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Abstract. Local Gabor features (jets) have been widely used in face
recognition systems. Once the sets of jets have been extracted from the
two faces to be compared, a proper measure of similarity (or distance)
between corresponding features should be chosen. For instance, in the
well known Elastic Bunch Graph Matching (EBGM) approach and other
Gabor-based face recognition systems, the cosine distance was used as a
measure. In this paper, we provide an empirical evaluation of seven dis-
tance measures for comparison, using a recently introduced face recog-
nition system, based on Shape Driven Gabor Jets (SDGJ). Moreover we
evaluate different normalization factors that are used to pre-process the
jets. Experimental results on the BANCA database suggest that the con-
crete type of normalization applied to jets is a critical factor, and that
some combinations of normalization + distance achieve better perfor-
mance than the classical cosine measure for jet comparison.

1 Introduction

Face analysis and recognition is an important and active research area [15],
whose interest has increased in recent years for both theoretical and application-
driven motivations. Among the huge amount of approaches presented in this
context, a wide group is based on the extraction of a particular class of features
from points on the face, automatically or manually found. Different features
have been proposed, like DCT [11], Local Binary Patterns [13], SIFT [12,10] and
others, showing different characteristics, in terms of robustness, ease of compu-
tation, computational requirements etc. In this context, Gabor features received
great attention, and several methods for face recognition using these features
have been proposed (see [1,2,3,4] among others — and [5] for a recent survey).
One of the most important algorithms falling in that category is the Elastic
Bunch Graph Matching (EBGM) approach proposed by Wiskott et al. [1]. In
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this technique, Gabor responses (jets) are extracted from a set of (the so-called)
fiducial points, located at specific face regions (eyes, tip of the nose, mouth. . . ).
On the other hand, a recently proposed method in [4] focuses on the selection of
an own set of points and features for a given client by exploiting facial structure
(Shape-Driven Gabor Jets or SDGJ). Although both approaches used cosine dis-
tance in order to compare corresponding features, this choice is not motivated,
neither with a theoretical nor with an experimental evaluation. To the best of
our knowledge, the only evaluation of distances for Gabor jet comparison was
performed in [14], where the authors concluded that Manhattan (or city block)
distance outperformed both cosine and euclidean distances. However, it is not
explicitely described, neither in [14] nor in other research papers dealing with
Gabor jets-based face recognition systems, whether jets have been previously
normalized or not. In this paper we propose a more extensive evaluation, com-
paring seven different distances for measuring similarities between Gabor jets,
as well as assessing the impact of the concrete normalization method that is
applied to jets before comparison. Finally, three different resolutions of input
images are tested in order to provide a more complete set of results.

The paper is organized as follows. Section 2 briefly introduces the Shape-
driven Gabor Jets (SDGJ) algorithm: Section 2.1 describes the set of Gabor
filters used for feature extraction, and Section 2.2 presents the algorithm used to
map points between two faces. The different distances involved in the comparison
are introduced in Section 3. Experimental results are given in Section 4. Finally,
conclusions and future research lines are drawn in Section 5.

2 Shape-Driven Gabor Jets (SDGJ)

In this approach [4], the selection of points is accomplished by exploiting shape
information. Lines depicting face structure are extracted by means of a ridges and
valleys detector [6], leading to a binary representation that sketches the face. In
order to select a set of points from this sketch, a dense rectangular grid (nx ×ny

nodes) is applied onto the face image and each grid node is moved towards its
nearest line of the sketch. Finally, a set of points P = {p1,p2, . . . ,pn} , with
n = nx × ny are obtained. This set of points samples the original sketch, as it
can be seen in figure 1.

2.1 Extracting Textural Information

A set of 40 Gabor filters {ψm}m=1,2,...,40, with the same configuration as in [1],
is used to extract textural information. These filters are convolution kernels in
the shape of plane waves restricted by a Gaussian envelope, as it is shown next:

ψm (x) =
‖km‖2

σ2
exp

(−‖km‖2 ‖x‖2

2σ2

) [
exp (i · kmx) − exp

(−σ2

2

)]
(1)
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Fig. 1. Left: Original rectangular dense grid. Center: Valleys and ridges sketch. Right:
Grid adjusted to the sketch.
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Fig. 2. Real part of the set of 40 (8 orientations × 5 scales) Gabor filters used in this
paper

where km contains information about scale and orientation, and the same stan-
dard deviation σ = 2π is used in both directions for the Gaussian envelope.
Figure 2 shows the real part of the 40 Gabor filters used in this paper.

The region surrounding a pixel in the image is encoded by the convolution of
the image patch with these filters, and the set of responses is called a jet, J . So,
a jet is a vector with 40 complex coefficients, and it provides information about
an specific region of the image. At each shape-driven point pi = [xi, yi]

T , we get
the following feature vector:

{Jpi
}m =

∑
x

∑
y

I(x, y)ψm (xi − x, yi − y) (2)

where {Jpi
}m stands for the m-th coefficient of the feature vector extracted

from pi. So, for a given face with a set of points P = {p1,p2, . . . ,pn}, we get n
Gabor jets R = {Jp1 ,Jp2 , . . . ,Jpn}.
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2.2 Mapping Corresponding Features

Suppose that shape information has been extracted from two images, F1 and
F2. Let S1 and S2 be the sketches for these incoming images, and let P =
{p1,p2, . . . ,pn} be the set of points for S1, and Q = {q1, q2, . . . , qn} the set
of points for S2. In the SDGJ approach, there does not exist any a priori cor-
respondence between points nor features (i.e. there is no label indicating which
pair of points are matched). So, in order to compare jets from both faces, the
authors of [4] make use of a point matching algorithm based on shape contexts
[7], obtaining a function ξ that maps each point from P to a point within Q:

ξ (i) : pi =⇒ qξ(i) (3)

with an associated cost denoted by Cpiqξ(i) [4]. Finally, the feature vector from
F1, Jpi

, will be compared to Jqξ(i) , extracted from F2.

3 Distance Between Faces

Let R1 = {Jp1 ,Jp2 , . . . ,Jpn
} be the set of jets calculated for F1 and R2 =

{Jq1 ,Jq2 , . . . ,Jqn
} the set of jets extracted from F2. Before computing dis-

tances, each jet J is processed as follows:

1. Each complex coefficient is replaced by its modulus, obtaining J ′.
2. The obtained vector can be either normalized (to have unit L1 or L2 norm for

instance) or not. Although some of the distances that will be introduced next,
such as cosine distance, are invariant to these normalizations, some of them
are not, and it seems that the concrete type of normalization applied to jets
could be a critical point. In this paper, the three possibilities described above
(no normalization, L1 normalization and L2 normalization) will be evaluated.
Hence, given a vector, J ′, comprising the moduli of jet coefficients, we divide
it by a normalization factor α given by:
– No normalization: α = 1.
– L1 normalization: α =

∑
i |J ′

i |.
– L2 normalization: α =

√∑
i (J ′

i )
2.

We will denote the resulting vector by J (J = J ′/α) and, for the sake of
simplicity, we will maintain the name of jet. The distance function between the
two faces, DF (F1,F2) is given by:

DF (F1,F2) = Υn
i=1

{D (
Jpi ,Jqξ(i)

)}
(4)

where D (
Jpi

,Jqξ(i)

)
represents the distance used to compare corresponding

jets, and Υn
i=1 {. . .} stands for a generic combination rule of the n local dis-

tances D (
Jp1 ,Jqξ(1)

)
, . . . ,D (

Jpn
,Jqξ(n)

)
. In the EBGM approach [1] and other
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Gabor-based face recognition systems, it is proposed to use a normalized dot
product to compare jets. In this work, we assess the performance of the system
varying D (. . .), i.e. we compare the following distances:

1. Cosine distance (negated normalized dot product as used in [1]).

D (X,Y ) = −cos (X,Y ) =

−
∑n

i=1 xiyi√∑n
i=1 x

2
i

∑n
i=1 y

2
i

(5)

2. Manhattan distance (L1 metrics or city block distance)

D (X,Y ) = L1 (X,Y ) =
n∑

i=1

|xi − yi| (6)

3. Squared Euclidean Distance (sum of squared errors-SSE)

D (X,Y ) = SSE (X,Y ) =
n∑

i=1

(xi − yi)
2 (7)

4. Chi square distance

D (X,Y ) = χ2 (X,Y ) =
n∑

i=1

(xi − yi)
2

xi + yi
(8)

5. Modified Manhattan distance

D (X,Y ) =
∑n

i=1 |xi − yi|∑n
i=1 |xi|

∑n
i=1 |yi| (9)

6. Correlation-based distance

D (X,Y ) = − n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi√(

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
)(

n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
) (10)

7. Canberra distance

D (X,Y ) =
n∑

i=1

|xi − yi|
|xi| + |yi| (11)

In the definition of all presented distances (equation (5) to equation (11)), n
stands for the length of the vector, i.e. n = 40. It is easy to see that both cosine
and correlation-based distances are invariant to α, i.e. the type of normalization
(L1, L2 or no normalization at all) applied to jets does not change the result.
It is also straightforward to realize that the Modified Manhattan distance is
equivalent to the Manhattan distance when jets are normalized to have unit L1

norm.
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4 Face Authentication on the BANCA Database

4.1 Database and Experimental Setup

We have used the english part of the BANCA database on protocol Matched
Controlled (MC) to test the different measures. For this database, face and
voice were recorded using both high and low quality microphones and cameras.
The subjects were captured in three different scenarios: controlled, degraded
and adverse over 12 different sessions spanning three months. This subset of the
BANCA database (english part) consists of 52 people, half men and half women.

In order to propose an experimental protocol, it is necessary to define a de-
velopment set, on which the system can be adjusted by setting thresholds, etc.
and an evaluation set, where the system performance can be assessed. For this
reason, two disjoint subsets were created, namely G1 and G2, each one with 26
people (13 men and 13 women). So, when G1 is used as development set, G2 is
used for evaluation and vice versa.

In the experiments carried out, three specific operating conditions correspond-
ing to three different values of the Cost Ratio, R = FAR/FRR, namely R = 0.1,
R = 1, R = 10 have been considered. Assuming equal a priori probabilities of
genuine clients and impostor, these situations correspond to three quite distinct
cases:

– R = 0.1, FAR is an order of magnitude less harmful than FRR,
– R = 1, FAR and FRR are equally harmful,
– R = 10, FAR is an order of magnitude more harmful than FRR.

The so-called Weighted Error Rate (WER) given by:

WER (R) =
FRR+R · FAR

1 +R
(12)

was calculated for the test data of groups G1 and G2 at the three different values
of R. The average WER was reported as final performance measure.

4.2 Results

In order to provide a more complete set of results, we repeated the experiments
using images at 3 different resolutions (55 × 51, 150 × 115 and 220 × 200 pixel
images). We used the median rule to fuse the n local distances, i.e. Υn

i=1 {. . .} ≡
median. Moreover, in protocol MC there are 5 training images to build the client
model. Whenever a test image claims a given identity, this

test face is compared to each of the 5 training images. Hence, we get 5 scores
which are combined (using again the median rule) to obtain the final score
ready for authentication. Tables 1, 2 and 3 show the obtained results changing
the normalization factor (α) applied to jets (no normalization, L1 normalization
and L2 normalization respectively). If no normalization is applied to jets, the
best performing distance is cosine. The remaining choices achieve significantly
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Table 1. Average WER (%) using several distance measures D
(
Jpi ,Jqξ(i)

)
to com-

pare jets and different resolution of input images (jets are not normalized)

Input Image Resolution

D
(
Jpi ,Jqξ(i)

)
55 × 51 150 × 115 220 × 200

Cosine 5.13 4.64 3.40

Manhattan 8.54 10.56 13.16

SSE 8.45 9.45 12.60

χ2 6.53 7.53 10.28

Modified Manhattan 8.18 9.71 12.72

Correlation 6.70 7.01 5.45

Canberra 6.10 5.05 5.11

Table 2. Average WER (%) using several distance measures D
(
Jpi ,Jqξ(i)

)
to com-

pare jets and different resolution of input images (jets are normalized to have unit L1

norm)

Input Image Resolution

D
(
Jpi ,Jqξ(i)

)
55 × 51 150 × 115 220 × 200

Cosine 5.13 4.64 3.40

Manhattan 5.28 3.73 2.90

SSE 4.49 3.53 3.17

χ2 5.33 4.03 3.01

Modified Manhattan 5.28 3.73 2.90

Correlation 6.70 7.01 5.45

Canberra 5.26 3.84 3.63

Table 3. Average WER (%) using several distance measures D
(
Jpi ,Jqξ(i)

)
to com-

pare jets and different resolution of input images (jets are normalized to have unit L2

norm)

Input Image Resolution

D
(
Jpi ,Jqξ(i)

)
55 × 51 150 × 115 220 × 200

Cosine 5.13 4.64 3.40

Manhattan 5.93 6.20 4.68

SSE 5.14 4.61 3.42

χ2 5.60 5.29 3.80

Modified Manhattan 4.75 3.10 3.34

Correlation 6.70 7.01 5.45

Canberra 5.07 3.69 3.88
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worse results for all resolutions (except Canberra distance, with similar perfor-
mance). In the EBGM approach [1], the authors did not apply any normalization
to jets (at least, they did not state it explicitely) and these results may support
their choice of the cosine distance for jet comparison. However, the use of L1

and L2 normalization factors (tables 2 and 3) leads to completely different con-
clusions. Cosine is outperformed by other distances such as SSE or Modified
Manhattan distance (MMD). If we compare the results obtained, for instance,
with the MMD varying the normalization factor, we see that impressive im-
provements are obtained with the use of L1 and L2 normalization factors (WER
decreases from 12.72% to 3.34–2.90% using 220 × 200 pixel images). Hence, we
conclude that the concrete type of normalization that is applied to jets is, in
fact, a critical point. In [14], the authors observed that the Manhattan distance
outperformed cosine after identification experiments. According to our results,
Manhattan outperforms cosine when L1 normalization is used. Although the
authors of [14] do not describe whether they have normalized their jets or not,
we have obtained results supporting their finding. As stated in Section 3, both
cosine and correlation-based distances are invariant to the tested normalization
factors, and this is reflected in the obtained results. It is also interesting to note
that, in general terms, error rates decrease (or stays approximately equal) as long
as the resolution of input images grows. A clear exception occurs when testing
Manhattan, SSE, χ2 and Modified Manhattan distances without normalization.
Further research is needed in order to better understand this behavior.

Other results on BANCA. The CSU Face Identification Evaluation System
(http://www.cs.colostate.edu/evalfacerec/index.html), including several
face recognition techniques such as PCA and PCA+LDA, was tested on the
BANCA database using protocol MC to provide baseline results for the ICBA
2004 face authentication contest [9]. These baseline performances can be found in
http://www.ee.surrey.ac.uk/banca/icba2004/csuresults.html. The low-
est average WER’s using PCA and PCA+LDA were 9.71% and 6.25% respec-
tively. On the other hand, the best performance in this competition (with manual
face localization) was achieved by the Université Catholique de Louvain with an
average WER of 1.95%.

5 Conclusions and Further Research

In this work, we have proposed an empirical evaluation of different combinations
of normalization and distance measures for Gabor jet comparison. The SDGJ
algorithm was tested on the BANCA database with 3 input image resolutions,
3 distinct normalization factors and 7 distance measures to compare jets. It has
been shown that:

– The performance of a given distance strongly depends on the concrete pre-
processing applied to jets.

– When no normalization (α = 1) is used, the cosine distance outperforms the
remaining ones. Although the authors of [1] did not explicitely state whether
they have normalized their jets or not, this result would support their choice.
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– The use of L1 and L2 normalization factors lead to completely different
results, turning out that other distances, such as SSE or MMD, achieve
better performance than the cosine measure.

Although we have shown that there exist better choices than cosine distance
for Gabor jet comparison, no theoretical reasons supporting this fact have been
provided. Recently [16], it has been demonstrated that Gabor coefficients can be
accurately modeled using Generalized Gaussian Distributions (GGD’s) and this
finding opens new possibilities in terms of selecting optimal ways to compare
jets from a theoretical point of view.

No discriminant analysis of jet coefficients has been applied, i.e. we have
considered that all coefficients have the same discriminative power. Thus, the
next step will be to select the most important Gabor jet coefficients according to
their classification ability, a selection that should depend on the concrete facial
region we are analyzing. Moreover, the function Υn

i=1 {. . .} used to combine the
n local distances should weigh the different jet contributions according to the
discriminative power of the facial regions from where they are extracted.
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Alba-Castro, J.L.: Modeling Gabor Coefficients Via Generalized Gaussian Distribu-
tions for Face Recognition. In: IEEE International Conference on Image Processing
2007 (accepted)


	Distance Measures for Gabor Jets-Based Face Authentication: A Comparative Evaluation
	Introduction
	Shape-Driven Gabor Jets (SDGJ)
	Extracting Textural Information
	Mapping Corresponding Features

	Distance Between Faces
	Face Authentication on the BANCA Database
	Database and Experimental Setup
	Results

	Conclusions and Further Research



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




