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Abstract

We give a modal presentation of the McCain and
Turner’s “causal theories”; we show how to for-
malise, in this framework, Foo and Zhang’s inter-
polation argument[Zhang and Foo, 2002].

1 Introduction
Consider McCain and Turner’s theory of “causal reasoning”
[McCain and Turner, 1997]; this starts from a collection of
causal laws(written φ . ψ), and defines a logical conse-
quence relation as follows:

1. Suppose that we are given a set of causal laws: call itT,
formulated in some languageL. Let M be a model of
L. Given a modelM of our language, define a theory as
follows:

TM def= {ψ| for someφ ∈ L, φ . ψ andM � φ} (1)

2. Now we say thatM is causally explained(according to
T) if it is the only model ofTM .

3. Finally, we say thatφ ∈ L is a consequenceof a
causal theoryT if φ is true in everyT-causally explained
model.

With a particular choice of causal theoryT, this gives – it
seems – a consequence relation appropriate for causal reason-
ing of the usual sort. It has, furthermore, good mathematical
properties: as I argue[2002b; 2002a], this consequence rela-
tion is independent of the vocabulary that it is formulated in
(a feature not shared by circumscription-based approaches).

Interesting though it is, this system has some disadvan-
tages. It is defined in terms of models: models, however,
are large, computationally unwieldy objects. Furthermore,
although these systemsseemto work, they are not metatheo-
retically transparent: on the formal level, it is hard (and ex-
tremely bureaucratic) to prove their correctness, whereas, on
the informal level, they do not provide very much insight into
why they work.

Consequently, we[2002b] have defined a modal system
which can be used to reformulate these McCain-Turner theo-
ries. It is given by a sequent calculus: the non-modal rules are
given in Table 1, whereas the modal operator is given by the
rules in Table 2. The introduction and elimination rules are

analogous to Lifschitz’s predicate completion reformulation
of McCain-Turner[Lifschitz, 1998]; however, our rules are
more general. Furthermore, these rules have a richer metathe-
ory than predicate completion: this (and particularly the cut
elimination result) will also be useful to us.

Remark 1. It is easy to verify that we could just as well have
used left and right rules where theQ1, . . . , Qk (and the cor-
responding sets ofPs) range overminimalsets such that

Q1, . . . , Qk ` X.
In effect, the rules define@X as a large disjunction of con-
junctions likeP1∧. . .∧Pk; allowing non-minimal entailmen-
nts means allowing more disjuncts, each of which entails one
of the non-minimal disjuncts. Such an enlargement replaces
the disjunction with a logically equivalent one.

However, although the systemwith the restriction to mini-
mal sets may well be important for applications (it is certainly
more computationally tractable), it is considerably clumsier
to work with: we will, therefore, use the non-minimal sys-
tem.

This system is (as the notation implies) a modal logic:

Proposition 1. @ is aK modality.

Proof. [White, 2002b]

Notice that@L is, in general, infinitary (and one can invent
examples where it is undecidable). However, in standard ap-
plications of the system, we can show that it remains quite
tractable. For this, however, we need the following metathe-
oretical results.

Proposition 2. The system given by Tables 1 and 2 has cut
elimination: that is, given any proof of a sequentΓ ` ∆, there
is a proof of the same sequent without using the multicut rule.

Proof. Given in [White, 2002b]; the proof uses the methods
of Schroeder-Heister[1992].

Now from cut elimination, we can (as is standard) con-
clude that our system is consistent. We can also derive more
interesting results. Note first that, ifφ . ψ is a causal law,
φ ` @ψ is trivially a theorem of our system. Using cut elimi-
nation, we can prove a sort of converse. We suppose that we
start off with a non-modal languageL, in which the original
McCain-Turner theory is formulated: ifL@ is L extended by
our modal operator@, then we have:
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Γ, A[x/y] ` ∆
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multicutc
Γ,Γ′ ` ∆,∆′

ay not free inΓ or ∆, and eithery = x or y not free inA
by not free inΓ or ∆, and eithery = x or y not free inA
cwhereXn stands forn occurrences ofX; m, n > 0

Table 1: The Non-Modal Rules

Γ ` P1 ∧ . . . ∧ Pn,∆ Q1, . . . , Qn ` X
@Ra

Γ ` @X,∆

{Γ, Pi1 , . . . , Pik
` ∆, Qi1 , . . . , Qik

` X}i=1,...,n @Lb

Γ,@X ` ∆
awhere, for alli, Pi . Qi
bwhere, for eachi, we havePi1 . Qi1 , . . . Pik . Qik , and where the

{Pij} and{Qij}, for i = 1, . . . n, are the only such sets ofPs andQs
that there are.

Table 2: The Basic Modal Rules



Proposition 3. LetM be a model ofL, and letP ∈ L. Then
TM ` P iff there is a valid entailmentΓ ` @P , with Γ a set
of propositions ofL true inM .

Proof. Only if is clear: we can simply use the proof of
TM ` P to get a proof ofΓ ` @P . The other direction
needs cut elimination: we take a cut free proof ofΓ ` @P
and, by induction on the complexity of the proof tree, find a
set of causal laws with their bodies true inM and their heads
entailingP .

From this follows:

Proposition 4. The canonical model of our modal logic is
given as follows: the worlds are all the models of our non-
modal languageL, whereas the accessibility relationR is
given by

MRM ′ iff M ′ is a model ofTM . (2)

Proof. We first prove that, in any modelM of L@, the truth
values of modal propositions are given by the truth-values of
the non-modal propositions: thus, models ofL@ are given by
models ofL. By cut elimination,L@ is a conservative exten-
sion ofL, so each model ofL can be extended to a model of
L@. Now the worlds of the canonical model are precisely the
models ofL@, which are the models ofL; the fact that the
accessibility relation is given by (2) is standard.

Our modal system thus tells us everything we want to know
about the causal theory: the worlds of its canonical model
give us the models of the original language, whereas the ac-
cessibility relation on the canonical model gives us the deduc-
tive closures of the setsTM . From this we can work out the
McCain-Turner entailment relation: more formally, we have

Proposition 5. LetP ∈ L. ThenP is causally entailed byT
iff we have

Γ,Γ′ ` P

whereΓ is a set of propositions of the form@A ` A, andΓ′

is a set of propositions of the formA ` @A, and where the
modal operator is defined byT.

Proof. By (2), together with standard results[van Benthem,
1984], the causally explained worlds are precisely those in
which @A → A andA → @A hold, for allA. The result
follows.

Finally, note a further consequence of cut elimination:
proof search for entailments of the formΓ ` @∆, whereΓ
and∆ are sets of non-modal propositions, is monotonic inΓ,
∆ and the elements ofT, and is also generally quite tractable.
Nonmonotonicity only arises when we have to deal with ap-
plications of the left rule for@. This is an illustration of a
rather more general theme: that, if we can find logical sys-
tems with robust mathematical properties (cut elimination,
for example, or interpolation), then, even though our rea-
soning may be nonmonotonic, it can, still, be quite tractable
[Zhang and Foo, 2002].

1. f0 . f0 and¬f0 . ¬f0, for any fluentf at time 0;

2. at . at and¬at ⇒ ¬at, for any actiona at any timet;

3. ft−1 ∧ ft . ft and¬ft−1 ∧ ¬ft . ¬ft, for any fluentf
and any timet;

4. ft−1 ∧ at−1 . gt, for any timet, wheref is the precon-
dition andg is the postcondition of actiona.

5. ¬P .⊥, for any domain constraintP .

Table 3: McCain and Turner’s Laws

Example 1 (Necessitation).As an example, we show that
the rule of necessitation is admissible: that is, that, if we have
a proofΠ of Γ ` A, we can also prove@Γ ` @A (where, as
usual,@Γ = {@γ|γ ∈ Γ} for a set of formulaeΓ).

We first apply@L to all of the@γ:{
φ11 , . . . , φ1k1

, . . . , φn1 , . . . , φnkn
` @A

}
@Γ ` @A

whereΓ = {γ1, . . . , γn}, where the entailments in the brack-
ets are given by all of the sets of bodies of causal rulesφi

where the corresponding heads satisfy

ψi1 , . . . , ψiki
` γi (3)

for eachi.
Consider one of the entailments in brackets. From the en-

tailments (3), together with our proof ofΓ ` A, we can derive
a proof of

ψ11 , . . . , ψ1k1
, . . . , ψn1 , . . . , ψnkn

` A;

we can use this proof as a side condition for an application of
@R, and thus prove the required entailment.

2 The Original Causal Laws
McCain and Turner’s original laws are given in Table 3; here
we suppose that we have sets of fluents{fi} (wherefi stands
for the fluentf at timet, and of action symbolsaj , and also
that the domain constraints (if any) are given by sentencesP .

Example 2 (Using the Constraints).Suppose that we have
to prove an entailment of the formΓ ` @A,∆. We can get
the constraints onto the left hand side like this:

···
Γ, C ` @A,∆

¬R
Γ ` ¬C,@A,∆

@R
Γ ` @A,@A,∆

RC
Γ ` @A,∆

where the application of@R is justified by the entailment⊥`
A.

2.1 The Meaning of These Rules
McCain and Turner’s system is often described as a system of
causal reasoning: I would like to argue, however, that we can



interpret it in a rather more general sense, and that, so inter-
preted, it can be seen as a continuation of a well-established
tradition.

The idea of questions and answers is quite appropriate
here. According to Hintikka[1976; 1972], and Harrah[1975]
a question can be regarded as denoting its set of possible
answers (out of which an appropriate answer selects one).
For example, in Harrah’s system our@P would be called
the “assertive core” of the question, whereas hisindicated
replieswould, in our system, be combinations of rule bod-
iesφ, . . . , φk such thatφ1, . . . , φk ` @P . Here we have two
rules for@, left rules and right rules; when we apply a left
rule to the necessitation of a given fluent, we get the set of
possible answers to a question. When we apply a right rule,
we have to select an answer from the set of appropriate ones.
The duality of left rules and right rules, then, corresponds to
a duality of questions and answers.

Now, in the case of McCain and Turner’s original exam-
ples, these questions and answers come from the domain of
causal explanation: the operators give us answers to the ques-
tions that arise in the process of constructing a causally ex-
plained narrative. However, there is no need to limit this
system to merelycausalquestions, or causal explanations.
In fact, Parsons and Jennings ([Parsons and Jennings, 1996];
see also[Parsonset al., 1998]) have described a consequence
relation,`ACR, which is intended to capture the practice of
argumentation from a given set of basic arguments. Their
system turns out (see[White, 2003]) to be a special case of
ours: to each proof of theirs

∆ `ACR (p,A)

– which says that the argument top from premisesA is valid,
given the basic arguments in∆ – we can associate a proof in
our system of

A ` @∆p,

where@∆ is the modality obtained by taking the basic ar-
guments in∆ as “causal” axioms (although, of course, they
need not be causal, and, in Parsons and Jenning’s case, they
are not causal).

3 The Zhang-Foo Interpolation Argument
Zhang and Foo argue that reasoning about the frame prob-
lem can be made considerably more tractable if one uses the
meta-hypothesis that “local queries require only local frame
axioms”[2002, p. 359]. Making sense of this hypothesis de-
pends, of course, on being able to give a sense to “local”:
Zhang and Foo interpret it using the idea of a sublanguage, so
that local reasoning would be reasoning would be reasoning
which could be carried out in some appropriate sublanguage.
So, as they write,

. . . engineers can localise their language so that it
involves only the relevant components yet is suffi-
cient for specifying the system and expressing pos-
sible future queries . . . [A]nswering a query in the
local language might only require local frame ax-
ioms. Therefore the number of frame axioms will
mainly depend on the size of the local language.
[2002, p. 358]

Substantiating this hypothesis involves metatheoretical work:
what we need to show is some sort ofinterpolation prop-
erty [Troelstra and Schwichtenberg, 1996, Section 4.2] for
the logic concerned. Zhang and Foo[2002, pp. 365ff.] es-
tablish such a property for their logic (a variant of dynamic
logic); here we establish it for ours.

We first lay down some assumptions and some notation.
Suppose that the relation symbols of our languageL can be
partitioned into two disjoint setsR′ andR′′, and that the con-
stants can likewise be partitioned into two disjoint setsC′ and
C′′; let L′ andL′′ be the corresponding sublanguages ofL,
and, similarly, letL′

@ andL′′
@ be the corresponding sublan-

guages ofL@.
Definition 1. C is animplicit constraintif ¬C ` @ ⊥.

Note that an implicit constraint must be true in every
causally explained model: if it were to be false in a model,
then@ ⊥ would be true in that model, and so⊥ would be
true in that model, which is a contradiction.
Proposition 6. Suppose that the causal rules are such that,
if φ . ψ, then eitherφ, ψ ∈ L′ or φ, ψ ∈ L′′. Define a
modal operator@′ by rules restricted toL′: the right rule,
for example, will be

Γ ` φ′1 ∧ . . . ∧ φ′k,∆

Γ ` @′X
wheneverφ′i . ψ′i for all i, ψ′1, . . . , ψ

′
k ` X, and where

φ′i, ψ
′
i ∈ L for all i. The left rule is similar. Similarly, de-

fine a modal operator@′′ by rules restricted toL′′. Then, if
X ′ ∈ L′, @X ∼= C ′′ → @′X ′, whereC ′′ is a conjunction
of domain constraints inL′′. Correspondingly, ifX ′′ ∈ L′′,
@X ′′ ∼= @′′X ′′.

Proof. For anyX, @′X ` @X: we take the sequent@′X `
@X and apply@X, which gives us a set of sequents of the
form

φ′1, . . . , φ
′
k ` @X

whereψ′1, . . . , ψ
′k ` X: but now we can simply apply@R.

The converse is not so immediate. We have to prove
C ′′,@X ′ ` @′X ′, and so we have to prove sequents of the
form

C ′′, φ1, . . . , φk ` @′X ′,

whereX ′ ∈ L′, but where now theφs are no longer restricted
to lie in L′. We know thatψ1, . . . , ψk ` X: re-order theψs
if necessary so that we have

L′︷ ︸︸ ︷
ψ′1, . . . , ψ

′
j ,

L′′︷ ︸︸ ︷
ψ′′j+1, . . . , ψ

′′
k ` X

By interpolation forL, there is a propositionF ∈ L′ ∩ L′′

such that

ψ′′j+1, . . . , ψ
′′
k ` F

ψ′1, . . . , ψ
′
j , F ` X

Now, by assumption,L′ ∩L′′ = {>,⊥}, there are two cases:
if F = >, then we already haveψ′1, . . . , ψ

′
j ` X, and we can

apply@′R.
If F =⊥, thenψ′′j+1, . . . , ψ

′′
k `⊥, and soφ′′j+1 ∧ . . . ∧ φ′′k

is the negation of an implicit constraint inL′′: we simply add
it to C ′′, and we can prove the desired sequent.



We now specialise to a particular class of theories: in these
theories, there will be temporally indexed proposition and ac-
tion symbols, and the “causal rules” will be of the form given
in Table 3: that is, both heads and bodies will be conjunc-
tions of fluents and actions. Call such a theory afluent-based
theory.

Lemma 1. LetT be a fluent-based theory: then a modelM is
causally explained iff, for every conjunctionP of fluents and
actions,M � P ↔ @P .

Proof. Any proposition inL can be put into disjunctive nor-
mal form. So, suppose thatP ∼= P1 ∨ . . .∨Pk, where thePis
are conjunctions of fluents and action symbols. To work out
@P , we have to consider proofs of

ψ1, . . . , ψl ` P1 ∨ . . . ∨ Pk

By cut elimination forL, and the form of theψi, every such
proof comes from a proof of

ψ1, . . . , ψl ` Pj

for a suitablej. Consequently,for fluent-based theories, we
have

@P ∼= @P1 ∨ . . . ∨ @Pk,

and this shows that, for such theories, propositions in the
modal language can be put into “disjunctive normal form”;
the disjuncts here will be conjunctions of

1. conjunctions of fluents and action symbols, and

2. modalisations of fluents and action symbols.

The result follows.

Consequently, we have

Corollary 1. Suppose thatT is a fluent-based theory, and
that the fluents and action symbols can each be partitioned
into two subsets,L′ and L′′, such that the causal rules and
the constraints respect the partition (i.e., for each ruleφ . ψ,
eitherφ, ψ ∈ L′ or φ, ψ ∈ L′′, and the constraints are a con-
junction of propositions each of which involves only proposi-
tions inL′ or L′′. Then a model is causally explained (with
respect to@ iff its restrictions toL′ andL′′ are causally ex-
plained (with respect to@′ and@′′).

Proof. SinceL′ ⊆ L and L′′ ⊆ L, for everyP ′ ∈ L′,
there is a conjunctionC ′′ of L′′-constraints such that(C ′′ →
@′P ′) ∼= @P ′ (and similarly forP ′′ ∈ L′′).

Suppose now thatM is causally explained: by the above
argument, for everyP ′ ∈ L′ there is a conjunctionC ′′ of
implicit constraints such thatM � P ′ ↔ (C ′′ → @′P ′).
However,C ′′ is a constraint andM is causally explained, so
M � C ′′; consequently,M � P ′ ↔ @′P ′. P ′ is arbitrary, so
M ′ is causally explained.

Conversely, suppose thatM ′ and M ′′ are causally ex-
plained. By Lemma 1, it is enough to proveM � P ↔ @P
for every conjunctionP of fluents and action symbols. How-
ever, each such is a conjunctionP ′∧P ′′ of fluents and action
symbols fromL′ andL′′; so,@P ∼= (C ′′ → @′P ′) ∧ (C ′ →
@′′P ′′), and we argue as above.

Thus, every causally explained model ofT is a pair of
causally explained models, one ofT′ and one ofT′′: and we
have a local reasoning result very similar to Foo and Zhang’s.

Results like these are not only useful for the tractability
of causal reasoning: they also play an important role in the
metatheory. Consider a causal theory in McCain and Turner’s
form: how do we verify its correctness? Suppose, for sim-
plicity, that we have a scenario with only one action occur-
rence: partition the vocabulary into two parts, one of which
(L′) contains the action, together with its preconditions and
postconditions, whereas the other (L′′) contains all the other
primitives. It is elementary to verify that the only model of
L′′ in which no actions occur is the one in which nothing
changes: consequently, we only have to verify correctness
for L′, which is a much simpler affair.

4 Conclusion
Makinson[2003, pp. 10f.] has argued that nonmonotonic con-
sequence relations are not closed under uniform substitution,
and that they do not need to be. This is, I would argue, too
hasty: the inclusionsL′,L′′ ⊆ L of this paper can be viewed
as substitutions, and the main results can be viewed as show-
ing that the consequence relation is, in fact, closed under the
substitutions in question. The truth of the matter is surely
this: although the consequence relation is not closed under
substitutionin general, there are certain substitutions that it
is closed under. Furthermore, knowing which substitutions
are possible tells us a good deal about the structure of the
logic – indeed, if Zhang and Foo are correct, this knowledge
can be regarded as the key to a tractable grasp of the logic in
question.
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