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Abstract

This paper addresses the problem of the optimal selection of the structure of a hidden Markov model. A new ap-

proach is proposed, which is able to deal with drawbacks of standard general purpose methods, like those based on the

Bayesian inference criterion, i.e., computational requirements, and sensitivity to initialization of the training proce-

dures. The basic idea is to perform ‘‘decreasing’’ learning, starting each training session from a ‘‘nearly good’’ situation,

derived from the result of the previous training session by pruning the ‘‘least probable’’ state of the model. Experiments

with real and synthetic data show that the proposed approach is more accurate in finding the optimal model, is more

effective in classification accuracy, while reducing the computational burden.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The hidden Markov model (HMMs) approach

(Rabiner, 1989) is a widely used method for

probabilistic sequence modelling. Although the

basic theory and tools were developed by Baum

et al. in the late 1960s (Baum et al., 1970; Baum,

1970), HMMs have only been extensively applied
in the last decade. Speech recognition (Rabiner,

1989), handwritten character recognition (Hu

et al., 1996), DNA and protein modelling (Hughey

and Krogh, 1996), gesture recognition (Eickeler

et al., 1998) and behavior analysis and synthesis

(Jebara and Pentland, 1999), are examples of

problems in which HMMs have been exploited.

A practical but fundamental issue to be ad-

dressed when using HMMs is the determination of

its structure, namely the topology and the number
of states. The former aspect regards the possibility

of introducing some constraints in the HMM

structure, such as forcing the presence or absence

of connections between certain states; the latter

issue is directly addressed in this paper, and con-

cerns the determination of the number of states.

Although some special purpose approaches have

been proposed (e.g. Stolcke and Omohundro, 1993;
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Brand, 1999; Bicego et al., 2001), the typical solu-

tion is to use some heuristics, or some general

purpose model selection method which is not spe-

cifically oriented to HMMs. Cross validation (CV)

(Stone, 1974) is one such method, also employed in

other context to obtain statistically reliable evalua-
tion of system performances; this method is com-

putationally heavy and does not use the available

data efficiently. In CV, the observed data is split in

two subsets: one becomes the training set, the other

is called test set (the splitting strategy depends on

the specific details of the CV technique chosen);

different models are then obtained using only the

training set (e.g., varying the model structure) and
the one showing best performance on the test set is

chosen. Other model selection methods which can

be used for HMMs include the minimum descrip-

tion length (MDL) principle (Rissanen, 1986), the

Bayesian inference criterion (BIC) (Schwarz, 1978),

and the MML criterion (Oliver et al., 1996). These

methods address the model selection problem by

training several models, with different structures,
and then choosing the one that maximizes a certain

selection criterion. These approaches perform

rather accurately, allowing an increase in per-

formance (e.g., Li et al., 2001; Raftery, 1995; and

Zimmermann and Bunke, 2001). Although these

techniques are less computationally expensive than

CV, they still involve a considerable computational

burden, since one full training is required for each
candidate model structure.

Another problem, common to all these ap-

proaches, is the local/greedy behavior of the

standard algorithm used to estimate the HMM

parameters from training data, i.e., the expecta-

tion-maximization (EM) algorithm (Dempster

et al., 1977). This learning procedure, starting

from some initial estimate, converges to the near-
est local maximum of the likelihood function.

Therefore, the initialization crucially affects the

obtained model estimate, since the likelihood

function is highly multi-modal, and this behavior

strongly affects the model order selection criteria.

A typical solution, used for discrete HMM but

deleterious for continuous HMMs, is to use several

random initializations and choose as final estimate
the one with the highest likelihood. Other clever

approaches, like preliminary clustering of coeffi-

cients, can also be used (e.g., Bicego and Murino,

submitted for publication).

In this paper a new approach is proposed,

which simultaneously addresses the two issues

mentioned above: the computational burden of

model selection, and the initialization phase. The
key idea is to use a decreasing learning strategy,

starting each training session from an informative

situation derived from the previous training phase.

More specifically, we propose a procedure which

consists in starting the model training using a large

number of states, run the estimation algorithm,

and, after convergence, evaluate the chosen model

selection criterion for that model. Then, the ‘‘least
probable’’ state is pruned, and this configuration is

taken as initial situation from which to start again

the training procedure. In this way, each training

session is started from a ‘‘nearly good’’ estimate. A

related approach has been successfully used for

Gaussian mixtures in (Figueiredo et al., 1999). The

key observation supporting this approach is that,

when the number of states is extremely large, the
initialization dependency of the estimate is much

weaker than when the number of states is close to

the optimum. Moreover, the ‘‘good’’ initialization

drastically reduces the number of iterations re-

quired by the learning algorithm, resulting in a less

computational demanding procedure. The idea of

pruning model selection was successfully employed

also in the field of Neural Networks (see Bishop,
1995 and the references herein contained). The

proposed method could be applied for all types of

HMMs, discrete, continuous, autoregressive and

so on. Moreover, it can be used with any model

selection criterion: in this paper we consider BIC

(Schwarz, 1978), and the mixture minimum de-

scription length (MMDL), a criterion proposed in

(Figueiredo et al., 1999) for Gaussian mixtures and
here extended to HMMs. It is worth noting that

although Gaussian mixtures can be considered as

(simple) special cases of HMMs, applying MMDL

and the pruning strategy to HMMs involves ad-

ditional conceptual and technical difficulties which

will be addressed in this paper.

In the experimental session, the pruning and the

normal strategy are compared in terms of accuracy
of model selection, classification performance, and

computational requirements, using both real and
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synthetic data. We show that our approach is more

accurate in finding the optimal model, more ef-

fective in classification accuracy, while exhibiting a

lower computational burden.

The rest of the paper is organized as follows.

Section 2 presents a brief introduction to HMMs,
mainly to setup the notation used throughout the

paper. In Section 3, several model selection criteria

are described, including our adaptation of the

MMDL method to HMMs. The proposed tech-

nique is described in Section 4. Experiments and

results are reported in Section 5, and, finally,

conclusions and future perspectives are addressed

in Section 6. Appendix A contains a brief review of
the concept of stationary distribution, while Ap-

pendix B contains the proof of the equivalence

between HMMs with more than one Gaussian per

state and HMMs with only one Gaussian per state,

which plays a central role in our approach.

2. Hidden Markov models

A discrete-time first-order HMM (Rabiner,

1989) is a probabilistic model that describes a

stochastic sequence O ¼ O1;O2; . . . ;OT as being an

indirect observation of an underlying (hidden)

random sequence Q ¼ Q1;Q2; . . . ;QT , where this

hidden process is Markovian, though the observed

process may not be so. A discrete HMM is for-
mally defined by the following elements:

• A set S ¼ fS1; S2; . . . ; Skg of (hidden) states.
• A transition matrix A ¼ fAij ¼ AðSi ! SjÞg, of
size k � k, where element AðSi ! SjÞP 0 is the

probability of going from state Si to state Sj:

Aij ¼ AðSi ! SjÞ
¼ P ½Qtþ1 ¼ SjjQt ¼ Si�; 16 i; j6 k ð1Þ

where Qt denotes the state occupied by the

system at time t. Since
Pk

j¼1 Aij ¼ 1, A is called
a stochastic matrix. We will consider only sta-

tionary HMMs, i.e., the transition matrix does

not depend on t.
• A set V ¼ fv1; v2; . . . ; vmg of observation sym-
bols.

• An emission matrix B ¼ fbðvjjSiÞg (of size
k � m) indicating the probability of observing
symbol vj from state Si, that is,

bðvjjSiÞ ¼ P ½Ot ¼ vjjQt ¼ Si�; 16 i6k; 16 j6m

ð2Þ

with bðvjjSiÞP 0 and, naturally,
Pm

j¼1 bðvjjSiÞ ¼
1.

• An initial state probability distribution p ¼
fpðSiÞg,
pðSiÞ ¼ P ½q1 ¼ Si�; 16 i6 k; ð3Þ

with, pðSiÞP 0, and
Pk

i¼1 pðSiÞ ¼ 1:

An HMM is completely specified by a five-tuple

k ¼ ðS; V ;A;B; pÞ and defines a joint probability
distribution on the space of hidden and observed

sequences, i.e., PðO ¼ o;Q ¼ qjkÞ.
There are three main problems involved with

using HMMs:

(1) Given the HMM k ¼ ðS; V ;A;B; pÞ, we want to
compute the marginal probability P ðO ¼ ojkÞ,
usually called the likelihood function, i.e., the

probability that an observed sequence o ¼
o1; o2; . . . ; oT (with ot 2 V , for t ¼ 1; 2; . . . ; T )
was generated by the model k. This is usually

solved by the so-called forward-backward pro-

cedure (Baum, 1970).

(2) Given k ¼ ðS; V ;A;B; pÞ, and an observed se-
quence o ¼ o1; o2; . . . ; oT , we want to deter-
mine the state sequence that most probably

generated o, that is, q̂q ¼ q̂q1; q̂q2; . . . ; q̂qT (with

16 q̂qt 6N ), such that

q̂q ¼ arg max
q

PðO ¼ o;Q ¼ qjkÞ:

This problem is solved by the Viterbi algorithm

(Forney, 1973).

(3) Given a set of L observed sequences O ¼ foðlÞg,
where 16 l6 L, and oðlÞ ¼ o1; o2; . . . ; oTl , as-
sumed to be independent samples from a com-

mon HMM k ¼ ðS; V ;A;B; pÞ, we want to
estimate k. This is usually obtained by adopt-

ing the maximum likelihood (ML) criterion,

that is,

k̂k ¼ arg max
k

P ðOjkÞ

¼ arg max
k

YL
l¼1

P ðO ¼ oðlÞjkÞ;

M. Bicego et al. / Pattern Recognition Letters 24 (2003) 1395–1407 1397



this problem is usually referred to as HMM

training. The best-known way to implement this

ML criterion is the Baum–Welch (BW) algo-

rithm (Baum et al., 1970). BW is an instance of

the well-known EM algorithm (Dempster et al.,
1977) for ML estimation with missing data

(here, the missing data is the hidden sequence q).

In many applications, V is a continuous set

(e.g., V ¼ R, or V ¼ Rd). In this case, instead of a

matrix of symbol probabilities B, for each state
Si we have an emission probability density func-
tion bðojSiÞ, for o 2 V , and of course withR
V bðojSiÞdo ¼ 1. For real (scalar or vector) ob-
servations, a very common approach is to model

bðojSiÞ as a mixture of Gaussians,

bðojSiÞ ¼
XMi

j¼1
cijN ojhij

� �
; ð4Þ

where NðojhÞ denotes a Gaussian density with
parameters (e.g., mean and covariance) h. The
observations from state Si are modelled as samples
from a Gaussian mixture with Mi components,

with cij denoting the mixture coefficient (or weight)
of the jth component in state Si. In this mixture-
based case, whose adaptation of the Baum–Welch

procedure is straightforward (Juang et al., 1986),

we let B denote the set of all the mixtures para-

meters (theMi�s, and the hij�s) and an HMM is thus
completely defined by k ¼ ðS;A; p;BÞ.

3. Model selection

A fundamental problem when using HMMs in

practical applications is the determination of the

number of states k, and/or, when using HMMs
with emission densities modelled by Gaussian

mixtures, the number of components at each state,

M1; . . . ;Mk. This is usually called the model selec-

tion problem, even if, for the sake of correctness,

model selection involves the choice of both to-

pology and number of states. However, the to-

pology often depends on the specific application

addressed, and typically fixed a priori; our method
is general, not tailored to a particular application

domain. It is well known that this problem cannot

be addressed by the ML criterion (Rissanen, 1986).

The reason lies in the fact that the models are

nested, i.e., an HMM with fewer states, or fewer

components in one or more states, can always be

seen as a particular case of a larger model. Then,

the maximized likelihood is a non-decreasing

function of the number of states and can not be
used as a model selection criterion.

In HMMs with Gaussian mixture emission

densities, there is an additional non-identifiability

issue. For example, consider an HMM with two

states, such that one of the states has a two-com-

ponent mixture emission density, and the other

state has a single-component Gaussian emission

density. It happens that this HMM is equivalent to
another one with three states characterized by sin-

gle-Gaussian emission densities. A formal proof of

equivalence between an HMM with more than one

Gaussian per state, and an HMM with more states

but only one Gaussian per state, is presented in

Appendix B. Supported by this equivalence, we will

consider only HMMs with one Gaussian compo-

nent per state, and focus only on the selection of the
number of states (which we will denote as k).
To emphasize the model selection issue, in the

sequel we will denote an HMM with k states as kk.

3.1. Bayesian inference criterion

In the so-called BIC, the maximized likelihood is

penalized by themodel complexity,measured by the

number of free parameters in kk. Let O denote the
observed data-set, and let n be the total number of
observations in O, i.e., n ¼

PL
l¼1 Tl. Under the BIC

criterion, the optimal number of states is the max-
imizer of BICðkÞ, k̂kBIC ¼ arg maxk BICðkÞ, where

BICðkÞ ¼ log pðOjk̂kkÞ 
Nk

2
logðnÞ: ð5Þ

In Eq. (5), k̂kk denotes the ML estimate of the

model with k states, and Nk is the total number of

free parameters of k̂kk.

3.2. Mixture minimum description length for HMM

To explain the rationale behind MMDL, we

start with the standard MDL criterion (Rissanen,

1986) which coincides with BIC (Eq. (5)). Notice

that in the BIC/MDL criterion, each parameter has
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equal weight in the penalty term, logðnÞ=2. In the
mixture of Gaussians case, MMDL is based on the

following observation: the parameters of the jth
component are actually estimated from the obser-

vations that were generated by that component, not

from all the observed data. Moreover, the expected
number of samples obtained from the jth compo-
nent is ncj, where cj is the probability of the jth
component. The MMDL criterion for mixtures is

then obtained by penalizing each parameter of

component j by logðncjÞ=2 (instead of the standard
logðnÞ=2), considering the quantity ncj can be seen
as an ‘‘effective sample size’’ for the jth component.
A similar reasoning can be followed in the

HMM context, but care must be taken in the

definition of the ‘‘effective sample size’’, because

here there is nothing similar to the component

probability cj. We start by decomposing Nk as

NA
k þ N p

k þ NB
k , denoting the number of parame-

ters of the transition matrix A, of the initial state
probability p, and of the emission probability

density function B, respectively. Following the
MMDL rationale, we will weight the emission

probability parameters of each state using the

‘‘effective sample size’’ corresponding to that state.

The elements of the transition matrix and of the

initial state probability vector will be weighted

with the standard logðnÞ=2, since they are esti-
mated from all the samples.

The role of ‘‘state probabilities’’ (equivalent
to c1; . . . ; ck, in the mixture case) will be played
by the stationary probability distribution p1 ¼
½p1ð1Þ; . . . ; p1ðkÞ� (see Appendix A for the details
about the computation of this probability). This

seems to be a natural choice, since p1 represents
the ‘‘average’’ occupation of each state, after the

Markov chain has achieved the stationary state.

Therefore, for an HMM with k states, the MMDL
cost function will be

MMDLðkÞ ¼ log pðOjk̂kkÞ 
NA

k þ N p
k

2
logðnÞ

 NB
1

2

Xk
m¼1

logðnp1ðmÞÞ;

where NB
1 is the number of parameters of the

emission density of an HMM with just one state.

Finally, notice that A has kðk  1Þ free parameters,

p has ðk  1Þ free parameters, and NB
1 ¼ d þ

dðd þ 1Þ=2, if we assume a full covariance matrix
for each component and d-dimensional observa-
tions. Accordingly, after dropping all terms that

do not depend on k,

MMDLðkÞ ¼ log pðOjk̂kkÞ 
k2

2
logðnÞ

 d2 þ 3d
4

Xk
m¼1

logðnp1ðmÞÞ: ð6Þ

Notice that p1 ¼ ½p1ð1Þ; . . . ; p1ðkÞ� is a function
of k̂kk via the estimate of the transition matrix (see

Appendix A).

4. The sequential state pruning strategy

The strategy is summarized as follows:

(1) Choose some model selection criterion, such as

BIC/MDL (Eq. (5)), or MMDL (Eq. (6)); set

kmin and kmax, which are the minimum and
maximum number of states allowed.

(2) Initialize the HMM estimation algorithm with

kmax states using some standard heuristic (e.g.,
randomly, or using clustering). Let us denote

as kIk the initial model used in the training pro-

cedure for the HMM with k states.
(3) While k P kmin, do:

(a) run the Baum–Welch algorithm until some
convergence criterion is met, let k̂kk be the

set of estimated parameters;

(b) compute and store the value of the model

selection criterion; let this be denoted as Ck;

(c) find the least probable state (i.e., the small-

est element of p1);
(d) prune the least probable state and deleting

the corresponding elements from A, B, ob-
taining a reduced model �kk;

(e) set kIk1  �kk, and k  k  1.
(4) The final chosen model, k�, is the one yielding

the maximum of the selection criterion. For-

mally:

k� ¼ k̂kk� ; where k� ¼ arg max
k

Ck:

The computational overhead introduced by this
procedure is due mostly to the computation of p1,
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involving the computation of eigenvalues of A.
However, this is computed only once for each k, at
the end of the Baum–Welch training session. For

the MMDL approach, there is actually no com-

putational overhead, since p1 is also needed when
evaluating the selection criterion (Eq. (6)).

5. Testing

To assess the performance of the proposed ap-

proach, we have performed tests in which we

compare two strategies:

• Standard BIC (or MMDL) method: we train

one HMM for each k (number of states), with
k varying from kmax to kmin. Each learning ses-
sion (Baum–Welch algorithm) is initialized

using a Gaussian mixture model, which is better

than the usual random initilization. Each learn-

ing session is stopped when the relative increase

of the likelihood function falls below a thresh-
old. For each k, we compute and store the
BIC (or MMDL) value, and, finally, we choose

the model yielding the best value.

• Pruning BIC (or MMDL) method: as described

in Section 4.

In all the HMMs considered in this paper, the

emission probability density of each state is a single
univariate Gaussian. The two strategies are com-

pared in terms of (1) accuracy of the model size es-

timation, (2) total computational cost (total number

of iterations) required by Baum–Welch procedure,

and (3) classification accuracy on three recognition

tasks (one synthetic and two real data problems).

5.1. Accuracy of model selection

We have tested our procedure on three different

problems. For each one, the test set contains 5

sequences, each 400 observations long, syntheti-

cally generated from a known HMM. To increase

statistical significance, all experiments were re-

peated 50 times. We set kmin and kmax to 2 and 10,
respectively.
The first model is shown in Fig. 1(a): A is the

transition matrix, p is the initial state probability,

and l and r are the means and variances of the

Gaussian emission densities of each state. This is a

relatively simple model, where Gaussians of dif-

ferent states are very well separated. The results (in

Table 1(panel a)) show that, regarding accuracy

in the selection of the true k, all model selec-
tion procedures perform perfectly. Regarding the

computational requirements, the pruning strategy

is less demanding, requiring about the 77% of the

number of Baum–Welch iterations of the normal

procedure. The second model is more challenging,

since two of the emission Gaussians overlap:

common mean but different variances (see Fig.

1(b)). Also in this case, there is no difference be-
tween BIC and MMDL, but there is a great dif-

ference between the two training strategies. In

Table 1(panel b), the accuracies are reported,

showing that the pruning methodology performs

perfectly, with 100% accuracy, whereas the accu-

racy is 54% for the standard algorithm. Nearly one

half of the models selected with the normal strat-

egy have a wrong number of states (typically too
many). This is confirmed in Fig. 2(a), where his-

tograms of the selected numbers of states are

shown. Also in this case, the average number of

iterations required by the pruning method is sig-

nificantly lower.

The third model is obtained from the second

one by changing the transition matrix (see Fig.

1(c)). From Table 1(panel c) and Fig. 2(b), it is
clear that, also in this example, the pruning strat-

egy performs better, with a nearly perfect accu-

racy, versus about 86% for the standard method.

The average number of iterations required by the

pruning strategy is 52.7% of that required by the

normal procedure.

5.2. Classification accuracy

We now study the performances of the pro-

posed method in terms of classification accuracy

on recognition tasks, using both synthetic and real

data.

5.2.1. Synthetic data

In order to test the classification accuracy of the
two methods, we have used the following testing

procedure.
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Table 1

Results on synthetic data

Selection accuracy Average iterations

(a) First experiment

Standard BIC 50/50 (100%) 110

Standard MMDL 50/50 (100%) 110

Pruning BIC 50/50 (100%) 84

Pruning MMDL 50/50 (100%) 84

(b) Second experiment

Standard BIC 27/50 (54%) 175

Standard MMDL 27/50 (54%) 175

Pruning BIC 50/50 (100%) 103

Pruning MMDL 50/50 (100%) 103

(c) Third experiment

Standard BIC 43/50 (86%) 186

Standard MMDL 43/50 (86%) 186

Pruning BIC 49/50 (98%) 98

Pruning MMDL 49/50 (98%) 98

Fig. 1. Three models for the synthetic data test: A is the transition matrix, p is the initial state probability, l and r the parameters of

the emission density.
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• Two training sets are generated, according to

two models, each corresponding to one of two

different classes.

• Two HMMs, one for each class, are trained

using both methods (pruning and standard) and
both model selection criteria (BIC andMMDL).

• Two test sets from the same true models are

then generated.

• The classification accuracy using these test sets

(a sequence is assigned to the class whose model

has the highest likelihood), are finally estimated.

For each model, the training set contained 5
sequences of length 400. The test set was composed

by 20 sequences, 10 from the first class and 10

from the second. To increase statistical signifi-

cance, experiments were repeated 25 times. As

before, kmin ¼ 2 and kmax ¼ 10.
In the first experiment, the HMM models used

for each class are those shown in Fig. 1(b) and (c),

only differing in the transition matrix A. The ex-
perimental results are shown in Table 2(panel a).

Both techniques perform perfectly, with the

pruning method requiring fewer Baum–Welch

iterations.

The second classification task considered was a

very difficult one: the first model is the one shown

in Fig. 1(b), the second one is almost the same, the

only difference being the variance of the Gaussian
of the first state: 0.4 instead of 0.2. The two

HMMs are quite similar, but, as we can see in

Table 2(panel b), the classification performance is

very good. More in detail, the pruning strategy is

better, with an accuracy of 98%, i.e., 6% above

that of the standard procedure. In this case, the
effectiveness of the learning is crucial for the cor-

rect discrimination. Moreover, the number of

iterations required in the training phase is reduced

for the pruning method, nearly 65% of the stan-

dard method.

5.2.2. Real data

Finally, we have conducted two classification
experiments with real data. The first one involves a

2D shape recognition problem, using HMMs as

described in (Bicego and Murino, submitted for

publication). The second is a face recognition ex-

periment, using HMMs as proposed in (Kohir and

Desai, 1998).

The 2D shape recognition test is performed on

the data set described in (Sebastian et al., 2001),
which has four classes, each containing 12 different

shapes. An object from each class is shown in Fig.

3. Just as in the synthetic experiments above re-

ported, the pruning method performs better on

this real-data problem (see Table 3), and involves a

smaller computational burden. The classification

accuracies reported are computed using the leave-

one-out method, and experiments were repeated
10 times to increase the statistical significance.

Fig. 2. Histograms of the selected number of states for the standard and the pruning strategies; the correct number of states is 4. (a)

Second and (b) third experiments.
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Face recognition was recently addressed using
HMMs (e.g., Samaria, 1994; Achermann and

Bunke, 1996; Kohir and Desai, 1998; Nefian and

Hayes, 1998; Eickeler et al., 2000). In particular,

techniques proposed in (Kohir and Desai, 1998)

and (Eickeler et al., 2000) outperform all other

methods available in the literature on a standard

database, like ORL (Olivetti Research Ltd.). Here

we use the method proposed in (Kohir and Desai,
1998), that considers discrete cosine transform

(DCT) coefficients as features. Given a sequence of

sub images of the face image, the DCT coefficients

of each sub image are computed, and vectorized

using a zig-zag scan. The number of coefficients

chosen determines the dimensionality of the ob-

servation, and 10 coefficients are used in our ex-

periment. The sequence of sub images is obtained
by sliding over the face image a square fixed size

window, in a raster scan fashion, with a predefined

overlap. The window size and the overlap ratio

were fixed respectively to 16% and 50%. The ex-

periments have been conducted on the ORL data-

base, 1 which consists in 40 subjects with 10 faces

each. For each subject, five faces were used for
training and the others for testing. The results,

shown in Table 4, were obtained by repeating the

experiments 25 times and averaging the results.

Results are very satisfactory: the classification ac-

curacies are similar, but our method reduces sub-

stantially the number of the iterations required.

A general consideration could be done looking

at the standard deviations presented in all results
tables: performances of the proposed approach are

more stable, as the corresponding standard devi-

ations are lower than those obtained with standard

techniques. This confirms the fact that with our

method the initialization is better addressed, re-

sulting in a more stable and initialization-inde-

pendent training process.

5.3. Comparison between BIC and MMDL criter-

ions

In all synthetic experiments, the BIC and

MMDL criteria chose the same topology, leading

to the same model selection accuracy. Neverthe-

less, in the real-data case, the MMDL criterion

slightly outperforms BIC in the resulting classifi-
cation accuracy, showing that, as claimed in

(Figueiredo et al., 1999), in some cases this crite-

rion is better able to select a better model struc-

ture. In this paper, we have not focused on the

comparison between BIC and MMDL for HMMS

in more difficult situations; we will present such a

comparison in a forthcoming paper.

Table 2

Classification accuracy on synthetic data

Classification accuracy Average iterations

Mean Standard deviation

(a) First experiment

Normal BIC 20/20 (100%) 0/20 110

Normal MMDL 20/20 (100%) 0/20 110

Pruning BIC 20/20 (100%) 0/20 84

Pruning MMDL 20/20 (100%) 0/20 84

(b) Second experiment

Normal BIC 18.44/20 (92.2%) 2.31/20 163

Normal MMDL 18.44/20 (92.2%) 2.31/20 163

Pruning BIC 19.60/20 (98.0%) 0.76/20 107

Pruning MMDL 19.60/20 (98.0%) 0.76/20 107

1 Downloadable from http://www.uk.research.

att.com/facedatabase.html.

Fig. 3. Examples of shapes from database used.
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6. Conclusions

In this paper, a new approach to the optimal
selection of the structure of a HMM is proposed.

The key idea is to perform a decreasing learning

strategy, starting each training session from a

‘‘nearly good’’ configuration, derived from previ-

ous training by pruning the ‘‘least probable’’ state.

The proposed strategy can be applied for all types

of HMMs and can be used with any model selec-

tion criterion. In this work, we have considered the
BIC, and we have adapted the MMDL criterion to

the HMM case. Experimental results show that

our approach is more accurate in finding the true

model, is more effective in classification accuracy,

while having reduced computational requirements.

Moreover, the performances of the proposed ap-

proach are more stable, as the corresponding

standard deviations are lower than those obtained
with standard techniques. This confirms the fact

that with our method the initialization is better

addressed, resulting in a more stable and initial-

ization-independent training process.

Appendix A. Stationary probability distribution P‘

Consider the Markov chain Q ¼ Q1;Q2;Q3; . . .
with state set S ¼ fS1; . . . ; Skg, stochastic transition

matrix A, and initial state probability p. We can

define the vector of state probabilities at time t as

pt ¼ ½ptð1Þ; . . . ; ptðjÞ; . . . ; ptðkÞ�
¼ ½PðQt ¼ S1Þ; P ðQt ¼ S2Þ; . . . ; P ðQt ¼ SkÞ�:

Of course, pt can be computed recursively from
p1 ¼ pA, p2 ¼ p1A ¼ pAA, and so on. That is

pt ¼ pAt.

We are interested in p1, which characterizes the
equilibrium behavior of the Markov chain, i.e.,
when we let it evolve indefinitely. Since it is a

stationary distribution, p1 has to be a solution of
p1 ¼ p1A, or, in other words, it has to be a left
eigenvector of A associated with the unit eigen-

value. Under some conditions (see, e.g., Br�eemaud
(1999), for details), the Perron–Frobenius theorem

states that matrix A has a unit (left) eigenvalue and
the corresponding left eigenvector is p1. All other
eigenvalues of A are strictly less than 1, in absolute
value. Finding p1 for a given A then amounts to
solving the corresponding eigenvalue/eigenvector

problem.

Appendix B. Equivalence between Gaussian HMMs

In this appendix, we show that, given an HMM

k with k states, where the emission probability of
each state Si is a mixture of (univariate or multi-

Table 3

Classification accuracy on real data considering 2D shape classification

Classification accuracy Average iterations

Mean Standard deviation

Normal BIC 44.4/48 (92.5%) 1.26/48 94.1

Normal MMDL 45.3/48 (94.37%) 0.95/48 94.1

Pruning BIC 45.7/48 (95.21%) 0.48/48 76.6

Pruning MMDL 45.7/48 (95.21%) 0.67/48 76.6

Table 4

Classification accuracy on real data: face recognition

Classification accuracy Average iterations

Mean Standard deviation

Normal BIC 195/200 (97.5%) 1.54/200 86.2

Normal MMDL 195/200 (97.5%) 1.54/200 86.2

Pruning BIC 195.26/200 (97.63%) 0.95/200 51.4

Pruning MMDL 195.26/200 (97.63%) 0.95/200 51.4
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variate) Gaussians, each Gaussian having para-

meters him,

bðojSiÞ ¼
XMi

m¼1
cimNðojhimÞ; ðB:1Þ

then there is another HMM k0 with k0 ¼
Pk

i¼1Mi

states, with only one Gaussian for state, that is

equivalent to k. Here, equivalence is understood in
a likelihood sense, that is, PðojkÞ ¼ P ðojk0Þ, for any
sequence o ¼ o1; o2; . . . ; oT .
First we will describe how model k0 is built;

subsequently we will show that the two models are

equivalent. Given k ¼ ðS;A; p;BÞ, the equivalent
model k0 ¼ ðS0;A0; p0;B0Þ is defined as follows:

• New states: we split each state Si into Mi states,
one for each of the Mi Gaussians of the mixture

of Si. Thus we obtain k0 ¼
Pk

i¼1Mi states and

S0 ¼ fS01; . . . ; S0k0 g
¼ fS011; . . . ; S01M1 ; S

0
21; . . . ; S

0
2M2

; S031; . . . ; S
0
kMk
g;
ðB:2Þ

where we have introduced the double index
notation in which S0im corresponds to the mth
Gaussian of the original state Si.

• Emission probabilities: naturally, the emission

probability of state S0im is the corresponding

Gaussian

b0ðojS0imÞ ¼NðojhimÞ: ðB:3Þ
• State transition probability: using the double

index notation, where

A0ik;jm ¼ PðQtþ1 ¼ S0jmjQt ¼ S0ikÞ; ðB:4Þ

denotes the probability of going from state S0ik
to state S0jm, we set

A0ik;jm ¼ Aijcjm; ðB:5Þ

where cjm is the mixing weight of the mth com-
ponent from the original state Sj. Notice that
A0ik;jm does not depend on k and that, as required,X
jm

A0ik;jm ¼
Xk
j¼1

XMj

m¼1
A0ik;jm ¼

Xk
j¼1

Aij

XMj

m¼1
cjm ¼ 1:

• Initial state probability: similarly to the previous

definition, we set

p0ðS0jmÞ ¼ pðSjÞcjm ðB:6Þ

which is also clearly normalized.

The proof of the equivalence between the two

HMMs uses the forward–backward procedure

(see, e.g., Rabiner, 1989), the standard tech-

nique for computing P ðojkÞ. This technique is
based on the forward variables atðSiÞ, defined as
atðSiÞ ¼ P ðo1; . . . ; ot; qt ¼ SijkÞ; ðB:7Þ

which are iteratively computed according to

a1ðSiÞ ¼ pðSiÞbðo1jSiÞ; ðB:8Þ

atþ1ðSiÞ ¼ bðotþ1jSiÞ
Xk
j¼1

atðSjÞAji: ðB:9Þ

Given the sequence o ¼ o1; . . . ; oT , P ðojkÞ is
computed by marginalization,

PðojkÞ ¼
Xk
i¼1

Pðo1; . . . ; oT ;QT ¼ SijkÞ ¼
Xk
i¼1

aT ðSiÞ:

ðB:10Þ

With the goal of showing that P ðojkÞ ¼ Pðojk0Þ,
let us rewrite P ðojk0Þ as

P ðojk0Þ ¼
Xk0
i¼1

aT ðS0iÞ ¼
Xk
i¼1

XMi

m¼1
aT ðS0imÞ; ðB:11Þ

that is, using the double index notation intro-

duced in (B.2). Let us also define

a0T ðSiÞ ¼
XMi

m¼1
aT ðS0imÞ: ðB:12Þ

Clearly, if we show that, for i ¼ 1; . . . ; k,

aT ðSiÞ ¼ a0T ðSiÞ ðB:13Þ

then, we will be able to conclude, as desired, that

Xk
i¼1

aT ðSiÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
PðojkÞ

¼
Xk
i¼1

a0T ðSiÞ ¼
Xk
i¼1

XMi

m¼1
aT ðS0imÞ

¼
Xk0
i¼1

aT ðS0iÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Pðojk0Þ

:
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We will now show (B.13) by induction on the

length T of the sequence o.

• We start with T ¼ 1. From (B.8), we know that
a1ðSiÞ ¼ pðSiÞbðo1jSiÞ

¼ pðSiÞ
XMi

m¼1
cimNðo1jhimÞ: ðB:14Þ

Now, we can also write

a01ðSiÞ ¼
XMi

m¼1
a1ðS0imÞ ¼

XMi

m¼1
p0ðS0imÞNðo1jhimÞ

¼
XMi

m¼1
pðSiÞcimNðo1jhimÞ

¼ pðSiÞ
XMi

m¼1
cimNðo1jhimÞ;

where the first equality is (B.12), the second one

is (B.8), the third results from the definitions of

the model k0 (B.3) and (B.6). Then we have
shown that a1ðSiÞ � a01ðSiÞ.

• To show the recursion, we have to prove that

aT ðSiÞ ¼ a0T ðSiÞ ) aTþ1ðSiÞ ¼ a0Tþ1ðSiÞ: ðB:15Þ

Invoking (B.9), we can write

aTþ1ðSiÞ¼
Xk
j¼1

aT ðSjÞAji

" # XMi

m¼1
cimNðoTþ1jhimÞ

 !
:

ðB:16Þ
Also, by using (B.12), and again (B.9), we have

a0Tþ1ðSiÞ ¼
XMi

m¼1
aTþ1ðS0imÞ

¼
XMi

m¼1

Xk
j¼1

XM‘

‘¼1
aT ðS0j‘ÞAj‘;imNðoTþ1jhimÞ

¼
XMi

m¼1

Xk
j¼1

XM‘

‘¼1
aT ðS0j‘ÞcimAjiNðoTþ1jhimÞ

¼
XMi

m¼1
cimNðoTþ1jhimÞ

Xk
j¼1

Aji

XM‘

‘¼1
aT ðS0j‘Þ

¼
XMi

m¼1
cimNðoTþ1jhimÞ

 !Xk
j¼1

Ajia
0
T ðSjÞ;

ðB:17Þ

where the third equality results from (B.5), and

the last one from (B.12). Finally, comparing

(B.17) with (B.16) clearly shows that the im-

plication in (B.15) is true.

This concludes our proof that PðojkÞ ¼ P ðojk0Þ.
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