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Abstract. The strength of classifier combination lies either in a suitable
averaging over multiple experts/sources or in a beneficial integration of
complementary approaches. In this paper we focus on the latter and
propose the use of group-induced vector spaces (GIVSs) as a way to
combine unsupervised learning with classification. In such an integrated
approach, the data is first modelled by a number of groups, found by
a clustering procedure. Then, a proximity function is used to measure the
(dis)similarity of an object to each group. A GIVS is defined by mapping
an object to a vector of proximity scores, computed with respect to the
given groups. In this study, we focus on a particular aspect of using
GIVSs in a mode of building a trained combiner, namely the integration
of generative and discriminative methods. First, in the generative step,
we model the groups by simple generative models, building the GIVS
space. The classification problem is then mapped in the resulting vector
space, where a discriminative classifier is trained. Our experiments show
that the integrated approach leads to comparable or better results than
the generative methods in the original feature spaces.

1 Introduction

Practice in Multiple Classifier Systems as well as life experience show that
a proper integration of complementary expertise leads to a better understand-
ing of the problem and, usually, to better solutions. In this paper, we combine
the complementary views of unsupervised and supervised learning. One possible
approach is to discover the data structure and to apply different classifiers (or
their combinations) depending on the position of objects in a vector space or
groups they belongs to. Given a set of classifiers, this can be realized in local
neighborhoods, e.g. by a dynamic classifier selection, as discussed in [15,2].

Here, we propose a simpler strategy that builds a group-induced vector space
(GIVS) from the information of group structure. The main idea is to create such
a representation space for the addressed problem such that it is successfully em-
ployed by discriminative approaches also for very small sample size problems
or for non-vectorial data. Therefore, we characterize the problem in terms of
(overlapping) groups determined by a clustering procedure. In principle, groups
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can also be obtained by using label information. Nevertheless, the use of labels
should be avoided, since this prevents the risk of overtraining (re-using the same
information). Additionally, groups may also have different scales (both large and
small groups are permitted) or be detected on different levels of a hierarchical
clustering. Given such (possibly multiple-view) groups, a proximity function is
needed that measures similarity of an object to each group. This is defined in
agreement with the underlying grouping criterion or the property of the cluster-
ing technique, such as the Euclidean distance to the class centre if the K-means
clustering is used or log-likelihood in case of the EM-clustering. In a GIVS, an
object is mapped to a proximity vector, such that each proximity score reflects
a similarity of an object to a group. The construction of this vector space is
a fusion of weak proximity scores which encode in multiple views the grouping
tendencies in the data. A statistical classifier trained in GIVS combines the weak
clustering evidences towards a good solution. Note, however, that such a classi-
fier should be simple in order to avoid overtraining, as the final result is a trained
combiner [4]. A similar idea was also used for image classification in [9].

In general, our approach bears some resemblance to mixtures of local models.
This includes local PCA models utilising either ’hard’ [8] or ’soft’ [6] assignments
in in the partitioning phase, or probabilistic models based on local probabilistic
PCA [14] or mixture of Gaussians [11]. All but first techniques couple both the
partitioning and local model building into a EM approach. As a result, the model
parameters and the mixing weights are optimized simultaneously. There are two
main differences between such mixtures of local models and our approach. First,
we derive a sequentially trained combiner which optimizes both unsupervised
and supervised stages separetely. Secondly, the models are flexible: both local
and global, possibly weak and overlapping and they may be derived by any
clustering procedure, including these without the probabilistic character.

Another related approach is a network of locally tuned RBF units proposed in
[12]. It first uses an unsupervised learning, such as K-means to determine cluster
centers. These are then taken as RBF centers (of a hidden layer), whose widths
are estimated by some nearest-neighbor heuristics. The output layer is a weighted
linear combination of the RBFs. In the supervised setting, it is optimized by
a gradient descent method. While it seems ad-hoc, its good performance may
now be better understood in the light of our proposal, as explained below.

In this paper, we focus on a particular aspect of the proposed approach re-
lated to the integration of generative and discriminative methods, two comple-
mentary learning paradigms [7,13]. Generative methods model class probability
density functions, while discriminative methods directly define the class bound-
aries. Generative techniques better characterize data, while discriminative tech-
niques usually lead to a high performance. The combination of their strengths
by the use of GIVSs seems to be a way for improvement. Here we study to what
extent the simple generative modeling of groups in case of vectorial problems is
beneficial for building GIVSs and training discriminative classifiers there.

The paper is organised as follows. Section 2 describes the proposed method-
ology, while Sections 3 and 4 explain the experimental set-up and analyze the
results. The findings are summarized in Section 5.
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2 Proposed Methodology

This section describes our integrated framework for combing grouping evidence
with supervised learning. The starting point is a C-class classification prob-
lem, defined by a training set X = {x1,x2, ...,xN} with the associated labels
{y1, y2, ..., yN}, and a test set Z = {z1, z2, ..., zM}. The group-induced vector
space (GIVS) classification methodology is defined via the following steps:

1. Grouping: choose or detect groups inside the training set. This can be
achieved either by employing the label information (e.g. groups are chosen
as the original classes) or not. Although the latter choice prevents possible
overtraining from the repetitive usage of labels, both Supervised grouping
and Unsupervised grouping have been used. In the latter case, the groups are
determined by a clustering technique and are assumed to represent natural
clusters inside the training set. Any clustering methodology can be used
here, such as the simple K-means or the complex mode-seeking. Note that
clusters may overlap, which means that examples belong to multiple clusters.
In addition, we also define the Fused Unsupervised Grouping strategy, which
collects sets of groups obtained by the Unsupervised Grouping for a growing
number of clusters from 2 to F . The training set is therefore used multiple
times, each time to find a particular number of groups.

In general, the result of a supervised or unsupervised grouping process is a
group structure G describing the training set with K groups, G1, G2, . . . , GK .
Of course, K = C in Supervised grouping, while K = 2+ . . .+(F −1)+F =
(2+F )(F−1)

2 , in Fused Unsupervised Grouping.
2. Group characterization: in this step, a set of generative one-class mod-

els (such as Gaussian probability densities) are built based on the group
structure G in order to model or describe the elements inside the groups. It
is important to emphasize that each model is trained following a one-class
paradigm, i.e.without any knowledge of the remaining training examples. As
a result, a set of models {Mk} describes the group structure G. In our ex-
perimental study, we used very simple models, namely Gaussian probability
density models with diagonal or spherical covariance matrices.

3. Building Group-Induced Vector Spaces: in this step the GIVS is con-
structed by representing each object by its distance or similarity to each
group Gk. Formally, each object xi is mapped to the Group-Induced Vector
Space by the following function:

givsK(xi) : xi −→ [f(xi, M1), f(xi, M2), . . . , f(xi, MK)]T , (1)

where f(xi, Mk) is a function measuring the relation between the vector xi

and the model Mk of the group Gk. For instance, this is the probability that
xi belongs to the model. In our experiments, we either used the Euclidean
distance between xi and the mean of Gk in case Mk is a spherical Gaussian
model or the log-likelihood when Mk is the a diagonal Gaussian model. The
training set X and the test set Z are then mapped to this new space with the
givsK(·) function. Depending on the grouping used, the resulting spaces are
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called Supervised GIVS, Unsupervised GIVS or Fused Unsupervised GIVS,
while their dimensions equal to C, K and (2+F )(F−1)

2 , correspondingly.
4. Classification in the GIVS: the classification problem is solved in the

new feature space, in which the training set is

GIVS(X ) = {givsK(x1), givsK(x2), ..., givsK(xN )}

with the associated labels {y1, y2, ..., yN} and the test set is

GIVS(Z) = {givsK(z1), givsK(z2), ..., givsK(zM )}.

Any vector-based classification strategy can be used in the GIVS, such as
the KNN (k-nearest neighbor) or SVM (support vector machine).

An important feature of our approach is its applicability to problems in which
a direct feature space cannot easily be extracted. Examples include problems
dealing with sequences, strings, structures or graphs, i.e. problems in which
a vector space is not directly obtainable, and discriminative approaches are
not easily employable. In such cases, the usual option is to apply generative
approaches. The generative models make use of the specific properties of the
non-vectorial representations, but they loose at the same time as the discrimina-
tive approaches typically have a higher discrimination power. In this sense, the
strategy proposed here is a method of combining generative and discriminative
strategies, a very challenging research task [7,10]. Generative models are used to
characterize groups, while the classification is performed in the corresponding
GIVS by discriminative techniques.

3 Experimental Evaluation

This section presents our results. They are obtained by testing different variants
of the combined generative-discriminative approach applied to several classifica-
tion problems. In particular, the general scheme outlined in Section 2 has been
instantiated by the following choices:

1. Grouping: in the supervised case, groups are defined by the given classes,
hence their cardinality equals C, the number of classes. In the unsupervised
cases (standard and fused), a traditional Gaussian Mixture Model (GMM)
for clustering is adopted assuming diagonal covariance matrices. The number
of clusters K varies from 2 to 15. Also F varies from 2 to 15, leading to fused
vector spaces of the dimension in the range of 2 to 119 = 2 + . . . + 14 + 15.

2. Group characterization: two simple models are applied here: a Gaussian
model with a diagonal covariance matrix and a spherical Gaussian model.

3. Building Group-Induced Vector Spaces: theproximitymeasuref(xi,Mk)
is defineddifferently for the twomodels:

(a) Diagonal Covariance Gaussian:

f(xi, Mk) = log N (xi | μk,Σk) (2)
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i.e. the log-likelihood expressing the confidence that xi belongs to the
Gaussian model Mk defined by the mean vector μk and the covariance
matrix Σk. In general, it is the negative square Mahalanobis distance,
which now simplifies to the negative normalized (per feature) square
Euclidean distance due to a diagonal covariance matrix. This choice is
motivated by the traditional use of log-likelihood models in the litera-
ture. The logarithmic transformation is usually applied to probability
estimates. It often simplifies the corresponding expression (when based
on the exponent function) and, more importantly, emphasizes the differ-
ences in small probabilities, leading to better numerical accuracies.

(b) Spherical Gaussian:

f(xi, Mk) = ||xi − μk||2, (3)

i.e. the Euclidean distance of xi to the mean of the Gaussian group Mk,
which is a natural choice for spherical clusters.

4. Classification in the GIVS: here we choose two simple discriminative
classifiers, the K-nearest Neighbor (KNN), with K optimized by the leave-
one-out error on the training set, and the Logistic Linear classifier (LogLC)
[3]. The idea is that we can reduce the complexity of the classifier while
increasing the discrimination power and the complexity of the vector space.

Different versions of the proposed combining scheme are tested on several well-
known data sets from the UCI Repository [5]. These are: Banana, Ecoli, Liver, Di-
abetes, Breast (Wisconsin Breast Cancer), Glass, Wine and Ionosphere data. The
classification accuracy is computed by using the hold-out technique [3]. Here, the
data set is randomly split into two equal and non-overlapping parts, one used for
training and the other for testing. The training set is first normalized (to a unit
variance) and then the KNN and LogLC are trained in supervised and unsuper-
vised GIVSs. The classifiers are then tested on the normalized test set. This process
is repeated 20 times and the results are averaged out. These average performances
are shown in Table 1, for which the average standard deviations are less than 0.8%.
This suggests that the proposed scheme is robust against data partitioning and ini-
tialisations of GMM. Concerning the (Fused) Unsupervised GIVS, only the best
results in the testing set over the different values of K and F are shown. A brief
discussion on how to choose these values is presented in the next section.

We compare our combined scheme to the corresponding generative classifica-
tion methods; see Table 2. In case of the diagonal covariance Gaussian model,
the standard maximum-a-posterior (MAP) approach was used, while for the
spherical Gaussian model, the minimum distance approach was used. Since we
deal with vectorial data sets, we also compare our approach to some standard
discriminative classifiers trained in the original features spaces; see Table 2.

4 Analysis of the Results

Several observations can be made while studying the results from Tables 1 and 2:
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Table 1. Average classification accuracies of the proposed generative-discriminative
integration schemes on different data sets

Group Model Diagonal Gaussian Spherical Gaussian
Measure Log PDF Euclidean distance
Classifier KNN LogLC KNN LogLC
Banana, 2 classes (150-150), 2 features

Supervised GIVS 86.07% 79.30% 91.92% 92.57%
Unsupervised GIVS 97.58% 84.10% 98.07% 97.12%
Fused Unsup. GIVS 97.72% 84.10% 98.08% 95.43%

Ecoli, 3 classes (143-77-52), 5 features
Supervised GIVS 92.34% 93.36% 92.45% 92.55%
Unsupervised GIVS 90.15% 92.55% 92.81% 93.36%
Fused Unsup. GIVS 89.71% 91.02% 92.96% 92.37%

Liver, 2 classes (145-200), 6 features
Supervised GIVS 55.78% 59.08% 56.79% 59.42%
Unsupervised GIVS 58.82% 70.12% 57.86% 65.03%
Fused Unsup. GIVS 59.51% 70.12% 57.17% 66.27%

Diabetes, 2 classes (500-268), 8 features
Supervised GIVS 74.49% 75.59% 64.83% 67.98%
Unsupervised GIVS 67.94% 77.37% 73.16% 76.91%
Fused Unsup. GIVS 66.28% 77.43% 72.46% 76.64%

Breast, 2 classes (444-239), 9 features
Supervised GIVS 95.42% 96.52% 70.13% 69.37%
Unsupervised GIVS 95.38% 96.52% 96.45% 96.71%
Fused Unsup. GIVS 95.28% 96.52% 96.48% 96.58%

Glass, 4 classes (70-76-17-51), 9 features
Supervised GIVS 61.81% 61.62% 62.64% 62.64%
Unsupervised GIVS 60.42% 62.13% 68.98% 65.14%
Fused Unsup. GIVS 60.69% 61.11% 68.52% 64.91%

Wine, 3 classes (59-71-48), 13 features
Supervised GIVS 92.33% 93.50% 70.00% 46.61%
Unsupervised GIVS 90.94% 92.78% 94.83% 95.39%
Fused Unsup. GIVS 90.83% 94.11% 94.94% 94.72%

Ionosphere, 2 classes (225-126), 32 features
Supervised GIVS 88.81% 89.77% 38.78% 87.41%
Unsupervised GIVS 87.93% 90.43% 92.39% 92.64%
Fused Unsup. GIVS 87.53% 91.11% 92.67% 90.77%

1. Classifiers trained in the GIVS perform almost always evidently better than
the corresponding generative approaches. There are two exceptions, the Ecoli
and the Wine data, where there is no significant improvement. This can
however be easily explained by the fact that in the original feature vector
spaces the classes are well described by normal distributions. The original
models are therefore well suited, hence well performing. The other examples
indicate that our integrated method is able to recover from situations in
which generative models are improper either due to wrong assumptions (such
as independently distributed features or Gaussian models for non-Gaussian
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Table 2. Average classification accuracies of the standard discriminative and genera-
tive methods on different data sets

Generative methods Discriminative methods
Data Diag-Gauss (MAP) Sph-Gauss (Min-dist) KNN LogLC SVM
Banana 80.02% 92.05% 97.53% 85.68% 97.99%
Ecoli 92.45% 92.04% 94.22% 94.33% 94.99%
Liver 53.41% 59.28% 61.25% 68.02% 64.65%
Diabetes 75.22% 67.71% 74.19% 76.55% 77.01%
Breast 95.89% 60.37% 96.54% 96.52% 96.86%
Glass 47.41% 47.27% 69.06% 63.11% 67.36%
Wine 94.83% 95.67% 95.40% 96.93% 97.65%
Ionosphere 80.00% 89.01% 85.31% 75.97% 93.22%

classes), or due to estimation errors (e.g. for an unfavourable sample size or
feature size). Our results show that in spite of a wrong model, discriminative
classifiers built in the group-induced spaces lead to good results. In brief, our
sequential generative-discriminative combination, being a trained combining
classification scheme, can recover from initially unsuitable models.

2. When comparing the proposed integrated scheme to the discriminative ap-
proaches in the original feature spaces we can observe that they give al-
most comparable results, except for the Liver and Ionosphere data (except
SVM). In these problems, the corresponding GIVSs are highly discrimina-
tive; the classifiers trained there outperform the classifiers in the original
feature spaces. The Liver problem is very challenging and it seems that by
using the clustering mechanism, the method is able to capture important
groups in the original space to build a discriminative GIVS. With respect to
the Ionosphere set, we should mention that this is a high-dimensional prob-
lem (32 dimensions), in which discriminative approaches could suffer from
the curse of dimensionality (actually SVM, which is less sensitive to this
problem, performs well on these data). By using the GIVS, we can reduce
the dimension to a moderate size, significantly improving the results.

3. By analysing the GIVS approach in depth, we can observe that the Unsuper-
vised GIVS almost always leads to better (or at least equal) results than the
Supervised GIVS. If the classes cannot be characterized by normal distribu-
tions and we fit each class with a single Gaussian, then the resulting model is
very poor. However, natural clusters can be discovered if we fit several (> C)
Gaussian models to the complete data, neglecting the label information. The
more-complex geometry of the classes can be revealed in this way. This fact
is illustrated in Fig. 1. Different groups are shown in subplot (b). Some of
them span both classes and capture the real geometry of the problem.

Concerning the Fused Unsupervised approach, there is no substantial im-
provement over the simple Unsupervised GIVS scheme. The logical explana-
tion is that the dimension of the Fused GIVS is very high and the classifiers
trained there suffer from the curse of dimensionality. Surely, a more clever
fusion strategy is necessary, which is currently under investigation.
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(a) Supervised GIVS. (b) Unsupervised GIVS with K = 10.

Fig. 1. Groups determined for the Banana data

4. With respect to the clustering technique, GMM seems to be a reasonable
choice, since we use Gaussian models. Moreover, typically this technique
is quite accurate and permits overlapping clusters. Some experiments with
K-means and other methodologies were also performed, but the obtained
results were comparable.

5. The twogroupmodels (DiagonalCovarianceGaussianandSphericalGaussian)
showdifferentbehaviours depending on thedata characteristics. In general, the
former leads to better results in low-dimensional feature spaces, while it is out-
performed by the latter in high-dimensional spaces. See Table 1 to compare
the results of the high-dimensional Wine and Ionosphere data with respect to
the other ones. The Diagonal Covariance Gaussian models describe the groups
in a more flexible way than the spherical Gaussian models are capable to, but
they need sufficient data to determine their 2d parameters in the d-dimensional
space. When the dimension of the feature space grows, simpler models are pre-
ferred to avoid bad estimates.

Finally, we emphasize that the used models should relatively be simple to prevent
overtraining. In the current set-up we use the same training data twice: to build
the GIVS and to train the classifier. So, we can only benefit from the sequential
integration if the models are weak (such that we do not adjust to the data noise)
and the final classifier is simple. The use of a complex model in the first stage
can lead to overfitting of the complete classification strategy. To justify this in
practice, we performed the same experiments with a model based on Parzen
windows, hardly obtaining any improvements over the generative approach.

Number of groups for Unsupervised GIVS. To apply the Unsupervised
(Fused) GIVS, we have to a priori set K (or F ), the number of groups. Different
values of K were evaluated in our experiments; we only present the overall best
results. Since K is a free parameter, it should be chosen based on the training
set only. Our experiments suggest, however, that the choice of perfect K is not
crucial, providing that K is sufficiently large. In Fig. 2 we plot the average clas-
sification accuracy reached in the Unsupervised GIVS as a function of K (only
the best classifier in the GIVS space is considered). The results are shown for the
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Fig. 2. Classification accuracy of the best discriminative method in the Unsupervised
GIVS based on the spherical Gaussian model as a function of the number of clusters.
The results are shown for several data sets.

non-Gaussian data sets and the spherical Gaussian model. We can observe that
in almost all cases the performance increases with the growing number of clusters
up to a certain number after which there is no further improvement. The value
of K should also not be too large in order to prevent a decreasing performance
due to the high dimension. Nevertheless, this peaking behavior was not present
in the range we examined. Moreover, we could observe that for difficult prob-
lems (such as Liver, Ionosphere and Diabetes) the performance increase is slow,
asking for a large number of clusters in order to reach a satisfactory accuracy.
A possible solution to the direct computation of K is to determine the best
value using the leave-one-out error on the training set (as typically done in
several other classification contexts). Another approach is to link this value to
the dimension of the problem, in terms of the cardinality of objects and classes,
and the number of features.

5 Summary

In this paper, we propose a general strategy to integrate the strengths of unsu-
pervised learning, which encodes data structure, and supervised learning. This
is realized via group-induced vector spaces in which statistical classifiers are
trained. In our experiments we deal with simple vectorial data and focus on
combination of generative and discriminative approaches. Generative techniques
(here, simple Gaussian models) are used to describe the data structure, while
discriminative techniques (here, the KNN and logistic classifier) combine weak
grouping evidences in a classification setting.

We find out that such an integrated generative-discriminative approach out-
performs the generative techniques and leads to better results than the discrim-
inative techniques in high-dimensional spaces (Ionosphere data) or in the case
of highly-overlapping problems (Liver data). The stability of our scheme relies
on the power of combining weak models: multiple (overlapping) clusters cover
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the data and their evidence is accumulated by a simple final combiner. In such a
case, the discussed method will be robust against structure shifts in future data.

It is important to emphasize that the discussed approach is more general than
the discriminative methods, applicable in vector spaces only. Now, we can also
deal with non-vectorial structures, for which typically only generative models are
fitted, as discriminative techniques are lacking. Since many powerful descriptive
models are available (such as hidden Markov models), the advantage of the
proposed integration lies in its wide applicability to almost any vectorial and
non-vectorial classification problem. Future work will include the study of non-
vectorial structures.

Finally, we also note that another possible employment of our approach is in
the semi-supervised classification context [1]. Additional unlabeled data could
efficiently be exploited in order to create an accurate and representative feature
space, where a discriminant classifier may be trained using labels.
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