the class of proximity-based clustering approaches. Considering a given set of
N sequences {O1...ON} to be clustered, the algorithm performs the following
steps:

1. Train a single HMM λi for each sequence Oi (the details of the training are
in the next section).

2. Compute the distance matrix D = {D(Oi,Oj)}, representing a matrix of
similarities between sequences or between models. This is typically obtained
either by calculating the model-likelihood probabilities, or by devising a mea-
sure of distances between models. In the past, few authors have proposed
approaches to compute these distances: early approaches were based on the
Euclidean distance of the discrete observation probability, while other ap-
proaches were based on entropy, or on co-emission probability of two models,
or, very recently, on the Bayes probability of error (see [37] and the refer-
ences therein). Here we use the following distance, employed in [32,36]. First,
given the sequences {Oj} and the models {λi}, we compute the following
matrix:

Lij = P (Oj |λi) (1)

The similarity matrix S(Oi,Oj) is then obtained by symmetrizing the matrix
Lij . Thus we define

S(Oi,Oj) =
1
2

[Lij + Lji] . (2)

Clearly the choice of this distance is crucial for the effectiveness of the clus-
tering: readers interested in this aspect may refer to [36], where different
Likelihood-based distances have been considered and tested in an EEG clus-
tering scenario.

3. Use a hierarchical agglomerative clustering method (with the Complete Link
rule [38]) on S(Oi,Oj) to perform the clustering.

Clearly the choice of the best number of clusters represents a problem, even
though different indices/strategies have been proposed (see for example [38]).
In our experimental evaluation we let it vary in a proper range, and report the
different results.
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3.2 HMM Training

Once estimated the natural groups inside the data set, a single HMM is trained
for each group. HMM training is performed by using the Baum-Welch re-
estimation procedure, stopping at the likelihood convergence. We assume that
we deal with fully ergodic HMMs. Initialization is random both for the transi-
tion probabilities and initial state probabilities. In case of continuous signals, the
emission probability models are initialized by a Gaussian Mixture clustering. In
case of discrete symbol sequences, 20 independent training runs are performed,
starting from a random initialization, picking the best likelihood model as the
representative. In the experimental part, the best number of states has been
determined with a preliminary experimental evaluation.

3.3 Kernel Computation

The goal in this phase is to compute the Fisher Kernel given a set of trained
models. Here we adopt the scheme proposed in [21], and recently adopted also
in [14] – where a set of different HMM-based generative embeddings have been
proposed. The idea is to concatenate the scores obtained from each model. Here
we adopt the same strategy, the difference is that the models are not built on
the classes but on the extracted clusters.

More formally, given two sequences Oi and Oj , and the set of K trained
HMMs {λk} (with K being the number of clusters), the kernel is then deter-
mined as the inner product in the vector space being a Cartesian product of the
Fisher score spaces resulting from all individual models, in the same way the
Fisher Kernel is built. In other words, given a sequence Oi, the Fisher scores
FS(Oi, λk), are computed using each trained model λk, concatenating them in
a single vector:

CFS(Oi, {λk}) = [FS(Oi, λ1), FS(Oi, λ2), · · · , FS(Oi, λK)].

Given two concatenated vectors CFS(Oi, {λk}) and CFS(Oj , {λk}), relative
to two sequences Oi and Oj , the kernel is then computed as:

FK(Oi,Oj) =< CFS(Oi, {λk}), CFS(Oj , {λk}) >

where < ·, · > represents the inner product.
Given the kernel, the classification task may be solved by using standard SVM.

4 Experimental Evaluation

The proposed methodology has been tested using a 2D shape recognition prob-
lem. Recognition of 2D shapes is an unconventional application of HMMs, even
though promising results have been reported [39,40,41]. The idea, in this case, is
to extract the contour of the shape, transforming it to a sequence that is modeled
by an HMM.
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In particular, we studied the Chicken database, a very nasty problem: the
results published in [42] report a baseline leave-one-out accuracy of ≈ 66% by
using the 1-NN on the Levenshtein (non-cyclic) edit distance. In our experiments,
two different sequence representations are used to model contours, chain codes
and curvature angles. In the first case, a standard 8-direction chain encoding
procedure is applied to each image. Discrete HMMs are used to model these
classes of symbol sequences. In the second case, we derive curvature sequences
as in [41,43]. First, contours are extracted by using the Canny edge detector;
the boundary is then approximated by segments of approximately fixed length.
Then, at any given point x the curvature value is derived as an angle between
two consecutive segments intersecting at x. The initial point is the rightmost
point lying on the horizontal line passing through the object centroid, following
the boundary in a counterclockwise manner. Classes of curvature sequences are
finally modeled by continuous Gaussian HMMs.

Four methodologies to build the Fisher Kernel have been tested and compared:

1. One model for the whole data set. This is the standard methodology, pro-
posed by Jaakkola and Haussler in their original paper [15]. One single model
is built using all the data present in the training set. At the end only one
model is trained.

2. One class-model. This is a generalization of the method proposed in [19],
where a single model was trained using the data of the positive class. Since
in that paper only binary problems were addressed, here we extend it to deal
with the multi class case. To do that, we just select one of the classes, build
the model for that class, and use this model to compute the Fisher Kernel.
At the end only one model is trained. Clearly, depending on the chosen class,
results may vary. Here we tried all the possibilities (reported in the tables as
“Method 2 (class k)”, indicating that an HMM has been trained using only
the examples of the class k).

3. C models: one per class (C number of classes). This is the scheme proposed
in [21], where one model per class is built. As explained before, the resulting
Fisher Kernel is then defined as the inner product in the space obtained
as a Cartesian product of the spaces resulting from each model (namely
concatenating all Fisher Scores of all models). At the end, C models are
trained, where C is the number of classes.

4. K models: one per cluster (K number of clusters). This represents the pro-
posed approach.

In all cases the Fisher Score space has been normalized before the training of
the linear SVM: this is required in order to make the Fisher Kernel work (see for
example [20]). Accuracies have been computed by using the Averaged Holdout:
the data set has been split in two random partitions, one used for training and
one for testing. The process is repeated 10 times and the results are averaged.
The results for continuous and discrete HMMs are shown in Tables 1 and 2,
respectively.
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Table 1. Continuous HMMs applied to the Chicken Database with curvature se-
quences: averaged accuracies (and standard errors) for different methods – see above.
In the Clustering-based Fisher Kernel case (method 4), only the best result among the
different clusterings is shown (in the range of 2-25 clusters).

Method # models Accuracy
(Std error of the mean)

1 1 0.759 (0.003)
2 (class 1) 1 0.755 (0.004)
2 (class 2) 1 0.758 (0.002)
2 (class 3) 1 0.755 (0.004)
2 (class 4) 1 0.734 (0.004)
2 (class 5) 1 0.752 (0.002)

3 5 0.775 (0.004)
4 19 0.798 (0.002)

Table 2. Discrete HMMs applied to the Chicken Database with chain code sequences:
averaged accuracies (and standard errors) for different methods – see above. In the
Clustering-based Fisher Kernel case (method 4), only the best result among the differ-
ent clusterings is shown (in the range of 2-25 clusters).

Method # models Accuracy
(Std error of the mean)

1 1 0.706 (0.006)
2 (class 1) 1 0.629 (0.004)
2 (class 2) 1 0.697 (0.009)
2 (class 3) 1 0.725 (0.006)
2 (class 4) 1 0.695 (0.005)
2 (class 5) 1 0.662 (0.004)

3 5 0.815 (0.004)
4 18 0.858 (0.002)

5 Discussion

As a general comment, it is evident from the tables that the clustering-based
building of the HMM pool results in a positive increase in the accuracy of the
SVM based on Fisher Kernel; this is more evident in the discrete case.

Moreover, the obtained results are remarkable, considering the difficulty of the
data set. As a reference, we put in Table 3 some results on the same dataset: it
is evident how the proposed approach performs very competitively with respect
to the state of the art.

We also want to emphasize again that normalization of the Fisher Score spaces
is essential (in whatever version, concatenated or not). Without normalization,
the classification performance deteriorates significantly. This confirms the intu-
ition provided in [20].
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Table 3. Comparative Results on the Chicken dataset

Methodology Protocol Accuracy Reference

1-NN + Levenshtein edit distance Leave One Out ≈ 67% [42]
1-NN + approximated cyclic distance Leave One Out ≈ 78% [42]

KNN + cyclic string edit distance Train/Test/Valid 74.3% [43]
SVM + Edit distance-based kernel Train/Test/Validf 81.1% [43]

1-NN + mBm-based features Leave One Out 76.5% [44]
1-NN + Hmm-based distance Leave One Out 73.77% [44]

SVM + Hmm-based entropic features Leave One Out 81.21% [45]

Concerning the Fisher Kernels defined on a single model (methods 1 and 2),
it is interesting to observe that it does not make a significant difference to train
the HMM either on the whole data set or on a single class. These models have
discriminative powers which are, apparently, different, as combining appears to
be useful. This may rise the following question: is it reasonable to train a single
“general shape HMM”, namely to train an HMM on a different data set of shapes
(or on a large collection of many databases)? In this way, the proposed approach
may be considered as a pure feature extraction process.

The fact that Fisher Kernels built with only one model perform always worse
than when built with more models confirms the intuition of [21], and is even
more evident when using the clustering approach. Clearly, the resulting space
may be very high-dimensional when several models are used, and the question
arises of how to manage such a space. Here we solve this by using an SVM
based on the Fisher Kernel defined for the underlying Fisher Score spaces. As
can seen from the definitions in section 3.3, the Fisher Kernel of the combined
space is just the average of the Fisher Kernels of the individual spaces. The
kernel matrices have, of course, the same size determined by the size of the
training set and are independent of dimensionalities. Reasonably, this aspect
would have become drastically crucial when studying the presented approach
from a “generative embedding” point of view, namely when employing other
classifiers (more sensitive to the curse of dimensionality) in the vector space
derived from the generative model. Another important observation is that in
all the experiments we made, the best number of states in the clustering-based
approach was two, indicating very small models. What we are doing in such a
case is to increase the number of models while reducing the size of each model.
This may alleviate the dimensionality issue.

In Figure 1 we plot the performances of the proposed approach in the chain
code experiment while varying the number of clusters. As the presented approach
can be understood as based on averaging kernels that are different, but that all
make sense in one way or another, the number of kernels (and thereby clusters)
should be sufficiently large to cover all aspects of the class distributions. After
that the performance may stabilize, or may deteriorate somewhat as cluster sizes
will shrink, resulting in models that may be more specific and thereby less useful
for the following discriminative step.
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The interplay between model size and number of clusters needs further study.
In our approach, both are unsupervised procedures and may be based on other
data than those available in a training set. Together they determine the kernel.
The final performance however obtained in the discriminative step by the SVM
depends on the relation between this kernel and the size of the training set. So
all three have to be studied together: model size, number of models (clusters)
and training set size.
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Fig. 1. Performances on chain code experiment with varying number of clusters

Looking at the whole procedure, there is a heavy data re-use: HMM training
per sequence, clustering, HMM-training per group, parameter setting for SVM
and classifier training. Since we over-use the data a lot, we can benefit from weak
and/or simple models, which is in fact confirmed in the experimental evaluation.

In summary, we should observe that the best results for clustering are obtained
with small models (two state models) and a large number of clusters. The effect
of such a result is that the problem space is partitioned into small regions, each
characterized by a simple but well trained generative model. Consequently, we
can obtain an optimal description of the feature space (via a generative model),
which is then discriminated via a discriminative method.
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6 Conclusions and Future Perspectives

In this paper we furnished a novel way to build a generative kernel based on Hid-
den Markov Models and Fisher Kernel. In the typical generative kernel building
process, a generative model is fit on the data, considering class-label informa-
tion: this generates two main fit directions, namely, one model for class or one
model for all the data. Then, scores are extracted from the trained models which
highlight the generative correspondence among points and the single model pa-
rameters. Finally, discriminative reasoning exploits data separability. Our contri-
bution is to suggest an alternative way to build the HMM generative framework
from the data. The idea is to consider all the data together, allowing possible
data structural information to better emerge. This information is captured by
performing model clustering, which provide few HMM models encoding all the
data as surrogates of many initial simple models fit on local data points. Class
label information is then recovered in the score building process, and, subse-
quently, by the discriminative machinery. This paper represents a preliminary
work toward a novel research direction for the manufacture of generative ker-
nels. Our work consists on several comparative tests which show what are the
potentialities to take into account and the possible issues to face. The promising
results allow us to further investigate this research direction.
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