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Abstract. Clustering of sequential or temporal data is more challeng-
ing than traditional clustering as dynamic observations should be pro-
cessed rather than static measures. This paper proposes a Hidden Markov
Model (HMM)-based technique suitable for clustering of data sequences.
The main aspect of the work is the use of a probabilistic model-based ap-
proach using HMM to derive new proximity distances, in the likelihood
sense, between sequences. Moreover, a novel partitional clustering algo-
rithm is designed which alleviates computational burden characterizing
traditional hierarchical agglomerative approaches. Experimental results
show that this approach provides an accurate clustering partition and the
devised distance measures achieve good performance rates. The method
is demonstrated on real world data sequences, i.e. the EEG signals due
to their temporal complexity and the growing interest in the emerging
field of Brain Computer Interfaces.

1 Introduction

The analysis of sequential data is without doubts an interesting application area
since many real processes show a dynamic behavior. Several examples can be
reported, one for all is the analysis of DNA strings for classification of genes,
protein family modeling, and sequence alignment.

In this paper, the problem of unsupervised classification of temporal data is
tackled by using a technique based on Hidden Markov Models (HMMs). HMMs
can be viewed as stochastic generalizations of finite-state automata, when both
transitions between states and generation of output symbols are governed by
probability distributions [1]. The basic theory of HMMs was developed in the
late 1960s, but only in the last decade it has been extensively applied in a large
number of problems, as speech recognition [1], handwritten character recogni-
tion [2], DNA and protein modeling [3], gesture recognition [4], behavior analysis
and synthesis [5], and, more in general, to computer vision problems.

Related to sequence clustering, HMMs has not been extensively used, and a
few papers are present in the literature. Early works were proposed in [6,7], all
related to speech recognition. The first interesting approach not directly linked
to speech issues was presented by Smyth [8], in which clustering was faced by
devising a “distance” measure between sequences using HMMs. Assuming each
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model structure known, the algorithm trains an HMM for each sequence so that
the log-likelihood (LL) of each model, given each sequence, can be computed.
This information is used to build a LL distance matrix to be used to cluster the
sequences in K groups, using a hierarchical algorithm.

Subsequent work, by Li and Biswas [9,10], address the clustering problem
focusing on the model selection issue, i.e. the search of the HMM topology
best representing data, and the clustering structure issue, i.e. finding the most
likely number of clusters. In [9], the former issue is addressed using standard
approach, like Bayesian Information Criterion [11], and extending to the con-
tinuous case the Bayesian Model Merging approach [12]. Regarding the latter
issue, the sequence-to-HMM likelihood measure is used to enforce the within-
group similarity criterion. The optimal number of clusters is then determined
maximizing the Partition Mutual Information (PMI), which is a measure of the
inter-cluster distances. In the second paper [10], the same problems are addressed
in terms of Bayesian model selection, using the Bayesian Information Criterion
(BIC) [11], and the Cheesman-Stutz (CS) approximation [13]. Although not well
justified, much heuristics is introduced to alleviate the computational burden,
making the problem tractable, despite remaining of elevate complexity. Finally,
a model-based clustering method is also proposed in [14], where HMMs are used
as cluster prototypes, and Rival Penalized Competitive Learning (RPCL), with
state merging is then adopted to find the most likely HMMs modeling data.
These approaches are interesting from the theoretical point of view, but they
are not tested on real data. Moreover, some of them are very computationally
expensive.

In this paper, the idea of Smyth [8] has been extended by defining a new
metric to measure the distance, in the likelihood sense, between sequences. Two
clustering algorithms are proposed, one based on the hierarchical agglomera-
tive approach, and the second based on a partitional method, variation of the
K-means strategy. Particular care has been posed on the HMM training initial-
ization by utilizing a Kalman filtering and a clustering method using mixture of
Gaussians. Finally, and most important, the proposed algorithm has been tested
using real data sequences, the electroencephalographic (EEG) signals. Analysis
of this kind of signals became very important in the last years, due to the grow-
ing interest in the field of Brain Computer Interface (BCI) [15]. Among all we
choose these signals for their temporal complexity, suitable for HMM modeling.

The rest of the paper is organized as follows. In Sect. 2, HMM will be in-
troduced. Section 3 describes how the EEG signal has been modeled and the
specific initialization phase of the proposed approach. The core of the algorithm
is presented in Sect. 4, in which the definition of distances and the clustering
algorithms will be detailed. Subsequently, experimental results are presented in
Sect. 5, and, finally, conclusions are drawn in Sect. 6.
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2 Hidden Markov Models

A discrete HMM is formally defined by the following elements [1]:

– A set S = {S1, S2, · · · , SN} of (hidden) states.
– A state transition probability distribution, also called transition matrix A =

{aij}, representing the probability to go from state Si to state Sj .

aij = P [qt+1 = Sj |qt = Si] 1 ≤ i, j ≤ N, aij ≥ 0,
N∑

j=1

aij = 1 (1)

– A set V = {v1, v2, · · · , vM} of observation symbols.
– An observation symbol probability distribution, also called emission matrix
B = {bj(k)}, indicating the probability of emission of symbol vk when system
state is Sj .

bj(k) = P [vk at time t |qt = Sj ] 1 ≤ j ≤ N, 1 ≤ k ≤M (2)

with bi(k) ≥ 0 and
∑M

j=1 bj(k) = 1.
– An initial state probability distribution π = {πi}, representing probabilities

of initial states.

πi = P [q1 = Si] 1 ≤ i ≤ N, πi ≥ 0,
N∑

i=1

πi = 1 (3)

For convenience, we denote an HMM as a triplet λ = (A,B, π).
All of our discussion has considered only the case where the observation was

characterized as a sequence of discrete symbols chosen from a finite alphabet.
In most application, observations are continuous signals. Although it is possible
to quantize such continuous signals via codebooks, it would be advantageous to
be able to use HMMs with continuous observation densities. In this case the
emission probability distribution B becomes

P (O|j) = bj(O) =
M∑

m=1

cjmM[O, µjm,Σjm] (4)

where O is observation vector being modeled, cjm is the mixture coefficient for
the mth mixture in state j and M is any log-concave or elliptically symmetric
density (e.g. Gaussian density). The adaption of reestimation formulas of Baum-
Welch procedure for the continuous case is straightforward [16].

Although the general formulation of continuous density HMMs is applica-
ble to a wide range of problems, there is one other very interesting class of
HMMs that seems to be particularly suitable for EEG signals: the autoregressive
HMMs [17]. In this case, the observation vectors are drawn from an autoregres-
sion process. In the next section it is explained how these models are applied to
EEG modeling.
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3 EEG Signal Modeling

Electroencephalographic (EEG) signals represent the brain activity of a subject
and give an objective mode of recording brain stimulation. EEGs are an useful
tool used for understanding several aspects of the brain, from diseases detection
to sleep analysis and evocated potential analysis. The system used to model EEG
signal is largely based on Penny and Roberts paper [18]: the key idea above this
approach is to train an autoregressive HMM directly on the EEG signal, rather
than use an intermediate AR representation. Each HMM state can be associated
with a different dynamic regime of the signal, determined using a Kalman Filter
approach [19]. Kalman filter is used to preliminary segment the signal in different
dynamic regimes: these estimates are then fine-tuned with HMM model. The
approach is briefly resumed in the rest of this section.

3.1 Hidden Markov AR Models

This type of models differs from those defined in Sect. 2 by the definition of
observation symbol probability distribution. In this case B is defined as

P (yt|qt = Si) = N(yt − Ftâi, σ
2
i ) (5)

where Ft = −[yt−1, yt−2, · · · , yt−p], âi is the (column) vector of AR coefficients
for the ith state and σ2

i is the estimated observation noise for the i-th state,
estimated using Jazwinski method [20]. The prediction for the ith state is ŷi

t =
Ftâi. The order of AR model is p.

The HMM training procedure is fundamentally a gradient descent approach,
sensitive to initial parameters estimate. To overcome this problem, a Kalman
filter AR model is passed over the data, obtaining a sequence of AR coefficients.
Coefficients corresponding to low evidence are discarded. Others are then clus-
terized with Gaussian Mixture Models [21]. The center of each Gaussian cluster
is then used to initialize the AR coefficients in each state of the HMM-AR model.

The number of clusters (i.e. the number of HMM states) and the order of
autoregressive model were decided by performing a preliminary analysis of clas-
sification accuracy. Varying number of states from 4 to 10, and varying order
of autoregressive model from 4 to 8, we have found that best configuration was
K = 4 and p = 6. The classification accuracy obtained was about 2% superior
than one obtained using Neural Network [22] on same data, showing that Hidden
Markov Models are more effective in modeling EEG signals.

To initialize the transition matrix we used prior knowledge from the problem
domain about average state duration densities. We use the equation aii = 1− 1

d
to let HMM remain in state i for d samples. This number is computed knowing
that EEG data is stationary for a period of the order of half a second [23].
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4 The Proposed Method

Our approach, inspired by [8], can be depicted by the following algorithm:

1. We train an m−states HMM for each sequence Si, (1 ≤ i ≤ N) of the
dataset D. These N HMM are identified by λi, (1 ≤ i ≤ N) and have been
initialized with a Kalman filter AR model as described in Sect. 3.

2. For each model λi we evaluate its probability to generate the sequence
Sj , 1 ≤ j ≤ N , obtaining a measure matrix L where

Lij = P (Sj |λi), 1 ≤ i, j ≤ N (6)

3. We apply a suitable clustering algorithm to the matrix L obtaining K clus-
ters on the data set D.

This method aims to exploits the measure defined by (6) which naturally ex-
presses the similarity between two observation sequences. Through the use of
Hidden Markov Models, that are able to describe a sequence with a simple
scalar number, we could transform the difficult task of clustering sequences in
the easier one of clustering points.

About step 3 we can apply several clustering algorithms but first of all we
need to “symmetrize” the matrix L because the result of step 2 is not really a
distance matrix. Thus we define

Lij
S =

1
2
[Lij + Lji] (7)

Another kind of HMM based measure that we applied, which remind the
Kullback-Leibler information number, defines the distance LKL between two
HMM λi and λj , and its symmetrized version LKLS, as

Lij
KL = Lii

[
ln
Lii

Lji

]
+ Lij

[
ln
Lij

Ljj

]
, Lij

KLS =
1
2

[
Lij

KL + Lji
KL

]
(8)

Finally, we introduced another measure, called BP metric, defined as

Lij
BP =

1
2

{
Lij − Lii

Lii
+
Lji − Ljj

Ljj

}
(9)

motivated by the following considerations: the measure (6), defines a similarity
measure between two sequences Si and Sj as the likelihood of the sequence Si

with respect to the model λj , trained on Sj , without really taking into account
the sequence Sj . In other words this kind of measure assumes that all sequences
are modeled with the same quality without considering how well sequence Sj

is modeled by the HMM λj : this could not always be true. Our proposed dis-
tance also considers the modeling goodness by evaluating the relative normalized
difference between the sequence and the training likelihoods. About step 3 we
investigated two clustering algorithms [21], namely
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– Complete Link Agglomerative Hierarchical Clustering: this class of algo-
rithms produces a sequence of clustering of decreasing number of clusters at
each step. The clustering produced at each step results from the previous
one by merging two clusters into one.

– Partitional Clustering: this methods obtains a single partition of the data
instead of a clustering structure, such as a dendogram produced by hierarchi-
cal technique. Partitional method have advantages in application involving
large data sets for which the construction of a dendogram is computation-
ally prohibitive. In this context we developed an ad hoc partitional method
described in the next section and henceforth called “DPAM”.

4.1 DPAM Partitional Clustering Algorithm

The proposed algorithm shares the ideas of the well known k-means techniques.
This method finds the optimal partition by evaluating at each iteration the
distance between each item and each cluster descriptor, and assigning it to the
nearest class. At each step, the descriptor of each cluster will be reevaluated by
averaging its cluster items. A simple variation of the method, partition around
medoid (PAM) [24], determines each cluster representative by choosing the point
nearest to the centroid. In our context we cannot evaluate centroid of each cluster
because we only have item distances and not values.

To address this problem a novel algorithm is proposed. This method is able
to determine cluster descriptors in a PAM paradigm, using item distances in-
stead of their values. Moreover, the choice of the initial descriptors could affect
algorithm performances. To overcome this problem we have adopted a multiple
initialization procedure, where the best resulting partition is determined by a
sort of Davies-Bouldin criterion [21].

Fixed η as the number of tested initializations, N the number of sequences, k
the number of clusters and L the proximity matrix characterized by previously
defined distances (7), (8), (9), the resulting algorithm is the following:

– for t=1 to η
• Initial cluster representatives θj are randomly chosen (j = 1, . . . , k,
θj ∈ {1, . . . , N}).

• Repeat:
∗ Partition evaluation step:
Compute the cluster which each sequence Si, i = 1, . . . , N
belongs to; Si lies in the j cluster for which the distance
L(Si, θj), i = 1, . . . , N, j = 1, . . . k is minimum.

∗ Parameters upgrade:
· Compute the sum of the distance of each element of clus-
ter Cj from each other element of the jth cluster

· Determine the index of the element in Cj for which this
sum is minimal

· Use that index as new descriptor for cluster Cj
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• Until the representatives θj values between two successive itera-
tions don’t change.

• Rt = {C1, C2, . . . , Ck}
• Compute the Davies–Bouldin–like index defined as:

DBL(t) =
1
k

k∑
r=1

max
s�=r

{
SL

c (Cr , θr) + SL
c (Cs, θs)

L(θr, θs)

}

where Sc is an intra–cluster measure defined by:

SL
c (Cr , θr) =

∑
i∈Cr

L(i, θr)
|Cr|

– endfor t
– Final solution: The best clustering Rp has the minimum Davies–

Bouldin–like index, viz.: p = argmint=1,...,η{DBL(t)}

5 Experiments

In order to validate the exposed modeling technique we worked primarily on
EEG data recorded by Zak Keirn at Purdue University [25]. The dataset con-
tains EEGs signal recorded from different subjects which were asked to perform
five mental tasks: a baseline task, for which the subjects were asked to relax as
much as possible; the math task, for which the subjects were given nontrivial
multiplications problems, such as 27*36, and were asked to solve them without
vocalizing or making any other physical movements; the letter task, for which
the subjects were instructed to mentally compose a letter to a friend without
vocalizing; the geometric figure rotation, for which the subjects were asked to
visualize a particular 3D block figure being rotated about an axis; and a visual
counting task, for which the subjects were asked to image a blackboard and to vi-
sualize numbers being written on the board sequentially. We applied the method
on a segment-by-segment basis, 1s signals sampled at 250Hz and drawn from a
dataset of cardinality varying from 190 (two mental states) to 473 sequences
(five mental states) where we removed segments biased by signal spikes arising
human artifact (e.g. ocular blinks).

The proposed HMM clustering algorithm has been first applied to two men-
tal states: baseline and math task, then we extend trials to all available data.
Accuracies are computed by comparing the clustering results with real segment
labels, percentage is merely the ratio of correct assigned label with respect to
the total number of segments. First we applied the hierarchical complete link
technique, varying the proximity measure: results are shown in Table 1(a), with
number of mental states growing from two to five.

We note that accuracies are quite satisfactory. None of the method experi-
mented can be considered the best one, nevertheless, measures (7) and (8) seem
to be more effective. Therefore we applied the partitional algorithm to the same
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Table 1. Results for (a) Hierarchical Complete Link and (b) Partitional DPAM
Clustering varying the distances defined in (9) BP, (8) KL and (7) SM

BP KL SM

2 natural clusters 97.37% 97.89% 97.37%

3 natural clusters 71.23% 79.30% 81.40%

4 natural clusters 62.63% 57.36% 65.81%

5 natural clusters 46.74% 54.10% 49.69%

BP KL SM

95.79% 96.32% 95.79%

75.44% 72.98% 65.61%

64.21% 62.04% 50.52%

57.04% 46.74% 44.80%

(a) (b)

datasets setting the number of initializations η = 5 during all the experiments.
Results are presented in Table 1(b): in this last case the BP distance is overall
slightly better than the others experimented measures. A final comparison of
partitional and agglomerative hierarchical algorithms underlines that there are
no remarkable differences between the proposed approaches. Clearly, partitional
approaches alleviates computational burden, thus they should be preferred when
dealing with complex signals clustering (e.g. EEG). The comparison of cluster-
ing and classification results (obtained in earlier works) shown that the latter
are just slightly better. This strengthen the quality of the proposed method,
considering that unsupervised classification is inherently a more difficult task.

6 Conclusions

In this paper we addressed the problem of unsupervised classification of se-
quences using an HMM approach. These models, very suitable in modeling
sequential data, are used to characterize the similarity between sequences in
different ways. We extend the ideas exposed in [8] by defining a new metric
in likelihood sense between data sequences and by applying to these distance
matrices two clustering algorithms: the traditional hierarchical agglomerative
method and a novel partitional technique. Partitional algorithms are generally
less computational demanding than hierarchical, but could not be applied in
this context without some proper adaptations, proposed in this paper. Finally
we tested our approach on real data, using complex temporal signals, the EEG,
that are increasing in importance due to recent interest in Brain Computer In-
terface. Results shown that the proposed method is able to infer the natural
partitions with patterns characterizing a complex and noisy signal like the EEG
ones.
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