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Abstract

In this paper, a novel learning algorithm for Hidden
Markov Models (HMMs) has been devised. The key issue
is the achievement of a sparse model, i.e., a model in which
all irrelevant parameters are set exactly to zero. Alterna-
tively to standard Maximum Likelihood Estimation (Baum
Welch training), in the proposed approach the parameters
estimation problem is cast into a Bayesian framework, with
the introduction of a negative Dirichlet prior, which strongly
encourages sparseness of the model. A modified Expec-
tation Maximization algorithm has been devised, able to
determine a MAP (Maximum A Posteriori probability) es-
timate of HMM parameters in this Bayesian formulation.
Theoretical considerations and experimental comparative
evaluations on a 2D shape classification task contribute to
validate the proposed technique.

1. Introduction

Hidden Markov Models (HMM - [21]) represent a prob-
abilistic sequential tool widely employed in different re-
search areas, such as speech recognition [21], handwrit-
ten character recognition [14], DNA and protein modelling
[15], gesture recognition [10], behavior analysis and syn-
thesis [17], 2D shape classification [13, 6] — only to cite a
few.

A practical but fundamental issue to be addressed when
using HMMs is the so called model selection, which re-
gards the determination of the structure and the number of
states of a model. The number of states typically represents
a compromise between the goodness of the fitting to the
data (better when increasing the number of states) and the
generalization capability (ability to generalize to not previ-
ously seen situations). General approaches — such as BIC
[23], MDL [22] or AIC [2] — as well as HMM specific ap-
proaches [27, 26, 16, 25, 7] have been proposed in the past
to solve this problem. On the other side poor attention has
been given to the determination of the structure of HMM,

namely to the problem of choosing a particular topology,
obtained by emphasizing or by disregarding the importance
of some particular links between states in the model. In
this context, some a priori determined topologies have been
proposed with success, such as the well known left-to-right
topology (firstly introduced in [4, 18]), or the circular struc-
ture proposed in the context of shape recognition [3]. More
interesting are other data-driven approaches, aimed at ex-
tracting the structure of the HMM directly from the data
[8, 9, 1].

In this paper a novel data-driven approach to the determi-
nation of the structure of an HMM is proposed, able to de-
rive a sparse estimate of the model, which we called Sparse
Hidden Markov Model (SHMM). In general, a model is said
to be “sparse” when irrelevant or redundant components are
exactly zero. Sparseness is highly desirable in supervised
learning since it produces a structural simplification of the
model, disregarding unimportant parameters: in this sense,
a sparse model distills the information of all the training
data providing only high representative parameters. More-
over, it has been shown in the context of the kernel-based
methods that the generalization ability increases with the
degree of sparseness, supporting the key idea behind Sup-
port Vector Machines [28]. Sparseness has been recently
and successfully applied also in the context of Bayesian
probabilistic supervised learning [11].

In the proposed approach, the sparseness of the model is
induced by casting the HMM parameters estimation prob-
lem in a Bayesian framework with the introduction of a neg-
ative Dirichlet prior on the transition probabilities (with a
flat prior on the other HMM parameters). Adopting a nega-
tive Dirichlet prior permits to discourage and penalize uni-
form distributions among state transition probabilities, lead-
ing to an annihilation process: low probabilities transitions
are rapidly driven to zero, whereas strong ones are stirred
up. The resulting model presents few very relevant parame-
ters, whereas other irrelevant ones are exactly zero. Even if
negative Dirichlet priors have been adopted in several con-
texts [12] — the well known Jeffrey’s prior [5] is a Dirichlet
prior itself — its employment in the HMM training, to the
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best of our knowledge, has never been investigated. A mod-
ified Expectation-Maximization (EM) algorithm has been
developed able to determine the MAP (Maximum A Poste-
riori) estimate of the HMM parameters.

The proposed method is similar in spirit to [8, 9], where
a Bayesian approach has been proposed in order to deter-
mine the structure of HMM. Nevertheless, there are three
main differences: the first and most important is that we
used a Dirichlet prior, whereas in [8, 9] an entropic one has
been used. The Dirichlet prior discourages uniform con-
figurations more strongly than the entropic prior, favoring
component annihilation more distinctly (see Fig. 1). Sec-
ond, the parameters estimation derived from the application
of the Dirichlet prior has a closed formed solution, whereas
the estimation using the entropic prior does not. Finally,
component annihilation is not fully automatic, but requires
an additional test, while in the proposed approach an ex-
plicit and automatic rule is provided.
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Figure 1. Plot of different priors for a two pa-
rameters configuration θ1, θ2. In this case,
θ2 = 1 − θ1 and P (θ1) is the binomial distribu-
tion, shown in a logarithmic axis. Please no-
tice that all these priors discourage uniform
configurations, but the Dirichlet ones operate
more strongly.

Sparse HMMs have been tested in a real problem, in-
volving 2D shape classification, and compared with stan-
dard ML estimate derived from Baum-Welch training. Ob-
tained recognition results confirm the intuition that sparse-
ness could lead to more robust estimation of HMM, able to
generalize to unknown objects in a better fashion.

The rest of the paper is organized as follows. In Sect. 2
HMM are summarized, mainly to fix the notation. Sparse
Hidden Markov Models are presented in Sect. 3, and an

experimental validation is presented in Sect. 4. In Sect.
5, conclusions are drawn and future perspectives are envis-
aged.

2. Hidden Markov Models

A Hidden Markov Model [21] is a Markov Model where
states are not directly observable, each state has associated
a density function describing the probability of observing a
certain symbol from that state. HMM is composed by the
following entities: a set S = {S1, S2, · · · , SN} of (hidden)
states; a transition matrix A = {aij}, where aij ≥ 0 repre-
sents the probability of going from state Si to state Sj ; an
emission matrix B = {b(o|Sj)}, indicating the probability
of emission of symbol o from state Sj ; an initial state prob-
ability distribution π = {πi}, representing the probability
of the first state πi = P [Q1 = Si].

For a sequence O and an HMM λ, there is a standard re-
cursive procedure able to compute the probability P (O|λ),
and is called the forward-backward procedure [21].

2.1. HMM training

Given a sequence O, there exists a well-established pro-
cedure able to determine the HMM parameters maximizing
the probability P (O|λ). This technique, called the Baum-
Welch re-estimation procedure [21], is an instance of the
well-known Expectation-Maximization (EM) algorithm for
Maximum Likelihood (ML) estimation. The E-step reduces
to compute the following two variables, given the current
model [21]:

• ξt(i, j): it represents the probability of passing from
state Si at time t to state Sj at time t + 1, given the
observations and the model, i.e.

ξt(i, j) = P (Qt = Si, Qt+1 = Sj |O,λ) (1)

Note that the sum of ξt(i, j) over time t could be inter-
preted as the expected number of transitions from state
Si to state Sj .

• γt(i): it represents the probability of being in state Si

at time t, given the observations and the model, i.e.

γi = P (Qt = Si|O,λ) (2)

Also in this case, the sum of γt(i) over t can be interpreted
as the expected number of transitions from Si.

In the discrete case, i.e., when b(o|Si) is a discrete pdf,
the M-step subsequently adjusts the model parameters on
the basis of the computed variables:

π̄i = expected frequency in state Si at time t = 1
= γ1(i) (3)
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āij =
exp. num. of trans. from Si to Sj

exp. num. of trans. from Si

=

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(4)

b̄(vj |Si) =
exp. num. of times in Si and obs. symb. vj

exp. num. of times in Si

=

T−1∑

t = 1
s.t. Ot = vj

γt(i)

T−1∑
t=1

γt(i)

(5)

A similar strategy could be derived for continuous Gaussian
HMMs [19, 20].

3. Sparse Hidden Markov Models

3.1. Dirichlet prior and posterior formula-
tion

The sparseness of the model is induced by introducing
a negative Dirichlet prior on the Bayesian estimation of the
parameters. This prior, in the case of multinomial distribu-
tions (such as HMM transition probabilities) with N condi-
tional probabilities θ = θ1 · · · θN , has the following simple
and general form:

PD(θ) ∝ θ−K =
∏
j

θ−K
j (6)

K drives the functional form of the prior. K = 0.5 reduces
to the well known Jeffrey’s prior [5].

Applying the prior in (6) to a multinomial yields the fol-
lowing posterior:

P (θ|ω) =
P (ω|θ)PD(θ)

P (ω)
∝ P (ω|θ)PD(θ)

∝
∏
j

θ
ωj

j

∏
j

θ−K
j =

∏
j

θ
ωj−K
j (7)

where ωj is the evidence for the parameter θj .

3.2. MAP estimation

To derive the MAP estimation we solve the following
constrained maximization

θMAP
j = max

θj

Lpost = max
θj

log(P (θ|ω))

= max
θj

∑
i

(ωj − K) log(θj) (8)

subject to
∑

j θj = 1. Setting the derivative to zero and
applying the Lagrange multiplier �

∂

∂θj


∑

j

(ωj − K) log(θj) − �(
∑

j

θj − 1)


 = 0 (9)

we obtain

θMAP
j =

ωj − K

�
(10)

3.3. Modified Expectation-Maximization

Given the MAP solution, the following step is to cast
it into the training scheme of the HMM. We have one set
{θij} for each state Si, represented by the transition proba-
bilities {aij}. The evidence ω is determined in the E-step as
usual, using the current model and computing the variables
ξt(i, j):

ωij =
T−1∑
t=1

ξt(i, j) (11)

The modified EM differs from the standard EM only in the
M-step. More in details, the re-estimation formulas remain
the same for the emission probabilities b(o|Si) and for the
initial state probabilities π, which is equivalent to the appli-
cation of a flat prior. By applying the MAP solution in (10)
the parameters aij are re-estimated as

aij =
max

(∑T−1
t=1 ξt(i, j) − K , 0

)

∑N
h=1 max

(∑T−1
t=1 ξt(i, h) − K , 0

) (12)

Note that here the � Lagrange parameter (see Eq.10) does
disappear, due to the normalization process; moreover,
the maximum is inserted in order to have all probabilities
greater than zero. This formula, similar to the one proposed
in [12], has a clear interpretation. All evidences are de-
creased by a factor K. This fact, together with the sub-
sequent normalization process, increases even more high
probabilities and decreases low probabilities, with a ben-
eficial effect: probabilities which are poorly supported are
more quickly driven to extinction, whereas strong probabil-
ities are enforced. This is strengthened by the max oper-
ation: if a certain transition has not enough evidence it is
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pruned from the model, forcing it to zero. This represents a
clear and automatic way of pruning transitions.

Moreover, another pruning rule could in principle be de-
rived, linked to the states: if, after the re-estimation step, a
certain state has not active transitions (no transition incom-
ing), then it could be pruned. So the proposed methodology
could be also used in the context of number of states de-
termination; we will investigate further this direction in the
future.

4. Experimental session

Sparse HMMs have been compared against standard ML
estimates in a 2D shape recognition problem [6]. Each ob-
ject is represented by the sequence of the curvature coeffi-
cients, computed as follows: first, the contours are extracted
by using the Canny edge detector; the boundary is then
approximated by segments of approximately fixed length
dL. The resulting sequences show different lengths, rang-
ing from 267 for the smallest object to 559 for the largest.
Finally, the curvature value at point x is computed as the an-
gle between the two consecutive segments intersecting at x.
The initial point is the rightmost point lying on the horizon-
tal line passing through the object centroid, following the
boundary in a counterclockwise manner. A thorough analy-
sis of the HMMs’ capabilities in classifying 2D shapes is
presented in [6], where the standard Maximum Likelihood
method was tested in cases of translation, rotation, noise,
occlusions, shearing transformations, and combination of
the above perturbations, showing really satisfying results.

In this paper, we compare Sparse HMM with a version of
the system described in [6]: unlike in that paper, the num-
ber of states was fixed to three for all experiments. Testing
was performed on part of the object set used in [24], com-
posed by seven classes, each containing 12 different shapes
(shown in Fig. 2). Accuracies are computed using the Leave
One Out scheme.

Regarding Sparse HMM, the number of states was again
fixed to three: different values of the parameter K in the
Dirichlet prior have been tested. For all the values, the
training process converges usually after few iterations, max-
imizing the posterior of the model. In some cases, the pos-
terior behavior is not strictly monotonic; actually, after the
trimming operation of a transition parameter (see Eq.12),
the posterior exhibits an abrupt downward fluctuation, that
however does not corrupt the general posterior increasing
behavior. This fluctuating trend is similar to that shown
in [12]; anyway, it will be subject of future study. In or-
der to understand the sparsification process, in Fig. 3 two
matrices of transitions are displayed, relative to two three
states HMM trained on the first shape. The matrices are de-
rived from a standard training (left) and from the proposed
training (right)–with K= 0.5– both starting from the same

Figure 2. Objects set used for testing.

initialization. It is clear how the sparsification works: high
values on the left matrix are enforced in the sparse version,
whereas low values are weakened. It is also interesting to
note that two transitions are exactly zero in the sparse tran-
sition matrix.

The results of the evaluation of our method are displayed
in Table 1: from the table it is evident the gain in the perfor-
mances gathered by the achievement of the model’s sparse-
ness: sparse HMMs outperform the standard rule for all val-
ues of parameter. In particular, looking at the results above,
one can notice that the maximum of the performances is
reached for K = 0.5. When increasing even more the

0.9539 0.0277 0.0184 0.9625 0.0234 0.0140
0.0561 0.9439 0.0000 0.0497 0.9503 0
0.0112 0.0000 0.9888 0.0057 0 0.9943

Figure 3. Transition matrices for a three state
HMM trained on the first shape: on the left
there is the matrix derived from the standard
training, on the right the one derived from the
sparse proposed method.
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Method Accuracy
Standard ML 81.43%
SHMM K = 0.25 91.43%
SHMM K = 0.5 92.50%
SHMM K = 0.75 90.83%
SHMM K = 1.0 90.12%
SHMM K = 1.25 88.69%
SHMM K = 1.5 89.64%
SHMM K = 1.75 87.86%

Table 1. Accuracies of SHMMs on 2D shape
recognition experiment for different values of
K.

parameter value, the beneficial effect of sparseness seems
to decrease, even if remaining significantly higher than the
Maximum Likelihood estimate result.

5. Conclusions

In this paper, a novel learning algorithm for Hidden
Markov Model is proposed. The training problem is cast
into a Bayesian framework by the introduction of a nega-
tive Dirichlet prior, which aims at individuating a model in
which the transition table is sparse, i.e. peaked around few
values that consistently represent the state transition behav-
ior of the observed data. A modified EM algorithm has been
proposed, able to derive a MAP estimate of the parameters.
Experimentally, we proved that the method provides mod-
els that outperform ordinarily learned HMMs, with respect
to shape classification tasks. Further studies inspired by our
approach are currently under work.
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