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Abstract. In this paper, a novel general purpose clustering algorithm
is presented, based on the watershed algorithm. The proposed approach
defines a density function on a suitable lattice, whose cell dimension
is carefully estimated from the data. The clustering is then performed
using the well-known watershed algorithm, paying particular attention
to the boundary situations. The main characteristic of this method is
the capability to determine automatically the number of clusters from
the data, resulting in a completely unsupervised approach. Experimental
evaluation on synthetic data shows that the proposed approach is able
to accurately estimate the number of the classes and to cluster data
effectively.

1 Introduction

Unsupervised classification or clustering [1, 2] is undoubtedly an interesting and
challenging research area. It could be defined as the organization of a collection
of patterns into groups, based on similarity. It is well known that data clustering
is inherently a more difficult task if compared to supervised classification, in
which classes are already identified, so that a system can be adequately trained.
Clustering has been applied in several contexts, as, for example, data mining,
DNA modeling, information retrieval, image segmentation, signal compression
and coding, and machine learning. Hundreds of clustering algorithms have been
proposed in the literature, mostly divided in two categories: iterative partitional
and agglomerative hierarchical techniques. The former attempts to obtain a par-
tition of data that minimizes the within-cluster scatter or the between-scatter
matrix. The latter organizes the data in a nested sequence of groups organized
in a dendrogram which is cut at the chosen depth level in order to obtain the
desired number of clusters.

In this paper, a novel clustering scheme is proposed, based on the water-
shed segmentation algorithm [3, 4] also called watershed transform. This is an
effective and accurate method originally conceived in the Mathematical Mor-
phology (MM) field [5] and widely employed in recent years for intensity image
segmentation, and video segmentation [6, 7]. The watershed algorithm has also
been used in the clustering context, in order to cluster histograms with the aim
of color segmentation [8]. The key idea is to consider the gray level picture as
a topographic relief, in which to actuate an immersion process.
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In this paper the use of watershed for general clustering purposes is inves-
tigated. From the clustering point of view, watershed presents some appealing
characteristics: first, it is accurate, as the obtained image segmentation is typ-
ically highly informative. Second, and most important, it is an unsupervised
method, as the number of clusters does not have to be determined a priori.
Other techniques, like the K-means or the agglomerative hierarchical family of
methods, require the number of clusters to be fixed a priori, or to be detected
using index like the Davies-Bouldin criterion [9] or some model selection analy-
sis. Another appealing characteristic of the watershed algorithm is that it could
be easily extended to deal with n-dimensional spaces [4].

The watershed algorithm is defined over a discrete topological space, where
a function defining the “height” of each point should be given. In the case of
images, this function is the color intensity of each pixel, but in the clustering
context there is no natural choice, and this function should be carefully defined.

In our approach, this function is derived by dividing the space in a set of cells,
each of fixed dimension. The height of each cell represents the density of points
in that cell, i.e. the number of points belonging to the cell. Clearly, the size of
the cell is crucial: if too small it could lead to over-segmentation, a too large
size could cause a coarse segmentation. In this paper, this problem is carefully
addressed, by devising an automatic way for determining the cell size from data.

Preliminary experimental evaluation on synthetic data shows that the pro-
posed approach is quite accurate in discovering the real structure of the data,
detecting automatically the number of clusters and their composition.

The rest of the paper is organized as follows. In Section 2 the fundamentals
of the watershed algorithms are summarized, and the whole strategy is detailed
in Section 3. Section 4 presents experimental evaluation of the proposed method,
and in Section 5 conclusions are drawn and future perspectives are investigated.

2 The Watershed Algorithm

In the field of image processing and more particularly in Mathematical Mor-
phology (MM) [5], gray-scale pictures could be considered as topographic reliefs,
in which the numerical value of each pixel of a given image I represents the
elevation at that point. In such a context, the image segmentation could be ob-
tained by the watershed transform, a technique originally proposed by Digabel
and Lantuejoul [10]. The intuitive idea under this segmentation method is the
following: imagine that the image-landscape I is immersed in a lake, with holes
pierced in local minima. Basins (also called “catchment basins”) will be filled up
with water starting at these local minima, and, at points where water coming
from different basins meet, dams are built. When the water level has reached the
highest peak in the landscape, the process is stopped. As a result, the landscape
is partitioned into regions or basins separated by dams, called watershed lines or
simply watersheds. For the sake of clarity, we will use the expression “watershed
transform” to denote a labeling of the topographic space, such that all points of
a given catchment basin have the same unique label, and a special label, distinct
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from all the other labels of the catchment basins, is assigned to all point of the
watershed.

Many sequential algorithms have been developed to compute watershed
transform (see [11] for a critical review). They can mainly be divided into two
classes: the first one is based on the algorithm proposed by Vincent and Soille
in [4]; the second one is based on distance functions, and was firstly proposed by
Meyer [12]. For our clustering purpose, we prefer the first approach, that is very
general: its adaptation to any kind of underlying grid (4-, 6-, 8-connectivity) is
straightforward, and it can be easily extended to n-dimensional spaces.

The following subsections present the watershed algorithm, following a defi-
nition that is know in literature as algorithmic definition.

2.1 Definitions

Let I be the topographic space, 2D for simplicity, whose definition domain is
denoted Di ⊂ Z2. I is supposed to take discrete values in a given range [0, N ],
N ∈ N . Let G ⊂ Z2 × Z2 denote an underlying digital grid, in 8-connectivity
for example. We could define the following entities:

Definition 1. A path P of length l between two points p and q in G is a (l +
1)-tuple of points (p0, p1, . . . , pl−1, pl) such that p0 = p, pl = q, and ∀i ∈
[1, l], (pi−1, pi) ∈ G. We will define l(P ) the length of a given path P, NG(p) =
{p′ ∈ Z2, (p, p′) ∈ G} the neighbors of a point p, with respect to G.

Definition 2. A minimum M of I at altitude h is a connected plateau of points
of height h from which it is impossible to reach a lower height point without
having to climb:

∀p ∈ M, ∀q /∈ M, such that I(q) ≤ I(p),
∀P = (p0, p1, . . . , pl) such that p0 = p and pl = q,

∃i ∈ [1, l] such that I(pi) > I(p0). (1)

Definition 3. The geodesic distance dA(x, y) between two points x and y in A
(set of points simply connected in G) is the minimum length of the paths which
join x and y that are totally included in A:

dA(x, y) = inf{l(P ), P path between x and y which is totally included in A}.
(2)

Let B ⊂ A made of several connected components B1, B2, . . . , Bk.

Definition 4. The geodesic influence zone izA(Bi) of a connected component Bi

of B in A is formed by those points in A whose geodesic distance to Bi is smaller
than their geodesic distance to any other component of B:

izA(Bi) = {p ∈ A, ∀j ∈ [1, k]/{i}, dA(p,Bi) < dA(p,Bj)}. (3)
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The points of A not belonging to any geodesic influence zone form the skeleton
by influence zones (SKIZ) of B inside A:

SKIZA(B) = A/IZA(B) with IZA(B) =
⋃

i∈[1;k]

izA(Bi). (4)

2.2 The Watershed Transform

To reproduce the immersion procedure described above, we start from the
set Thmin(I) = {p ∈ DI , I(p) ≤ hmin} of the points first reached by the wa-
ter. These points constitute the starting set of our recursion. Thus, we set

Xhmin = Thmin(I). (5)

Xhmin is composed by the points of I which belong to the minima of lowest
altitude. Let us now consider the threshold of I at level hmin+1, i.e., Thmin+1(I).
Now, if Y is one of the connected components of Thmin+1(I), there are three
possible relations of inclusion between Y and Y ∪Xhmin :

1. Y ∪Xhmin = ∅: Y is a new minimum of I. Indeed, according to the definitions
above, Y is a plateau at level hmin + 1, since:

∀p ∈ Y

{
p /∈ Xhmin ⇒ I(p) ≥ hmin + 1

p ∈ Y ⇒ I(p) ≤ hmin + 1 (6)

Moreover, all the surrounding points do not belong to Thmin+1(I) and have
a function value strictly greater than hmin + 1. The minimum discovered
is ”pierced”, hence, its corresponding catchment basin will be progressively
filled up with water.

2. Y ∪ Xhmin �= ∅ and is connected: in this case Y corresponds exactly to
the pixels belonging to the catchment basin associated with the minimum
Y ∪Xhmin and having a gray level lower than or equal to hmin + 1:

Y = Chmin+1(Y ∪Xhmin). (7)

where C(M) is the catchment basin associated with a minimum M ,
and Ch(M) is the subset of this catchment basin made of points having
an altitude smaller or equal to h:

Ch(M) = {p ∈ C(M), I(p) ≤ h} = C(M) ∪ Th(I) (8)

3. Y ∪Xhmin �= ∅ and is not connected: we therefore notice that Y contains dif-
ferent minima of I. Denote (Z1, Z2, . . . , Zk) these minima. In this situation,
the best possible choice for Chmin+1(Zi) is given by the geodesic influence
zone of Zi inside Y :

Chmin+1(Zi) = izY (Zi). (9)
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Since all possibilities have been discussed, we take as second set of our recursion:

Xhmin+1 = min
hmin+1

∪IZThmin+1(I)(Xhmin). (10)

This relation holds for all levels h, and finally, we obtain the following definition:

Definition 5. (Catchment basins and watershed by immersion): the set of the
catchment basins of the function I is equal to the set Xhmax obtained after the
following recursion:

a)Xhmin = Thmin(I), b)∀h ∈ [hmin, hmax−1], Xhmin+1 = minh+1∪IZTh+1(I)(Xh)
(11)

The watershed of I corresponds to the complement of this set in DI ,i.e. to the
set of the points of DI that do not belong to any catchment basin.

Our watershed algorithm is based on the above definitions, and is thoroughly
described in [4]. We consider the subsequent height levels of the topographic
space examined, and compute the geodesic influence zones on the basis of the
labeling of the previous level.

The watershed algorithm is realized in two steps: the first consists in an ini-
tial sorting in increasing order of the values of the pixels. In the second step,
the flooding phase, the geodesic influence zones are computed by performing a
breadth-first scanning of each height level. Suppose the flooding of the catch-
ment basins has been done up to a given level h. Each catchment basin already
discovered is supposed to have a unique label. Starting from the pixels that have
at least one neighbor already labeled, we compute the geodesic influence zone
in order to extend the labeled catchment basins. After this step, only the min-
ima at level h + 1 have not been reached (they are not connected to any of the
already labeled catchment basin). Therefore, a second scanning of the pixels at
level h + 1 is necessary to detect and to label the new minima. This procedure
stops when the highest pixel has been examined.

3 The Proposed Strategy

In this section, the proposed strategy is detailed. The first goal is to obtain
a height function from data, in order to transform the feature space into the
topographic space. To this end, the problem space is divided into cells of
fixed squared size, and a function is defined over these cells. More formally,
given a set of D-dimensional samples Y = y1,y2, ...,yN , where each sample is
yi = yi,1, yi,2, ...yi,D, the discretization process defines a lattice R on this D-
dimensional space. The origin O of this lattice is the minimum over all dimen-
sions, i.e.

O = [min
n

yn,1,min
n

yn,2, ...,min
n

yn,D] (12)
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A diagonal transformation is then performed, which stretches the scale of the
axes of the data space in order to standardize the range of each feature, such
that

∀d max
n

y′n,d − min
n

y′n,d ≡ k (13)

where {y′n,d} are the points in the transformed space. The constant k represents
the maximum dimension width of the feature space, i.e.

k = max
d

(
max

n
y′n,d − min

n
y′n,d

)
(14)

In this way we could define the cells as D-dimensional hypercubes of fixed size
$R. Let us denote the cell in the position i = (i1, ..., iD) as R(i) = R(i1, ..., iD).
Obviously, the choice of the parameter $R is critical. Before addressing the prob-
lem of calculating $R, let us define the function I used for watershed clustering.

Once fixed $R, we have a discrete-lattice of
(

k
�R

)D

cells, describing the fea-
ture space. The height function is then defined on this lattice: the value of the
function in a cell is the number of points belonging to that cell. In other words,
the function value in one cell measures the density of points in that part of the
problem space. More formally, the function I(R(i)) is defined as follows:

I(R(i)) =
∑

yn∈Y
χR(i)(yn) (15)

where χ is the characteristic function of the set R(i), defined as

χR(i)(yn) =
{

1 if yn ∈ R(i)
0 otherwise (16)

This function reflects the density properties of the clustering space: assuming
that similar points (i.e. points that belong to the same cluster) are near in
the feature space this function assumes high values in proximity of parts of the
space where several similar points are present, while in the boundary (low density
parts) assumes low values. By inverting all the values of this function, all the
highest values are considered as local minima, from which the recursive process
of the watershed transform can adequately start.

Let us now come back to the determination of the cell size $R. This repre-
sents obviously a crucial choice. If the cell is too small, this could results in a non
informative representation, and the watershed algorithm will tend to produce an
over-segmentation. On the other side, a too large value could lead to a coarse
clustering; if the cell contains points too much far apart, the boundary could not
be easily estimated, resulting in a quite rough separation between clusters. In
our approach, the dimension of the cell is estimated by making a direct usage
of the data. A good compromise between over-segmentation and rough cluster-
ing could be obtained by linking the choice of the $R parameter to the median
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Fig. 1. Synthetic generated data, for a 4 clusters problem with a variance equal
to 1

of the pairwise distances between all points. In particular, we compute all dis-
tances d(yi,yj) (∀i, j ∈ 1..N), then we extract the median value and fix the $R
parameter to

$R =
median(d(yi,yj))

m
(17)

where m is a constant that has been experimentally fixed to 4, for all evaluated
data sets . The use of the median, instead of the mean, allows to gain robustness
against outliers. After defining the height function, the clustering is obtained ap-
plying to the lattice R the watershed algorithm described in Section 2. A problem
that occurs is represented by the watersheds, i.e. the lines that divides the clus-
ters. In our case, each watershed has width equal to one cell: the points in the
cell are unlabeled, and have to be assigned to some clusters. To this end we use
the following procedure. Starting from the consideration that each line divides
only near clusters, we could decide to which of the near groups each point in the
watershed belongs. In order to do that, we simply perform a new clustering on
the watershed points, using the standard K-means algorithm. This clustering is
really fast and quite accurate, since the watershed cells contain only few points,
and the number of clusters is known (number of neighbors). After performing the
sub-clustering, each mini-cluster is assigned to the nearest maxi-cluster, identi-
fied by determining the distance from the centroid of the nearest cells. By the
use of this algorithm, the clustering boundaries are refined, and results are more
accurate.
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4 Experimental Evaluation

In this section, the proposed clustering method is tested, in order to assess
its validity in synthetic cases. The following examples have been chosen to get
some insight into the behavior of the watershed transform in the context of
cluster analysis and to demonstrate the interest of this approach to pattern
classification. The proposed approach is compared to the standard K-means
algorithm [1, 13]: this approach finds the optimal partition by evaluating, at
each iteration, the distance between each item and each cluster descriptor, and
by assigning it to the nearest class. At each step, the descriptor of each cluster is
re-evaluated by averaging its cluster items. The system stops when no changes
are produced in the clustering. In the K-means algorithm, the number of clusters
should be decided a priori.

We present results obtained on different synthetic problems, varying the dif-
ficulty of the task and the number of the clusters. Fixed K the number of clus-
ters, synthetic data are generated according to a K 2D Gaussians N (µi, σ

2), i =
1 . . . ,K, sharing the same common variance. The means are randomly placed in
the space, drawn from an uniform distribution in the interval [−5, 5], [−5, 5]. We
vary the variance of the Gaussians in order to drive the difficulty of the prob-
lem: the higher the variance, the more overlapped the clusters, implying a more
difficult task. For each Gaussian 200 elements have been drawn. An example of

Table 1. Clustering accuracies (means and standard deviations) for the syn-
thetic experiment: (a) 2 clusters; (b) 3 clusters; (c) 4 clusters

(a)

variance K-Means Accuracy Watershed Accuracy
σ2 mean std mean std

0.5 99.50% 2.08% 98.79% 1.95%
1.0 98.10% 3.88% 97.03% 5.20%
1.5 96.50% 4.54% 95.41% 4.53%
2.0 94.43% 4.57% 91.00% 2.56%

(b)

variance K-Means Accuracy Watershed Accuracy
σ2 mean std mean std

0.5 91.90% 13.65% 96.22% 8.23%
1.0 93.86% 8.84% 87.01% 13.18%
1.5 91.53% 8.18% 80.16% 14.82%
2.0 90.05% 5.82% 71.85% 16.40%

(c)

variance K-Means Accuracy Watershed Accuracy
σ2 mean std mean std

0.5 88.39% 13.71% 88.38% 11.02%
1.0 91.01% 9.21% 80.63% 9.06%
1.5 88.92% 5.84% 74.08% 10.32%
2.0 85.33% 4.54% 67.11% 11.19%
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Table 2. Average number of clusters estimated by the proposed approach, for
different variances and for different number of true clusters

2 clusters 3 clusters 4 clusters

σ2 = 0.5 2.02 3.08 3.72
σ2 = 1.0 2.21 3.27 3.75
σ2 = 1.5 2.31 3.60 4.26
σ2 = 2.0 2.52 3.37 4.43

the generated data is presented in Fig. 1, where a 4 clusters problem is displayed
(variance is 1). One can notice that there is a visible overlapping between these
distributions, and the problem is quite difficult.

Experiments are repeated 100 times, in order to assess the statistical signif-
icance of the results and moreover to minimize the very poor performances of
K-means due to wrong initialization. The accuracy of the clustering could be
quantitatively assessed, by computing the number of wrongly composed clus-
ters: a clustering error occurs if a pattern is assigned to a cluster in which the
majority of the patterns are from another source. The obtained averaged ac-
curacies, together with the standard deviations, are presented in Table 1, for
different number of clusters. From this table it is evident that the accuracy of
the proposed approach is slightly worse than that of the K-means. With our
algorithm, nevertheless, the number of clusters is properly detected in almost all
experiments, resulting in a completely unsupervised approach, differently than
in the K-means case.

The watershed algorithms is more sensitive to higher variances, since the
boundaries could not be easily estimated and the resulting clustering could be
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Fig. 2. Data generated from two concentric clusters
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Fig. 3. Clustering obtained on the concentric clusters problem: (a) K-means;
(b) Watershed algorithm

poor. Due to its unsupervised nature, the watershed algorithm performances
worsen when increasing the number of true clusters.

Estimated numbers of clusters, determined in each problem, are shown in
Table 2, for different Gaussians variance.

One can notice that the watershed algorithm is quite effective in estimating
the number of clusters of the problem. Nevertheless, except than in the case of
5 clusters, it tends to over-estimate this number: this represents a well-known
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problem of the watershed algorithm, already encountered in the image segmen-
tation literature. In [8], this problem was faced by applying a Gaussian filter in
the space: but this process, nevertheless, suppresses also some important min-
ima, so it was not used here. In our approach, a smoothing process is performed
during the lattice construction operation, since the size of the cell determines
the smoothness of the resulting function.

We tested our approach on another synthetic example, with two concentric
clusters, presented in Fig. 2. This clustering experiment is rather difficult. It is
well known [1] that the K-means algorithm is not able to deal with this prob-
lem: the obtained segmentation is proposed in Fig. 3(a), and is a completely
wrong clustering. We applied our watershed algorithm to this problem: the ob-
tained clustering is presented in Fig. 3(b). We can note that the central cluster
is correctly identified, but the outside cluster is over segmented. Nevertheless,
this represents an improvement with respect to the clustering obtained with the
K-means approach, since at least some part of the semantic information is dis-
covered, considering also the fact that this approach is completely unsupervised.

5 Conclusions

In this paper, a novel method for clustering points has been proposed, based
on the watershed algorithm. The system automatically derives a discrete lattice
from the feature space, and defines a height function. Watershed is then per-
formed in that lattice. Boundary situations are then addressed with a intra-cell
analysis, able to remove the watershed lines not needed in the clustering pro-
cess. The main advantage of this method is its completely unsupervised nature,
since it is able to automatically discover the number of clusters of the data. The
main problem of this approach is the tendency to produce an over-segmentation,
which is intrinsic in the nature of the watershed algorithm. In our opinion, this
could be faced by working on the lattice definition, and this will be an issue of
a future investigation.
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