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ABSTRACT
This paper presents a new face recognition system, based
on Multilevel B-splines and Support Vector Machines. The
idea is to consider face images as heightfields, in which the
height relative to each pixel is given by the correspond-
ing gray level. Such heightfields are approximated using
Multilevel B-Splines, and the coefficients of approximation
are used as features for the classification process, which is
performed using Support Vector Machines. The proposed
approach was thoroughly tested, using ORL, Yale, Stirling
and Bern face databases. The obtained results are very en-
couraging, outperforming traditional methods like eigenface,
elastic matching or neural-networks based recognition sys-
tems.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—clas-
sifier design and evaluation; I.4.9 [Image Processing and
Computer Vision]: Applications

General Terms
Design, Performance

Keywords
Face recognition, Support Vector Machines, Multi Level B-
splines

1. INTRODUCTION
Face recognition is undoubtedly an interesting research

area, of increasing importance in recent years, due to its ap-
plicability as a biometric system in commercial and security
applications. These systems could be used to prevent unau-
thorized access or fraudulent use of ATMs, cellular phones,
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smart cards, desktop PCs, workstations, and computer net-
works. The face recognition system has the appealing char-
acteristic of not being an invasive control tool, as compared
with fingerprint or iris biometric systems.

A large literature is available on this topic: the first ap-
proaches, in the 70’s, were based on geometric features [10].
In [3], features-based matching and template matching meth-
ods were compared. One of the best known face recognition
method is the so-called Eigenface method [26, 28, 20, 2, 30],
which uses the Principal Component Analysis [8] to project
faces into a low-dimensional space, where every face can be
expressed as a linear combination of the eigenfaces. This
method is not robust against variations of the face orienta-
tion and one solution was given by the view-based eigenspace
method introduced in [22]. Another important approach is
Elastic Matching [30, 14, 27, 13], introduced to obtain in-
variance against expression changes. The idea is to build
a lattice on image faces (rigid matching stage), and calcu-
late at each point of the lattice a bank of Gabor filters.
In case of variations of expression, this lattice can warp to
adapt itself to the face (elastic matching stage). Many other
methods have been proposed in the last decade, using dif-
ferent techniques, such as Neural Networks [5, 18, 16], or
Hidden Markov Models [12, 24, 21, 6]. Recently, Indepen-
dent Component Analysis was used to project faces into a
low-dimensional space, similar to Eigenfaces [29]. Koh et
al. [11] use a radial grid mapping centered on the nose to
extract a feature vector: in correspondence of each point of
the grid, the mean value of a circular local patch is calcu-
lated and forms an element of the feature vector. Then, the
feature vector is classified by a radial basis function neural
network. Ayinde et al. [1] apply Gabor filters of different
sizes and orientations on face images using rank correlation
for classification.

In this paper, a different approach is proposed. We con-
sider the face image as a heightfield, in which the height rel-
ative to each pixel is given by the corresponding gray level.
This surface is approximated using Multilevel B-Splines [17],
an interpolation and approximation technique for scattered
data. The resulting approximation coefficients were used as
features for the classification, carried out by the Support
Vector Machines (SVM) [4]. This classifier has already been
applied to the face recognition problem [7], in order to clas-
sify Principal Components of faces, obtaining very promising
results. Moreover, the use of the Support Vector Machines
in the context of face authentication has been investigated
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in [9].
The reasons underlying the choice of using Multilevel B-

Splines and Support Vector Machines are the following: from
one hand, Multilevel B-Splines coefficients have been chosen
for their approximation capabilities, able to manage slight
changes in facial expression. On the other hand, even if
a considerable dimensionality reduction is obtained by this
technique with respect to considering the whole image, the
resulting space is still large. Standard classifiers could be
affected by the so called curse of dimensionality problem;
SVMs, instead, are well suited to work in very high dimen-
sional spaces (see for example [23]).

The proposed approach was thoroughly tested using most
popular databases, such as ORL, Yale, Stirling and Bern1,
and compared with several different approaches. As shown
in the experimental section, results obtained are very en-
couraging, outperforming traditional methods like eigenface,
elastic matching and neural-networks based recognition sys-
tem. Classification accuracies of our approach also outper-
form those proposed in [7], where SVMs are used with PCA
coefficients as features, showing that Multilevel B-splines are
very effective and accurate features, able to properly char-
acterize face images.

The rest of the paper is organized as follows. Section 2
contains theoretical background about Multilevel B-Splines
and Section 3 is dedicated to Support Vector Machines de-
scription. In Section 4 the proposed strategy is detailed and
experimental results, including a comparative analysis with
different methods and several face databases, are reported
in Section 5. In Section 6 conclusions are finally drawn.

2. MULTILEVEL B-SPLINES
The Multilevel B-Splines [17] represent an approximation

and interpolation technique for scattered data. More for-
mally, let Ω = {(x, y)|0 ≤ x ≤ m, 0 ≤ y ≤ n} be a rectan-
gular non-integer domain in the xy plane. Consider a set of
scattered data points P = {(xc, yc, zc)} in 3D space, where
(xc, yc) is a point in Ω. The approximation function f is
defined as a regular B-Spline function, defined by a control
lattice Φ overlaid to Ω, visualized in Fig. 1. Let Φ be a
(m + 3)× (n + 3) lattice that spans the integer grid Ω.

The approximation B-Spline function is defined in terms
of these control points by:

f(x, y) =

3X
k=0

3X
l=0

Bk(s)Bl(t)φ(i+k)(j+l) (1)

where i = bxc− 1, j = byc− 1, s = x−bxc, t = y−byc, φij

are control points, obtained as weighted sums with B-Spline
coefficients Bk and Bl of 4×4 set of points, called proximity
sets, belonging to Ω:

φij =

P
c w2

cφcP
c ω2

c

(2)

where ωc = ωkl = Bk(s)Bl(t), k = (i + 1) − bxcc, l =
(j+1)−bycc, s = xc−bxcc, t = yc−bycc, (xc, yc, zc) control
points and φc = wczcP3

a=0
P3

b=0 w2
ab

. By properly choosing the

1Downloadable respectively from:
http://www.uk.research.att.com/facedatabase.html
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://pics.psych.stir.ac.uk
ftp://iamftp.unibe.ch/pub/Images/FaceImages.

Figure 1: Configuration of control lattice Φ in rela-
tion to domain Ω.

resolution of the control lattice Φ, it is possible to obtain
a compromise between the precision and smoothness of the
function; a good smoothness entails a cost in terms of low
accuracy, and vice-versa.

Multilevel B-Splines approximation can overcome this prob-
lem. Consider a hierarchy of control lattices Φ0, Φ1, . . . , Φh,
that spans the domain Ω. Assume that, having fixed the
resolution of Φ0, the spacing between control points in Φi is
halved from one lattice to the next.

The process of approximation starts by applying the basic
B-Spline approximation to P with the coarsest control lat-
tice Φ0, obtaining a smooth initial approximation f0. f0

leaves a deviation ∆1zc = zc − f0(xc, yc) for each point
(xc, yc, zc) in P . Then, f1 is calculated by the control lat-
tice Φ1, approximating the difference P1 = {(xc, yc, ∆

1
c)}.

The sum f1 + f2 yields a smaller deviation ∆2zc = zc −
f0(xc, yc)− f1(xc, yc) for each point (xc, yc, zc) in P .

In general, for every level k in the hierarchy, using the con-
trol lattice Φk, a function fk is derived to approximate data
points Pk = {(xc, yc, ∆

kzc)}, where ∆kzc = zc−
Pk−1

i=0 fi(xc, yc),
and ∆0zc = zc. This process starts with the coarsest control
lattice Φ0 up to the highest lattice Φh. The final function f
is calculated by the sum of functions fk, f =

Ph
k=0 fk.

In general, the higher the resolution of the coarsest con-
trol lattice Φ0, the lower the smoothness of the final func-
tion. This behavior is exemplified in Fig. 2, where dif-
ferent approximating functions, built with different starting
coarser lattices, are shown. Given a set of points in a do-
main width × height, m and n indicate that the lattice Φ,
on which the approximating function has been built, has di-
mension

�bwidth
m

c+ 3
�× �bheight

n
c+ 3

�
. It follows that high

values of m and n indicate low dimensions of Φ.
In the basic Multilevel B-Splines algorithm, the evaluation

of f involves the computation of the function fk for each
level k, summing them over domain Ω (Fig. 3(a)). This
introduces a significant overhead in computational time, if
f has to be evaluated at a large number of points in Ω. To
address this problem, Multilevel B-Splines refinement has
been proposed in [17]. This technique allows to represent f
by one B-Spline function rather than by the sum of several
B-Spline functions.

Let F (Φ) be the B-spline function generated by control
lattice Φ and let |Φ| denote the size of Φ. With B-spline
refinement, we can derive the control lattice Φ′0 from the
coarsest lattice Φ0 such that F (Φ′0) = f0 and |Φ′0| = |Φ1|.
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Figure 2: Examples of Multilevel B-Splines approx-
imation, using different resolutions (m and n) of the
first control lattice Φ0.

Then, the sum of functions f0 and f1 can be represented by
control lattice Ψ1 which results from the addition of each
corresponding pair of control points in Φ′0 and Φ1. That is,
F (Ψ1) = g1 = f0 + f1, where Ψ1 = Φ′0 + Φ1.

In general, let gk =
Pk

i=0 fi be the partial sum of func-
tions fi up to level k in the hierarchy. Suppose that func-
tion gk−1 is represented by a control lattice Ψk−1 such that
|Ψk−1| = |Φk−1|. In the same manner as we computed Ψ1

above, we can refine Ψk−1 to obtain Ψ′k−1 , and add Ψ′k−1

to Φk to derive Ψk such that F (Ψk) = gk and |Ψk| = |Φk|
. That is, Ψk = Ψ′k−1 + Φk . Therefore, from g0 = f0 and
Ψ0 = Φ0 , we can compute a sequence of control lattices
Ψk to progressively derive control lattice Ψh for the final
approximation function f = gh. A scheme of this procedure
is shown in Fig. 3(b).

3. SUPPORT VECTOR MACHINES
Support Vector Machines [4] are binary classifiers, able to

separate two classes through an optimal hyperplane. The
optimal hyperplane is the one maximizing the “margin”,
defined as the distance between the closest examples of dif-
ferent classes. To obtain a non-linear decision surface, it is
possible to use kernel functions, in order to project data in a
high dimensional space, where a hyperplane can more easily
separate them. The corresponding decision surface in the
original space is not linear.

The rest of this section details the theoretical and practi-
cal aspects of Support Vector Machines: firstly, linear SVMs
are introduced, for both linearly and not linearly separable
data. Subsequently, we introduce non linear SVMs, able to
produce non linear separation surfaces. A very useful and
introductory tutorial on Support Vector Machines for Pat-
tern Recognition can be found in [4].

In the case of linearly separable data, let D = {(xi, yi)}, i =
1 . . . `, yi ∈ {−1, +1},xi ∈ <d be the training set of the
SVMs. D is linearly separable if exists w ∈ <d and b ∈ <,
such that:

yi(xi ·w + b) ≥ 1 for i = 1, . . . , ` (3)

H : w · x + b = 0 is called the “separating hyperplane”.
Let d+(d−) be the minimum distance of the separating hy-
perplane from the closest positive (negative) point. Let us
define the “margin” of the hyperplane as d+ +d−. Different

Φ0

Φ1

Φ2

Φ3

Approximate
residues

Approximate
residues

Approximate
residues

First coarsest 
approximation

Original
image

refine

refine

refine

+

+

+

=

Ψ0

Ψ1

Ψ2

Ψ3

evaluate

=

=

=

Final
approximation

function f

(a)
Hierarchy
of control 

lattices

Sequence of B-Spline
functions

Φ0

Φ1

Φ2

Φ3

f 0

f 1

f 2

f 3

Final
approximation

function f

+

+

+

=

Approximate
residues

Approximate
residues

Approximate
residues

First coarsest 
approximation

Original
image

evaluate

evaluate

evaluate

evaluate

(b)

Figure 3: Description of MBA algorithm: (a) basic
version; (b) MBA with refinement.
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Figure 4: Geometric interpretation of SVMs. A hy-
perplane separates black points from white points.
The hyperplane is obtained as a linear combination
of the circled points, called support vectors, and is
defined by a direction vector W and a distance-from-
origin scalar b.

separating hyperplanes exist. SVMs find the one that max-
imizes the margin. Let us define H1 : w · x + b = +1 and
H2 : w · x + b = −1. The distance of a point of H1 from

H : w ·x+b = 0 is |w·x+b|
‖w‖ = 1

‖w‖ , and the distance between

H1 and H2 is 2
‖w‖ . So, to maximize the margin, we must

minimize ‖w‖ = wT w, with the constraints that no points
lie between H1 and H2.

It can be proven [4] that the problem of training a SVM
is reduced to the solution of the following Quadratic Pro-
gramming (QP) problem:

max{−1

2
αT Bα +

X̀
i=1

αi} (4)

X̀
i=1

yiαi = 0 and αi ≥ 0 (5)

where αi are Lagrange coefficients and B is a ` × ` matrix
defined as:

Bij = yiyjxi · xj (6)

The optimal hyperplane is determined with w =
P`

i=1 αiyixi,
and the classification of a new point x is obtained by calcu-
lating sgn(w · x + b). It is important to observe that only
those xi whose corresponding Lagrange coefficients αi are
not null contribute to the sum that defines the separating
hyperplane. For this reason, these points are called support
vectors and, geometrically, lie along the two hyperplanes H1

and H2 (see the Fig. 4). When data points are not linearly
separable, slack variables are introduced, in order to allow
points to exceed margin borders:

yi(xi ·w + b) ≥ 1− ξi (7)

The idea is to permit such situations, by controlling them
by the introduction of a cost parameter C. This parame-
ter determines the sensibility of the SVM to classification
errors: a high value of C strongly penalizes errors, also at
the cost of a narrow margin, while a low value of C permits
some classification errors. Intermediate values of C result in
a compromise between the minimization of the number of

errors and maximization of the margin. Finally, the training
process results in the solution of the following QP problem:

max
X

i

αi − 1

2

X
i,j

αiαjyiyjxi · xj (8)

X̀
i=1

yiαi = 0 and 0 ≤ αi ≤ C (9)

The SVM approach could also be generalized to the case
where the decision function is not a linear function of the
data: in this case we have the so-called non-linear SVM. The
idea under nonlinear SVMs is to project data points into a
high, even huge, dimensional Hilbert space H, by using a
function Ξ such that:

Ξ : <d → H

x → z(x) = z(ξ1(x), ξ2(x), . . . , ξn(x))

and then separate projected data points through a hyper-
plane.

First of all, notice that the only way in which the data
appear in the training problem is in the form of inner prod-
ucts xi · xj. When projecting points x in Ξ(x), the training
process will still depend on the inner product of projected
points Ξ(xi) ·Ξ(xj). Then, to solve the problem of nonlinear
decision surfaces, it is sufficient to modify the training and
classification algorithms, substituting the inner product be-
tween data points of the training set with a kernel function
K, such that:

K(xi,xj) = Ξ(xi) · Ξ(xj) (10)

To be a kernel, a function must verify Mercer conditions
[4]. Some examples of kernel are polynomial functions like
K(x, y) = ((x ·y)+1)d, exponential radial basis function and
multi-layer perceptron. In this way, data points are projected
in a higher dimensional space, where a hyperplane could be
sufficient to separate the problem properly. It is important
to notice that, by the use of this “kernel trick”, the non linear
decision surface is obtained in roughly the same amount of
time needed to build a linear SVM.

4. THE STRATEGY
In this section, the proposed strategy is detailed: features

are extracted using Multilevel B-Splines, and successively
classified using Support Vector Machines.

First, the face image should be sampled, in order to obtain
a set of points to approximate. This set is obtained by the
fusion of two subsets: firstly, a Canny filter is applied to ex-
tract edges from the image faces. Therefore, the first subset
of control points to approximate is P1 = (xc1 , yc1 , zc1), with
xc1 , yc1 coordinates of the edges and zc1 the corresponding
gray levels. The second subset of control points is given by
P2 = (xc2 , yc2 , zc2), with xc2 , yc2 coordinates corresponding
to a sub-sampling carried out on the image. Finally, the set
of control points to approximate is given by P = P1 ∪ P2,
as shown in Fig. 5(b) as an example. Subsequently, the ap-
proximation algorithm is applied to this set of points, con-
sidering the control lattice coefficients as features. Once ex-
tracted, the control lattice is linearized into a feature vector,
using the standard raster scan.

Face recognition is a multi-class classification problem,
but Support Vector Machines are binary classifiers. To ex-
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Figure 5: Feature extraction stage. Original face
image and used control points.

tend SVMs to the multi-class case, we adopted the strategy
of binary decision trees proposed by Verri et al. [23], also
called strategy of the tennis tournament, also adopted by
Guo et al. in their paper [7].

Let us assume to have c classes. The training stage con-
sists in building up all possible SVMs 1-vs-12, combining
all the available classes. The number of possible (not or-

dered) pairs of classes is c(c−1)
2

. In this way, c(c−1)
2

SVMs
are trained. In the classification stage, a binary decision
tree is built, starting from the leaves, in which each pair of
brother nodes represent a SVM. Given a test image, recog-
nition was performed following the rules of a tennis tourna-
ment. Each class is regarded as a player, and in each match
the system classifies the test images according to the deci-
sion of the SVM of the pair of players involved in the match.
The winner identities, proposed by each SVM, will be prop-
agated to the upper level of the tree, playing again. The
process continues until the root is reached. Finally, the root
will be labelled with the identity of the classified subject.
Because it is a priori impossible to know which SVM will
define the various levels of the tree, the necessity of training
all possible SVMs 1-vs-1 is now clear.

In Fig. 6, an example of this classification rule is proposed.
In principle, different choices of the starting configuration,
regarding SVMs inserted as leaves, could lead to different
results. Nevertheless, in practice, preliminary experiments
showed that averaged accuracies do not depend from the
starting configuration.

If c does not equal to the power of 2, we can decompose c
as: c = 2n1 +2n2 + . . .+2nI , where n1 ≥ n2 ≥ . . . ≥ nI . If c
is an odd number, nI = 0; otherwise, nI > 0. Then, we can
build I trees, the first with n1 leaves, the second with n2 and
so on. Finally, starting from the I roots, we can build the
final tree (or, if necessary, recursively decompose I again in
powers of 2). Even if this decomposition is not unique, the
number of comparisons in the classification stage is always
c− 1.

5. EXPERIMENTAL RESULTS
In this section, experimental results are proposed. We

preliminary studied three different types of approximation
coefficients as features, regarding three different methods

2We call this kind of SVMs 1-vs-1, in order to distinguish
them from SVMs 1-vs-all, that were trained to classify be-
tween faces of one class and faces of all other classes.

1 2 43 5 6 7 8

1 3 6 7

1 6

1

Figure 6: An example of multi-class classifica-
tion.The subject to be recognized belongs to class
number 1. First, it is classified by the SVM relative
to classes 1-2, 3-4, 5-6, 7-8. The winners of this first
set of classifications will define the upper level of the
tree, constituted by SVMs relative to pairs 1-3 and
6-7. Finally, the final SVM relative to classes 1 and
6 establishes the winner.

Database N.subj N.training N.testing
ORL 40 5 5
Yale 15 5 6

Stirling 32 3 3
Bern 30 5 5

Combined 117 Variable Variable

Table 1: Description of the databases used for ex-
periments: number of subjects, photos per subject
used for training and for testing.

to approximate points: B-splines, Multilevel B-splines, and
Multilevel B-splines with refinement. The features we inves-
tigated were therefore: the φij ’s calculated with the B-Spline
approximation method under different resolutions, the φij ’s
of the control lattice hierarchy calculated with the Multi-
level B-Splines algorithm, and the ψij ’s calculated with the
Multilevel B-Splines algorithm with refinement. This last
algorithm obtained the best results, in terms of recognition
rate: therefore, in the following, only results regarding this
algorithm are proposed.

About the kernel used in Support Vector Machine, af-
ter several experimental tests, the best performance was
reached by the Exponential Radial Basis Function, which
provided the most stable results. In our experiments the pa-
rameters of the SVMs were set to C = 100 and σ = 20, with
σ the kernel variance, being the results stable for C ≥ 100
and σ ≥ 20.

We used different face databases to test the proposed sys-
tem. Databases, number of subjects and photos per subjects
used in the training and testing set, are shown in Table 1.
Moreover, in this table, “combined” means a database ob-
tained by the fusion of all other databases. We tested dif-
ferent random combinations of training and testing sets and
results were averaged. All face images were resized to the
dimensions of ORL databases photos, i.e. 92× 112 pixel.

Some comments about the databases used: ORL database
contains a high within-class variance, like illumination changes,
facial expressions, glasses/no glasses, and scale. Subjects
in the Yale database are characterized by high illumination
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Level MBA-REF BA
32 4.25% 4.25%
16 2.75% 3.13%
8 3.75% 4%
4 3.88% 4.25%
2 4.13% 4.13%

Database Errors
Yale 1.11%

Stirling 1.04%
Bern 4.67%

Combined 3.3%

(a) (b)

Table 2: Recognition error rates: (a) on ORL
database, with different resolutions of the control
lattice used as features vector. MBA-REF stands for
Multilevel B-Splines approximation with refinement
and BA stands for basic B-Splines approximation;
(b) on other databases, with Multilevel B-Splines
with refinement and level 16.

changes, presence and absence of glasses, and variations in
facial expressions. Stirling database contains subjects in var-
ious poses and expressions (smiling and speaking). Finally,
Bern database presents photos under partially controlled il-
lumination conditions, but with different poses.

In Table 2(a), classification error rates calculated on ORL
face database are shown. With the aim of understanding
how to exploit the multi-level nature of the described algo-
rithms, the system performances on this database are pro-
posed for different levels of resolution of the control lattice.
We recall that “level n” means dimensionality of the con-
trol lattice Φ equal to

�bheight
n

c+ 3
�× �bwidth

n
c+ 3

�
, where

height and width are relative to image dimensions. More-
over, in Table 2(a) a comparison between coefficients of Mul-
tilevel B-Splines with refinement and basic B-Spline approx-
imation as features is shown. It can be noticed how the
formers obtain a better performance.

One can note that results are very satisfactory, confirming
that our approach is accurate and effective. It can also be
noticed how, after level 16, performances get worse, proba-
bly due to a problem of over-fitting, and the same behavior
has been noted also on other databases, even if results are
not reported here.

With 92×112 pixel photos, the dimensionality of the con-
trol lattice, corresponding to the level 16, equals to

�b 92
16
c+ 3

�×�b 112
16
c+ 3

�
= 80.Considering that images contain 92×112 =

10304 pixels, level 16 permits a really noticeable dimension-
ality reduction, equal to about two orders of magnitude,
precisely 99,22%.

The recognition error rates computed on Yale, Stirling,
Bern and combined databases are shown in Table 2(b), only
for resolution level equal to 16 (best results). Also in this
case, errors rates are very low, nearly to a perfect classifica-
tion for the Yale and Stirling databases.

Some comparative results on the ORL database are re-
ported in Table 3, where our method is named MBA+SVM.
We can note that our approach is highly competitive: only
two results are substantially better than ours, obtained from
the two approaches using HMM and DCT coefficients [12,
6]. Our method outperforms standard approaches like eigen-
faces, neural network and elastic matching. Also the method
that uses SVM with PCA features [7] is outperformed, show-
ing that Multilevel B-splines coefficients are effective and
accurate features, able to properly model faces. Moreover
Multilevel B-Splines coefficients show a better discrimina-

Method Error Ref. Year
Top-down HMM + gray tone features 13% [25] 1994
Eigenface 9.5% [28] 1994
Pseudo 2D HMM + gray tone features 5.5% [24] 1994
Elastic matching 20.0% [30] 1997
PDNN 4.0% [18] 1997
Continuous n-tuple classifier 2.7% [19] 1997
Top-down HMM + DCT coef. 16% [21] 1998
Point-matching and correlation 16% [15] 1998
Ergodic HMM + DCT coef. 0.5% [12] 1998
Pseudo 2D HMM + DCT coef. 0% [6] 1999
SVM + PCA coef. 3% [7] 2001
Indipendent Component Analysis 15% [29] 2002
Gabor filters + rank correlation 8.5% [1] 2002
SVM + MBA coef. 2.75% 2003

Table 3: Comparative results on ORL database.
SVM + MBA stands for our method.

Method Error
Eigenface 13%
Elastic Matching 7%
Back Propagation Neural Networks 57%
MBA+SVM 4.67%

Table 4: Comparative results on Bern databases.

tion accuracy when coupled with SVMs that, we recall,
in high-discriminating feature spaces suffer the problem of
over-training.

Other comparative results are obtained on Bern database
from [30], regarding eigenfaces, elastic matching and neural
networks. The comparison is shown in Table 4: also in this
case our method reached better results.

In Fig. 7, some photos of typical misclassified subjects
are shown. It is interesting to note that the subjects in the
Fig. show a certain degree of similarity, for the presence, for
example, of the beard or glasses.

It has been observed that, when a misclassification occurs,
the correct identity tends to go up in the decision tree, up
to levels close to the root. Quantitatively, in 82% of the
erroneous situations on the ORL database experiment, the
correct identity was found in the second level of the decision
tree, i.e. as children of the root. The query of the database
aimed to obtain the k identities closest to the root could fur-
ther increase the probability of obtaining the right identity

Figure 7: Examples of misclassified subjects. For
every pair, the face to be recognized is shown on the
left, an example image belonging to the erroneous
class stated by the system is shown on the right.
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Figure 8: Training and classification times.

in output.
The computational cost of the training and classification

procedures requirements are shown in Fig. 8, in function of
the number of classes. These rates have been calculated on a
Intel Celeron 850 Mhz with 256 Mb RAM, using MATLAB
5.2 routines. We think that better results should be obtained
with an optimized implementation in C language. As can
be noticed, in a 100 classes problem the time required for
training is about 10 minutes; for classification it is about 10
seconds. The time complexity of the training task is O(n2)
and of the classification task is O(n), where n is the number
of subjects.

6. CONCLUSIONS
In this paper, we proposed a new approach to the face

recognition problem, based on Multilevel B-splines and Sup-
port Vector Machines. Considering the face image as an
heightfield, we propose to use as features the control lat-
tices of the Multilevel B-Splines approximation of the face
surface. We showed that such features are really discrimi-
nating, and operate a remarkable reduction of data dimen-
sionality. The performances we reached, compared to many
others recognition systems in the literature, proved the su-
periority of our approach with respect to well-known stan-
dard methods, like eigenfaces, elastic matching and neural
networks.
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