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Abstract. Hidden Markov models constitute a widely employed tool for
sequential data modelling; nevertheless, their use in the clustering con-
text has been poorly investigated. In this paper a novel scheme for HMM-
based sequential data clustering is proposed, inspired on the similarity-
based paradigm recently introduced in the supervised learning context.
With this approach, a new representation space is built, in which each
object is described by the vector of its similarities with respect to a pre-
determinate set of other objects. These similarities are determined using
hidden Markov models. Clustering is then performed in such a space.
By way of this, the difficult problem of clustering of sequences is thus
transposed to a more manageable format, the clustering of points (vec-
tors of features). Experimental evaluation on synthetic and real data
shows that the proposed approach largely outperforms standard HMM
clustering schemes.

1 Introduction

Unsupervised classification (or clustering) of data [1] is undoubtedly an inter-
esting and challenging research area: it could be defined as the organization of a
collection of patterns into groups, based on similarity. It is well known that data
clustering is inherently a more difficult task if compared to supervised classifica-
tion, in which classes are already identified, so that a system can be adequately
trained. This intrinsic difficulty worsens if sequential data are considered: the
structure of the underlying process is often difficult to infer, and typically differ-
ent length sequences have to be dealt with. Clustering of sequences has assumed
an increasing importance in recent years, due to its wide applicability in emer-
gent contexts like data mining and DNA genome modelling and analysis.
Sequential data clustering methods could be generally classified into three
categories: proximity-based methods, feature-based methods and model-based
methods. In the prozimity-based approaches, the main effort of the clustering
process is in devising similarity or distance measures between sequences. With
such measures, any standard distance-based method (as agglomerative cluster-
ing) can be applied. Feature-based methods extract a set of features from each
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individual data sequence that captures temporal information. The problem of
sequence clustering is thus reduced to a more addressable point (vector of fea-
tures) clustering. Finally, model-based approaches assume an analytical model
for each cluster, and the aim of clustering is to find a set of such models that
best fit the data. Examples of models that can be employed include time series
models, spectral models, and finite state automata, as hidden Markov models
(HMM) [2]. HMMs are a widely used tool for sequence modelling, whose impor-
tance has rapidly grown in the last decade. In the context of sequence clustering,
HMMs have not been extensively used, and only a few papers can be found in
the literature: the corresponding state of the art is presented in Sect.[2. The pro-
posed approaches mainly fall into the first (proximity-based) and in the third
(model-based) categories. In this paper, an alternative HMM clustering scheme
is proposed, classifiable as belonging to the feature-based class, that extends the
similarity-based paradigm [BI45/6[7/8]. This paradigm, which has been intro-
duced recently for supervised classification purposes, differs from typical pat-
tern recognition approaches where objects are represented by sets (vectors) of
features. In the similarity-based paradigm, objects are described using pairwise
(dis)similarities, i.e., distances from other objects in the data set. The state of
the art of the similarity-based paradigm is reviewed in Sect.

In this paper, we propose to extend this paradigm to the problem of clustering
sequences, using a new feature space, where each sequence is characterized by
its similarity to all other sequences. The problem is to find a suitable metric for
measuring (dis)similarities between sequences, and, as shown in [9/10], HMMs
are a suitable tool for that purpose. In that space, clustering is then performed
using some standard techniques: the difficult task of sequence clustering is thus
transposed to a more manageable format, that of clustering points (vectors of
features). Experimental evaluation on synthetic and real data shows that this
approach largely outperforms standard HMM clustering schemes.

The rest of the paper is organized as follows: Sect. 2] summarizes the state
of the art in HMM-based clustering of sequences and reviews the similarity-
based paradigm. Section Bl reviews the fundamentals of hidden Markov models,
while Sect. @l details the proposed strategy. Experimental results are reported
in Sect. Al Finally, Sect.[d is devoted to presenting conclusions and future work
directions.

2 State of the Art

2.1 HMM-Based Sequence Clustering

HMMs have not been extensively employed for clustering sequences, with only
a few papers exploring this direction. More specifically, early approaches related
to speech recognition were presented in [ITT2JT3]. All these methods belong to
the proximity-based clustering class. HMMs were employed to compute similari-
ties between sequences, using different approaches (see for example [10/14]), and
standard pairwise distance matrix-based approaches (as agglomerative hierar-
chical) were then used to obtain clustering. This strategy, which is considered
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the standard method for HMM-based clustering of sequences, is better detailed
in Sect. B.1l.

The first approach not directly linked to speech was presented by Smyth
[9] (see also the more general and more recent [15]). This approach consists in
two steps: first, it devises a pairwise distance between observed sequences, by
computing a symmetrized similarity. This similarity is obtained by training an
HMM for each sequence, so that the log-likelihood (LL) of each model, given
each sequence, can be computed. This information is used to build an LL matrix
which is then used to cluster the sequences in K groups, using a hierarchical
algorithm. In the second step, one HMM is trained for each cluster; the resulting
K models are then merged into a “composite” global HMM, where each HMM
is used to design a disjoint part of this “composite” model. This initial estimate
is then refined using the standard Baum-Welch procedure. As a result, a global
HMM modelling all the data is obtained. The number of clusters is selected using
a cross-validation method. With respect to the above mentioned taxonomy, this
approach can be classified as belonging to both the proximity-based class (a
pairwise distance is derived to initialize the model) and the model-based class
(a model for clustering data is finally obtained).

An example of an HMM-based method for sequence clustering is the one
proposed in [16], where HMMs are used as cluster prototypes. The clustering
is obtained by employing the rival penalized competitive learning (RPCL) algo-
rithm [17] (a method originally developed for point clustering) together with a
state merging strategy, aimed at finding smaller HMMs.

A relevant contribution to the model-based HMM clustering methodology
was made by Li and Biswas [L8|[19I20121/22]). Basically, in their approach [1§],
the clustering problem is addressed by focusing on the model selection issue,
i.e. the search for the HMM topology best representing data, and the clustering
structure issue, i.e. finding the most likely number of clusters. In [19], the former
issue is addressed using the Bayesian information criterion [23], and extending
to the continuous case the Bayesian model merging approach [24]. Regarding
the latter issue, the sequence-to-HMM likelihood measure is used to enforce the
within-group similarity criterion. The optimal number of clusters is then deter-
mined maximizing the partition mutual information (PMI), which is a measure
of the inter-cluster distances. In [20)], the same problems are addressed in terms
of Bayesian model selection, using BIC [23], and the Cheesman-Stutz (CS) ap-
proximation [25]. A more comprehensive version of this paper has appeared in
[22], where the method is also tested on real world ecological data. These cluster-
ing methodologies have been applied to specific domains, as physiology, ecology
and social science, where the dynamic model structure is not readily available.
Obtained results have been published in [21].

2.2 Similarity-Based Classification

The literature on similarity-based classification is not vast. Jain and Zongker [3]
have obtained a dissimilarity measure, for a handwritten digit recognition prob-
lem, based on deformable templates; a multidimensional scaling approach was
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then used to project this dissimilarity space onto a low-dimensional space, where
a l-nearest-neighbor (1-NN) classifier was employed to classify new objects. In
M), Graepel et al investigate the problem of learning a classifier based on data
represented in terms of their pairwise proximities, using an approach based on
Vapnik’s structural risk minimization [26]. Jacobs and Weinshall [5] have stud-
ied distance-based classification with non-metric distance functions (i.e., that do
not verify the triangle inequality). Duin and Pekalska are very active authors in
this area!] having recently produced several papers [6l718]. Motivation and basic
features of similarity-based methods were first described in [6]; it was shown,
by experiments in two real applications, that a Bayesian classifier (the RLNC
- regularized linear normal density-based classifier) in the dissimilarity space
outperforms the nearest neighbor rule. These aspects were more thoroughly in-
vestigated in [8], where other classifiers in the dissimilarity space were studied,
namely on digit recognition and bioinformatics problems. Finally, in [7], a gen-
eralized kernel approach was introduced, dealing with classification aspects of
the dissimilarity kernels.

3 Hidden Markov Models

A discrete-time hidden Markov model A can be viewed as a Markov model
whose states are not directly observed: instead, each state is characterized by
a probability distribution function, modelling the observations corresponding to
that state. More formally, an HMM is defined by the following entities [2]:

— S ={51,52, -, SN} the finite set of possible (hidden) states;
— the transition matrix A = {a;;, 1 < j < N} representing the probability of
moving from state .S; to state S,

a;j = Plgi41 = Sjl¢s = Si], 1<4,7 <N,

with a;; > 0, Zjvzl a;; = 1, and where ¢; denotes the state occupied by the
model at time ¢.

— the emission matrix B = {b(0|S;)}, indicating the probability of emission of
symbol o € V' when system state is S;; V' can be a discrete alphabet or a
continuous set (e.g. V = IR), in which case b(0|S;) is a probability density
function.

— m = {m;}, the initial state probability distribution,

i =Plg=8], 1<i<N
with 7m; > 0 and Zivzl m; = 1.

For convenience, we represent an HMM by a triplet A = (A, B, ).
Learning the HMM parameters, given a set of observed sequences {O;}, is
usually performed using the well-known Baum-Welch algorithm [2], which is able

! Seehttp://www.ph.tn.tudelft.nl/Research/neural/index.html
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to determine the parameters maximizing the likelihood P({O;}|A). One of the
steps of the Baum-Welch algorithm is an evaluation step, where it is required
to compute P(OJ|A), given a model A and a sequence Oj; this can be computed
using the forward-backward procedure [2].

3.1 Standard HMM-Based Clustering of Sequences

The standard proximity-based method for clustering sequences using HMMs can
be sumarized by the following algorithm. Consider a given a set of IV sequences
{O;...0n} to be clustered; the algorithm performs the following steps:

1. Train one HMM \; for each sequence O;.

2. Compute the distance matrix D = {D(0O;,0;)}, representing a similarity
measure between sequences or between models; this is typically obtained
from the forward probability P(O;|A;), or by devising a measure of dis-
tances between models. In the past, few authors have proposed approaches
to computing these distances: early approaches were based on the Euclidean
distance of the discrete observation probability, others on entropy, or on
co-emission probability of two models, or, very recently, on the Bayes prob-
ability of error (see [14] and the references therein).

3. Use a pairwise distance-matrix-based method (e.g., an agglomerative
method) to perform the clustering.

4 Proposed Strategy

The idea at the basis of the proposed approach is conceptually simple: to build a
new representation space, using the similarity values between sequences obtained
via the HMMs, and to perform the clustering in that space. Similarity values al-
low discrimination, since this quantity is high for similar objects/sequences, i.e.,
belonging to the same group, and low for objects of different clusters. Therefore,
we can interpret the similarity measure D(O, O;) between a sequence O and
another “reference” sequence O; as a “feature” of the sequence O. This fact
suggests the construction of a feature vector for O by taking the similarities be-
tween O and a set of reference sequences R = {Oy}, so that O is characterized
by a pattern (i.e., a set of features) {D(0, O), Oy € R}.

More formally, given a set of sequences 7 = {O'...0™} to be clustered, the
proposed approach can be briefly described as follows:

— let R = {Py,...,Pr} be a set of R “reference” or “representative” objects;
these objects may belong to the set of sequences (R C 7) or may be other-
wise defined. In a basic case it could be R = 7.

— train one HMM A, for each sequence P,. € R;

— represent each sequence O; of the data set by the set of similarities D (O;) to
the elements of the representative set R, computed with the HMMs A1...Ag
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D(Oi,Pl) IOg P(Olp\l)
D(0;,P») 1 | log P(O4fA2)

Dr(0;) = : =T . (1)
'D(O“PR) log P(Ozl)\R)

where T; is the length of the sequence O;.

— perform clustering in RI™®!, where |R| denotes the cardinality of R, using
any general technique (not necessarily hierarchical) appropriate for clustering
points in an Euclidean space.

In the simplest case, the representative set R is the whole data set 7, resulting in
a similarity space of dimensionality N. Even if computationally heavy for large
data sets, it is interesting to analyze the discriminative power of such a space.

5 Experimental Results

In this section, the proposed technique is compared with the standard HMM
clustering scheme presented in Sect. 3. Once the likelihood similarity matrix is
obtained, clustering (step 3) is performed by using three algorithms:

— two variants of the agglomerative hierarchical clustering techniques: the com-
plete link scheme, and the Ward scheme [I].

— a non parametric, pairwise distance-based clustering technique, called clus-
tering by friends [27]: this technique produces a partition of the data using
only the similarity matrix. The partition is obtained by iteratively applying a
two-step transformation to the proximity matrix. The first step of the trans-
formation represents each point by its relation to all other data points, and
the second step re-estimates the pairwise distances using a proximity mea-
sure on these representations. Using these transformations, the algorithm
partitions the data into two clusters. To partition the data into more than
two clusters, the method has to be applied several times, recursively.

Regarding the proposed approach, after obtaining the similarity representation
with R =7 (i.e. by using all sequences as representatives), we have used three
clustering algorithms:

— again the hierarchical agglomerative complete link and Ward methods, where
distance is the Euclidean metrics in the similarity space: this is performed
to compare the two representations with the same algorithms;

— standard K-means algorithm [].

Clustering accuracies were measured on synthetic and real data. Regarding
the synthetic case, we consider a 3-class problem, where sequences were gener-
ated from the three HMMs defined in Fig. [1. The data set is composed of 30
sequences (of length 400) from each of the three classes; the dimensionality of
the similarity vectors is thus N = 90. Notice that this clustering task is not easy,
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1/3[1/3[1/3 [1/3] p =1 [07 =0.6
A =[1/3[1/3]1/3| 7 =[1/3|B = |2 =3 |03 = 0.6
1/3[1/3]1/3 1/3] s =5 |0 = 0.6

(a)
1/3]1/3]1/3 [1/3] p=1 [0f =05
A =[1/3[1/3]1/3| 7 =[1/3|B =|u2 =3 |03 = 0.5
131/83[1/3)  [1/3]  [ms=5 03 =05

(b)
1/3]1/3]1/3 [1/3] =1 [of =04
A =(1/3[1/3]1/3| 7 =[1/3|B =|u2 =3 |0% = 0.4
13[1/3[1/3)  [1/3]  [us=5 |08 =04

(c)

Fig. 1. Generative HMMSs for synthetic data testing: A is the transition matrix, 7 is
the initial state probability, and B contains the parameters of the emission density
(Gaussians with the indicated means and variances)

Table 1. Clustering results on synthetic experiments

Standard classification
ML classification ‘ 94.78%
Standard clustering

Aggl. complete link 64.89%

Aggl. Ward 71.33%

Clus. by Friends 70.11%
Clustering on similarity space St

Aggl. complete link 95.44%

Aggl. Ward 97.89%

k-means 98.33%

as the three HMMs are very similar to each other, only differing slightly in the
variances of the emission densities. The accuracy of clustering can be quantita-
tively assessed, by computing the number of errors: a clustering error occurs if a
sequence is assigned to a cluster in which the majority of the sequences are from
another class. Results are presented in Table [1, averaged over 10 repetitions.
From this table it is possible to notice that the proposed methodology largely
outperforms standard clustering approaches: the best performing algorithm is
the partitional k-means on the similarity space, which produces an almost per-
fect clustering. In order to have a better insight into the discriminative power of
the proposed feature space, we also computed the supervised classification results
on this synthetic example. Decisions were taken using the standard mazimum
likelihood (ML) approach, where an unknown sequence is assigned to the class
whose model shows the highest likelihood. Note that this classification scheme
does not make use of the similarity space introduced in this paper, and repre-
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Fig. 2. Objects set used for testing

Table 2. Clustering results on real experiments

Standard classification

ML classification ‘ 81.55%

Standard clustering
Aggl. complete link 78.69%
Aggl. Ward 22.86%

Clus. by Friends 70.0%
Clustering on the similarity space St
Aggl. complete link 63.10%

Aggl. Ward 77.62%
k-means 88.21%

sents the supervised counterpart of the standard clustering approach proposed
in Sect. B.1] The classification error is computed using the standard leave one
out (LOO) scheme [28]. It is important to note that clustering results in the
similarity space are better than the classification results, confirming the high
discrimination ability of the similarity space.

The real data experiment regards 2D shape recognition, where shapes were
modelled as proposed in [29]; briefly, object contours are described using curva-
ture, and these curvature sequences are modelled using HMMs with Gaussian
mixtures as emission probabilities. The object database used is the one from
Sebastian et al. [30], and is shown in Fig. [2 In this case, only the number of
clusters is known. The clustering algorithms try to group the shapes into differ-
ent clusters, based on their similarity. Results, averaged over 10 repetitions, are
presented in Table[2l From these tables it is evident that the proposed represen-
tation permits greater discrimination, resulting in a increasing of the clustering
accuracies. Also in this case, the ML classification accuracy was computed, using
the LOO scheme. From table[2it is possible to note that the clustering results are
better than the classification performances, confirming the high discriminative
potentiality of the proposed similarity space.
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6 Conclusions

In this paper, a scheme for sequence clustering, based on hidden Markov mod-
elling and the similarity-based paradigm, was proposed. The approach builds
features in which each sequence is represented by the vector of its similarities to
a predefined set of reference sequences. A standard point clustering method is
then performed on those representations. As a consequence, the difficult process
of clustering sequences is cast into a simpler problem of clustering points, for
which well established techniques have been proposed. Experimental evaluation
on synthetic and real problems has shown that the proposed approach largely
outperforms the standard HMM-based clustering approaches.

The main drawback of this approach is the high dimensionality of the re-
sulting feature space, which is equal to the cardinality of the data set. This
is obviously a problem, and represents a central topic for future investigation.
We have previously addressed this issue in the context of similarity-based su-
pervised learning [3I]. In this unsupervised context, one idea could be to use
some linear reduction techniques, in order to reduce the dimensionality of the
space. Another idea is to directly address the problem of adequately choosing the
representatives: this problem could be casted in the context of feature selection
for unsupervised [32], where the prototypes to be chosen are the features to be
selected.

References

1. Jain, A., Dubes, R.: Algorithms for clustering data. Prentice Hall (1988)

2. Rabiner, L.: A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proc. of IEEE 77 (1989) 257-286

3. Jain, A., Zongker, D.: Representation and recognition of handwritten digits using
deformable templates. IEEE Trans. Pattern Analysis and Machine Intelligence 19
(1997) 1386-1391

4. Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on
pairwise proximity data. In M. Kearns, S. Solla, D.C., ed.: Advances in Neural
Information Processing. Volume 11., MIT Press (1999)

5. Jacobs, D., Weinshall, D.: Classification with nonmetric distances: Image retrieval
and class representation. IEEE Trans. Pattern Analysis and Machine Intelligence
22 (2000) 583-600

6. Pekalska, E., Duin, R.: Automatic pattern recognition by similarity representa-
tions. Electronics Letters 37 (2001) 159-160

7. Pekalska, E., Paclik, P., Duin, R.: A generalized kernel approach to dissimilarity-
based classification. Journal of Machine Learning Research 2 (2002) 175-211

8. Pekalska, E., Duin, R.: Dissimilarity representations allow for building good clas-
sifiers. Pattern Recognition Letters 23 (2002) 943-956

9. Smyth, P.: Clustering sequences with hidden Markov models. In Mozer, M., Jordan,
M., Petsche, T., eds.: Advances in Neural Information Processing. Volume 9., MIT
Press (1997)

10. Panuccio, A., Bicego, M., Murino, V.: A Hidden Markov Model-based approach to
sequential data clustering. In Caelli, T., Amin, A., Duin, R., Kamel, M., de Ridder,
D., eds.: Structural, Syntactic and Statistical Pattern Recognition. LNCS 2396,
Springer (2002) 734-742



11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.
. Dubnov, S., El-Yaniv, R., Gdalyahu, Y., Schneidman, E., Tishby, N., Yona, G.: A
28.
29.
30.

31.

32.

Similarity-Based Clustering of Sequences Using Hidden Markov Models 95

Rabiner, L., Lee, C., Juang, B., Wilpon, J.: HMM clustering for connected word
recognition. In: Proc. of IEEE ICASSP. (1989) 405-408

Lee, K.: Context-dependent phonetic hidden Markov models for speaker-
independent continuous speech recognition. IEEE Transactions on Acoustics,
Speech and Signal Processing 38 (1990) 599-609

Kosaka, T., Matsunaga, S., Kuraoka, M.: Speaker-independent phone modeling
based on speaker-dependent hmm'’s composition and clustering. In: Int. Proc. on
Acoustics, Speech, and Signal Processing. Volume 1. (1995) 441-444

Bahlmann, C., Burkhardt, H.: Measuring hmm similarity with the bayes proba-
bility of error and its application to online handwriting recognition. In: Proc. Int.
Conf. Document Analysis and Recognition. (2001) 406—411

Cadez, 1., Gaffney, S., Smyth, P.: A general probabilistic framework for clustering
individuals. In: Proc. of ACM SIGKDD 2000. (2000)

Law, M., Kwok, J.: Rival penalized competitive learning for model-based sequence.
In: Proc. Int. Conf. Pattern Recognition. Volume 2. (2000) 195-198

Xu, L., Krzyzak, A., Oja, E.: Rival penalized competitive learning for clustering
analysis, RBF nets, and curve detection. IEEE Trans. on Neural Networks 4 (1993)
636648

Li, C.: A Bayesian Approach to Temporal Data Clustering using Hidden Markov
Model Methodology. PhD thesis, Vanderbilt University (2000)

Li, C., Biswas, G.: Clustering sequence data using hidden Markov model repre-
sentation. In: Proc. of SPIE’99 Conf. on Data Mining and Knowledge Discovery:
Theory, Tools, and Technology. (1999) 14-21

Li, C., Biswas, G.: A bayesian approach to temporal data clustering using hidden
Markov models. In: Proc. Int. Conf. on Machine Learning. (2000) 543-550

Li, C., Biswas, G.: Applying the Hidden Markov Model methodology for unsu-
pervised learning of temporal data. Int. Journal of Knowledge-based Intelligent
Engineering Systems 6 (2002) 152-160

Li, C., Biswas, G., Dale, M., Dale, P.: Matryoshka: A HMM based temporal data
clustering methodology for modeling system dynamics. Intelligent Data Analysis
Journal in press (2002)

Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6
(1978) 461-464

Stolcke, A., Omohundro, S.: Hidden Markov Model induction by Bayesian model
merging. In Hanson, S., Cowan, J., Giles, C., eds.: Advances in Neural Information
Processing Systems. Volume 5., Morgan Kaufmann, San Mateo, CA (1993) 11-18
Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): Theory and results.
In: Advances in Knowledge discovery and data mining. (1996) 153-180

Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998)

new nonparametric pairwise clustering algorithm based on iterative estimation of
distance profiles. Machine Learning 47 (2002) 35-61

Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press (1999)
Bicego, M., Murino, V.: Investigating Hidden Markov Models’ capabilities in 2D
shape classification. Submitted for publication (2002)

Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing Shock Graphs.
In: Proc. Int Conf. Computer Vision. (2001) 755-762

Bicego, M., Murino, V., Figueiredo, M.: Similarity-based classification of sequences
using hidden Markov models (2002) Submitted for publication.

Law, M., A.K. Jain, Figueiredo, M.: Feature selection in mixture-based clustering.
In: Neural Information Processing Systems - NIPS’2002, Vancouver (2002)



	Introduction
	State of the Art 
	HMM-Based Sequence Clustering
	Similarity-Based Classification

	Hidden Markov Models 
	Standard HMM-Based Clustering of Sequences 

	Proposed Strategy 
	Experimental Results 
	Conclusions 

