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Abstract

In this paper, we investigate the problem of automatic au-
dio surveillance. This aspect of the surveillance, which ex-
tends the more investigated area of video surveillance, can
be very informative to solve many problems in real situa-
tions. Similarly to video surveillance, also in this case it is
necessary to build a background (BG) model, so that it is
immediate to discover foreground (FG) events. To this end,
we first introduce the concepts of audio BG and FG in an
automated surveillance scenario. Subsequently, we propose
a novel audio BG system able to build in real time an adap-
tive model of the audio scene BG, and to promptly detect
unexpected FG auditory events. The method is based on
the probabilistic modelling of the audio data stream using
separate sets of adaptive Gaussian mixture models, work-
ing on the audio frequency spectrum. This approach is also
characterized by the use of only one microphone and on-line
functioning, so that it can be directly used in real situations,
also to support a video surveillance system. Preliminary
results show the effectiveness of the approach to discover
different FG audio situations.

1. Introduction

Automated surveillance systems have acquired in the
pattern recognition area an increased importance in the
last years, due to their effectiveness in discovering and
classifying unexpected events in civil areas [6]. In this
context, the most important low-level analysis is the so
called background modelling, aimed at discriminating the
expected (typically visual) information, namely, the back-
ground (BG), from the unexpected objects, i.e., the fore-
ground (FG). In general, almost all of the methods work
only at the visual level, hence resulting in video BG mod-
elling schemes [9, 6]. This could be a severe limitation,
since other information modalities are easily available (e.g.,
audio), which could be effectively used as additional infor-
mation to discover unusual “activity patterns” in a scene.

In this paper, an on-line probabilistic audio BG mod-

elling approach is proposed, which utilizes the data stream
coming from only one microphone, and is adaptive to the
several audio situations, so that FG events can be easily de-
tected.

In literature, the audio surveillance problem has never
systematically investigated. Only few works have exploited
this channel, mainly based on the monitoring of the audio
intensity for BG/FG discrimination, or aimed at recogniz-
ing specific class of sounds [3]. These methods are not
adaptive to the several possible audio situations, and then
do not exploit all the potential information conveyed by the
audio channel. Other than the automated surveillance con-
text, several approaches to computational audio analysis are
present, mainly focused on the computational translation
of psychoacoustics results. One class of approaches is the
so called computational auditory scene analysis (CASA)
[1], aimed at the separation and classification of sounds
present in a specific environment. Closely related to this
field, but not so investigated, there is the computational au-
ditory scene recognition (CASR) [7, 2], aimed at overall
environment interpretation instead of analyzing the differ-
ent sound sources. Besides various psycho-acoustically ori-
ented approaches derived from these two classes, a third ap-
proach, used both in CASA and CASR contexts, tried to
fuse “blind” statistical knowledge with biologically driven
representations of the two previous fields, performing au-
dio classification and segmentation tasks [10], and source
separation [8, 4] (i.e., blind source separation). In this last
approach, many efforts are devoted in the speech process-
ing area, in which the goal is to separate the different voices
composing the audio pattern using several microphones [4]
or only one monaural sensor [8]. Some of the hypotheses of
our approach come out from this third subfield.

In our approach, a multiband frequency analysis was first
carried out to characterize the monaural audio signal, by ex-
tracting energy features from a parametric estimation of the
Power Spectral Density (PSD). For a comparative survey on
the efficiency of different acoustic features, see [7, 2]. Sub-
sequently we assume, as in [8], that the energy of the au-
dio signal along time and in different frequency bands can
transport independent information. The audio BG model is
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then obtained by modelling the energy features using a set
of adaptive mixtures of Gaussians, one for each frequency
subband. Each subband is considered as an independent
process, bringing a time-varying acoustic energy intensity,
that is classified as audio BG, i.e. as expected acoustic in-
formation, or as audio FG, so that the current audio situ-
ation is monitored. More precisely, at each time step, a
snapshot of the whole audio spectrum is considered: the
current Gaussian components of the mixtures associated to
every subband (and classified as audio FG or BG) jointly
define a particular audio event. The mixtures of Gaussians
are continuosly updated to take into account the varying sit-
uations and be aware of the different audio FG information
that may occur even in presence of a complex audio BG.
In summary, the paper introduces novel concepts related to
the audio scene analysis, discussing the involved problems,
showing potentialities and possible future directions of the
research. The key contributions of this work are: 1) the def-
inition of the novel concepts of audio BG and FG 2) the
introduction of a multiband audio BG modelling, perform-
ing an auditory scene analysis using only one microphone;
3) the implementation of these audio principles in a prob-
abilistic framework working on-line and able to deal with
complex issues in automated surveillance.
The rest of the paper is organized as follows. In Section
2, the time-adaptive mixture of Gaussians method is pre-
sented. The application of this model in the audio context is
proposed in Section 3, and preliminary experimental results
are reported in Section 4. Finally, in Section 5, conclusions
are drawn and future perspectives are envisaged.

2. The Time-Adaptive mixture of Gaussians
method

The Time-Adaptive mixture of Gaussians method, well-
know in the video surveillance context [9], aims at discov-
ering the deviance of a signal from the expected behavior
in an on-line fashion. The general method models a tempo-
ral signal with a time-adaptive mixture of Gaussians. The
probability to observe the value ����, at time �, is given by:
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��
���

����
�
�
�
���������
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where ����
� , ����� and �

���
� are the mixing coefficients, the

mean, and the standard deviation, respectively, of the �-th
Gaussian of the mixture associated to the signal at time �.
At each time step, the Gaussians in a mixture are ranked in
descending order using the ��� value. The 	 Gaussians
are evaluated as possible match against the occurring new
signal value, in which a successful match is defined as a
signal value falling within �
�� of one of the component.
If no match occurs, a new Gaussian with mean equal to the

current value, high variance, and low mixing coefficient re-
places the least probable component.

If ���� is the matched Gaussian component, the value ����

is labelled as unexpected (i.e., FG) if
�

����

����
���
� � � ,

where � is a threshold representing the minimum portion
of the data that supports the “expected behavior”. The evo-
lution of the components of the mixtures is driven by the
following equations:

����
�
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where � ��� � � for the matched Gaussian (indexed by
����), and 0 for the others;  is the adaptive rate that re-
mains fixed along time. It is worthwhile to notice that the
higher the adaptive rate, the faster the model is “adapted” to
signal (i.e., auditory scene) changes.

The � and � parameters for unmatched Gaussians remain
unchanged, but, for the matched Gaussian component ����,
we have:
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3. The audio background modelling system

The audio BG modelling system aims at extracting in-
formation from audio patterns acquired by a single micro-
phone. As considered in [8], the energy during time in dif-
ferent frequency bands can transport independent informa-
tion. Moreover, the energy based features are well suited for
recognition and classification tasks [7]. Therefore, we sub-
divide the audio signal ����, acquired at sampling frequency
��, in temporal windows of fixed length ��. For each time
interval ��� � ����� ����, a parametric estimation of the
Power Spectral Density (PSD) with the Yule-Walker Auto
Regressive method [5] is carried out, obtaining the energy
samples (in dB) ����������� � � �� 
 
 
 � � , where �� is
the frequency, expressed in Hz, �	 � ����, and the de-
sired frequency resolution determines � , directly derived
from the temporal window length ��.

Subsequently, we introduce the Subband Energy Amount
(SEA):

�
���
�
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�������� (5)

The ����
�

represents an estimation of the sum of the spec-
tral energy relative to the time interval ��������� ���� for
the �-th subband, � � �� �� 
 
 
 �� , where each ��th sub-
band �� is bounded by the interval ������ �����. As sug-
gested in [7], we use M logarithmic spaced subbands in the
range �	� �����. Then, we consider each SEA channel as a
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Gaussian process ����
� � � ��

���
� � �

���
� �. Subsequently, us-

ing the adaptive method presented in Sec. 2, we instantiate
one time-adaptive mixture of Gaussians for each SEA chan-
nel, updated with a fixed learning coefficient ��, depending
on the adaptive rate considered. At this point, we must de-
fine the concepts of expected and unexpected acoustic be-
haviors, i.e., the definition of audio BG and audio FG. In
the real world, we associate to a sound usually present in
the scene the meaning of BG, in contrast to an unexpected
sound pattern, never heard before. Therefore, we define the
probability to observe the value ����

� as:

� ��
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where ����
���, �

���
��� and ������� have the same meaning as in Eq.

1. Consequently, considering the SEA value ����
� at time

step �, and defining ���� the Gaussian component matched
for this mixture at this instant, we can identify the acoustic
energy of the subband as audio FG, if

�����
���

�
���
��� 	 �� (7)

where the threshold P, together with the audio learning rate
��, represent the specific parameters in the audio context,
for which the considerations previously made in Sec. 2 are
still valid. Finally, in order to classify different audio situa-
tions, we consider as audio event the configuration of the M
mixtures determined by the indexes of the matched compo-
nents. During time, a change in the configuration identifies
an occurrence of a further event. In the next session, we
prove that this method is able to discriminate different au-
dio events, which can be exploited in perspective also to
event recognition purposes.

4. Experimental session

In order to evaluate the proposed method, we have con-
sidered several audio sequences, taken from general out-
door and indoor surveillance situations. In all the exam-
ples, we have considered the SEA of 8 logarithmically di-
vided subbands, in the range of ��� 
����. For each subband
we have instantiated a 4-components mixture of Gaussians,
with threshold � � ��� and learning rate �� � ���	. These
parameters are discriminative for almost all the sequences
analyzed. For the sake of clarity and space limitation, we
analyze in detail two audio sequences, in an indoor and out-
door environment, respectively, and we report briefly other
two tests.
The first audio example, the Office sequence, consists in
a 	� seconds signal, sampled at 

��� Hz. The sequence

is composed by three different audio events that sequen-
tially occur: 1) BG noise situation ; 2) a talking person;
3) a falling chair while the person is talking. The signal is
therefore subdivided with windows of length� � 	s. The
proposed audio BG modelling is able to detect and separate
the different audio events (Fig. 1). The benefit of using a
mixture for each subband, rather than only one Gaussian,
is evident: in the latter case only a FG/BG discrimination
per time step is possible, while in the former more FG ac-
tivities can be identifiable, proportionally to the number of
components.

The second audio example, the Engines sequence, con-
sists in a signal of 	
 seconds length, sampled at 	� KHz.
The sequence is formed by 4 different audio events sequen-
tially composed as follows: 1) BG noise situation, 2) the
first running engine A starts, 3) the second starting engine
B overlapping with A, 4) A stops. Also in this situation, our
method is able to identify all the audio events, as depicted in
Fig. 2, due to the different matched Gaussian components
composing the involved mixtures. Two other experiments,
here briefly reported, are the Entering and the Two voices
sequences. Both the signals are sampled at 

��� Hz. In
the Entering sequence three events occur: 1) BG noise situ-
ation, 2) knocking on the door, 3) opening the door. In this
situation too, the BG model discovers correctly the events.
In the last sequence, 30 second long, two female speakers
alternatively talk. In this case, the 2 audio events are identi-
fied, but not perfectly separated, because the voice spectral
energy range is relatively narrow with respect to our original
frequency subdivision. However, changing opportunely our
spectral interval, and subdividing the interval ���	� ����KHz
in two subbands, the BG model perfectly separates the two
female voices, identifying the two different speakers. These
experiments show the good potentialities of the approach,
which is able to detect different FG activities, and, suitably
trained to monitor specific situations, can possibly classify
non-trivial audio events.

5. Conclusions

In this work, a probabilistic approach for the BG audi-
tory scene modelling is presented. The audio signal, ac-
quired by a single microphone, is managed by considering
its frequency spectrum, in particular, by subdividing it in
suitable subbands, assumed to convey independent infor-
mation about the audio events [8]. Each subband is mod-
elled by a mixture of Gaussians, which is adaptive to the
possible different BG situations, being on-line updated over
time. In this way, at each instant �, FG information is de-
tected by considering the set of subbands which show atyp-
ical behaviours. The subbands’ energies proved to be good
features for audio surveillance purposes as they are able
to characterize different audio events, ranging from speech
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Figure 1. PSD (left), and the BG model (right),
that classifies as FG (red) or BG (blue) the
SEA of each subband, defining a particular
event.

to object sounds, immersed in audio BG of different com-
plexity, considering both indoor and outdoor enviromental
sounds.

Moreover, they also show a sufficient discriminative
power to be used for the classification of the audio events.
Using an adequate classification tool, it is possible to train
the proposed system at recognizing BG/FG characteristic
situations, so providing an augmented scene understanding.
Finally, due to general overall framework, the system can be
easily integrated in video surveillance system, so to build
a multimodal surveillance system, potentially more robust
and efficient at detecting abnormal events. The above cited
ideas constitute the natural progress of the work presented
in this paper.
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