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Abstract. This paper introduces a new concept of surveillance, namely,
audio-visual data integration for background modelling. Actually, visual
data acquired by a fixed camera can be easily supported by audio infor-
mation allowing a more complete analysis of the monitored scene. The
key idea is to build a multimodal model of the scene background, able to
promptly detect single auditory or visual events, as well as simultaneous
audio and visual foreground situations. In this way, it is also possible to
tackle some open problems (e.g., the sleeping foreground problems) of
standard visual surveillance systems, if they are also characterized by an
audio foreground. The method is based on the probabilistic modelling of
the audio and video data streams using separate sets of adaptive Gaus-
sian mixture models, and on their integration using a coupled audio-
video adaptive model working on the frame histogram, and the audio
frequency spectrum. This framework has shown to be able to evaluate
the time causality between visual and audio foreground entities. To the
best of our knowledge, this is the first attempt to the multimodal model-
ling of scenes working on-line and using one static camera and only one
microphone. Preliminary results show the effectiveness of the approach
at facing problems still unsolved by only visual monitoring approaches.

1 Introduction

Automated surveillance systems have acquired an increased importance in the
last years, due to their utility in the protection of critical infrastructures and
civil areas. This trend has amplified the interest of the scientific community
in the field of the video sequence analysis and, more generally, in the pattern
recognition area [1]. In this context, the most important low-level analysis is
the so called background modelling [2,3], aimed at discriminating the static
scene, namely, the background (BG), from the objects that are acting in the
scene, i.e., the foreground (FG). Despite the large related literature, there are
many problems that are still open [3], like, for instance, the sleeping foreground
problem. In general, almost all of the methods work only at the visual level,
hence resulting in video BG modelling schemes. This could be a severe limitation,
since other information modalities are easily available (e.g., audio), which could
be effectively used as complementary information to discover “activity patterns”
in a scene.
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In this paper, the concept of multimodal, specifically audio-video, BG mo-
delling is introduced, which aims at integrating different kinds of sensorial in-
formation in order to realize a more complete BG model. In the literature, the
integration of audio and visual cues received a growing attention in the last
few years. In general, audio-visual information have been used in the context of
speech recognition, and, recently, of scene analysis, especially person tracking. A
critical review of the literature devoted to audio-video scene analysis is reported
in section 2.

In order to integrate audio and visual information, different adaptive BG
mixture models are first designed for monitoring the segregated sensorial data
streams. The model for visual data operates at two levels. The first is a typical
time-adaptive per-pixel mixture of Gaussians model [2], able to identify the
FG present in a scene. The second model works on the FG histogram, and is
able to classify different FG events. Concerning the audio processing scheme,
the concept of audio BG modelling is introduced, proposing a system able to
detect unexpected audio events. In short, a multiband frequency analysis was
first carried out to characterize the monaural audio signal, by extracting features
from a parametric estimation of the power spectral density. The audio BG model
is then obtained by modelling these features using a set of adaptive mixtures of
Gaussians, one for each frequency subband.

Concerning the on-line fusion of audio information with visual data, the most
basic issue to be addressed is the concept of “synchrony”, which derives from
psycho-physiological research [4,5]. In this work, we consider that visual and
audio FG that appear “simultaneously” are synchronous, i.e., likely causally
correlated. The correlation augments if both FG events persist along time.

Therefore, a third module based on adaptive mixture models operating on
audio-visual data has been devised. This module operates in a hybrid space
composed by the audio frequency bands, and the FG histogram bins, allowing
the binding of concomitant visual and audio events, which can be labelled as
belonging to the same multimodal FG event. In this way, a globally consistent
multilevel probabilistic framework is developed, in which the segregated adaptive
modules control the different sensorial audio and video streams separately, and
the coupled audio-video module monitors the multimodal scenario to detect
concurrent events. The three modules are interacting each other to allow a more
robust and reliable FG detection.

In practice, our structure of BG modelling is able to face serious issues of
standard BG modelling schemes, e.g., the sleeping FG problem [3].

The general idea is that an audio-visual pattern can remain an actual FG
even if one of the components (audio or video) is missing. The crucial step is
therefore the discovery of the audio-visual pattern in the scene.

In summary, the paper introduces several concepts related to the multimo-
dal scene analysis, discussing the involved problems, showing potentialities and
possible future directions of the research. The key contributions of this work are:
1) the definition of the novel concept of multimodal background model, intro-
ducing, together with video data, audio information processing performing an
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auditory scene analysis using only one microphone; 2) a method for integrating
audio and video information in order to discover synchronous audio-visual pat-
terns on-line; 3) the implementation of these audio-visual fusion principles in a
probabilistic framework working on-line and able to deal with complex issues in
video-surveillance, i.e., the sleeping foreground problem.

The rest of the paper is organized as follows. In Section 2, the state of the art
related to the audio-video fusion for scene analysis is presented. The whole stra-
tegy is proposed in Section 3, and preliminary experimental results are reported
in Section 4. Finally, in Section 5, conclusions are drawn.

2 State of the Art of the Audio-Visual Analysis

In the context of audio-visual data fusion it is possible to individuate two prin-
cipal research fields: the on-line audio-visual association for tracking tasks, and
the more generic off-line audio-visual association, in which the concept of audio-
visual synchrony is particularly stressed.

In the former, the typical scenario is an indoor known environment with
moving or static objects that produce sounds, monitored with fixed cameras and
fixed acoustic sensors. If an entity emits sound, the system provides a robust
multimodal estimate of the location of the object by utilizing the time delay
of the audio signal between the microphones and the spatial trajectory of the
visual pattern [6,7]. In [6], the scene is a conference room equipped with 32
omnidirectional microphones and two stereo cameras, in which a multi-object
3D tracking is performed. With the same environmental configuration, in [8] an
audio source separation application is proposed: two people speak simultaneously
while one of them moves through the room. Here the visual information strongly
simplifies the audio source separation.

The latter class of approaches employs only one microphone. In this case
the explicit notion of the spatial relationship among sound sources is no more
recoverable, so the audio-visual localization process must depend purely on the
concept of synchrony, as stated in [9]. Early studies about audio-visual synchrony
comes from the cognitive science. Simultaneity is one of the most powerful cues
available for determining whether two events define a single or multiple objects;
moreover, psychophysical studies have shown that the human attention focuses
preferably on sensory information perceived coupled in time, suppressing the
others [4]. Particular effort is spent in the study of the situation in which the
inputs arrive through two different sensory modalities (such as sight and sound)
[5].

Most of the techniques in this context make use of measures based on the
mutual information criterion [8,10]. These methods extract the pixels of the
video sequences that are most related to the occurring audio data using maxi-
mization of the mutual information between the entire audio and visual signals,
resulting therefore in an off-line processing. For instance, they are used for video-
conference annotation [10]: audio and video features are modelled as Gaussians
processes, without a distinction between FG and BG. The association is exploi-
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ted by searching for a correlation in time of each pixel with each audio feature.
The main problem is that it assumes that the visual pattern remains fixed in
space; further, the analysis is carried out completely off-line.

The method proposed in this paper tries to bridge these two research areas.
To the best of our knowledge, the proposed system constitutes the first attempt
to design an on-line integrated audio-visual BG modelling scheme using only one
microphone, and working in a loosely constrained environment.

3 The Audio-Video Background Modelling

The key methodology is represented by the on-line time-adaptive mixture of
Gaussians method. This technique has been used in the past to detect changes
in the grey level of the pixels for background modelling purposes [2]. In our
case, we would like to exploit this method to detect audio foreground, video
foreground objects, and joint audio-video FG events, by building a robust and
reliable multimodal background model. The basic concepts of this approach are
summarized in Section 3.1. The customization in the case of visual and audio
background modelling is presented in Section 3.2, and in Section 3.3, respectively.
Finally, the integration between audio and video data is detailed in Section
3.4, and how the complete system is used to solve a typical problem of visual
surveillance system is reported in Section 3.5.

3.1 The Time-Adaptive Mixture of Gaussians Method

The Time-Adaptive mixture of Gaussians method aims at discovering the de-
viance of a signal from the expected behavior in an on-line fashion. A typical
video application is the well-know BG modelling scheme proposed in [2]

The general method models a temporal signal with a time-adaptive mixture
of Gaussians. The probability to observe the value z(t), at time t, is given by:

P (z(t)) =
R∑

r=1

w(t)
r N

(
z(t)|µ(t)

r , σ(t)
r

)
(1)

where w
(t)
r , µ

(t)
r and σ

(t)
r are the mixing coefficients, the mean, and the standard

deviation, respectively, of the r-th Gaussian of the mixture associated to the
signal at time t. At each time instant, the Gaussians in a mixture are ranked
in descending order using the w/σ value. The R Gaussians are evaluated as
possible match against the occurring new signal value, in which a successful
match is defined as a pixel value falling within 2.5σ of one of the component.
If no match occurs, a new Gaussian with mean equal to the current value, high
variance, and low mixing coefficient replaces the least probable component.

If rhit is the matched Gaussian component, the value z(t) is labelled as unex-
pected (i.e., foreground) if

∑rhit

r=1 w
(t)
r > T , where T is a threshold representing
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the minimum portion of the data that supports the “expected behavior”. The
evolution of the components of the mixtures is driven by the following equations:

w(t)
r = (1 − α)w(t−1)

r + αM (t), 1 ≤ r ≤ R, (2)

where M (t) is 1 for the matched Gaussian (indexed by rhit), and 0 for the others;
α is the adaptive rate that remains fixed along time. It is worth to notice that
the higher the adaptive rate, the faster the model is “adapted” to scene changes.

The µ and σ parameters for unmatched Gaussians remain unchanged, but,
for the matched Gaussian component rhit, we have:

µ(t)
rhit

= (1 − ρ)µ(t−1)
rhit

+ ρz(t) (3)

σ2 (t)
rhit

= (1 − ρ)σ2 (t−1)
rhit

+ ρ
(
z(t) − µ(t)

rhit

)T (
z(t) − µ(t)

rhit

)
(4)

where ρ = αN
(
z(t)|µ(t)

rhit , σ
(t)
rhit

)
.

3.2 Visual Foreground Detection

One of the goal of this work is to detect untypical video activity patterns star-
ting simultaneously with audio ones. In order to discover these visual patterns,
a video processing method has been designed, which is composed by two modu-
les: a standard per-pixel FG detection module, and an histogram-based novelty
detection module.

The former is realized using the model introduced in the previous section in
a standard way [2], in which the processed signal z(t) is the time evolution of
the gray level. We use a set of independent adaptive mixtures of Gaussians, one
for each pixel. In this case, an unexpected valued pixel z

(t)
uv (where u, v are the

coordinates of the image pixel) is the visual foreground, i.e., z
(t)
uv ∈ FG. Please,

note that all mixtures’ parameters are updated with a fixed learning coefficient
α̃.

The latter module is also realized using the time-adaptive mixture of Gaus-
sians method, using the same learning rate α̃ of the former module, but in this
case we focus on the histogram of those pixels classified as foreground. The idea
is to compute at each step the gray level histogram of the FG pixels and asso-
ciating an adaptive mixture of Gaussian to each bin, looking for variations of
the bin’s value. This means that we are monitoring the number of pixels of the
foreground that have a specific gray value. If the number of pixels associated
to the foreground grows, i.e., some histogram bins increase their values, then an
object is appearing in the scene, otherwise is disappearing. We choose to monitor
the histogram instead of the number of FG pixels directly (which can be in prin-
ciple sufficient to detect new objects), as it allows the discrimination between
different FG objects, and in order to detect audio-visual patterns composed by
single objects. We are aware that this simple characterization leaves some am-
biguities (e.g., two equally colored objects are not distinguishable, even if the
impact of this problem may be weakened by increasing the number of bins), but
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this representation has the appealing characteristic of being invariant to spatial
localization of the foreground, which is not constrained to be statically linked to
a spatial location (as in other audio-video analysis approaches)1.

3.3 Audio Background Modelling

The audio BG modelling module aims at extracting information from audio
patterns acquired by a single microphone. In the literature, several approaches
to audio analysis are present, mainly focused on the computational translation of
psychoacoustics results. One class of approaches is the so called “computational
auditory scene analysis”(CASA) [12], aimed at the separation and classification
of sounds present in a specific environment. Closely related to this field, but not
so investigated, there is the “computational auditory scene recognition” (CASR)
[13,14], aimed at environment interpretation instead of analyzing the different
sound sources.

Besides various psycho-acoustically oriented approaches derived from these
two classes, a third approach tried to fuse “blind” statistical knowledge with
biologically driven representations of the two previous fields, performing audio
classification and segmentation tasks [15], and source separation [16,17] (blind
source separation). In this last approach, many efforts are devoted in the speech
processing area, in which the goal is to separate the different voices composing
the audio pattern using several microphones [17] or only one monaural sensor
[16].

The approach presented in this paper could be inserted in this last category:
roughly speaking, we implement a multiband spectral analysis on the audio signal
at video frame rate, extracting energy features from a1, a2, . . . , aM frequency
subbands. More in detail, we subdivide the audio signal in overlapped temporal
window of fixed length Wa, in which each temporal window ends at the instant
corresponding to the t-th video frame, as depicted in Fig.1. For each window,
a parametric estimation of the power spectral density with the Yule-Walker
Auto Regressive method [18] is performed. In this way, an estimation a

(t)
i of the

spectral energy relative to the interval [t−Wa, t] is obtained for the i-th subband,
i = 1, 2, . . . , M . These features have been chosen as they are able to discriminate
between different sound events [13]; further, they can be easily computed at an
elevate temporal rate.

As typically considered [16], the energy during time in different frequency
bands can transport independent information. Therefore, we instantiate one
time-adaptive mixture of Gaussians for each band of the frequency spectrum.
Also in this case, all mixtures’ parameters are updated with a fixed learning
coefficient α̃, equal to the one used for the video channel. In this way, we are
able to discover unexpected audio behaviors for each band, indicating an audio
foreground.

1 Actually, more sophisticated tracking approaches based on histograms have already
been proposed in literature [11], and are subjects of future work.
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Fig. 1. Organization of the multimodal data set: at each video frame, an audio signal
analysis is carried out using a temporal window of length Wa

3.4 The Audio-Visual Fusion

The audio and visual spaces are now partitioned in different independent sub-
spaces, the audio subbands a1, a2, . . . , aM , and the video FG histogram bins
h1, h2, . . . , hN , respectively, in which independent FG monomodal patterns
may occur. Therefore, given an audio subband a

(t)
i , and a video histogram

bin h
(t)
j at time t, we can define an history of the mono-modal FG patterns

A
(t)
i , i = 1, . . . , M , and H

(t)
j , j = 1, . . . , N , as the patterns in which the values

of a given component of the i− th mixture for the audio, and the j − th mixture
for the video are detected as foreground along time. Formally, let us denote A

(t)
i

and H
(t)
j as:

A
(t)
i = [a(tq,i)

i , a
(tq,i+1)
i , . . . , a

(t)
i ∈ FG] (5)

H
(t)
j = [h(tu,j)

j , h
(tu,j+1)
j , . . . , h

(t)
j ∈ FG] (6)

where tq,i is the first instant at which the q − th Gaussian component of the
audio mixture of the i − th sub-band becomes FG, and the same applies for
tu,j related to the video data. Clearly, A

(t)
i and H

(t)
j are possibly not completely

overlapped, so tq,i in general can be different from tu,j . Therefore, in order to
evaluate the degree of concurrency, we define a concurrency value as βi,j =
|tq,i − tu,j |. Obviously, the higher this value, the weaker the synchronization.

As previously stated, the synchronism gives a natural causal relationship for
processes coming from different modalities [4]. In order to evaluate this causal
dependency along time, we state as highly correlated those concurrent audio-
video FG patterns explaining, in their jointly evolution, a nearly stable behavior.
Consequently, we couple all the audio FG values with all the visual FG values
occurring at time step t, building an M×N audio-visual FG matrix AV (t), where

AV (t)(i, j) =
{

(a(t)
i , h

(t)
j ) if a

(t)
i ∈ FG

∧
h

(t)
j ∈ FG

empty otherwise
(7)

This matrix gives a snapshot of the degree of synchrony between audio and visual
FG values, for all i, j. If AV (t)(i, j) is not empty, probably, A

(t)
i and H

(t)
i are in
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some way synchronized. In this last case, we choose to model the evolution of
these values using an on-line 2D adaptive Gaussian model. Therefore, at each
time step t, we can evaluate the probability to observe a pair of audio-visual FG
events, AV (t)(i, j), as

P (AV (t)(i, j)) =
R∑

r=1

w
(t,i,j)
AVr

N
(
AV (t)(i, j)|µ(t,i,j)

r ,Σ(t,i,j)
r

)
(8)

Intuitively, the higher the value of the weight w
(t,i,j)
AVr

matched by the observation

(a(t)
i , h

(t)
j ) at time t, namely w

(t,i,j)
AVrhit

, the more stable are the coupled audio-visual
FG values along time, and it is more probable that a causal relation is present
between audio and visual FG.

All the necessary information to assess the synchrony and the stability of a
pair of audio and video FG patterns is now available. Therefore, a modulation of
the evolution process of the 2D Gaussian mixture model is introduced in order to
give more importance to a match with a couple of FG values belonging to likely
synchronized audio and video patterns. We would like to impose that the higher
the concurrency, the faster the stability of an AV value must be highlighted. In
formulas, omitting the indices i, j for clarity

w
(t)
AVr

= (1 − αAV )w(t−1)
AVr

+ αAV M
(t)
AV , 1 ≤ r ≤ R, (9)

where

M
(t)
AV =

{ 1
βi,j+1 = 1

|tq−tu|+1 for the matched 2D Gaussian
0 otherwise

(10)

This equation 2 implies that if the synchronization does not occur at the
same instant, the weight grows more slowly, and viceversa.

In order to subsume the concurrency and the stability behavior of the mul-
timodal FG patterns, we finally introduce the causality matrix Γ (t) = [γt

i,j ], for
all i = 1, . . . , M , and j = 1, . . . , N , where

γ(t)(i, j) = w
(t,i,j)
AV rhit

(11)

where w
(t,i,j)
AV rhit

is the weight of the 2D Gaussian component of the model matched

by the pair of FG values (a(t)
i , h

(t)
j ).

As we will see in the experimental session, this model well describe the sta-
bility degree of the audio-visual FG, in an on-line unsupervised fashion.

3.5 Application to the Sleeping Foreground Problem

The sleeping foreground problem occurs when a moving object, initially detected
as foreground, stops, and becomes integrated in the background model after a
2 Any function inversely proportional to βi,j could be used; actually, different function

choices do not sensibly affect the method performances.
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certain period. We want to face this situation, under the hypothesis that there is
a multimodal FG pattern, i.e. detecting the correlation between audio and video
FG. In this situation, we maintain as foreground both the visual appearance of
the object and the audio pattern detected, as long as they are present and stable
in time. Technically speaking, we compute the learning rate of the mixture of
Gaussians associated to the video histogram’s bin j

α
(t)
j = min (α̃, 1 − max

i
γ(t)(i, j)) (12)

where α̃ is the learning rate adopted for both the segregated sensorial channels.
The learning rates of the adaptive mixtures of all pixels which gray level belongs
to the histogram bin j become α

(t)
j . Moreover, also the learning rate of the

mixture associated to the band arg maxi γ(t)(i, j) becomes α
(t)
j . This measure

implies that the most correlated audio FG pattern with the j − th video FG
pattern guides the evolution step, and viceversa. In practice we can distinguish
min(M, N) different audio-video patterns. This may appear a weakness of this
method, but this problem may be easily solved by using a finer discretization of
the audio spectral, and of the histogram spaces. Moreover, other features could
be used for the video data modelling, like, for instance, color characteristics.

4 Experimental Results

An indoor audio-visual sequence is considered, in which two sleeping FG situa-
tions occur: the former is associated with audio cues, and the latter is not. We
will show that our system is able to deal with both situations.

More in detail, the sequence is captured at 30 frames per second, and the
audio signal is sampled at 22.050 Hz. The temporal window used for multi-
band frequency analysis is equal to 1 second, and the order of the autoregressive
model is 40. We undersample the 128 × 120 video image in a grid of 32 × 30
locations. Finally, we use 12 bins for the FG color histogram. Analogously, we
perform spectral analysis using M = 16 logarithmic spaced frequency subbands,
in which the frequency is measured in radians in the range [0, π], and the power is
measured in Decibel. As a consequence, we have an audio-visual space quantized
in M×N = 16×12 elements. All adaptive mixtures are composed by 4 Gaussian
components, and the learning parameter for the AV mixtures is fixed to 0.05,
and for the separated channels α̃=0.005, initially.

We compare our results with those proposed by an ”only video” BG mo-
delling, choosing as reference the standard video BG modelling adopted in [2],
showing: 1) the resulting analysis of both BG modelling schemes; 2) the audio
BG modelling analysis; 3) the histogram FG modelling analysis, able to indivi-
duate the appearance of new visual FG in the scene, and 4) the causality matrix,
ordered by audio subbands per video histogram bins, that explains intuitively
the intensity causal relationship in the joint audio-visual space.

As one can observe in Fig.2, at frame 50 both per-pixel BG modelling schemes
locates a FG entering in the scene. This causes a strong increment in the gray
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Fig. 2. Comparative results: a) Original sequence; b) Ordinary per pixel video BG mo-
delling; c) Our approach; d) Video novelty detection; e) Audio background modelling;
f) Causality matrix at time t;

level of the FG histogram that correctly detects this object as new (Fig.2-50 d)
(the lighter bins indicate FG). At frame 72, the person begins to speak, causing
an increment of some subbands of the audio spectrum, which is detected as FG
by the audio module (Fig. 2-72 e)). Due to the (loose) synchrony of the audio
and visual events, the causality matrix evidences a concurrency, as depicted in
Fig. 2-72 e). Here, the lightest colored value indicates maxi γ(t)(i, j), i.e., the
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maximum causality relation for all audio subbands i, given the video histogram
bin j. Therefore, proportionally to the temporal stability of the audio-video
FG values, the causality matrix increments some of its entries. Consequently,
the learning coefficients of the corresponding audio, histogram, and pixels FG
models, become close to zero according to eq. 12. In this way, the synchronized
audio and visual FG which remain jointly similar along time are considered as
multimodal FG. In the typical video BG modelling scheme, if the visual FG
remains still in the scene for a lot of iterations (Fig. 2-568 a) and 668 a)), it
loses all its meaning of novelty, so becoming assimilated in the background (Fig.
2- 568 b) and 668 b)). More correctly, in the multimodal case, the FG loses its
meaning of novelty only if it remains still without producing sound. In Fig. 2-
568 c) and 668 c), the visual aspect of the FG is maintained from the audio FG
signal, by exploiting the causality matrix.

The audio visual fusion is also able to preserve the adaptiveness of the BG
modelling, if the case. In Fig.2-703 a) and 719 a), a box falls near the talking
person, providing new audio and video FG, but, after a while, the box becomes
still and silent. In this case, it is correct that it becomes BG after some time
(see Fig. 2- 998 b). Also in our approach, the box becomes BG, as the audio
pattern decreases quickly, so that no audio visual coupling occurs, and after
some iterations the box vanishes, whereas the talking person remains detected
(Fig.2- 719 c) and 998 c)). A subtle drawback is notable in Fig.2- 998 c): some
parts of box do not completely disappears, because their gray level is similar to
that of the talking person, modelled as FG. But this problem could be faced by
using a different approach to model visual data (instead of the histogram), or,
for instance, a finer quantization of the video histogram space.

5 Conclusions

In this paper, a new concept of multimodal background modelling has been intro-
duced, aimed at integrating audio and video cues for a more robust and complete
scene analysis. The separate audio and video streams are modelled using a set
of adaptive Gaussian models, able to discover audio and video foregrounds. The
integration of audio and video data is obtained posing particular attention to
the concept of synchrony, represented using another set of adaptive Gaussian
models. The system is able to discover concurrent audio and video cues, which
are bound together to define audio-visual patterns. The integrated probabilistic
system is able to work on-line using only one camera and one microphone. Preli-
minary experimental results have shown that this integration permits to face
some problems of still video surveillance systems, like the FG sleeping problem.
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