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Abstract

Hidden Markov models (HMM) are a widely used tool for sequence modelling. In the sequence classification case, the
standard approach consists of training one HMM for each class and then using a standard Bayesian classification rule. In this
paper, we introduce a novel classification scheme for sequences based on HMMs, which is obtained by extending the recently
proposed similarity-based classification paradigm to HMM-based classification. In this approach, each object is described by
the vector of its similarities with respect to a predetermined set of other objects, where these similarities are supported by
HMMs. A central problem is the high dimensionality of resulting space, and, to deal with it, three alternatives are investigated.
Synthetic and real experiments show that the similarity-based approach outperforms standard HMM classification schemes.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of sequential data is an interesting and im-
portant research area. Probabilistic modelling and classifica-
tion is intrinsically more difficult when each observation is
a sequence, compared to the standard scenario where each
observation is a set (vector) of features. In fact, since the
length of the sequences may vary, it is not possible to di-
rectly use standard pattern recognition techniques. More-
over, sequence classification problems usually involve very
large data sets.
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HiddenMarkovmodels(HMMs) are commonly employed
probabilistic models of sequential data[1]. HMMs can be
viewed as stochastic generalizations of finite-state automata,
when both the transitions between states and the genera-
tion of output symbols are governed by probabilistic mech-
anisms[1]. Although the basic theory and inference tools
were developed in the late 1960s[2,3], HMMs have only
been extensively applied in the last decade. Speech recog-
nition [1], DNA and protein modelling[4,5], handwritten
character recognition[6], gesture recognition[7], and be-
havior analysis and synthesis[8] are examples of problems
for which HMMs have been exploited.

The standard HMM-based approach to sequence classifi-
cation consists in training one HMM for each class, which
are subsequently used as class-conditional densities in a
standard Bayes classification paradigm. For example, as-
suming a priori equiprobable classes, an unknown sequence
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is classified into the class whose model shows the highest
probability (likelihood) of having generated this sequence
(this is the well-knownmaximum-likelihood(ML) classifi-
cation rule).

In this paper, an alternative classification scheme is pro-
posed, by extending the similarity-based paradigm[9–14] to
HMM-based classification. This paradigm, which has been
introduced recently, differs from typical pattern recognition
approaches where objects to be classified are represented by
sets (vectors) of features. In the similarity-based paradigm,
objects are described using pairwise (dis)similarities, i.e.
distances from other objects in the data set. In this way, ob-
jects are not constrained to be explicitly represented in a
feature space, and all that is necessary is a way to compute
(dis)similarities between pairs of objects. The goal is then
to learn a classifier only from these relational data.

The literature on similarity-based classification is not vast
[9–14] (a brief review is given in Section 2.1). The general
idea behind all these approaches is basically the same: given
a set of pairwise dissimilarity values, a new representation
space can be built, in which each object is described by these
values. In Ref.[13], a simple synthetic experiment shows
that a complex problem in a 2D space (requiring a quadratic
classifier to achieve almost correct separation), becomes a
linearly separable problem in a dissimilarity space.

In this paper, we extend this dissimilarity-based classi-
fication paradigm to HMM-based sequences classification
problems. We propose to build a similarity1 space, repre-
senting each object (sequence) by the vector of its similari-
ties with respect to a predetermined set of objects (this can
be the whole data set, in the simplest approach), called the
representatives set; the classification is then performed in
this new representation space. The similarities are derived
by considering the likelihoodP(O|�) as a measure of the
similarity between the sequenceO and the HMM specified
by the set of parameters�. This similarity measure was pre-
viously used in sequence clustering applications[15,16].

The similarity-based classification paradigm seems to be
particularly well suited to HMMs, as it can be seen as a nat-
ural extension of the standard HMM classification scheme.
Specifically, the standard ML approach assigns an unknown
sequenceO to the class whose model shows the highest
likelihood. To do so, the likelihoods ofO with respect to the
HMMs of all classes are evaluated, each stating alikelihood-
basedmeasure of the similarity between that class and the
observed sequence. In other words, HMMs are used to
computesimilarities between sequences and classes, with
each class being represented by a single HMM. Subse-
quently, only the maximum of these values is used to take
the classification decision. In the similarity-based approach,
the classification decision is taken using thewhole set of
similarities between each observed sequence and all the
other sequences. We will show that this strategy results in a

1 Note that we refer indifferently to similarity or dissimilarity.

substantial improvement in the classification performance,
compared to standard HMM-based approaches. Moreover,
with the use of HMMs and the similarity representation, the
problem of classification of sequences is reduced to a more
standard classification task (where each object is described
by a fixed-length feature vector), for which arbitrarily so-
phisticated techniques can be used, allowing to increase even
more the classification performance.

The proposed approach was successfully tested on both
synthetic and real data, involving 2D shape recognition and
face recognition problems. In comparison with the stan-
dard HMM-based ML classification approach, our method
showed a significant performance improvement, confirm-
ing all the potential of the similarity-based classification
approach.

The main problem of the similarity-based approach, of
particular relevance in practical applications, is the high di-
mensionality of the resulting similarity space. Actually, in
the basic approach, this dimensionality is equal to the car-
dinality of the whole training data set, possibly leading to
a huge computational burden. In the literature, two types of
solutions of this problem could be identified, summarized in
Section 2.2. In this paper, three methods to face this problem
are proposed. The first one aims at removing redundancy
from the data by applying linear dimensionality reduction
techniques, such as Fisher discriminant analysis (FDA)[17]
and principal component analysis (PCA)[19]. The second
proposed method is based on a greedy strategy known as
matching pursuit[20], which selects a subset of represen-
tatives based on which the similarity values are computed.
These two approaches are very general, and can be applied
in all distance-based classification contexts. The third pro-
posed approach is more specific to the HMM case, and is
based on a simple adaptation of the similarity-based clas-
sification approach to the standard HMM learning proce-
dure. All these approaches were experimentally evaluated,
confirming the discriminative power of the similarity space,
even when the dimensionality is reduced to more manage-
able numbers.

Summarizing, the main contribution of this paper is the
introduction of the similarity-based recognition paradigm
in an HMM context, resulting in a significant perfor-
mance improvement with respect to standard HMM-based
classification. The mapping to the similarity space pro-
posed in this paper allows us to reduce complex prob-
lems of sequence classification to a more standard point
classification problem, for which arbitrarily sophisticated
techniques could be used. From the point of view of
similarity-based recognition, we propose two different ap-
proaches for dealing with the high dimensionality of the
similarity space, which is one of the main problems of
the method. First, the potential of linear reduction tech-
niques, as PCA and FDA, is exploited, showing that they
are able to reduce the curse of dimensionality impact on
the classification process. Second, we address the choice
of a set of appropriate representatives using the matching
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pursuit algorithm, which proves to be a robust and effective
approach.

The rest of the paper is organized as follows. In Section
2, the state of the art related to the similarity-based classi-
fication and to the dimensionality issue is summarized. In
Section 3, HMMs are introduced, together with the standard
classification scheme. The proposed strategy is described in
Section 4, and Section 5 reports the experiments and the re-
lated results are discussed. Finally, in Section 6, conclusions
are drawn and future perspectives are envisaged.

2. State of the art

2.1. Similarity-based classification

The literature on similarity-based classification is not vast.
The approach seems to have been firstly introduced by Jain
and Zongker[9], who have obtained a dissimilarity mea-
sure, based on deformable templates, for the hand-written
digit recognition problem. A multidimensional scaling ap-
proach was then used to project this dissimilarity space
onto a low-dimensional space, where a 1-nearest-neighbor
(1-NN) classifier was employed to classify new objects. In
Ref. [10], Graepel et al. investigate the problem of learn-
ing a classifier based on data represented in terms of their
pairwise proximities, using an approach based on Vapnik’s
structural risk minimization[21]. Jacobs and Weinshall[11]
studied the use of distance-based classification with non-
metric distance functions (i.e. that do not satisfy the triangle
inequality). Duin and Pekalska are very active researchers in
this area2 having recently produced several papers[12–14].
Motivation and basic features of similarity-based methods
were first described in Ref.[12]: it was shown, by experi-
ments in two real applications, that a Bayesian classifier (the
RLNC—regularized linear normal density-based classifier)
in the dissimilarity space outperforms the NN rule. These
aspects were more thoroughly investigated in Ref.[14],
where other classifiers in the dissimilarity space were stud-
ied, namely on digit recognition and bioinformatics prob-
lems. Finally, in Ref.[13], a generalized kernel approach
was introduced, dealing with classification aspects of the
dissimilarity kernels.

2.2. The dimensionality issue

The main problem of the similarity-based approach, of
particular relevance in practical applications, is the high di-
mensionality of the resulting similarity space. Two types of
solutions have been proposed in order to address this prob-
lem. The first consists of building the similarity space using
all available patterns, and subsequently applying some stan-
dard dimensionality reduction technique. One example of
this kind of approach is the multidimensional scaling method

2 Seehttp://www.ph.tn.tudelft.nl/Research/neural/index.html

used in Ref.[9]. Another recent example is presented in Ref.
[22], where a reduction of the dimensionality of the dis-
similarity space is obtained by a modified multidimensional
scaling scheme, able to reduce the computational burden
and to allow generalization to new data. The second type of
solution works by directly choosing a small set of represen-
tatives. An example of this type of solution can be found in
Ref. [14], where random selection,most-dissimilarrule and
the condensedNN (CNN) rule were employed. Other ex-
amples can also be found in Ref.[11], where a new type of
CNN method is proposed, or in a recent paper[23], where
a greedy approach is proposed, able to find prototypes en-
coding the principal components of the similarity space.

3. Hidden Markov models

A discrete-time HMM is a probabilistic model that de-
scribes a random sequenceO=O1, O2, ..., OT as being an
indirect observation of an underlying (hidden) random se-
quenceQ = Q1, Q2, ..., QT , where this hidden process is
Markovian, even though the observed process may not be.
Due to lack of space, HMM theory will not be covered in
detail here; for a comprehensive tutorial, see Ref.[1]. Ba-
sically, an HMM � is a 4-tuple� = (S,A, �,B), whereS
is the set of states,A is the transition matrix (representing
the probabilities of transition between states),� is a vector
of initial state probabilities, andB is the emission model,
which describes the probability (density or mass) function
of symbol emission from each state. All HMMs used in
this paper are continuous valued (Oi ∈ R), with the emis-
sion probability of each state assumed Gaussian. Training is
performed using the standard Baum–Welch algorithm[2,3],
initialized using a Gaussian mixture model (as in Ref.[24]).

As mentioned above, the typical HMM-based classifica-
tion approach adopts the ML criterion, where an unknown
sequenceO is assigned to the class showing the highest
likelihood, i.e.

Class(O) = arg max
i

P (O|�i ), (1)

where�i is the HMM corresponding to theith class. This
requires trainingC HMMs for a C-class problem. In the
sequel, we will call this the MLOPC approach (withOPC
standing for “one per class”).

A somewhat different rule could also be considered. In-
stead of training one HMM for each class, we could train
one model for each training sequence, and assign an un-
known sequenceO to the class of the model showing the

highest likelihood. More formally, let�(k)
i

denote the HMM

model trained on sequenceO(k)
i

, which belongs to classk.
The classification rule under this approach is then

Class(O) = arg max
k

(
max

i
P (O|�(k)

i
)

)
. (2)

http://www.ph.tn.tudelft.nl/Research/neural/index.html
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We call this the MLOPS approach (withOPSstanding for
“one per sequence”). Notice that this may be seen as 1-
NN classifier, with the proximity measure defined by the
likelihood function.

4. The similarity-based strategy

4.1. Introduction

The basic issue of a similarity-based strategy is how to
define similarities in an HMM framework. Recall that, given
an HMM � and a sequenceO, there is a standard method
(forward–backward procedure[2]) to computeP(O|�), i.e.
the probability (density) that sequenceO was generated by
model�. This quantity is called the likelihood, and measures
how well the sequenceO “fits” the model�. A natural choice
is then to define the similarityDij = D(Oi ,Oj ) between
two sequencesOi andOj as

Dij = D(Oi ,Oj ) = log P(Oi |�j )

Ti
, (3)

where�j is the HMM trained on sequenceOj , andTi is
the length of the sequenceOi . The 1/Ti is a normalization
factor introduced to take into account sequences of different
length. Notice that this similarity is not symmetric.

The idea at the basis of the proposed approach is concep-
tually simple: to build a new representation space, using the
similarity values between sequences obtained via the HMMs
according to Eq. (3), and construct a classifier in that space.
One of the justifications for this approach lies in the fact that
similarity is high for similar objects/sequences, i.e. belong-
ing to the same class, and low for objects of different classes,
making discrimination possible[13]. Therefore, we can in-
terpret the similarity measureD(O,Oi ) between a sequence
O and another “reference” sequenceOi as a “feature” of the
sequenceO. This fact suggests the construction of a feature
vector forO by taking the similarities betweenO and a set
of reference sequencesR={Ok}, so thatO is characterized
by apattern(i.e. a set of features){D(O,Ok),Ok ∈ R}.

This approach is well suited for HMMs. Given a sequence
O, the standard rule defined by Eq. (2) uses HMMs to com-
pute the similarities betweenO and all the sequences in the
training set. It then looks for the most similar training se-
quence, and classifiesO as belonging to the class of this
sequence (exactly as in a 1-NN classifier). Therefore, this
process does not use all the information contained in the
complete set of similarities, as done in the similarity-based
approach. Notice that the fact that two sequences, sayOi and
Oj , present similar degrees of similarity to several other se-
quences (e.g., they are both very similar to some sequences,
and also both very dissimilar to some other sequences) en-
forces the hypothesis thatOi andOj belong to the same
class.

4.2. Formal definition

Formally, the proposed strategy is defined as follows.
Consider a classification problem withC classes; for each
classk ∈ {1, 2, ..., C}, we have a set ofNk training se-

quencesTk ={O(k)
1 , ...,O(k)

Nk
}; thus,N =∑

kNk is the total

size of the training setT = ⋃ C
k=1Tk .

Let R = {P1, ...,PR} be a set ofR “reference” or
“representative” objects; these objects may belong to the
set of training sequences (R ⊆ T) or may be otherwise
defined. Now, letDR(O) be a function that returns the
vector of similarities between an arbitrary sequenceO and
all the sequences inR, which is

DR(O) =


D(O,P1)

...

D(O,PR)


 ∈ RR. (4)

We will designate the spaceRR in which the dissimilarity
vector exists as the “similarity space” and denote it asSR,
where the subscriptR is used to emphasize the dependence
of the similarity space on the setR. Once this similarity
space is defined, any standard classifier can, in principle, be
used.

Regarding the choice ofR, different approaches can be
adopted; the basic one, described in the next subsection, is to
chooseR=T, the whole training set. With this choice, the
dimensionality ofSR = ST is equal toN, the cardinality
of the training setT. This is obviously a problem, because
it makes the proposed method inapplicable in most cases;
nevertheless, it is interesting to investigate the discrimination
ability of this space.

Subsequently, the problem of reducing the dimensionality
of the space is addressed by three different approaches: in
the first, linear projection techniques are applied to the whole
similarity spaceST; in the second one, we will modify the
strategy used to compute of the distanceD(·, ·); finally, we
use a greedy strategy, based on amatching pursuitalgorithm,
in order to choose a “good” set of representatives.

4.3. Basic approach:R = T

When we takeR=T, the dimensionality ofSR is equal
to N, the cardinality ofT. Notice that in this case we are
required to design a classifier on anN-dimensional space
using onlyN training sequences; this is an extreme case of
the curse of dimensionality[18], suggesting that some di-
mensionality reduction technique should be adopted. Lin-
ear transformations, such as PCA (see Ref.[19]) or FDA
(see Ref.[17]), were conceived as means of reducing the
dimensionality of a space while preserving almost all the
“relevant information” contained in a data set. The con-
cept of “relevant information” is different in PCA and FDA.
In PCA, the information to be preserved is the variance
of the data, that is, PCA seeks a data projection of lower
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dimensionality that preserves most of its variance; it is thus
an unsupervised learning technique since it does not use
the class labels of the training samples. In contrast, FDA
is a supervised technique that looks for a low-dimensional
projection that best preserves the class separability of the
data. In FDA, several criteria can be adopted to quantify the
concept of “class separability”[17]; in this paper, we adopt
the classical one proposed by Fisher[25]. The reduction of
the space dimensionality absorbs in some way the impact
of the curse of dimensionality; moreover, it could some-
times eliminate some redundancy present in the data (as
shown in the experiments), leading to a better classification
performance.

4.4. Choice of the set of representativesR

If we want to avoid the curse of dimensionality without
having to resort to PCA or FDA, smarter ways of choosing
R have to be devised. Clearly, the choice ofR is critical
as only if this set is adequately chosen, the discrimination
power of the spaceSR will be large. In this paper, we
propose two methods, namely, the OPC and thematching
pursuit (MP) procedures.

4.4.1. The “OPC” approach
In this approach, which is similar to the MLOPC scheme

described in Section 3, instead of training one HMM for
each sequence, a model is trained for each class using all
sequences of that class. Using these HMMs, the feature
vector of a sequenceO is a C-dimensional (for a C-class
problem) vector given by

DOPC(O) = 1

T




log P(O|�1)
...

log P(O|�C)


 , (5)

where�j is the HMM estimated from the set of all training
sequences from classj, and T is the length of sequence
O. In this case,DOPC(O) can be seen as containing the
similarities betweenO and each of the C classes. We can
imagine the setR as containingC sequences{P1, ...,PC},
such thatPj is an (imaginary) sequence such that if we
applied the learning algorithm toPj we would still obtain
�j . In the following, we will denote the similarity space
obtained with this approach asSOPC.

4.4.2. The MP approach
The MP approach is based on the following ideas: instead

of using all sequences of the training set, one can choose
those that are more “useful” in classification, i.e. more dis-
criminant in some sense. This choice is made incrementally,
starting with an empty set, and adding at each step the ob-
ject that yields the largest “performance improvement”. The
process is stopped by some convergence criterion.

The MP algorithm was introduced in the signal process-
ing community as an algorithm to decompose a signal into a

linear combination of basis functions from a redundant dic-
tionary [20]. It is a general, greedy, approximation scheme
that works by sequentially appending functions to an ini-
tially empty set. At each step, the basis function appended
is the one that produces the largest decrease in the ap-
proximation error. Recently, Vincent and Bengio[26] used
MP to obtain kernel-based solutions to machine-learning
problems.

Formally, the MP algorithm is defined as:

• SetR = ∅ (the empty set);
• Until some stopping criterion is met, repeat:

◦ For each sequenceO(k)
i

/∈R, compute theleave
one out(LOO) classification error rate of the 1-NN
classifier using the feature vectorD{R∪O(k)

i }(·). Let

us denote this error asER(O(k)
i

).

◦ The new representative set isR=R∪{O(k∗)
i∗ }, where

(i∗, k∗) = arg min
(i,k):O(k)

i /∈R
ER(O(k)

i
).

In the following, we denote the similarity space obtained
with this approach asSMP. Note that, unlike the OPC ap-
proach, this scheme is very general, and can be used in all
other instances of similarity-based classification.

5. Results and discussion

In this section, experimental results are reported, in order
to validate the proposed approach. Firstly, we investigate
the discriminative power of the spaceSR with R=T, i.e.
using as reference set the whole training setT. The standard
ML classification scheme and the proposed approach are
compared, with both synthetic and real data. The use of
PCA and FDA is investigated in this context, also with the
aim of visualizing the data. Secondly, experimental results
concerning the two different choices ofR (OPC and MP)
are reported. All the experiments are repeated 10 times and
the results are averaged, so as to decrease the dependence
of the results from the training of the HMMs.

5.1. Basic approach:R = T

5.1.1. Synthetic data
We consider a 3-class synthetic problem, defined by the

parameters given inFig. 1. The training set is composed of
30 sequences (of length 400) from each of the three classes;
the dimensionality of the similarity spaceSR is thusN=90.
Notice that this classification task is not easy, as the three
HMMs are very similar to each other, only differing slightly
in the variances of the emission densities.
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Fig. 1. Generative HMMs for synthetic data testing:A is the
transition matrix,� is the initial state probability andB contains the
parameters of the emission density (Gaussians with the indicated
means and variances).

We compare the standard ML classification criterion with
a simple classifier in the similarity spaceSR, thek-nearest-
neighbor (k-NN), for k = 1 (1-NN) andk = 3 (3-NN), using
Euclidean distance. This classical technique assigns a given
objectO to the class having the largest number of represen-
tatives in the set of thek objects in the training set that are
nearest toO. This classifier is widely used, as it is simple,
fast and reasonably accurate. The major drawback of NN
classifiers is their sensitivity to noisy patterns on the training
set, and the need to store all the training samples.

Accuracies were computed using the LOO procedure.
This means that the dissimilarity spaceSR is actually built
by using the representatives setR consisting of 89 se-
quences, while one sequence is left out and used for test-
ing. The procedure is repeated until all sequences have been
tested (i.e. 90 times), and results are averaged. Results of
different classifiers are shown inTable 1(a). We can observe
that there is an improvement when using the simple classi-
fier in the similarity space. Recall that, as mentioned above,
the three classes are very similar and the classification task
is very difficult.

In order to get a better insight into the structure of our
similarity space, we have applied PCA and FDA to the space
ST. Plots of the 2D projections of the training set thus
obtained are shown inFig. 2. It is clear that FDA is really

Table 1
Classification accuracies using the basic approach on: (a) synthetic
data and (b) synthetic data projected using PCA and FDA

Classifier Accuracy (%)

(a)
MLOPS 95.7
1-NN onST 98.9
3-NN onST 98.9

Dimensionality (%)
2 3 4 5

(b)
1-NN on PCA space 98.9 98.9 98.9 98.9
MC on PCA space 98.9 97.8 97.8 96.7
1-NN on FDA space 100 — — —
MC on FDA space 100 — — —

effective in separating the classes, and even PCA leads to a
satisfactory result, even if it ignores the class labels. In both
cases, the three classes in the training set would be easily
separable, although generalization would clearly be better
with the FDA projection.

Classification accuracies were also obtained in these re-
duced spaces, in order to investigate discrimination ability
of the similarity space. In this case, we use 1-NN and the
Mahalanobis classifier (MC), which classifies an unknown
observation as belonging to the class whose mean is nearest,
using a Mahalanobis distance[18]. Accuracies (again com-
puted with the LOO procedure) are presented inTable 1(b).
For FDA, the maximum dimensionality allowed isC − 1,
whereC is the number of classes[17]. In this case, there-
fore, the maximum dimensionality is two. ComparingTable
1(b) with Table 1(a) we can conclude that the performances
on the FDA reduced space is increased, reaching a per-
fect classification rate (which is not surprising in view of
Fig. 2(b)).

5.1.2. Real data
The proposed approach has been tested on two real appli-

cations: a 2D shape recognition task, detailed in Ref.[24],
and a face recognition problem, using HMMs as proposed
in Ref. [27].

In the 2D shape experiment, each object is represented
by the sequence of the curvature coefficients, computed as
follows: first, the contours are extracted by using theCanny
edge detector; the boundary is then approximated by seg-
ments of approximately fixed lengthdL. The resulting se-
quences show different lengths, ranging from 267 for the
smallest object to 559 for the largest. Finally, the curvature
value at pointx is computed as the angle between the two
consecutive segments intersecting atx. For a non-occluded
object, the initial point is the rightmost point lying on the
horizontal line passing through the object centroid, follow-
ing the boundary in a counterclockwise manner. If the ob-
ject is occluded, the endpoint allowing the contour to be
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Fig. 2. 2D projections of the synthetic training set using: (a) PCA and (b) FDA.

Fig. 3. Objects set used for testing.

followed in an counterclockwise way is considered as the
initial point. A thorough analysis of the HMMs’ capabilities
in classifying 2D shapes is presented in Ref.[24], where
the standard ML approach was tested in cases of transla-
tion, rotation, noise, occlusions, shearing transformations
and combination of the above perturbations, showing really
promising results.

In this paper we compare our similarity-based approach
with a simplified version of the system described in Ref.
[24]: unlike in that paper, we do not use here any model
selection technique, the number of states was fixed to three
for all experiments. Testing was performed on part of the
object set used in Ref.[28], composed by seven classes,
each containing 12 different shapes. As before, accuracies
are computed using the LOO scheme. The database used is
shown inFig. 3.

For the face recognition task, HMMs were used as pro-
posed in Ref.[27], considering DCT coefficients as features.
Given a sequence of sub-images of the face image, the DCT
coefficients of each sub-image are computed, and vector-
ized using azig-zagscan. The number of coefficients chosen
determines the dimensionality of the observation, and 10
coefficients are used in our experiment. The sequence of sub-

Table 2
Classification accuracies using the basic approach on real data: (a)
2D shape recognition and (b) face recognition

Classifier Accuracy (%)

(a)
MLOPS 80.9
1-NN onST 98.8
3-NN onST 93.2

(b)
MLOPS 50.6
1-NN onST 72.1
3-NN onST 60.5

images is obtained by sliding over the face image a square
fixed size window, in a raster scan fashion, with a predefined
overlap. The window size and the overlap ratio were fixed
to 8% and 50%, respectively. Testing was performed using
the Bern face database,3 which consists of 30 subjects with
10 face images each. For each subject, five faces were used
for training and the others for testing. We have chosen to use
this database, instead of the ORL used in Ref.[27], because
with that database HMMs are able to reach an almost perfect
classification, so without any possibility of improvement.

The classical ML classification criterion was compared
with the similarity-based approach, using ak-NN rule (for
k = 1 and 3) in the similarity spaceST. Accuracies are
presented inTable 2(a) and (b), for 2D shape recognition
and for face classification tasks, respectively.

In the 2D shape case, the improvement in classification
rates is very large, of about 18% for the 1-NN classifier and
of about 13% for the 3-NN. This shows that this similarity-
based feature space is very well suited for this real problem.

3 Downloadable from ftp://iamftp.unibe.ch/pub/Images/
FaceImages

ftp://iamftp.unibe.ch/pub/Images/FaceImages
ftp://iamftp.unibe.ch/pub/Images/FaceImages
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Fig. 4. Data set for 2D shape recognition experiment, reduced and plotted using: (a) PCA and (b) FDA.

Table 3
LOO accuracies for the 2D shape recognition task after PCA and
FDA projections

Dimensionality (%)

2 3 4 5

1-NN on PCA space 80.1 97.7 98.2 98.3
MC on PCA space 81.2 92.9 91.7 93.3
1-NN on FDA space 92.5 95.0 96.3 97.1
MC on FDA space 86.5 92.6 90.1 91.3

Actually, using the standard ML approach, most of the errors
occur in the “key” class: looking atFig. 3, it is worth noting
that the instances of this class represent the same object only
semantically, but the related shapes are indeed very different.
This aspect, which is negative in the ML scheme, is the key
feature of our approach: since there are many differences
among items in the same class, the use of all similarities
between items may add a lot of discriminative power to the
method. The additional discriminative power increases more
when the differences among items of same class are larger.

Also in the face recognition case there is a noticeable
improvement in the accuracies of classification (about 12%
and 10% for the 1-NN and 3-NN, respectively), confirming
the wide applicability of this method to real cases.

FDA and PCA were also studied in the case of the 2D
shape recognition experiment. Plots of projected training set
are shown inFig. 4. As in the previous subsection, classifi-
cation accuracies were calculated for different dimensional-
ities, using the LOO procedure, and the results are reported
in Table 3. In this case, the reduction of dimensionality to 2
decreases the classification performance, which, in any case,
is about equal or still better than the results obtained using
the standard ML criterion. The similarity feature space is
complex in this case due to the presence of very dissimi-
lar elements in the same class. For low dimensionality, part
of this information is lost, but, by slightly increasing the

Table 4
Classification accuracies on data set formed by occluded shapes,
at different occlusion levels

Occlusion level

10% 30% 50%

MLOPS 76.9% 71.5% 60.9%
NN on ST 91.5% 76.4% 64.2%
3-NN onST 91.9% 73.0% 64.1%

dimensionality, this information is correctly recovered, and
the performance returns to a very good level.

To investigate the robustness of the approach, we have
also tested the method behavior in the presence of shape
occlusions. Occlusion is one of the most severe limitations
to the application of typical object recognition techniques.
Recently[24,29], it has been shown that HMMs are very ef-
fective in dealing with object occlusions. Here we show that
the approach proposed in Ref.[24] can be further improved
by using the similarity space representation.

Object occlusion is simulated by considering a fragment
of the object boundary, starting at a randomly chosen loca-
tion. Each object was occluded 5 times, resulting in 420 se-
quences. Occlusion percentages considered were 10%, 30%
and 50%. Notice that in the latter case, one half of the whole
boundary is missing. An LOO scheme was again adopted,
which means that these results are obtained in a really com-
plex task, as the left out sequence (the occluded one) was
not used for building the similarity space. This choice makes
all experiments uniform throughout the paper, even if it can
be seen as somewhat strange, since typically to recognize an
occluded object, also the original shape is available (this ob-
viously results in a great improvement in the performances,
see Refs.[24,29]).

Results for the different occlusion levels considered, us-
ing 1-NN and 3-NN classifiers, are shown inTable 4. We
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Table 5
Accuracies of the OPC and MP approaches in: (a) 2D shape exper-
iment, with entire shapes; (b) 2D shape experiment, with occluded
shapes, for different occlusion levels (OL) and (c) face recognition
experiment

Classifier Accuracy Dim. ofS
(%)

(a)
MLOPC 89.3 —
MLOPS 80.9 —
1-NN onST 98.8 84
1-NN onSOPC 97.4 7
1-NN onSMP 92.9 4.1

Classifier OL= 10% OL= 30% OL= 50% Dim. ofS

(b)
MLOPC 83.0% 78.0% 69.2% —
MLOPS 76.9% 71.5% 60.9% —
1-NN onST 91.5% 76.4% 64.2% 84
1-NN onSOPC 86.1% 71.1% 57.8% 7
1-NN onSMP 85.9% 72.1% 56.1% 4.26

Classifier Accuracy (%) Dim. ofS

(c)
MLOPC 51.67 —
MLOPS 50.60 —
1-NN onST 72.1 150
1-NN onSOPC 69.4 30
1-NN onSMP 68.9 10.1

observe a clear improvement in the classification accuracies
of the classifiers in the similarity space.

5.2. Choice of representatives setR

In this section, the two approaches for the choice ofR

described in Section 4.4 are tested. These approaches were
applied to the 2D shape recognition (using both the entire
and occluded shapes) and to the face classification exper-
iments. Classification accuracies were calculated as in the
previous section. We used 1-NN classifiers in the similarity
spacesSOPC andSMP.

A comparison between the proposed approaches and ML
classification is reported inTables 5(a)–(c), for the entire
shapes, the occluded shapes and the face experiments, re-
spectively. For the sake of clarity, results for 1-NN onST
(entire similarity space) are also shown, in order to quan-
tify the loss in classification accuracy determined by the re-
duction. Moreover, the dimension of the resulting similarity
spaceS is included in the tables, in order to emphasize the
amount of the reduction obtained.

In summary, we can conclude that both approaches are
able to preserve most of the performance of the basic ap-
proach (classification on the whole similarity spaceST),
while achieving a drastic dimensionality reduction. Regard-

ing the 2D shape recognition experiment, by comparing
the performance of the MLOPC method, with the standard
MLOPS criterion, we can notice that the use of all se-
quences to learn each HMM enhances the accuracy of the
standard ML classification. HMM is really suitable to be
trained using many sequences, as it is able to deal with their
possible different lengths. Nevertheless, this could reduce
the expressivity of the resulting similarity space, especially
in some real cases, where items of the same class present
remarkable differences between each other. FromTable
5(b) we can also notice that when increasing too much the
occlusion level, the performances on reduced similarity
spaces (MP and OPC approaches) are lower than standard
ML classification level. This is probably due to the fact that
when the percentage of occlusion increases, the HMMs are
less accurately estimated. The obtained similarity space is
thus noisy, and the 1-NN rule (that is the simplest classifier)
is not able to perform well in a such noisy space. To verify
this explanation, we recompute the LOO classification ac-
curacies on the experiment with the occluded shapes, with
occlusion level 50%. We used a carefully trained multilayer
feed forward neural network on the MP reduced similarity
space: 1-NN accuracies were about 56% in that reduced
space. Accuracies obtained with neural network is around
88%, confirming the large potentialities of this approach:
the mapping onto the similarity space allows us to reduce
complex sequence classification into easier standard point
classification, for which one could use arbitrarily sophisti-
cated techniques.

In conclusion, the two approaches for the choice of rep-
resentatives setR are both effective. OPC seems to be more
interesting, as it results directly from the standard HMM
training, without any need to postprocess the space. Never-
theless, the resulting dimensionality is equal to the number
of classes, reducing the usefulness of the approach in prob-
lems with many classes (e.g., face recognition). Moreover,
the training of one HMM for each class can drastically re-
duce the discrimination ability of the similarity space when
items of the same class are very different. On the other hand,
the MP approach seems better at identifying the representa-
tives that arereally useful for the similarity-based classifica-
tion purpose. The higher computational burden introduced
with this approach is its major drawback.

5.3. Computational aspects

The similarity-based technique introduced in this paper is
more computational demanding than the ML scheme. More
specifically, with our approach, in order to build the simi-
larity space of the training sequences, in the learning phase
all the training sequences should be evaluated, whereas this
is not needed by the standard ML approach. The training
phase, nevertheless, is performed only once, typically off-
line, so the overall impact is minor. Regarding the testing
case, both schemes compute the likelihoods of the testing
sequence for all the trained HMMs. Subsequently, the ML
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Table 6
Computational requirements (in seconds on a 800 MHz processor
with 256 MB of RAM) of the ML scheme and our approach (using
1-NN) in the 2D shape recognition experiment

Strategy Training time (s) Testing time (s)

MLOPS 62.01 2.23
MLOPC 62.55 0.20
1-NN onST 308.16 2.67
1-NN onSMP 318.78 0.11
1-NN onSOPC 83.57 0.23

scheme looks for the maximum, while our approach uses
the whole likelihood vector as feature pattern, using a stan-
dard fixed feature vector strategy for the classification. The
overhead introduced by our approach strictly depends on the
classification strategy chosen: the more complex this strat-
egy, the larger the computational burden which is added. If
needed (e.g., when using a neural network), an additional
training should be performed on the similarity space of the
training sequences. Nevertheless, as shown in the experi-
mental part, using a simple classifier (as theK-NN) which
does not need any training, we could obtain a large improve-
ment in the results’ accuracies.

The second consideration regards the reduction of the di-
mensionality of the similarity space, which, in the basic
approach, is equal to the cardinality of the training set, in-
applicable for practical situations. In this paper two tech-
niques have been introduced in order to address this prob-
lem, namely the OPC and the MP approaches. The former
reduces the needed training time, since only few HMMs
have to be trained (equal to the number of classes), and there
is no need of postprocessing the resulting space. Moreover
the testing phase is sped up, since the similarity space has
a smaller dimensionality, hence resulting in a faster clas-
sification. The latter is more accurate, but a computational
overhead in the training phase is introduced, as choosing the
appropriate representatives is quite onerous.

Practically, all the experiments have been conducted on
a machine with a 800 MHz processor and 256 MB RAM.
The code was entirely developed under the MATLAB en-
vironment. We reported inTable 6the time needed by the
standard ML schemes and our approach (using 1-NN) in
the 2D shape recognition experiment, for the training phase
(all 84 sequences) and for the testing phases (one testing
sequence). We can note that most part of the overhead is
in the training phase, while the testing phase remains quite
fast, becoming faster using the MP and OPC approaches.
The best compromise between computational overhead and
accuracy seems to be the OPC approach.

6. Conclusions

In this paper we have proposed a novel sequence clas-
sification scheme by combining hidden Markov models

(HMM) with the similarity-based paradigm. This approach
creates a representation space for sequences in which stan-
dard feature-based classification techniques can be used.
We showed that a simple classifier in a such space out-
performs standard HMM-based classification schemes.
Three approaches to deal with the high dimensionality of
the resulting space were also considered and investigated,
showing that the similarity-based representation is still ef-
fective when its dimensionality is reduced in order to make
it more manageable.

Future directions consist in applying and investigating
more ad hoc similarity space classifiers, as those proposed in
Refs.[13,14], and in studying novel techniques for reducing
space dimensionality.
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