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Abstract. In this paper a novel approach to contour-based 2D shape
recognition is proposed. The main idea is to characterize the contour of
an object using the multifractional Brownian motion (mBm), a mathe-
matical method able to capture the local self similarity and long-range
dependence of a signal. The mBm estimation results in a sequence of
Hurst coefficients, which we used to derive a fixed size feature vector.
Preliminary experimental evaluations using simple classifiers with these
feature vectors produce encouraging results, also in comparison with the
state of the art.

1 Introduction

Object recognition represents an important research area in computer vision
and pattern recognition. The classification of three-dimensional (3D) objects has
been faced by different approaches [1,2], many of which are based on the analy-
sis of two-dimensional (2D) aspects of objects (2D shapes). In this context, the
analysis could be performed by analyzing the boundary (external approaches)
or the whole shape (internal approach). In the former context, many contour
descriptors have been proposed, like, for example, Fourier descriptors and chain
code, whereas, in the latter context features like the medial axis, or moments,
have been employed [2]. In particular, object contours proved to be very effective
in many applications, with many different approaches being presented over the
past years, each with different characteristics, like robustness to noise and occlu-
sions, invariance to translation, rotation and scale, computational requirements,
and accuracy [2,3].

In this paper a novel approach to contour-based 2D shape recognition is pro-
posed. The main idea is to characterize the contour of each object using the
multifractional Brownian motion (mBm) [4,5,6], a mathematical method em-
ployed in the finance community to characterize and model the financial series.
The simplest way of introducing the multifractional Brownian motion is to con-
sider it as an extension of the fractional Brownian motion (fBm) [7], a process
characterized by a slowly decaying autocorrelation function depending on the
parameter H ∈ (0, 1] (named Hurst exponent). The fBm may model the self
similarity and long-range dependence of a process. The Hurst exponent H has
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a clear interpretation: if H = 1/2, then the fBm represents the standard Brow-
nian motion (namely the process has no memory); for H > 1/2, the process is
characterized by a persistence (positive or negative) – namely the process has
a clear trend; finally, for H < 1/2 the process is characterized by an antipersis-
tence. Even if this method has been largely applied in the finance community
(mainly to understand some characteristics of the financial series), some works
applying the fBm function have also been presented in the pattern recognition
context, like in medical imaging [8] or in speech recognition [9]. It is important
to note that fBm is related to the fractal theory [10] – a theory largely employed
in image analysis [11] or even object classification [12,13] – since it is modeling
self-similarity. Actually it can be shown that, for fractal or self-similar processes,
the Horst exponent H can be related to a fractal dimension Dh [10] through the
equation Dh = 2 − H , where Dh is the fractal Hausdorff dimension [14].

Nevertheless, from a shape recognition point of view, we consider it too strong
to assume contours showing a complete self similarity, and modeling them with a
fBm process (or fractals) could be too approximate. Still, the description power
of such models may be successfully applied if we model local self-similarity, that
is by considering objects as self similar in limited region. This behavior could be
modeled by the so called multifractional Brownian motion (mBm), an extension
of fBm so that the Hurst exponent can vary over time. As a result of this process,
a function H(t) is obtained, describing the self similarity of the process in a
window centered in t. The mBm process is no longer stationary nor self-similar;
despite this, the process is extremely versatile since the time dependency of H
is useful to model phenomena whose punctual regularity is time changing, this
characteristic being possibly really useful in characterizing an object’s shape.

In this paper we explore the use of the mBm function for characterizing the
shape contours with the aim of 2D shape classification. In the proposed ap-
proach, the contour is modeled with the curvature (similarly to [15,16]), which
was fitted with a mBm function. The sequence of Horst coefficients computed
was subsequently employed to derive a fixed length vector, which characterizes
each shape. Some experimental evaluations were performed using simple Near-
est Neighbor classifier (with the Euclidean and the Minkowsky distance) on the
Chicken database, showing promising results also in comparison with the state
of the art.

2 The Multifractional Brownian Motion (mBm)
Approach

This section will present the theory of the mBm approach, as well as the esti-
mation methodology we used here.

2.1 The mBm Model

As reported in the introduction, a convenient way to introduce the mBm is to
consider it as an extension of the fractional Brownian motion (fBm). Defined in a
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celebrated paper by Mandelbrot and Van Ness [7], the fBm is characterized by a
slowly decaying autocorrelation function depending on the parameter H ∈ (0, 1],
named Hurst exponent. Following the definition that can be found in [17], the
process has the following moving average representation

BH(t) = C{πK(2H)}1/2
∫

R

ft(s)dB(s) (1)

with

ft(s) =
1

Γ
(
H + 1

2

) {
|t − s|H− 1

2 1]−∞,t](s) − |s|H− 1
2 1]−∞,0](s)

}

where C is a positive constant, K is the function defined on ]0, 2[ as K(α) =
Γ (α + 1) sin απ

2
π , and B(·) stands for the ordinary Brownian motion process –

introduced by Robert Brown in 1872 to describe the random movements of
particles suspended in a liquid or gas [18]. The process is self-similar1 of param-
eter H and has stationary increments. Its covariance function reads as

E (BH(t)BH(s)) =
c2

2

(
|t|2H + |s|2H − |t − s|2H

)
(2)

The fBm can be generalized by allowing H to vary over time. This extension
– known as multifractional Brownian motion (mBm) [4,5,6] – has the following
representation

MH(t)(t) = C{πK(2H(t))}1/2
∫

R

ft(s)dB(s) (3)

with

ft(s) =
1

Γ
(
H(t) + 1

2

) {
|t − s|H(t)− 1

2 1]−∞,t](s) − |s|H(t)− 1
2 1]−∞,0](s)

}

where H : [0, ∞) → (0, 1] is required to be a Hölder function of order 0 < η ≤ 1
to ensure the continuity of the motion.

Notice that since H(t) is the punctual Hölder exponent of the mBm at point
t, the process is locally asymptotically self-similar with index H(t) (see, e.g.
[20]) in the sense that, denoted by Z(t, au) := MH(t+au)(t + au) − MH(t)(t) the
increment process of the mBm at time t and lag au, it holds

lim
a→0+

a−H(t)Z(t, au) d= BH(t)(u), u ∈ R. (4)

1 We recall that the process {X(t), t ∈ T} is said self-similar with parameter H if for
any α > 0 {X(αt)} d= {αHX(t)}, where the equality holds for the finite-dimensional
distributions of the process (see e.g. [19]).
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The above distributional equality indicates that at any point t there exists
an fBm with parameter H(t) tangent to the mBm. Moreover, since BH(t)(u) ∼
N (0, C2u2H(t)), the infinitesimal increment of the mBm at time t, normalized by
aH(t), normally distributes with mean 0 and variance C2u2H(t) (u ∈ R , a → 0+).
The increments of the mBm are no longer stationary nor self-similar; despite this,
the process is extremely versatile since the time dependency of H is useful to
model phenomena whose punctual regularity is time changing.

2.2 Point-Wise Estimation of the Mbm

One of the main problems when using the mBm process is to estimate the func-
tion H(t) from actual data. To face this problem one could think to adapt the
traditional estimators of H available in literature in order to shadow the dynam-
ics of H(t). The weakness of this approach resides in the fact that very large
samples are needed to get reliable estimates and over a long period of time H
is likely to change even further. So, more efficient estimators are needed in the
case of the mBm. An answer to this problem is provided by Bianchi in [21], who
develops the work of [22] and defines a family of ”moving-window” estimators
of H(t) based on the k-th absolute moment of a Gaussian random variable of
mean zero and given variance VH (the variance of the unit lag increment of a
mBm). Given a series of length N and a window of length δ, the estimator has
the form

Hk
δ,N (t) =

log
(
2k/2Γ

(
k+1
2

)
V

k/2
H

)
− log

(√
π

δ

∑t−1
j=t−δ |Xj+1,N − Xj,N |k

)

k log (N − 1)
(5)

for j = t − δ, ..., t − 1; t = δ + 1, ..., N ; k ≥ 1. (6)

When H ∈
(
0, 3

4

)
, the estimators’ rate of converge is O

(
δ−

1
2 (log N)−1

)
, what

allows to get reliable estimates even for very short δ′s.
The family of estimators (5) was proved to be correct and normally distributed

as

Hk
δ,N(t) ∼ N

(
H(t),

π

δk2 ln2 (N − 1) 2k
(
Γ

(
k+1
2

))2 σ2

)
. (7)

σ2 being the variance of a Gaussian random variable defined as a proper re-
scaled sum. Toilsome computations show that when H = 1

2 the variance of the
estimator reduces to

V ar(Hk
δ,N (t)) =

√
π

δk2 ln2 (N − 1)
[
Γ

(
k+1
2

)]2 ·
(

Γ

(
2k + 1

2

)
− 1√

π

[
Γ

(
k + 1

2

)]2
)

(8)
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and the optimal value of k is deduced by minimizing the last relation. So one
finds that the minimum of (8) takes place when k = 2, value which will be used
in the experiments discussed below.

3 The Proposed Approach

In this section the proposed approach is summarized: first the contours are en-
coded in one-dimensional signals, then the mBm is estimated and a feature vector
is extracted from H(t).

3.1 Coding of Contours

Each object is represented by the sequence of the curvature coefficients, com-
puted as described in [15,16]. Curvature has been chosen since it presents many
different appealing characteristics, like invariance to translation and somehow to
rotation (it results just in a shift of the signal). In order to compute curvature
sequence, the contours are firstly extracted by using the Canny edge detector;
the boundary is then approximated by segments of approximately fixed length
dL. Finally, the curvature value at point x is computed as the angle between
the two consecutive segments intersecting at x. The initial point is the leftmost
point lying on the horizontal line passing through the object centroid, following
the boundary in a counterclockwise manner.

3.2 Feature Extraction

It should be noted that, in the finance community, the main goal is to approx-
imate the series with the mBm process, in order to gain knowledge from the
sequence of Hurst coefficients and understand the persistence or anti-persistence
behavior of the financial series. Here the goal is different: we want to approx-
imate the contour signal with the mBm function, subsequently extracting a
feature vector from the sequence H(t) used to characterize the shape.

In particular each object’s curvature sequence is modeled with a mBm process
and a function H(t) is extracted. It is worthwhile to observe that the signal
H(t) could be used as it is as a signature of the shape, with many attractive
characteristics (one for all: rotation of the object simply results in a shift of
the curvature and consequently only a shift of the H(t)). Nevertheless, in this
preliminary study, we opted for a more simple and compact solution: the feature
vector was obtained by sub-sampling H(t) with a regular step (this has a clear
impact on the rotation-invariance); in order to obtain exactly the same number
of points for each shape, the sub-sampling step varies with the length of the
sequence. In order to increase the robustness, the sub-sampling was carried out
by averaging the signal in a small interval around the sampling points.

To summarize, there are two crucial parameters in the proposed system: the
window size δ (lag), defining the “scale” of the analysis, and the number of
sampled points, defining the trade-off between the capacity of the descriptor
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Fig. 1. (Top): one sample object; (center): curvature extracted from the object contour
– starting from the “X” and following the boundary in a counterclockwise manner;
(bottom) the estimated H(t), computed with a lag δ = 5. The value of H(t) at a
certain point x derives from the application of the estimator of H to the subwindow of
the signal centered in x.

and the curse of dimensionality. In the experimental part, we made a thorough
analysis of the accuracy of the descriptors when varying these parameters.

An example of the application of the above described approach is displayed
in Fig. 1: the curvature signal (middle) of the contour of the object (top) is
approximate with a mBm, which H(t) is displayed in the bottom part. It is
clear how this H(t) encodes the regularities/indentations of the signal: where
the signal has a change in the regularity (at points 25 and 45 – corresponding
to the abrupt change in the contour) H(t) suddenly decreases – modeling a
somehow turbulent behavior. On the other side, when the behavior is regular
(zone 50-70), H(t) suddenly approaches 1.

4 Experimental Results

We chose to study the Chicken Pieces Database2, denoted also as Chicken data
[23]. This set consists of 446 binary images of chicken pieces, whose examples
are shown in Fig. 2. Each piece belongs to one of the five classes, representing

2 See http://algoval.essex.ac.uk:8080/data/sequence/chicken/.
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Wing

Back

Drumstick

Thigh and back

Breast

Fig. 2. Examples from the Chicken data

specific parts of a chicken: wing (117 samples), back (76), drumstick (96), thigh
and back (61), and breast (96). The shapes are usually first described by con-
tours, which are further encoded by suitable sequences. This poses a difficult
classification task. The results published in [24] report a baseline leave-one-out
(LOO) accuracy of ≈ 67% by using the 1-NN on the Levenshtein (non-cyclic)
edit distance computed on the contour chain code.

The sequences of the dataset were encoded using the proposed approach in
order to obtain a feature space. In the feature space any classifier may be used. In
order to have a clear idea of the discriminative capability of the features we used
a very simple one, namely the Nearest Neighbor. We computed the leave-one-
out (LOO) accuracy using the proposed approach. Two different vector-based
distances were employed in the feature space: the classic Euclidean distance and
the Minkowsky distance. We let the parameter δ vary from 2 to 25, whereas the
dimensionality of the feature vector was analyzed in the range [2-10]. The results
are graphically shown in Fig. 3, while increasing window size δ. For each δ, we
chose the dimensionality of the feature vector rising to the best accuracy.

From the figure it could be noted that results are quite satisfactory, even
if the task is extremely difficult. Results with Euclidean Distance seem to be
slightly better than those with Minkowski distance. It may also be noted that
the results seem to improve when increasing the analysis window size (actually
the best result was obtained with δ = 20 with a 76.5% of accuracy). This is true
up to a certain point: when increasing too much the δ, the system performances
start to decrease, mainly because the mBm will consider larger parts of the shape
as self similar (so, to some extent, leading to the fBm).

4.1 Comparative Analysis

This database has been widely used in the literature, with different represen-
tation and different classifiers. Since our goal is to compare the discriminative
power of the proposed features, here we have reported results of other methods
which only employ simple classifiers, like the Nearest Neighbor (or the K-Nearest
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Fig. 3. LOO accuracy using the NN classifier in the proposed feature space

Neighbor). Some of them are taken from literature, some of them have been com-
puted by the authors.

1. Fractional Brownian motion (fBm): naturally the first comparison is ob-
tained by applying the simpler fBm to the sequences extracted from the
shapes. As explained in the previous sections, this representation in too sim-
plistic and not suitable for describing a shape. This is confirmed by experi-
mental evidence, since the LOO accuracy using NN classifier (and Euclidean
Distance) was really poor, about 38.79%.

2. In [24], a structural approach has been applied to this problem, with a cyclic
string matching procedure. Many different techniques have been proposed:
as said before, the Levenshtein (non-cyclic) edit distance computed on the
contour chain code returns a LOO error (with Nearest Neighbor) of about
67%, whereas some extensions and improvements arrive up to 78%3

3. Another structural approach has been proposed by Neuhaus and Bunke in
[16] where a kernel based method, based on a dissimilarity representation,
was proposed. As a reference system, given the sequences encoded with cur-
vature coefficients – similarly to what done here – they compute the accu-
racy of a K-Nearest Neighbor where the distances were determined using an

3 Approximate values are shown since in the paper no numerical values were given,
just a graphical table – Tab. 5(b).
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efficient cyclic string edit distance algorithm [25]. The accuracy, computed
by splitting the set in Training/Testing/Validation was 74.3%4.

4. Hidden Markov Models: recognition of 2D shapes is a quite unconventional
application of HMMs, even though promising results have been reported
[26,27,15]. The conventional approach is train one HMM for each class, sub-
sequently classifying with the standard Bayes rule. Nevertheless, since the
tackled dataset presents a notably high intra-class variability – and a single
HMM per class would be too general and so not able to solve the task – we
trained one model for each training sequence, assign an unknown sequence
to the class of the model showing the highest likelihood (similarly to what
was done in [28]): clearly this may be seen as a 1-nearest-neighbor (1-NN)
classifier, with the proximity measure defined by the likelihood function. Af-
ter a preliminary evaluation, HMMs are trained with K = 3 states for all
classes. The LOO error computed was of 73.77%.

From the previous results we may observe the suitability of the proposed
representation technique, also in comparison with the state of the art.

5 Conclusions

In this paper a novel 2D shape descriptor has been proposed, which characterizes
the contour of each object using the multifractional Brownian motion (mBm).
This function represents a mathematical method able to capture the local self
similarity and long-range dependence of the silhouette of an object. The mBm
estimation results in a sequence of Hurst coefficients, which we used to derive
a fixed size feature vector. Preliminary experimental evaluations using simple
classifiers on these feature vectors produced encouraging results.

Current research directions are mainly directed toward two goals: first, the
automatic selection of the dimension of the window size δ – this possibly being
inferrable from a local R/S analysis; second, a more effective classification scheme
able to exploit the description power of the proposed features. Clearly, a more
thorough experimental evaluation is also needed, involving different datasets and
different classifiers.

References

1. Campbell, R., Flynn, P.: A survey of free-form object representation and recogni-
tion techniques. Computer Vision and Image Understanding 81, 166–210 (2001)

2. Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31(8),
983–1001 (1998)

3. Suetens, P., Fua, P., Hanson, A.: Computational strategies for object recognition.
ACM Compuiting Surveys 24(1), 5–61 (1992)
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