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Abstract

In this paper, a new appearance-based 3D object classification method is proposed based on the Hidden Markov
Model (HMM) approach. Hidden Markov Models are a widely used methodology for sequential data modelling, of
growing importance in the last years. In the proposed approach, each view is subdivided in regular, partially overlapped
sub-images, and wavelet coefficients are computed for each window. These coefficients are then arranged in a sequential
fashion to compose a sequence vector, which is used to train a HMM, paying particular attention to the model selection
issue and to the training procedure initialization. A thorough experimental evaluation on a standard database has
shown promising results, also in presence of image distortions and occlusions, the latter representing one of the most
severe problems of the recognition methods. This analysis suggests that the proposed approach represents an interesting
alternative to classic appearance-based methods to 3D object classification.
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1. Introduction

Three-dimensional object recognition is an ac-
tive research area in computer vision. Several
and variegate approaches have been proposed in
the past, differentiating by the types of input data
and models (2D, 2.5D, 3D), intermediate repre-
sentations, and types of procedures manipulating
such representations. Structural, probabilistic, or
ed.
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algebraic methods, graph-, feature-, and physics-
based algorithms, and hybrid strategies have been
proposed in the literature (Prokop and Reeves,
1992; Arman and Aggarwal, 1993; Pope, 1994;
Loncaric, 1998; Batlle et al., 2000; Campbell and
Flynn, 2001; Duda et al., 2001), so that a compre-
hensive taxonomy is difficult to organize properly.
Nevertheless, focusing on the type of model, a
general and commonly accepted subdivision of
recognition methods can be stated into two main
classes: object-centered and viewer-centered.
Roughly speaking, the former approaches are
characterized by the use of a 3D model of the ob-
ject, which can be available or generated in some
way (Pope, 1994). Therefore, the actual classifica-
tion is typically performed by searching for the
best alignment between the model and the ob-
served view (Pope and Lowe, 2000). In the latter
class of methods, also called aspect- or appear-
ance-based, no 3D model is available, but only a
set of model aspects, so that the recognition can
be performed by directly analyzing and comparing
the observed and the model views (Murase and
Nayar, 1995). These approaches are in fact charac-
terized by robustness against rotation and pose
changes due to the use of multiple views of the
same object model. Therefore, given an unknown
view, the recognition is typically achieved by deter-
mining the most similar view. Appearance-based
methods are then well-suited for dealing with rec-
ognition problems in which geometric models of
the observed objects are difficult or impossible to
obtain. The fact that a small set of 2D views of a
complex 3D object may be sufficient to recognize
the object in critical conditions (as illumination
changes and variations of the point of view) is sup-
ported by both psychophysical evidence (Bulthoff
et al., 1994) and theoretical speculations (Ullman
and Basri, 1991). A brief review of recent literature
regarding appearance-based approaches to object
recognition is presented in Section 2.
In this paper, a new method to appearance-

based 3D object recognition is proposed, based
onHiddenMarkovModels (HMMs). HiddenMar-
kovModels are a widespread approach to probabi-
listic sequence modelling: they can be viewed as
stochastic generalizations of finite-state automata,
where both transitions between states and genera-
tion of output symbols are governed by probability
distributions (Rabiner, 1989; Baum et al., 1970;
Baum, 1970). Originally, these models were almost
exclusively applied in the speech recognition con-
text, and it is only in the last decade that they have
been widely used for several other applications, as
handwritten character recognition, DNA and pro-
tein modelling, gesture recognition, and behavior
analysis and synthesis. Even if HMMs have been
largely applied for classifying planar objects (He
and Kundu, 1991; Arica and Yarman-Vural,
2000; Fred et al., 1997; Cai and Liu, 2001; Bicego
and Murino, 2004), its use in the context of 3D ob-
ject recognition has been poorly investigated, and
only few papers exploring this research direction
are appeared in the literature. A first approach
was proposed in (Ham and Park, 1999), where
range images are modelled using HMMs and Neu-
ral Networks, using 3D features such as surface
type, moments and others. More recently, in (Tra-
zegnies et al., 2003), a HMM was used to model
the sequence of 2D views gathered from a moving
camera, where each view is described using con-
tour-based features. Even if interesting, the method
presents some drawbacks: first, only oneHMMwas
trained for each class of objects, requiring a re-
training in case of availability of further views.
Moreover, only the contour of the object was em-
ployed to compute features, discarding important
information such as texture and colors. Finally, a
thorough experimentation with a standard data-
base is missing, and occlusions are not considered.
In this paper a different approach is proposed,

which explicitly considers all the information con-
tained in the object view, modelling it using a
HMM. The image is visited in a raster-scan fash-
ion with a squared window of fixed size, obtaining
a sequence of overlapping sub-images. For each
sub-image, wavelet coefficients are computed, dis-
carding the less significant ones. The sequence of
wavelet features associated to each sub-image is
then modelled using a HMM. In the modelling,
particular care is devoted to the training procedure
initialization, which represents a crucial factor be-
cause of the locality of the optimization procedure,
and to the model selection issue, which represents
the problem of choosing the topology and the
number of states of the HMM. These issues,
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typically disregarded in the application-oriented
HMM literature, are fundamental factors for
obtaining an effective modelling, and have been
carefully addressed in this paper.
A strategy similar to that proposed in this paper

has been recently applied by the authors in the
context of face recognition (Bicego et al., 2003a),
showing promising results. Even if the modelling
strategy is similar, there are two important differ-
ences between the approach in (Bicego et al.,
2003a) and the one proposed in this paper: the
classification strategy and the application domain.
The classification strategy adopted in (Bicego
et al., 2003a) is the standard rule: one model is
trained for each class, and is subsequently used
as class-conditional densities in a standard Bayes
classification paradigm. Assuming a priori equi-
probable classes, an unknown sequence is classi-
fied into the class whose model shows the highest
probability (likelihood) of having generated this se-
quence (this is the well-known maximum likelihood
(ML) classification rule). In this paper, instead of
training one HMM for each class, we train one
model for each training sequence (each view),
and assign an unknown view to the class of the
model showing the highest likelihood. Notice that
this may be seen as a 1-nearest-neighbor (1-NN)
classifier, with the proximity measure defined by
the likelihood function. This scheme is particularly
suited in this application domain and some justi-
fications have been discussed in the paper. The
second important difference is the application
domain: in (Bicego et al., 2003a), the strategy is
applied to the face classification problem (inher-
ently 2D), whereas in this paper it is applied to
the 3D object recognition context.
The proposed approach has been thoroughly

tested on the COIL database (Nene et al., 1996),
which represents a standard in the object recogni-
tion literature. The results are really promising,
especially in the case of occlusions, which repre-
sents one of the most severe problems of the
appearance-based methods to 3D object recogni-
tion. A careful analysis of the minimum number
of views needed by the system in order to work
properly has also been presented, showing that
the proposed system reaches a satisfactory accu-
racy also using only eight views.
Summarizing, the main features of the proposed
approach are the following: firstly, it has been
shown in the experimental part that the system is
really robust to objects perturbations, like radial
distortion or occlusions, the latter representing
one of the most severe perturbations in the object
recognition context. Secondly, the system is easily
extendible to new objects or new aspects of ob-
jects, guaranteeing the scalability of the method.
Thirdly, the system performed in a satisfactory
way even if the number of views per object used
for training is drastically reduced. Nevertheless,
the main distinctive merit of the paper is that this
represents the first study which thoroughly and
systematically investigated the HMM capabilities
in 3D object recognition. HMMs have been largely
applied in several computer vision and pattern rec-
ognition problems, whereas a systematic analysis
of its behavior in this context is missing in litera-
ture. The obtained results confirm the real effec-
tiveness of the Hidden Markov Model approach,
which is able to properly work even if the applica-
tion domain in not completely ‘‘sequential’’, and
the sequence has to be forcedly determined from
the data.
The rest of the paper is organized as follows. In

Section 3, the fundamental concepts of the pro-
posed approach are briefly introduced. The core
strategy is detailed in Section 4, and Section 5 de-
scribes experimental results. Finally, in Section 6,
conclusions are drawn and future perspectives
are envisaged.
2. Appearance-based approaches

There are several examples of appearance-based
approaches to 3D object recognition. In (Murase
and Nayar, 1995) the authors based their method
on the notion of parametric eigenspace. This ap-
proach has been further exploited in (Leonardis
and Bischof, 2000) in term of robustness of re-
cognition performance, especially in presence of
illuminance variations (Bischof et al., 2001). More-
over, in order to improve the robustness with
respect to the occlusions, visual recognition using
local appearance has been introduced (de Verdiere
and Crowley, 1998; Schneiderman and Kanade,
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1998; Moghaddam et al., 2003). Local features (local
descriptors) are extracted from small windows
(Schneiderman and Kanade, 1998; Moghaddam
et al., 2003) or from interest points (de Verdiere
and Crowley, 1998) by defining a local appearance
space on which the recognition is carried out.
A wide class of appearance-based object

recognition methods is based on Support Vector
Machine (SVM) (Pontil and Verri, 1998; Roobaert
et al., 2001; Barla et al., 2002). In (Pontil and
Verri, 1998), the interesting issue is that feature
extraction is not required, and the recognition is
performed directly on images considered as points
in a high dimensional space. Given fixed but un-
known probability distributions, a SVM finds the
hyperplane (called optimal separating hyperplane)
that maximizes the margin between the classes. In
(Roobaert et al., 2001), the robustness of SVMs on
background variations is analyzed. Furthermore,
the authors have tested the method by using just
a few images per object during the learning phase.
In (Barla et al., 2002), the authors have focused on
the selection of the kernel functions. In order to
introduce correctly the prior information of the
learning system, a new class of kernels is intro-
duced basing on similarity measures inspired by
the Hausdorff distance (Huttenlocher et al., 1993).
Another class of methods is based on the mea-

sure of similarity between shapes (Hagedoorn,
2000; Cyr and Kimia, 2001; Belongie et al.,
2002). In (Cyr and Kimia, 2001), an aspect
graph-based method is proposed. The measure of
the similarity between two views is given by mea-
suring the distance between the projected and seg-
mented shapes of the 3D object. This endows the
viewing sphere with a metric which is used to
group similar views into aspects, and to represent
each aspect by a prototype. The same shape simi-
larity metric is then used to rate the similarity be-
tween unknown views of unknown objects and
stored prototypes to identify the object and its
pose. In (Belongie et al., 2002), the authors pro-
posed to proceed by (1) solving for correspon-
dences between points on the two shapes, (2)
using the correspondences to estimate an aligning
transform. Then, the sum of matching error be-
tween corresponding points, together with a term
measuring the magnitude of aligning transform,
give the shapes� similarity. An extensive survey of
shape matching in computer vision can be found
in (Hagedoorn, 2000).
Finally, another interesting approach could be

found in (Caputo et al., 2002), where a probabilis-
tic strategy to 3D object recognition is proposed.
The authors introduce a method that allows the
use of the spin-glass theory (SGT) in the context
of a maximum a posteriori-Markov random field
(MAP-MRF). Features are extracted from the
images using a multidimensional receptive field
histogram (MFH) representation, and, by apply-
ing the SGT, the open question of defining auto-
matically an appropriate neighborhood system
on irregular sites is solved. Furthermore, the algo-
rithm is very efficient as the solution is found ana-
lytically, so that it does not require any searching
techniques to look for the absolute minima.
3. Fundamentals

In this section the fundamental tools of the pro-
posed approach are briefly summarized: in Section
3.1 the theory of the HMM is presented, while a
short introduction to the wavelets is given in Sec-
tion 3.2.

3.1. Hidden Markov Models

A discrete-time first-order HMM (Rabiner,
1989) is a probabilistic model that describes a
stochastic sequence O = O1,O2, . . .,OT as being
an indirect observation of an underlying (hidden)
random sequence Q = Q1,Q2, . . .,QT, where this
hidden process is Markovian, though the ob-
served process may not be so. More formally, a
HMM is defined by the following entities (Rabi-
ner, 1989):

• S = {S1,S2, . . .,SN} the finite set of the hidden
states;

• the transition matrix A = {aij, 1 6 j 6 N} repre-
senting the probability to go from state Si to
state Sj,

aij ¼ P ½Qtþ1 ¼ SjjQt ¼ Si� 1 6 i; j 6 N

with aij P 0 and
PN

j¼1aij ¼ 1;
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• the emission matrix B = {b(OjSj)}, indicating
the probability of the emission of the symbol
O when system state is Sj; in this paper contin-
uous HMM were employed: b(OjSj) is repre-
sented by a Gaussian distribution, i.e.

bðOjSjÞ ¼ N Ojlj;Rj

� �
. ð1Þ

whereN Ojl;Rð Þ denotes a Gaussian density of
mean l and covariance R, evaluated at O;

• p = {pi}, the initial state probability distribu-
tion, representing probabilities of initial states,
i.e.

pi ¼ P ½Q1 ¼ Si� 1 6 i 6 N

with pi P 0 and
PN

i¼1pi ¼ 1.

For convenience, we denote a HMM as a triplet
k = (A,B,p).
The training of the model, given a set of

sequences {Oi}, is performed using the standard
Baum–Welch re-estimation procedure (Rabiner,
1989), able to determine the parameters (A,B,p)
that maximize the probability P({Oi}jk). This
method is based on the well-known Expectation

Maximization (EM) algorithm. The evaluation
step, i.e. the computation of the probability
P(Ojk), given a model k and a sequence O to be
evaluated, is performed using the forward–back-

ward procedure (Rabiner, 1989).
A practical but fundamental issue to be ad-

dressed when using HMMs is the determination
of their structure, namely the topology and the
number of states. The former aspect regards
the possibility of introducing some constraints in
the HMM structure. No assumptions about the
topology have been made in this paper, letting it
free to be determined by the transition matrix de-
rived from the training strategy. More interesting
is the latter aspect, regarding the determination
of the number of the states: this choice is the first
a fundamental step in the model selection, mainly
preventing overtraining situations. Unfortunately,
even though good theoretical approaches have
been proposed (Stolcke and Omohundro, 1993;
Brand, 1999; Bicego et al., 2003b), the aforesaid is-
sue is usually disregarded in the HMM literature.
Another important issue is the initialization of
the training procedure: this issue is crucial to the
learning, because of the local behavior of the stan-
dard procedure used to estimate HMM para-
meters. Starting from some initial estimate, this
technique converges to the nearest local maximum
of the likelihood function, which is highly multi-
modal; therefore, a good initialization is needed
to guarantee the convergence of the procedure to
the global optimum. Both model selection and ini-
tialization issues have been addressed in this paper,
making the learning particularly effective.

3.2. Wavelets

Wavelets can be defined as a mathematical
method for hierarchically decomposing functions.
The wavelet transform is aimed at describing a
function in terms of a coarse overall shape, plus de-
tails that range from broad to narrow. The basic
idea is to represent any arbitrary function f(t) as
a superposition of a set of basis functions. In
particular, basis functions related to coarse coef-
ficients are called scaling functions, while those
related to detail coefficients are called wavelets

functions. The wavelets, or baby wavelets, are ob-
tained from a single prototype wavelet called the
mother wavelet, by dilations or contractions (scal-
ing) and translations (shifts). In this paper, we used
the Haar wavelets (De Vore et al., 1992), represent-
ing the simplest wavelet basis. The advantage of
wavelet transform is that often a large number of
the detail coefficients turns out to be very small in
magnitude. Truncating, or removing, these small
coefficients from the representation introduces only
small errors in the reconstructed image, giving a
form of lossy image compression. The wavelet
transform has been successfully applied in many
contexts, especially in the field of image compres-
sion (De Vore et al., 1992). Wavelet-based coding
provides substantial improvements in picture qual-
ity at higher compression ratios, with respect to
standard DCT transform. Over the past few years,
a variety of powerful and sophisticated wavelet-
based schemes for image compression have been
developed and implemented (Saha, 2000). The
effectiveness of the wavelet transform has been
widely demonstrated.
For example, in (Garcia et al., 1998), a wavelet-

based method for face recognition has been intro-
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duced. Each face is described by a subset of band
filtered images containing wavelet coefficients,
then, a probabilistic metric derived from the Bhat-
tacharya distance is used for classification. In (Wu
and Bhanu, 1995; Krüger and Peters, 1997), Gabor
Wavelets have been used to set up an invariant
representation of objects. A Gabor grid efficiently
encodes the structural information of an object in
a sparse multiresolution representation. The Gabor
grid subsamples the Gabor wavelets decomposi-
tion of an object model and is deformed to allow
the indexed object model match with the image
data. Finally, in (Reinhold et al., 2001), an appear-
ance-based method for 3D object localization and
recognition using wavelets has been described.
Local features are derived from the wavelet multi-
resolution analysis and are modelled statistically
by normal distributions. The localization and clas-
sification of the objects are then performed hierar-
chically by maximum-likelihood estimation.
In this paper, wavelets coefficients are extracted

as local descriptors, so as to improve robustness
with respect to noise and lighting changes, while
retaining the ability in grabbing essential informa-
tion of the signal, by discarding non-important
parts. They are used together with HMMs, an out-
standing method able to capture the sequential
nature of data, which, in this case, succeeds to
describe the shape of an object from an unrolled
sequence of its wavelet coefficients. In this way, a
powerful framework for object classification can
be constructed. Furthermore, strong arguments
for the use of multiresolution decomposition can
be found in psychovisual research which offers evi-
dence that the human visual system processes the
images in a multiscale way (Reinhold et al., 2001).
Fig. 1. Sampling scheme to generat
4. The proposed approach

In this section, the proposed method is detailed.
In particular, the coding procedure is described in
Section 4.1, and the classification strategy is
detailed in Section 4.2.

4.1. The coding strategy

The strategy used to obtain the data sequence
from an object image consists of three steps. First,
the image is converted from the color format to the
grey level format. This is important to assess the
capability of the proposed approach in capturing
the geometry of the object, rather than the color.
In the second step, a sequence of sub-images of
fixed dimension is obtained by sliding over the
object image, in a raster scan fashion, a square
window of fixed size, with a predefined overlap.
In this way we could capture relevant information
about the local geometry of the object to be en-
coded: the sequence of subsequent windows sum-
marizes the local object structure. The procedure
for scanning the image is visualized in Fig. 1. Fi-
nally, the third step consists in applying the wave-
let transform to each gathered sub-image. The
proposed algorithm calculates the coefficients rep-
resenting the image with a normalized two-dimen-
sional Haar basis, sorting these coefficients in
order of decreasing magnitude. Subsequently, the
firstM coefficients (i.e., the coefficients with higher
magnitude) are retained, performing a lossy image
(sub-image) compression. As for image compres-
sion, the retained coefficients represent the more
significative information. Hence, we use them to
recognize the objects. In particular, the number
e the sequence of sub-images.
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of retained coefficients determines the dimen-
sionality of the observation vector (i.e. the local

descriptor), while its length is determined by the
number of sub-images gathered. By applying this
step to all the sub-images of the sequence, we
finally get the actual sequence observation. Its
dimensionality will be M · T, where M is the
number of the wavelet coefficients retained, and
T is the number of sub-images gathered in the sam-
ple scanning operation.

4.2. The recognition strategy

The standard way to use HMM is to train one
model for each class. The subsequent classification
is performed using standard maximum likelihood
classification rule, i.e., assigning an unknown item
to the class whose model shows the highest likeli-
hood. A different rule has been used in this paper:
instead of training one model for each class, i.e.,
using all the object views to train a model, we train
one model for each object view. The classification
step is performed by assigning an unknown object
view to the class of the model showing the maxi-
mum likelihood. Notice that this method may be
considered as a nearest neighbor (NN) classifier,
with the proximity measure defined by the like-
lihood function. The use of HMM to compute
distance between sequences is not new in the liter-
ature, as it has already been used in the context
of HMM-based clustering of sequences (Smyth,
1997; Panuccio et al., 2002). This classification
scheme seems very suitable for the object recogni-
tion problem: to identify an object given an aspect,
we look for the view most similar to it, which,
probably, is represented by one of the near views
of the same object. In our case, after training one
model for each object aspect, an unknown view
is assigned to the class of the most similar view,
where similarity is computed by using the likeli-
hood of the HMM. A great advantage of this
scheme is that if a new view of the object is added,
we should not re-train the class model.
Regarding the HMM training, particular atten-

tion was devoted to the model selection and the
initialization issues. These issues have been ad-
dressed by using a method recently introduced in
(Bicego et al., 2003b). The proposed technique is
able to deal with drawbacks of standard general
purpose methods, like those based on the Bayesian
inference criterion (BIC) (Schwarz, 1978), i.e., com-
putational requirements, and sensitivity to initiali-
zation of the training procedure. The basic idea is
to perform a ‘‘decreasing’’ learning, starting each
training session from an informative situation
derived from the previous training phase. More
specifically, the procedure consists in starting the
model training using a large number of states,
run the estimation algorithm, and, after con-
vergence, evaluate the chosen model selection
criterion for that model. In this case the BIC crite-
rion was used. Then, the importance of each model
state is determined, using the stationary
distribution of the Markov Chain associated to
the HMM. Finally, the ‘‘least probable’’ state is
pruned, and this configuration is taken as initial
situation from which to start again the training
procedure. In this way, each training session is
started from a ‘‘nearly good’’ estimate. This per-
mits to obtain better estimates for the model,
increasing the efficacy of the proposed approach.
Moreover, by starting from a good situation, the
number of iterations required by the training algo-
rithm to converge is reduced, resulting in a less
computationally demanding procedure. In our ap-
proach we used Gaussian HMMs, where the emis-
sion probability of each state is modelled using the
Gaussian function. Learning is finally performed
using standard Baum Welch procedure, stopping
the procedure after likelihood convergence.
5. Experimental results

The proposed approach has been thoroughly
tested on the images of the COIL-20 database
(Nene et al., 1996). This public database has been
largely used in object recognition literature. It con-
tains 20 objects: for each object 72 views are gath-
ered, with a separation of 5�. The objects of the
data set are presented in Fig. 2. As an example,
the 72 views of the first object are displayed in
Fig. 3.
We tested our approach by varying the free

parameters of the techniques, i.e., the window size,
the overlap ratio, and the number of the retained



Fig. 3. The 72 views of the first object in the COIL-20 dataset.

Fig. 2. The objects contained in the COIL-20 dataset.
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coefficients. The classification accuracy was com-
puted using the cross-validation holdout scheme
(Theodoridis and Koutroumbas, 1999): the dataset
is divided in two mutually disjoint sets, one used
for the training phase and one used for the testing.
The fact that the system is tested on a set different
from the one used for training is a crucial factor
for assessing the capability of the system in gener-
alizing to different views. In particular, odd views
are used to build the classifier and even views are
used for testing. Classification accuracies are pre-
sented in Table 1(a) and (b), for windows sizes
equal to 8 and 16, respectively.
From these tables, one can notice that results

are really satisfactory: for one parameters� config-
urations the system is able to perfectly recognize
all the objects. In particular, for a window size
equal to 8 and an overlapping ratio of 75%, the
system performances are very high, almost perfect.
Moreover, the system seems to better perform
using a small window. Probably this is due to the
fact that a longer sequence is better modelled by
the HMM, which has at disposal more data usable
for a more accurate model selection estimation.
From this table it is worth noticing that the system
is very effective also using few wavelet coefficients.
Actually, this is reasonable as, using few coeffi-
cients, the signal is quite rough, even if sufficiently
informative to discriminate between objects, and
only the general behavior is understood. This



Fig. 4. Examples of occluded objects for different occlusion
levels: (a) 16 · 16; (b) 24 · 24; (c) 32 · 32; (d) 40 · 40. The
examples shown in the first row are obtained with the ‘‘random
occlusion’’, while in the second the ‘‘patch occlusion’’ method
was applied.

Table 1
Classification accuracies for different overlapping ratios and
number of the considered coefficients

Number of
coefficients

Overlap
ratio

Classification
accuracies (%)

(a)

4 0.5 98.47
5 0.5 98.33
6 0.5 98.33
7 0.5 97.78
4 0.75 100
5 0.75 98.61
6 0.75 98.33
7 0.75 97.22

(b)

4 0.5 96.67
5 0.5 97.5
6 0.5 96.53
7 0.5 96.81
4 0.75 97.92
5 0.75 97.64
6 0.75 98.61
7 0.75 97.92

The sampling image size was fixed to (a) 8 · 8 pixels and (b)
16 · 16 pixels. For these experiments, odd views are used to
build the classifier and even views are used for testing.

Table 2
Classification accuracies for the occluded objects, for different
occlusion levels

Occlusion level Random occlusion (%) Patch occlusion (%)

16 99.00 98.00
24 98.50 98.00
32 97.00 92.00
40 92.50 90.00
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permits the system to generalize better, (i.e., not
focusing on the specific view) by trying to capture
the general behavior.

5.1. Occlusions

The proposed approach has also been tested in
case of occlusion. Occlusion is one of the most
severe problem in the object recognition context,
and is the principal cause of failure of several ap-
proaches. The object occlusion has been simulated
in two ways. The first way, which we called ‘‘ran-
dom occlusion’’, follows the approach proposed
in (Pontil and Verri, 1998): a fixed size windows
of noisy pixels has been randomly generated, and
located over the object. The position of this loca-
tion is random, this fact increasing the statistical
robustness of the evaluation. In the second way,
which is more realistic and more difficult, the
occluding window represents a patch extracted
from another object of the dataset, simulating a real
occlusion (an actual object occluding the analyzed
view). In this case, for each view, the occluding
patch was extracted from a randomly chosen view
of a randomly chosen object, increasing even fur-
ther the statistical robustness of the evaluation.
We called this approach ‘‘patch occlusion’’. The
dimension of the occluding windows has varied
from 16 to 40: some examples of occluded objects
with both approaches are presented in Fig. 4 (first
and second rows, respectively), for different occlud-
ing levels (dimensions of the occluding window).
In this occlusion experiments, only odd views

were used to build the classifier, using the occluded
versions of the even ones for testing. For each
object, 10 views have been randomly selected and
occluded. The results are then computed using
the best configuration of parameters derived from
the previous analysis, i.e. using a scanning window
of size 8 · 8 pixels, with overlap of 75% and retain-
ing four coefficients. Accuracies for both types of
occlusion are presented in Table 2. These results
are really satisfactory: even if the objects are lar-
gely occluded, the system is able to recognize them.
Clearly, the system performs worse when objects



Table 3
Accuracy on the distorsion experiment, for different values of
the parameter K

Parameter K Accuracy (%)

0.10 97.5
0.20 97.0
0.30 93.5

Fig. 5. Effect of distortion for different levels of distortion: (first
row) original image; (second row) distorted one; (third row)
difference between them.

Table 4
Classification accuracies while decreasing the number of views
used for training

Number of views
used for training

Separating
degree

Classification
accuracy (%)

72 5 100.0
36 10 100.0
18 20 96.46
8 45 91.94
4 90 76.04
2 180 67.22
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are occluded using patches from actual objects,
still remaining at really satisfactory levels. The
ability of HMM-based methods to recognize oc-
cluded shapes has been already demonstrated in
the case of 2D shapes (Bicego and Murino, 2004).

5.2. Distortions

This section investigates the robustness of the
proposed approach to image distortion, which
could happen when changing the len of the video
camera. The testing images have been perturbed
using a radial distortion.2 As in the case of occlu-
sions, odd views were used for training, while the
distorted versions of the even ones were employed
for testing. For each object, 10 views have been
randomly selected and affected by radial distor-
tion. Some examples of distorted images are
presented in Fig. 5, for different values of the dis-
tortion parameter K. In the figure, in order to have
a direct visualization of the effect of the pertur-
bation, also the differences between the original
images and the distorted ones are displayed. Clas-
sification accuracies are proposed in Table 3: the
system is very robust, also in case of highly per-
turbing distortion, but, obviously, the increase of
the perturbation level decreases the accuracy of
the system, which however remains at satisfactory
levels.

5.3. Number of training views

In order to get a better insight into the method,
we have performed a further analysis on the COIL
database in order to assess the system perfor-
mances when trained with a reduced number of
views. Therefore, we have performed an experi-
ment using, in the training phase, a decreasing
number of views for each object. Results are dis-
played in Table 4 in function of the number of
training views. As before, we used the best para-
meters determined in the previous analysis. We
also show the separation degree, that is the angle
2 We used the Qlensdistort.m function of the �Q�
Software package, a MATLAB image processing toolbox
downloadable from http://www.cs.dartmouth.edu/

~farid/tutorials.
between two consecutive views. Results are really
interesting, showing that the method is very robust.
Actually, even if we use only one view every 45�
(only eight views in total), the system is able to rec-
ognize the objects with an accuracy larger than
90%. This finding has a great practical importance,
demonstrating that the proposed system can be

http://www.cs.dartmouth.edu/~farid/tutorials
http://www.cs.dartmouth.edu/~farid/tutorials
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trained using very few aspects, so reducing the
computational and storage requirements.

5.4. Discussion

This final section contains some further discus-
sions about the method presented in this paper.
The main goal of the paper is to investigate HMM
capabilities in 3D objects recognition: in particular,
the method is mainly focused on the classification
part, i.e. on the recognition of the object given the
segmented object; the problem of accurately seg-
menting the object from the background is out of
the scope of this paper. With respect to the classifi-
cation issue, the proposed approach has several
appealing characteristics, such as the scalability
(the possibility of adding new views or new objects
to the recognition framework without the need of
retraining the whole system), and the simplicity of
application, given by the nearest neighbor rule in
the likelihood space. Moreover the experimental
evaluation has shown that the system is particularly
robust to perturbations, like radial distortion or
occlusions, and it is scalable, since the number of
views required for training could be reduced with-
out a significant loss of accuracy.
6. Conclusions

In this paper, a new method for appearance-
based 3D object recognition has been proposed,
based on the Hidden Markov Model approach.
The view of an object is visited in a raster-scan
fashion to obtain a sequence of partially over-
lapped sub-images. For each sub-image, wavelet
coefficients are computed, the most significant
are retained, and, finally, arranged to compose a
feature vector. The sequences of vectors (one for
each view) are subsequently modelled using
HMMs, paying particular attention to the initiali-
zation and the model selection issues. Classifica-
tion is carried out by using a nearest neighbor
rule, where distance is computed using the HMM
likelihood function. A thorough experimental
evaluation has shown that the proposed approach
is very promising for classifying 3D objects from
partial, non-dense, set of views. Furthermore, the
proposed method remains quite accurate even in
case of heavily occluded or distorted objects.
An interesting extension of the method could

go toward the investigation of the use of the 3D
information obtained by acquiring the objects with
a 3D scanner. In particular, we are investigating
the integration of appearance and range data for
recognition.
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