
AI 2009 - Handout 2

First-Order Logic

Gianluigi Bellin

March 3, 2009

1 Introduction

A proposition is an entity that can be true or false; according to the German
philosopher Gottlob Frege, it is the thought expressed by a sentence. In the
propositional calculus we consider atomic sentences as units which cannot
be further analysed: “it rains”, “water freezes at 0 degrees Celsius at the sea
level”, “it snows”, “there is ice”. There is an atomic sentence which is always
false, denoted by ⊥. Moreover sentences are built from atoms though logical
connectives not, and, or, implies, according to the grammar

A := p | ⊥ | ¬A | A0 ∧ A1 | A0 ∨ A1 | A0 → A1

The only semantic property of such sentences is their truth value. Therefore
the interpretation of a propositional language on a set Atoms of atomic
sentences is a valuation V : Atoms → {T, F}, i.e., a truth-value assignment
to the atoms, which is then extended to non-atomic sentences by the familiar
truth-tables for propositional connectives. A sentence is logically valid (e.g.,
A ∨ ¬A) if it has value T for all assignments to the atoms.

A key property of propositional semantics is compositionality: in order to
know the truth value of a non-atomic formula, we only need to look at the
truth values of its subformulas.

1.1 First Order Predicate Calculus

In First Order Predicate Calculus a deeper logical analysis of language is
presented than in the propositional case, breaking sentences into their com-
ponents, e.g., names and predicates, in such a way that the semantic value
of sentences results from the semantic value of these components. Given a

1

set of names, e.g, Names = {Romeo, Juliet }, and a set of predicates, e.g.,
Predicates = “{ loves }”, a first-order language L = (Names, Predi-

cates) is interpreted by giving a domain of discourse D together with a fixed
assignment of an element of D to each name and of a relation on D to each
predicate. Thus an interpretation for our language L could be a set D of
people, two of whom are called Romeo and Juliet, and such that there is a
well-defined loving relation between pairs of elements of D (no ambiguous
feelings, please!). Now the atomic sentence Romeo loves Juliet is true in the
interpretation if the two elements of D called Romeo and Juliet are indeed
in the loving relation and false otherwise.

Notice that the interpretation of a first-order language gives a truth value
to a sentence, not to a predicate: here “ loves ” is a binary predicate,
“Romeo loves ” and “ loves Juliet” are unary predicates and Romeo loves
Juliet is a closed atomic sentence: it is closed because the “holes” of the
predicate have been filled with names; it is atomic because it contains no
logical symbols.

We can present exactly the same ideas in an abbreviated and more math-
ematical notation as follows. We have a language L = ({R, J}, {L(x, y)})
and an interpretation M = (D, {RM, JM}, {LM}) where D is our domain
of discourse, RM, JM ∈ D are the individuals named R and J , respectively,
and LM : D×D → {T, F} is the binary relation on D. With this formalism
we clearly see how to find other interpretations of our language: for instance,
we can let D = N, the set of non-negative integers, RM = 0 = JM

1 and the
relation LM = “ ≤′′.

As in the propositional calculus, a (closed) first-order formula A in the
language L = (Names, Predicates) is valid if for any interpretation M =
(D,NamesM,PredicatesM) is true in M.

1.2 Quantifiers

But the real power of the predicate calculus comes from the fact that it allows
us to express sentences about all the elements or about some element of our
intended domain without actually naming each one of them. Let us use free
variables instead of “holes” as place-holders, and write x loves y instead of

loves . Now we can use the expressions “for all x” (in symbols ∀x) and
“for some x” (∃x) to bind the free occurrences of the variable x that occur
in the expression to the right (the scope of the quantifier “∀x” and “∃x”).
For instance, we can define new unary predicates such as for all x, x loves y,

1We do not need to assume that R and J denote different individuals: in the language
we do not have an equality predicate to say whether or not RM = JM.

2

for some x, x loves y, for all y, x loves y, for some y, x loves y and then the
sentences

1. for all x, for all y, x loves y ; (everybody loves everybody)
2. for some x, for some y, x loves y; (somebody loves somebody)
3. for all x, for some y, x loves y; (?)
4. for all y, for some x, x loves y; (everybody is loved by someone)
5. for some x, for all y, x loves y; (?)
6. for some y, for all x, x loves y. (?)

Moreover, “for all y, Romeo loves y” is also a sentence, as the quantifier “for
all y” binds the only free variable in the unary predicate “Romeo loves y”.

Notice that the meaning of the expression “for all y, Romeo loves y”
does not change if we say “for all z, Romeo loves z”, i.e., ∀y.L(R, y) and
∀z.L(R, y)[z/y] have the same meaning. This holds because

• we replace the bound variable y with the variable z both in the quanti-
fying expression “∀y” and in its scope “L(R, y)”, and also because

• z does not already occur free in L(R, y).

Indeed, substituting the bound variable y with z in the predicate ∀y.L(z, y)
yields the sentence ∀z.L(z, z) (everybody loves oneself), which has certainly
a different meaning from that of the property “z loves everybody”!

1.2.1 Restricted Quantifiers

In natural language, quantifiers usually come with a specification of their
intended domain. For instance, in the case considered above the itended
domain of the quantifiers is a set of people. But we may talk with different
intended domains: every person loves some cat refers to people and to cats.
How shall we formalize this? Writing P (x) for x is a person and C(y) for y
is a cat, we have:

∀x.P (x) → ∃y.C(y) ∧ L(x, y).

The general rule is that we restrict a universal quantifier using an implication
and an existential quantifier using a conjunction. Indeed if we restrict a
universal quantifier by a conjunction we put too strong a condition: indeed

∀x.P (x) ∧ ∃y.C(y) ∧ L(x, y)

means that everything is a person, including cats. If we restrict an existential
quantifier with an implication, the condition is too weak: the sentence

∀x.P (x) → ∃y.(C(y) → L(x, y))

is true even if there are no cats in the domain of discourse, which is not what
is meant by “every person loves some cat”.

3

1.2.2 Compositionality

There is a difficulty in the semantics of quantifiers2: in the propositional
case, the truth values of a complex formula depend only on its subformulas.
But what are the subformulas of a quantified expression ∀x.A(x)? Given a
domain of discourse D and an interpretation M = (D, AM), we need to give
a propositional value to the expression A(x), assuming that the variable x
ranges over the domain of discourse D; before we regarded a variable as a
place-holder, now we regard it as a “variable name”.

One way to clarify this is to define assignments of elements of D to the
variables σ : Vars → D. In this approach we say that ∀x.A(x) is true in the
given interpretation M with the assignment σ if for all assignments σ′ that
differ from σ only for the value given to the variable x, we have that A(x)
is true in M with the assignment σ′. This works, but it is a bit strange to
explain what it means to be true for all elements of the domain by quantifying
over all functions assigning elements of D to variables!

Another approach is to extend our language L with a set AD of “tempo-
rary names” ad (or parameters), one ad for each element d of the domain of
discourse D. Then we may say that ∀x.A(x) is true in the given interpreta-
tion M if for all a ∈ PD we have that A[a/x] is true in M.The requirement
of compositionality is satisfied as we assume that for each a ∈ PD the ex-
pression A[a/x] is a subformula of ∀x.A(x). We follow this approach in the
following sections.

2 First Order Predicate Calculus: syntax and

semantics

A First Order Language L = (Pred, Constants) has a sequence Pred =
{P n1

1 (x1, . . . , xn1
), . . . P nk

k (x1, . . . , xnk
)} of predicate symbols and a sequence

Constants = {c1, . . . , cm}. Every first order language has an infinite set of
free variables v0, v1, . . . vi, A term t is either a free variable vi (an open
term) or a constant cj (a closed term).

Let P n be a n-places predicate letter. Formulas are defined by the following
grammar:

A := P n(t1, . . . , tn) | ⊥ | ¬A | A0 ∧ A1 | A0 ∨ A1 | A0 → A1 | ∀x.A | ∃x.A

The free variables FV(A) of a formula A are defined by induction on the
definition of a formula: the free variables of atomic formula P n(t1, . . . , tn) are

2The considerations in this section can be omitted in a first reading.

4

the free variables that occur in the terms ti. For instance, FV(P 2(c, y)) =
{y}. Then

• FV(⊥) = { };

• FV(A0 ∧ A1) = FV(A0 ∨ A1) = FV(A0 → A1) = FV(A0) ∪ FV(A1);

• FV(∀x.A) = FV(∃x.A) = FV(A) r {x}.

A formula that has no free variables is closed.

Example: Let L have Pred = ({L2} and Constants = {R, J}. Here
L2(R, J)∧∀x.¬L(R, x) → ¬L(J, x) is a closed formula, which we may regard
as the formalization of the sentence “Romeo loves Juliet and Romeo dislikes
only those who are disliked by Juliet. The first conjunct is closed because
the two “holes” (arguments) of the predicate L2(x, y) are filled with two
constants, namely R, J ; the second conjunct is closed because the variable x
in ¬L(R, x) → ¬L(J, x) is bound by the quantifier ∀x.

2.1 Substitution

We indicate the result of substituting a term t for a free variable x in a
formula A(x) by A[t/x]. Here it is understood that no free variable of t
become bound in the substitution: this is always possible if we rename the
bound variables occurring in A with new symbols for variables, i.e., different
from all those already occurring in A or in t. Indeed, replacing the term y
for the variable z in ∀y.L(z, y) would give an expression with a completely
different meaning! Thus when we write (∀y.L(z, y))[y/z], we actually mean
the following process: first we rename the bound variable y with a new one,
say x, and obtain ∀x.L(z, x) and then we replace y for z in the resulting
expression, obtaining ∀x.L(y, x), which has the meaning intended by the
expression (∀y.L(z, y))[y/z].

Consider the example “for all y, Romeo loves y”. This is a closed formula,
thus a sentence, the result of substituting the name R for the variable x in
“for all y, x loves y”. Such a substitution is possible because R is a closed
term and cannot be “captured” by the quantifier “for all y”. In symbols we
write (∀y.L(x, y))[R/x] = ∀y.L(x, y)[R/x] = ∀y.L(R, y).

2.2 Semantics

Definition. Given a first order language L = (Pred, Names), where Pred

= {P n1

1 , . . . P nk

k } and Constants = {c1, . . . , cm}, an interpretation M =

5

(D,PredM,ConstantsM) of L consists of a nonempty domain D, of a se-
quence of relations {(P n1

1)M, . . . , (P nk

k)M} among the elements of D and of
a sequence {(c1)M, . . . , (cm)M} of elements of D, that are assigned to the
predicates and of the constants of the language L as indicated. (End of
definition.)

We are interested only in the interpretation of sentences, i.e., of closed
formulas. Consider the sentence “Romeo loves everybody”; we look for an
interpretation M of the language L with Pred = {L2} and Constants =
{R, J}. Given any domain D, we know how to interpret the predicate “L2”,
as a relation L2

L : D × D → {T, F}, and we know how to interpret the
constants “R” and “G”, as individuals RM and GM of the domain D. To
interpret “∀x.L2(R, x)” we need to say that for all individuals d ∈ D, the
pair 〈RM, d〉 belongs to the relation L2

M that interprets L2. If we had in
our formal language a name ad for each element d ∈ D, then we could say
that ∀x.L2(R, x) is true in M if and only if for all individuals d ∈ D, the
atomic sentence L2(R, ad) is true in M; in other words, we could consider
only closed atomic formulas in the basic case. This leads us to the following
definition.

Definition. Given a first order language L = (Pred, Constants) and
an interpretation M = (D,PredM,ConstantsM) of L with domain of
discourse D, extend the language L with a set of names (or parameters)
A = {ad | d ∈ D}, one for each element of the domain D. Let A be a
formula of L + A containing only constants and parameters but not free
variables; we define what it means for such a formula to be true in M (in
symbols, M |= A) by induction on the definition of A:

(i) if A = P n(t1, . . . , tn) is a atomic formula then

M |= A iff 〈(t1)M, . . . , (tn)M〉 ∈ P n
M;

(ii) M |= (¬B) iff not M |= B;

(iii) M |= (B ∧ C) iff M |= B and M |= C;

(iv) M |= (B ∨ C) iff M |= B or M |= C;

(v) M |= (B → C) iff M |= B implies M |= C;

(vi) M |= (∃vi.B) iff there exist a d ∈ D such that M |= B[ad/vi];

M |= (∀vi.B) iff for all d ∈ D, M |= B[ad/vi].

A closed formula A of a language L is logically valid if it is true in all interpre-
tations M of L, i.e., for all (appropriate) M, M |= A. (End of definition.)

6

3 Proving in First Order Logic

We consider here proof-systems for First Order Logic. We start from an ex-
tension of the Semantic Tableaux procedure for the Propositional Calculus
and show that it is sound and complete for the semantics of First Order
Logic. Equivalent methods are Natural Deduction systems and the Reso-
lution Method, which is at the foundations of the programming language
PROLOG.

3.1 Semantic Tableaux Procedure

We extend the “semantic tableaux” procedure to classical first-order predicate
logic: as in the propositional case given two sets Γ, ∆ of closed formulas
(first order sentences) in the language L = (Pred, Names), the procedure
inverts the logical rules of Gentzen’s sequent calculus in such a way that
every formula in Γ, ∆ is eventually analyzed. But in the first order case we
have three possibilities:

1. the procedure stops, yielding a closed tree that represents a derivation
of Γ ⇒ ∆ in Gentzen’s sequent calculus if (

∧
Γ) → (

∨
∆) is logically

valid;

2. the procedure finds a finite open branch in the tree and stops, from
which a finite countermodel M can be extracted such that M |= (

∧
Γ)

and M 6|= (
∨

∆)

3. the procedure does not stop.

In the third case there is no way for a mechanical procedure to produce a
countermodel of (

∧
Γ) → (

∨
∆)3 but we can still realize, with some intelli-

gence, how to construct a possibly infinite countermodel M.

Definition. (sequent) (i) Let Γ = C1, . . ., Cm and ∆ = D1, . . ., Dn finite sets
of formulas. A formal expression S = Γ ⇒ ∆ is called a sequent; Γ is the
antecedent and ∆ the succedent of the sequent S. In the semantic tableaux
procedure we shall use sequents of the form

a; C1, . . . , Cm ⇒ D1, . . . , Dn

where a = c0, . . . , ck, a1, . . . , ak is a list of all constants and parameters oc-
curring in C1, . . ., Cm, D1, . . ., Dn. (End of definition.)

3This can be proved with techniques studied in Computability Theory.

7

axiom:
A, Γ ⇒ ∆, A

⊥-axiom:
⊥, Γ ⇒ ∆

logical rules
A, Γ ⇒ ∆

¬-R
Γ ⇒ ∆,¬A

Γ ⇒ A, ∆
¬-L

Γ,¬A ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B
∧-R:

Γ ⇒ A ∧ B, ∆
Γ, A, B ⇒ ∆

∧-L
A ∧ B, Γ ⇒ ∆

Γ, A ⇒ ∆, B
→-R

Γ ⇒ A → B, ∆
Γ ⇒ ∆, A Γ, B ⇒ ∆

→-L
A → B, Γ ⇒ ∆

Γ ⇒ ∆, A, B
∨-R

Γ ⇒ A ∨ B, ∆
A, Γ ⇒ ∆ B, Γ ⇒ ∆

∨-L
A ∨ B, Γ ⇒ ∆

Γ ⇒ ∆, A[a/x]
∀-R

Γ ⇒ ∀x.A, ∆

Γ, A[t/x], ∀x.A ⇒ ∆
∀-L

∀x.A, Γ ⇒ ∆

where a is not free in Γ, ∆;

Γ ⇒ ∆, A[t/x], ∃x.A
∃-R

Γ ⇒ ∃x.A, ∆

Γ, A[a/x] ⇒ ∆
∃-L

∃x.A, Γ ⇒ ∆

where a is not free in Γ, ∆.

Table 1: First Order Classical Sequent Calculus

Table 1 presents the rules of the sequent calculus for first order logic in
the most general form. Notice that in the rules ∀-L and ∃-R it is required
that the parameter a occurs free only in the formula A[a/x] that is being
quantified over, i.e., that a does not occur in the conclusion of the inference.

In the “Semantic Tableaux” procedure, however, it is better to give se-
quent rules for ∀-L and ∃-R an equivalent, more algorithmic notation, as in
Table 2. We consider here only the rules for implication, the other proposi-
tional rules being analogous, and the rules for the universal and existential
quantifiers.

8

axiom:
a; A, Γ ⇒ ∆, A

⊥-axiom:
a;⊥, Γ ⇒ ∆

a; Γ, A ⇒ ∆, B
→-R

a; Γ ⇒ A → B, ∆
a; Γ ⇒ ∆, A a; Γ, B ⇒ ∆

→-L
a; A → B, Γ ⇒ ∆

a, ai+1; Γ ⇒ ∆, A(ai+1)
∀-R

a; Γ ⇒ ∀x.A, ∆

a; Γ, A(a0), . . . , A(ai), ∀x.A ⇒ ∆
∀-L

a; ∀x.A, Γ ⇒ ∆

where a = a0,ai;

a; Γ ⇒ ∆, A(a0), . . . , A(ai), ∃x.A
∃-R

a; Γ ⇒ ∃x.A, ∆

a, ai+1; Γ, A(ai+1) ⇒ ∆
∃-L

a; ∃x.A, Γ ⇒ ∆

where a = a0,ai.

Table 2: Semantic Tableaux procedure, modified rules (Breadth-first search).

Recall the motivations of the “semantic tableaux” procedure: we try to falsify
a sequent

S : a; Γ ⇒ ∆.

This means that we try to find an interpretation M such that the antecedent
Γ is true in M and the succedent ∆ is false in M: such an interpretation is
called a countermodel. We proceed from bottom up by inverting the rules of
the sequent calculus.

Thus in the case of the rule for implication to the right (→-R) A → B occurs
on the right hand side of the ⇒ symbol (in the succedent) of the sequent-
conclusion and we are trying to make A → B false: this means that we have
to make A true and B false at the same time; therefore in the sequent-premise
of the rule we write A to the left (in the antecedent) and B to the right (in
the succedent) of ⇒.

In the case of the rule for implication to the left (→-L) A → B occurs in the
antecedent of the sequent-conclusion and we are trying to make A → B true:
this can be done in two ways, one, by making A false (no matter what truth
value B may take) second, by making B true (whatever value A may take).
Thus the procedure branches and we have a rule with two sequent-premises:
on the left sequent-premise we write A in the succedent and on the right

9

sequent-premise B in the antecedent.

However, in first order logic, to specify an interpretation means first of
all to find a set of individuals D, our domain of discourse, which must be
non-empty. Thus we regard the constants cj and the parameters ai occurring
free in S : Γ ⇒ ∆ as names for the individuals of our potential domain D.
Since D must be nonempty, if there are no constants in S, then we must put
at least one parameter a0 in a.

On one hand, in the case of the rule for universal quantification to the right
(∀-R) a formula ∀x.A occurs in the succedent of the sequent-conclusion and
we are trying to make ∀x.A false: this means that there must be an element
d in the domain D, denoted by a parameter ad, such that A[ad/x] is false,
and indeed the existence of such a d will suffice to make ∀x.A false. In the
sequent a finite set of constants and names occurs, which are collected in the
sequence a = c0, . . . , ck, a0, . . . , ai. But we have no reason to assume that the
particular d making A[ad/x] false is the same as any of the elements named
in a. Therefore we introduce a new parameter ai+1 in a and in the succedent
of the sequent-premise we replace ∀x.A with A[ai+1/x].

Similarly, in the case of the rule for existential quantification to the left (∃-L)
we want to verify a formula ∃x.A in the antecedent of the sequent-conclusion:
for the same reasons as above we must introduce a new parameter ai+1 to
the list a and replace ∃x.A with A[ai+1/x] in the antecedent of the sequent-
premise.

On the other hand, in the case of the rule for universal quantification to the
left (∀-L) a formula ∀x.A occurs in the antecedent of the sequent-conclusion
and we are trying to make ∀x.A true: since for all d in the domain D and
for all terms t denoting d, A[t/x] must be true, we must have A[cj/x] and
A[ai/x] true for all cj, ai ∈ a, i.e., the property denoted by A must be true of
all the individuals we have named so far; but, moreover, in must be true also
of all the individuals we shall name in the future, if our procedure forces us
to introduce new parameters at a ∀-R or ∃-L stage. Therefore we shall add
A[cj/x] and A[ak/x] for all cj and ak ∈ a to the antecedent of the sequent
premise, and in it we do not erase ∀x.A, for future use4

Similarly, in an ∃-R inference a formula ∃x.A occurs in the succedent of
the sequent-conclusion and must be false: thus we must make A[cj/x] and
A[ak/x] false for all cj, ai considered so far, and also for the names aℓ that
shall be considered in the future. Therefore we add A[cj/x] and A[ak/x] for

4It is clear that we could improve the procedure by requiring that A[cj/x] and A[ak/x]
are added only for those cj and ak which have not been substituted earlier in the procedure
when analyzing ∀x.A.

10

all cj and ak ∈ a to the succedent of the sequent premise without erasing
∃x.A.

Suppose at some stage we find that the same formula A occurs in the an-
tecedent and in the succedent of a sequent

a; C1, . . . , Cm, A ⇒ D1, . . . , Dn, A.

This means that the search for a countermodel is over, at least for the subrou-
tine of the semantic tableaux procedure that was running along the branch
under consideration. This means also that the parameters ai in a cannot
be regarded as denoting individuals of a countermodel: thus if all branches
in the procedure are closed and we have a proof-tree in the sequent calculus,
the parameters are simply a particular kind of free variables, which do not
appear in the closed formulas in the sequent-root of the derivation.

Example 1. Consider the sequent S : a0; B → ∀xA ⇒ ∀x.B → A. The
procedure starts by inverting a →-L rule, trying to verify B → ∀xA: on the
left branch we try to falsify both B and ∀x.B → A and thus invert a ∀-R,
creating a new parameter a and replacing B → A[a/x] for ∀x.B → A in the
succedent; however, after inverting a →-R, we find a B on both sides in the
sequent-premise and the search ends in this branch.

On the right branch we have the sequent a0; ∀xA ⇒ ∀x.B → A and we try
to falsify ∀x.B → A: we invert a ∀-R creating the new parameter a1 yield-
ing B → A[a1/x] in the succedent of the sequent-premise. The substitution
A[a1/x] required by the application of a ∀-L and an inversion of →-R yield
A[a1/x] in both sides of the sequent-premise. Thus the procedure termi-
nates, and the sequent S is valid – and proved by the derivation tree under
consideration.

a0, a; B ⇒ B, A[a/x]
→-R

a0, a; ⇒ B,B → A[a/x]
∀-R

a0; ⇒ ∀x.B → A, B

a0, a1; A[a1/x], ∀x.A, B ⇒ A[a1/x]
→-R

a0, a1; A[a1/x], ∀x.A ⇒ B → A[a1/x]
∀-L

a0, a1; ∀x.A ⇒ B → A[a1/x]
∀-R

a0; ∀x.A ⇒ ∀x.B → A
→-L

a0;B → ∀xA ⇒ ∀x.(B → A)

(End of Example 1.)

Suppose now that the procedure stops at some branch with an open se-
quent

a; p, ∀x.A ⇒ q, ∃y.B

11

where we have pi 6= qj for all atomic formulas pi ∈ p and all qj ∈ q and,
moreover, all non-atomic formulas in ∀x.A and in ∃y.B have already been
instantiated with all the terms in a. Then we can construct a countermodel
by using the terms in a as the individuals of D and by defining the interpre-
tation of the predicate letters through the atoms in p, as it can be seen in
the following example.

Example 2. Let L(x, y) and x = y be the only predicate letter, let R and
J be the only constants of our language, and consider the sequent S

R, J ; L(J, R), ∃y.¬L(y, R), ∀x.L(x, J) ⇒ ∀z.L(z, R) → z = J.

expressing the sentence “if Juliet loves Romeo, Romeo has ennemies and
everybody loves Juliet, then only Juliet loves Romeo”.

If we apply the procedure to S, it terminates: since the quantifiers in the
left formula ∃y.¬L(y, R) [and in the right formula ∀z.L(z, R) → z = J]
do not occur under the scope of an universal [an existential] quantifier, the
generation of new names stops after one step. In more detail, in order to
make ∃y.¬L(y, R) true, we name an individual a1 as Romeo’s ennemy; in
order to make ∀z.L(z, R) → z = J false, we name another individual a2

who loves Romeo without identifying a2 with Juliet. Thus now we have a
situation in which Juliet loves Romeo, Romeo has ennemies and everybody
loves Juliet, but there is another individual that loves Romeo and is different
from Juliet which contradicts the sentence in question.

The formal countermodel is built by taking M = (D, LM, =M) where
D = {{R, J, a1, a2} and LM satisfies L(t, J), L(a2, R) and L(J, R). No iden-
tification is made in M between different names.5

R, J, a1, a2;L(t, J),∀x.L(x, J), L(a2, R), L(J,R) ⇒ a2 = J,L(a1, R)
¬-L

R, J, a1, a2;¬L(a1,R), L(t, J),∀x.L(x, J), L(a2, R), L(J,R) ⇒ a2 = J
→-R

R, J, a1, a2;¬L(a1, R), L(t, J),∀x.L(x, J), L(J,R) ⇒ L(a2,R) → a2 = J
∀-L

R, J, a1, a2;∀x.L(x,J),¬L(a1, R), L(J,R) ⇒ L(a2, R) → a2 = J
∀-R

R, J, a1;∀x.L(x, J),¬L(a1, R), L(J,R) ⇒ ∀z.L(z,R) → z = J
∃-L

R, J ;∃y.¬L(y,R),∀x.L(x, J), L(J,R),⇒ ∀z.L(z,R) → z = J

Finally, suppose that the procedure does not terminate on one branch.
It should be clear now that for this to happen an expression of the form
∀x.∃y.A(x, y) must occur in the antecedent [or an expression ∃x.∀y.A(x, y)
must occur in the succedent] of some sequent in the branch and also that

5We use the abbreviation L(t, J) for the sequence L(R, J), L(J, J), L(a1, J), L(a2, J)
(i.e., the result of substituting each member of the list (R, J, a1, a2) for t in L(t, J).

12

such an expression must be recurrently evaluated, so that new parameters
will be periodically introduced to substitute y in A(x, y).

Example 3. An example of this situation is given by the sequent

a0; ∀x.∃y.A(x, y) ⇒ ∃y.∀x.A(x, y)

...
a0, a1, a2a3, a4, a5, a6; ∀x.∃y.A(x, y), A(a1, a3), A(a2, a4), A(a0, a1) ⇒

⇒ ∃y.∀x.A(x, y), A(a5, a1), A(a6, a2), A(a2, a0)
∀-R twice

a0, a1, a2, a3, a4; ∀x.∃y.A(x, y), A(a1, a3), A(a2, a4), A(a0, a1) ⇒

⇒ ∀x.A(x,a1), ∀x.A(x,a2), ∃y.∀x.A(x, y), A(a2, a0)
∃-L twice

a0, a1, a2; ∃y.A(a1,y), ∃y.A(a2,y), ∀x.∃y.A(x, y), A(a0, a1) ⇒

⇒ ∀x.A(x, a1), ∀x.A(x, a2), ∃y.∀x.A(x, y), A(a2, a0)
∃-R

a0, a1, a2; ∃y.A(a1, y), ∃y.A(a2, y), ∀x.∃y.A(x, y), A(a0, a1) ⇒ ∃y.∀x.A(x,y), A(a2, a0)
∀-L

a0, a1, a2; ∀x.∃y.A(x,y), A(a0, a1) ⇒ ∃y.∀x.A(x, y), A(a2, a0)
∀-R

a0, a1; ∀x.∃y.A(x, y), A(a0, a1) ⇒ ∀x.A(x,a0), ∃y.∀x.A(x, y)
∃-L

a0; ∃y.A(a0,y), ∀x.∃y.A(x, y) ⇒ ∀x.A(x, a0), ∃y.∀x.A(x, y)
∃-R

a0; ∃y.A(a0, y), ∀x.∃y.A(x, y) ⇒ ∃y.∀x.A(x,y)
∀-L

a0; ∀x.∃y.A(x,y) ⇒ ∃y.∀x.A(x, y)

With some insight it is clear that we shall never have the same formula
in the antecedent and in the consequent of any sequent: indeed the order of
the quantifiers is such that in the antecedent we only have atomic formulas
A(ai, aj) where i < j and in the succedent only atomic formulas of the form
A(aj , ai) with j > i. Thus we can define an interpretation M = (D, AM)
where D = {ai | i ∈ N} and AM = {〈ai, aj〉 | i < j}. But there is more:
we can give an interpretation in the language or arithmetic by setting M =
(N, <). If the universe of discourse is that of natural numbers and A(x, y)
means m < n, then our sentence means “if for every natural number m there
is a greater natural number n, then there is a number greatest than all” which
is clearly false. It should also be noticed that the use of infinite models to
refute our sentence is unnecessary: other models are given by two totally
self-centered individuals loving only themselves, or two people desperately in
love with each other to the point of not loving themselves anymore...

On the other hand, the use of infinite models is necessary in some cases.
The property of being an ordering which is irreflexive (IRR = ∀x.(x < x),
transitive (TRANS = ∀x∀y∀z.(x < y∧y < z) → x < z) and has no maximum
(NM = ∀x.∃y.x < y) can be expressed by the formula in the antecedent of
the following sequent S

∀x.∃y.x < y, ∀x.(x < x), ∀x∀y∀z.(x < y ∧ y < z) → x < z ⇒ ⊥

13

The sequent S claims that these properties are inconsistent. But there exists
an ordering which is irreflexive and transitive and has no maximum: this is
again the “less than” relation between natural numbers, i.e., M = (N, <) is
a model of the antecedent of S. However, no finite structure is a model of
IRR + TRANS + NM (exercise). Thus if we apply the “semantic tableaux
procedure” to the sequent S we shall obtain an infinite branch, and all the
atomic formulas in the antecedents of its sequents are of the form m < n for
m, n ∈ N.

Two final, but important, remarks. We may doubt that if the procedure
does not terminate then a countermodel can be built using the information
given by the procedure. Doubts may be justified in two grounds:

1. How do we know that if the procedure does not terminate then we can
find an infinite branch in the tree?

2. Even if we have an infinite branch, which must therefore contain an
expression of the form ∀x.∃y.A(x, y) in the antecedent or an expression
∃x.∀y.A(x, y) in the succedent of some sequent, how do we know that
such an expression will be recurrently evaluated, so that in ∀x.∃y.A(x, y)
the universal quantifier can be instantiated with all the names of the
infinite domain?

The answer to (1.) is König’s Lemma: every finitely branching but infinite
tree contains an infinite path. We could indeed have an infinite tree, with
only finite branches of unlimimited length: but this is possible only if the
tree has some vertex with infinitely many outgoing edges. The case of binary
trees (i.e., with only two edges outgoing from each node) clearly suffices for
our “semantic tableaux” procedure.

The answer to (2.) comes from the fact that we have applied a breadth first
search in the formulation of our rules. Notice that in a sequent Γ ⇒ ∆
where Γ and ∆ are lists, they can be regarded as queues and a breadth-first
search-strategy in our procedure is implemented simply by adding the new
subformulas to the end of the queue, when inverting the sequent calculus
rules as indicated above. On the other hand, a depth-first strategy would be
implemented by defining our rules for the quantifiers as follows:

14

Depth-First search-strategy

a0, . . . , ai, ai+1; Γ ⇒ A[ai+1/x], ∆
∀-R

a0, . . . , ai; Γ ⇒ ∀x.A, ∆

a0, . . . , ai; A[a0/x], . . . , A[ai/x], ∀x.A, Γ ⇒ ∆
∀-L

a0, . . . , ai; ∀x.A, Γ ⇒ ∆

a0, . . . , ai; Γ ⇒ A[a0/x], . . . , A[ai/x], ∃x.A, ∆
∃-R

a0, . . . , ai; Γ ⇒ ∃x.A, ∆

a0, . . . , ai, ai+1; A[ai+1/x], Γ ⇒ ∆
∃-R

a0, . . . , ai; ∃x.A, Γ ⇒ ∆

Think what would it happen if we applied depth first search to a sequent of
the form

⇒ A, ∃y∀x.x < y,¬A

(exercise).

We can now extend the main theorem about the “Semantic Tableaux” pro-
cedure for First Order Predicate Logic.

Theorem. The “semantic tableaux” procedure for classical first-order pred-
icate logic given a formula A in L,

1. either terminates returning a tree of sequents τ with ⇒ A as the root,
such that every sequent in τ is valid, if |= A;

2. or terminates with an open branch from which a finite countermodel
can be constructed;

3. or does not terminate, but it contains an infinite branch containing all
information needed to construct a countermodel M falsifying A.

The theorem can be proved through the following Lemma and Propositions.

König’s Lemma Any infinite binary tree has an infinite path.

Sketch of Proof. Let τ be an infinite tree with root n0. Since τ is infinite
at least one of the subtrees τ00 and τ01 beginning with the successors n00, n01

of n0 must be infinite, so let n1 be the root of an infinite subtree, say τ01.
Now repeat the argument applied to n1. With infinitely many choices we get
an infinite path.

15

Proposition 1. (i) In any finite open branch every expression of the form
∀x.A(x) occuring in the antecedent and any expression ∃x.A(x) occuring in
the succedent] of some sequent is instantiated as A[ai/x] in the antecedent
[in the succedent] of some sequent of the branch, for all ai in the list a = a0,
. . ., ak occurring in the leaf.

(ii) In any infinite open branch every expression of the form ∀x.A(x)
occuring in the antecedent [any expression ∃x.A(x) occuring in the succedent]
of some sequent, is instantiated as A[ai/x] in the antecedent [in the succedent]
of some sequent of the branch, for all ai in any list a = a0, . . ., ak occurring
in any sequent of the branch.

The proof of (i) is clear; (ii) follows from the fact that we have implemented
a breadth-first procedure.

Proposition 2. In every inference of the classical sequent calculus the
sequent-conclusion is falsifiable if and only if at least one of the sequent-
premises is falsifiable.

Proof: By inspection of each rule.

16

