
Contents

A IMPLICATIONAL CALCULUS 3

1 SYNTAX 5
Implicational Calculus . 5

1.1 Natural Deduction . 6
Normal proofs . 10

1.2 Hilbert Systems . 14
1.3 Sequents . 18

Equivalence with Natural Deduction 20
A Cut Elimination procedure . 22
Cut Elimination from Normalization 23

2 SEMANTICS 27
2.1 Classical Semantics . 27

A counterexample to completeness 29
2.2 Beth-Kripke Semantics . 29

A semantical proof of Cut Elimination 34
Refinements of the Completeness Theorem ! 35

2.3 Tableaux Semantics ! . 41

3 COMPLEXITY 47
3.1 Decision Procedures . 47
3.2 Complexity of Decision Procedures 49

Computational Complexity . 49
Complexity of Normalization . 50
Complexity of Cut Elimination . 50

4 CONJUNCTION 51
Implicational Calculus with Conjunction 51

4.1 Syntax . 52
Natural Deduction . 52

1

2

Hilbert systems . 54
Sequents . 55

4.2 Semantics . 59
Beth-Kripke models . 59
Intuitionistic tableaux . 60

4.3 Complexity . 61

B CATEGORIES 63

5 HEYTING !-ALGEBRAS 65
5.1 Heyting !-Algebras . 65

Algebraic models . 65
Motivation . 66
Adjointness . 68
Definition . 71
Equational presentation ! . 71
Filters and quotients ! . 75

5.2 Soundness and Completeness Theorem 80
Lindenbaum algebras . 80
Finite Heyting !-algebras . 83

5.3 Examples ! . 83
Linear orderings with a greatest element 83
Power sets . 85
Open sets . 85
Complete lattices with continuous g.l.b. 86
Relationships with Beth-Kripke models ! 89

5.4 Representation Theorems ! . 93
Lindenbaum algebras . 93
Open sets . 94

6 CARTESIAN CLOSED CATEGORIES 97
6.1 Cartesian Closed Categories . 97

Categorical Models . 97
Categories . 99
Terminal object . 100
Products . 101
Cartesian closed categories . 108
Adjointness ! . 109

6.2 Soundness and Completeness Theorems 111
6.3 Examples ! . 114

Heyting !-algebras . 114

3

Sets . 115
Chain complete partial orderings . 116
Complete partial orderings . 126

7 THE LAWVERE-LAMBEK ISOMORPHISM 135
7.1 Equational Presentation of Cartesian Closed Categories . . . 135
7.2 Natural Deduction and Categories 137

The language of Category Theory . 137
Premises . 137
Introduction and elimination rules 138
Normalization steps . 140
Symmetric normalization steps . 142

7.3 Functional Completeness . 144
7.4 Symmetric Normalization . 151

C TYPED LAMBDA CALCULUS 153

8 SYNTAX 155
8.1 Typed Lambda Terms . 156

Types . 156
Terms . 156
Functions of many variables . 159
Bound variables . 160
Reductions . 161
Normal forms . 162
Equality . 164

8.2 Combinators ! . 165
8.3 Existence of Normal Forms . 170

Weak Normalization . 171
Syntactical proof of Strong Normalization 172
On the proofs of Strong Normalization ! 177

8.4 Uniqueness of Normal Forms . 179
The Weak Diamond Property . 180
Equality again . 185

8.5 The Church-Rosser Theorem ! 185
Parallel reductions . 186
Normalization and the Church-Rosser Theorem ! 191
Equality once more . 192

8.6 Extensionality . 193
Extensional reductions . 194
Combinators ! . 196

4

Normal Forms . 200

9 THE CURRY-HOWARD ISOMORPHISM 203
9.1 The Curry-Howard Isomorphism 203
9.2 Normal forms . 204
9.3 Semantics . 204
9.4 Complexity . 204

10 SEMANTICS 205
10.1 Models . 205

Environments . 206
Models . 207

10.2 Term Models . 208
10.3 Functional Models . 211

Full functional models . 212
Completeness . 214

10.4 Categorical Models . 219
Categorical models . 220

10.5 Semantical Proof of Strong Normalization ! 223
Well-founded relations and monotone functions 223

11 COMPUTABILITY 229
11.1 Numerals . 229
11.2 Representable Functions . 230

Examples . 231
Piecewise polynomials . 233

11.3 Nonrepresentable Functions ! 234
Examples . 235
The Characterization Theorem . 236

11.4 Complexity . 241
A lower bound . 241
An upper bound . 243

D UNTYPED LAMBDA CALCULUS 245

12 SYNTAX 247
12.1 Untyped Lambda Terms . 248

Terms . 248
Reductions . 249
Equality . 250
Combinators ! . 251

5

12.2 Normal Forms . 253
Terms without normal form . 253
Fixed points . 254
Uniqueness of normal forms . 256
Normalizing reduction strategies . 258

12.3 Extensionality . 264
Extensional reductions . 264
Normal Forms . 265
Normalizing reduction strategies . 270

13 SEMANTICS 273
13.1 Term Models . 274
13.2 Functional Models . 275
13.3 The Graph Model . 279

Continuous functions on sets . 280
Coding of finite sets . 281
A nonextensional model . 282
The Effective Graph Model ! . 286

13.4 Inverse Limits . 288
Existence of fixed points . 289
Plan of the proof . 291
Partial ordering among c.c.p.o.’s . 292
Least upper bounds of chains of c.c.p.o.’s 293
Continuity of the function space operator 301
Fixed points of the function space operator 307
Extensional models . 310

13.5 Retracts . 312
Plan of the proof . 312
Retracts of c.c.p.o.’s . 313
Function spaces of retracts . 315
Retracts of reflexive c.c.p.o.’s . 317
Retracts of the Graph Model . 318
Sierpinski Spaces ! . 321

13.6 The Least Fixed Point Operator ! 323
The Graph Model . 323
The D∞ Model . 327

14 CARTESIAN CLOSED MONOIDS 333

6

15 COMPUTABILITY 335
15.1 Representability . 335

Examples . 336
Recursive functions . 337
The Characterization Theorem . 338
Logical operators . 339

15.2 Undecidability . 342
Examples . 342
The Scott-Curry Theorem . 344

16 TYPE ASSIGNMENTS 347
16.1 Simple Types . 347
16.2 Intersection Types . 347

Intersection types . 347
A characterization of strongly normalizable terms 348

16.3 ω-Intersection Types . 351
A characterization of normalizable terms 352

16.4 Filter Models . 353
Terms as collections of types . 353
Types as collections of terms . 354

E INTUITIONISTIC PROPOSITIONAL CALCULUS 355

17 INTUITIONISTIC PROPOSITIONAL CALCULUS 357
17.1 Disjunction . 357

Implicational Calculus with Disjunction 357
Natural Deduction . 358
Hilbert systems . 364
Sequents . 365
Kripke models . 369
Beth models . 372
Intuitionistic tableaux . 381
Heyting "!-algebras . 382
Cartesian closed categories with coproducts 388
The Disjunction Property . 388

17.2 Falsity and Negation . 391
Syntax . 392
Negation ! . 394
Kripke and Beth models . 396
Intuitionistic tableaux . 398
Heyting algebras . 398

7

Bi-cartesian closed categories . 401
The Disjunction Property . 401

17.3 A Global Look . 401
Intuitionistic Propositional Calculus 402
Natural Deduction . 402
Hilbert systems . 403
Sequents . 404
Kripke models . 404
Beth models . 405
Intuitionistic tableaux . 405
Heyting Algebras . 406
Bicartesian Closed Categories . 407
Soundness and Completeness Theorems 407

18 HEYTING ALGEBRAS AND TOPOLOGIES 409
18.1 Finite Heyting Algebras . 409

Finite topologies . 411
The Heyting Prime Filter Theorem 413

18.2 Complete Heyting Algebras with Enough Strong Co-points !414
Topologies closed under arbitrary intersections 415

18.3 Complete Heyting Algebras with Enough Points 416
Arbitrary topologies . 418
The Heyting Prime Ideal Theorem 421

18.4 Arbitrary Heyting Algebras . 423
Lindenbaum algebras . 424
Compact open sets of Stone topologies 425

18.5 Algebraic Heyting Algebras ! 427
Topologies generated by their compact open sets 429

18.6 Continuous Heyting Algebras ! 431
Locally quasi-compact topologies . 436
Digression: Scott topologies ! . 441

18.7 Refinements of the Completeness Theorem 447
Finite Heyting algebras . 448
Topological Heyting algebras . 450

F CLASSICAL PROPOSITIONAL CALCULUS 453

19 CLASSICAL PROPOSITIONAL CALCULUS 455
19.1 Classical Implication . 455

The nocounterexample interpretation 455
Classical tableaux . 458

8

19.2 Classical Propositional Calculus 461
Sequents and tableaux . 461
Functional completeness and definability 461

19.3 Complexity . 462
Decidability . 462
Complexity . 463

20 BOOLEAN ALGEBRAS 465
20.1 Boolean Algebras . 465

Complements . 465
Boolean algebras . 467
Examples . 468

20.2 Soundness and Completeness Theorem 469
Lindenbaum algebras . 469
The two-element Boolean algebra . 471
Generic environments ! . 473
Soundness and Completeness Theorems 476

20.3 Representation Theorems ! . 477
Lindenbaum algebras . 477
Power sets . 477
Finite Boolean algebras . 481
The Boolean Prime Ideal Theorem 482
Clopen sets . 484

20.4 Relationships with Heyting Algebras ! 485
Pseudocomplements . 485
Complemented elements and clopen sets 486
Negative elements and regular open sets 487
Weak units and dense open sets . 490
The canonical Boolean algebra associated with a Heyting algebra . . 492
Conditions for a Heyting algebra to be a Boolean algebra 493

20.5 Boolean Bicartesian Closed Categories ! 497

21 RELATIONSHIPS WITH INTUITIONISM 499
21.1 Intuitionistic Analysis of Tautologies 499

Excluded Middle . 499
Double Negation . 501

21.2 Extensions of the Intuitionistic Propositional Calculus . . . 506
Excluded Middle and Double Negation again 506
Peirce’s Law . 508
Axiomatizations of the Classical Propositional Calculus 510

21.3 Extensions of the Classical Propositional Calculus 511
Intuitionistic Propositional Calculus 511

9

Minimal Propositional Calculus ! . 512
21.4 Translations . 514

Gödel’s Translation . 514
Gentzen’s Translation . 515
Kolmogorov’s Translation . 516
Weak Excluded Middle ! . 520

21.5 Classical and Intuitionistic Connectives 523

Bibliography 527

10

Part A

Implicational Calculus

11

Chapter 1

Syntax

In Part A we study the implicational fragment of Propositional Calculus, in various
formulations. Different approaches not only provide a better understanding of the
concept of implication: their equivalence proofs are instructive, and will introduce
useful technical tools and notions in a simplified environment, with technicalities
reduced to a minimum. In following chapters the treatment will be expanded to
cover increasingly more powerful systems.

We consider Natural Deduction as the basic system, and reading of this chap-
ter can be confined to Section 1. We see the remaining approaches as providing
alternative formulations of the basic system, with different aims: to synthesize its
proofs (Section 2), and to set up a calculus to describe them (Section 3). Parts B
and C will introduce still other approaches, in terms of categories and λ-calculus.

Implicational Calculus

The language consists of:

• propositional letters p, q, r, . . .

• parentheses ‘(’ and ‘)’

• the connective → (implication).

Formulas are defined inductively as follows:

• propositional letters are formulas

• if α and β are formulas, so is (α → β).

To increase readability some parentheses can either be omitted, when no con-
fusion arises, or written differently, e.g. as ‘[’ and ‘]’. We will use lowercase Roman

13

14 A. Implicational Calculus

letters such as p for propositional letters, and lowercase Greek letters such as α for
formulas.

The main goal of this chapter is to determine which of the formulas of the
Implicational Calculus can be considered ‘true’. This of course requires a pre-
supposed meaning of the connective →, which is intuitively taken as representing
‘implication’. We will introduce various different but equivalent analyses to make
this intuitive meaning explicit and precise.

1.1 Natural Deduction

The system of Natural Deduction is based on rules that show how to continue a
given proof from assumptions. Proofs will take the form of a tree, whose leaves
are (at the moment of their creation) assumptions (some of which can later be
discharged), and whose roots are conclusions .

When we want to indicate explicitly that a proof tree D has undischarged as-
sumptions in the set Γ and a conclusion β, we will use the following representation:

Γ
D
β.

Proof trees

In our first approach to implication we try to capture the usual mathematical
practice: to prove α → β, we prove β under the assumption α. A subtle distinction
occurs here: while we are trying to reach β from α, the latter is seen and used as
an assumption; but after we reached β, a change in the status of α has occurred,
since we have proved the wanted implication α → β, which already contains the
information that α was used as an assumption. Technically, we say that α has
been used as a temporary assumption and then discharged at the end. We can
picture the situation graphically in full generality (using a finite set Γ of additional
assumptions), as the step

from
Γ,α
Dβ

β
to

Γ, [α](1)
Dβ

β
α(1) → β.

Here Dβ is a proof of β from the set of assumptions Γ ∪ {α} (written as Γ,α to
increase readability). The square brackets around α indicate the discharge, and
are needed to keep track of which assumptions are still active in a proof. The
number (1) is optional, and it has two functions: in the bottom part of the proof

Natural Deduction 15

it tells when the assumption is discharged, and in the top part it shows which
occurrence(s) of α have been discharged. Without such a numbering, it would
be impossible to understand how a proof has been constructed. For example, to
distinguish between

[α](1)

α(1) → α
α(2) → (α → α).

and
[α](2)

α(1) → α
α(2) → (α → α).

Note that there is no occurrence of α in the first proof that corresponds to the
second discharge (numbered with 2). This is in accord with the intuition that if
we have a proof of β that does not use a certain assumption, we can think of that
assumption as sitting idle at the beginning of the proof, and discharge it without
having actually used it. In particular, we may discharge an assumption that has no
occurrence in a proof . An equivalent but more explicit way of picturing the same
proof would be:

[α](1) [α](2)

α(1) → α
α(2) → (α → α).

The second proof above illustrates a more complicated situation: we not only
discharge in the first step an ‘occurrence’ of α which is not there, but do not
discharge an occurrence of α which is present, keeping it for later use. This is
in accord with the intuition that different occurrences of an assumption in the
same proof may serve different purposes, and we should have the possibility of
distinguishing among them. In particular, we may discharge only some of the
occurrences of an assumption in a proof .

To sum up, we may discharge none, some, or all occurrences of an assumption
in a proof . This shows that it is not really single formulas that are treated as
assumptions, but rather packets of occurrences of formulas. We can simply say
that what is really discharged is every occurrence of a formula in a single packet
of assumptions. Occurrences of the same formula in different packets are treated
as different formulas, that happen to coincide. Thus, for example,

[α](1) [α](2)

α(1) → α
α(2) → (α → α)

is actually a special case of the following, with α = β:

[α](1) [β](2)

α(1) → β
β(2) → (α → β).

16 A. Implicational Calculus

In particular, when saying that Γ is the set of assumptions of a given proof, we
really mean a set of packets of occurrences of assumptions .

We not only want to be able to prove implications, but also to use them. The
way to do this is suggested by a venerable principle already known to the Greeks,
the socalled Modus Ponens : this is the principle that, since a proof Dα→β of α → β
codes a proof Dβ of β with α used as an assumption, it can be completed to a proof
of β by the addition of a proof Dα of α. We can picture the situation graphically
in full generality (using a finite set Γ of additional assumptions), as the step

from
Γ

Dα→β

α → β
and

Γ
Dα

α
to

Γ
Dα→β

α → β

Γ
Dα

α
β.

We now have the rules of Natural Deduction for implication: proof trees can be
constructed inductively, by starting from a set of assumptions divided into (possibly
empty) packets of occurences, and by continuing them by the rules of introduction
or elimination of →.

The following is a non trivial example of proof:

[α](1) [α → β](3)
β [β → γ](2)

γ
α(1) → γ

(β → γ)(2) → (α → γ)
(α → β)(3) → [(β → γ) → (α → γ)].

Consequence relation

We now give a formal inductive definition of the consequence relation %N . The
intuitive meaning of Γ %N β is that Γ is a finite set of packets of assumptions from
which β can be deduced by a proof of the kind described above.

Definition 1.1.1 (Gentzen [1935]) The relation %N is inductively defined as
follows.

1. Assumptions. An assumption can be deduced from a set of assumptions to
which it belongs:

Γ,β %N β.

2. →-Introduction. If β is deducible from Γ and a packet of assumptions of
α, then α → β is deducible from Γ, by discharging that packet:

Γ,α %N β
Γ %N α → β.

Natural Deduction 17

3. →-Elimination. If α and α → β are both deducible from Γ, then so is β:

Γ %N α Γ %N α → β
Γ %N β.

In an application of the →-elimination rule, α → β is called the major premise
of the rule, and α the minor premise.

The formulation of →-introduction in the form
Γ,α %N β
Γ %N α → β.

can be read as: ‘α informally implies β’ implies ‘α formally implies β’. This sepa-
rates three different meanings of the intuitive concepts of implication: one internal
to N , and two different ones external to N . The first is captured by the connec-
tive →, and is expressed by α → β. The second is captured by the metalinguistic
symbol %N , that defines N but does not belong to it, and is expressed by α %N β,
i.e. by the fact that β can be deduced in N from α. The third has nothing to
do with N , and is the informal meaning of implication used (metalinguistically)
in mathematical reasonings about the linguistic objects of discourse, in our case
derivations and proofs in N : in the rule above, it is indicated by the horizontal
line separating the premiss from the conclusion.

Actually, the →-introduction and →-elimination rules together establish that
the two concepts of implications in N coincide, in the sense that

Γ,α %N β if and only if Γ %N α → β.

The left to right direction is simply a restatement of →-introduction. The right
to left direction follows from →-elimination, because if we have Γ %N α → β then
there is a derivation D in N of α → β from Γ, and thus the following is a derivation
of β from Γ and α:

Γ
D

α → β α
β.

Hence Γ,α %N β.
The following is a translation of the example of proof given at the end of the

previous subsection, where Γ = {α,α → β,β → γ}:

Γ %N α Γ %N α → β
Γ %N β Γ %N β → γ
α,α → β,β → γ %N γ

α → β,β → γ %N α → γ
α → β %N (β → γ) → (α → γ)

%N (α → β) → [(β → γ) → (α → γ)].

18 A. Implicational Calculus

This is actually the same proof as before, except for the use of different devices
to keep track of premises. The translation is obtained by forgetting about the
labels of formulas, and by writing on the left of %N all premises not yet discharged.
Conversely, if we erased the left-hand-side of %N in the translation, and labeled the
premises that are moved from left to right by →-introduction, we would get back
the original proof.

Since the two formalisms are equivalent, we will use the most convenient one in
each practical case.

Normal proofs

The →-introduction rule defines a proof of α → β as an incomplete proof Dβ of β
from a packet of assumptions α, waiting for a completion. The →-elimination rule
allows the completion of such a proof, whenever we have a proof Dα of α. Taken
together, the two rules combine in transforming the two proofs Dα and Dβ into a
proof of β, as follows:

Γ, [α]
Dβ

β
α → β

Γ
Dα

α
β.

(1.1)

A more direct way of getting from Dα and Dβ to a proof of β would be the
following:

Γ,

Γ
Dα

α
Dβ

β,

(1.2)

i.e. to directly substitute Dα above every occurrence of α in the packet of assump-
tion used in Dβ .

The first approach is of course useful in mathematical practice, since we usually
get the proofs Dα and Dβ at different times, and the proof of Dα→β obtained from
Dβ by →-introduction records, for future use, the fact that we have obtained an
incomplete proof of β from the assumption α. After we have also obtained the
proof Dα, a single additional step merges it with Dα→β to get a proof of β.

However, the second approach has the advantage of being more direct, and of
not going through the unnecessary detour of a →-introduction followed by a →-
elimination. The occurrence of α → β in 1.1 is called a maximum relative to →,
and the step from 1.1 to 1.2 is called a maximum elimination. A proof is in
normal form if it has no maxima.

Natural Deduction 19

The proof considered above is an example of a normal proof:

[α](1) [α → β](3)
β [β → γ](2)

γ
α(1) → γ

(β → γ)(2) → (α → γ)
(α → β)(3) → [(β → γ) → (α → γ)].

As we can see, the proof is nicely divided into an upper part consisting of elimina-
tions, and a lower part consisting of introductions.

This division is made possible by the fact that in a normal proof there is no
introduction followed by an elimination of the same arrow, and it should hold in
general. The only difficulty is how to express the property appropriately, since an
introduction could be followed by an elimination, although not on the same arrow.
In other words, there could be an insignificant alternation of →-introduction and
→-elimination, in the sense that one → is first introduced in the minor premise,
and then a different → is eliminated in the major premise, as in:

α
D
β

α → β (α → β) → γ
γ.

To take care of this possibility, we introduce the notion of a descending path, on
which there is indeed a separation between an upper and a lower part.

More precisely, in a normal proof of α from assumptions Γ a descending path
is a branch of the proof tree starting from a leaf (i.e. either a formula in Γ or a
discharged assumption) and proceeding through either →-introductions or major
premises of →-eliminations, until either the conclusion α or the minor premise of a
→-elimination rule is reached. Briefly, a descending path is a branch of the proof
tree not going through a minor premise of a →-elimination.

Proposition 1.1.2 Structure of Normal Proofs (Prawitz [1965]) For a nor-
mal proof of N the following hold:

1. Elimination-Introduction Separation. Any descending path consists of
two (possibly empty) parts: a first (upper) one going only through →-eliminations,
and a second (lower) one going only through →-introductions.

2. Subformula Property. Any formula occurring in the proof is a subformula
of either an undischarged assumption or the conclusion.

20 A. Implicational Calculus

Proof. Since a descending path goes through either →-introductions or major
premises of →-eliminations, the only way a →-introduction on it can be followed
by a →-elimination is when the major premise of the latter is a maximum. But no
maximum exists, since the proof is normal. This proves part 1.

To prove part 2, notice that if there was a counterexample to the subformula
property, there would be one of maximal length (in terms of symbols). For such a
counterexample, there are two possible cases:

• If it occurs in a →-elimination rule

α α → β
β,

it can be neither α nor β, otherwise α → β would be a counterexample
of greater length, and hence it must be α → β. But it cannot have been
introduced before, otherwise it would be a maximum and the proof would
not be normal. And it cannot be discharged afterwards, otherwise it would
be the premise of a counterexample of greater length. Then it must be an
undischarged assumption, and it is not a counterexample.

• If it occurs in a →-introduction rule

α
D
β

α → β,

it must be α → β as in the first case. But it cannot be eliminated afterwards,
otherwise it would be a maximum and the proof would not be normal. And it
cannot be part of a following introduction, otherwise it would be the conclu-
sion of a counterexample of greater length. Then it must be the conclusion,
and it is not a counterexample. !

A Normalization procedure

Having shown that proofs in normal form have nice properties, we now prove that
every proof can be reduced to one in normal form.

Theorem 1.1.3 Weak Normalization (Prawitz [1965]) Every proof in the
Natural Deduction system can be transformed into a normal proof, by means of an
appropriate sequence of maxima eliminations.

Natural Deduction 21

Proof. Notice that the elimination of a maximum

Γ,α
Dβ

β
α → β

Γ
Dα

α
β

into Γ,

Γ
Dα

α
Dβ

β,

in a proof D can have the following two bad effects:

• it can increase the total number of maxima, since it reproduces Dα (and
hence all maxima occurring in it) above every occurrence of α in the package
of assumptions used in Dβ , and there may be many such occurrences;

• it can introduce new maxima, in two different ways:

– if α = γ → δ and Dα ends with a →-introduction, by turning into
a maximum every occurrence of α below which Dβ continues with a
→-elimination

– if β = γ → δ, Dβ ends with a →-introduction, and D continues below
β with a →-elimination, by turning into a maximum that occurrence of
β.

The main observation is that the second obstacle is not traumatic, since the new
maxima α or β possibly introduced are of complexity lower than the one α → β
being eliminated. The appropriate measure of complexity is in this case the degree
of a formula, defined inductively as follows:

• propositional letters have degree 0

• the degree of α → β is 1 plus the the greatest of the degrees of α and β.

The idea of the normalizing procedure is thus to eliminate, at every step, a
maximum of greatest degree, until all of them have been disposed of. The first
obstacle is overcome by choosing, at every step, a maximum α → β of greatest
degree, such that in Dα no maximum of greatest degree occurs (so that only the
number of maxima of degree smaller than the greatest one can be increased).

By so doing, at every step we eliminate one maximum of greatest degree, and
do not introduce new ones of the same degree. Once the last maximum of greatest
degree has been eliminated, we attack the ones of the next greatest degree (whose
number, in the meantime, may have greatly increased), and so on, until all maxima
have been eliminated. !

22 A. Implicational Calculus

Formally, the proof of the Weak Normalization Theorem is by socalled ω2-
induction, i.e. induction on pairs of natural numbers (a, b) lexicographically ordered
by

(a, b) ≺ (a′, b′) ⇐⇒ (a < a′) ∨ (a = a′ ∧ b < b′).

Indeed, at every step the pair

(greatest degree, number of maxima of greatest degree)

strictly decreases in the ordering ≺ (i.e., either the greatest degree decreases, or
it remains the same but the number of maxima with greatest degree decreases by
one).

1.2 Hilbert Systems

The common mathematical practice makes use of socalled Hilbert systems, in
which the notion of theorem is inductively defined as follows:

• axioms are theorems

• formulas deduced from theorems by the use of a deduction rule (in Proposi-
tional Calculus: only Modus Ponens) are theorems.

Consequence relation

We can extend the notion of theorem to that of formula deduced from a set Γ of
assumptions, as follows.

Definition 1.2.1 (Frege [1879]) Given a set of axioms H, the relation %H is
inductively defined as follows:

1. Axioms. An axiom β ∈ H can be deduced from any set of assumptions:

Γ %H β.

2. Assumptions. An assumption can be deduced from a set of assumptions to
which it belongs:

Γ,β %H β.

3. Modus Ponens. If α and α → β are both deducible from a set of assump-
tions, then so is β:

Γ %H α Γ %H α → β
Γ %H β.

Hilbert Systems 23

Equivalence with Natural Deduction

The main difference between Hilbert systems and Natural Deduction is that the
→-introduction rule of the latter (that allows the introduction of implications in
general) is replaced by axioms that introduce particular implications, with the effect
of turning an analytical (top-down) approach into a synthetical (bottom-up) one.
Of course, the whole point is to get axioms that are sufficiently general to capture
the essence of the →-introduction rule, in the sense of being able to reproduce it as
a derived rule. The problem is that we have no clue as to which axioms will turn
out to be sufficient. The best way is to attempt a proof of the equivalence

Γ %H β ⇐⇒ Γ %N β,

and discover in the process which axioms are needed.
Suppose Γ %H β. We proceed by induction on the definition 1.2.1. If β ∈ H,

i.e. β is an axiom, we will prove that %N β; but first we have to find the axioms.
If β is in Γ, then Γ %N β by definition 1.1.1. Finally, if β is obtained from α → β
and α by Modus Ponens, we can first of all apply the induction hypothesis, and
suppose that we already have Γ %N α → β and Γ %N α. Then an application of
→-elimination produces Γ %N β. In one word, if the axioms of a Hilbert system are
provable in Natural Deduction then so are all its theorems, since the only deduction
rule is Modus Ponens, and that is captured by →-elimination.

In the opposite direction, suppose Γ %N β. We proceed by induction on the
definition 1.1.1. If β is in Γ, then Γ %H β by definition 1.2.1. If Γ %N β is obtained
by →-elimination, then (as above) Γ %H β by the induction hypothesis and Modus
Ponens. If Γ %N α → β is obtained by →-introduction, then the previous step was
Γ,α %N β and (by the induction hypothesis) Γ,α %H β. The proof of 1.2.3 will
discover conditions on H under which Γ %H α → β follows (i.e., under which the
→- introduction rule of Natural Deduction is a derived rule in a Hilbert system).
Namely, it is enough that for any α, γ, δ the following are provable in H:

1. α → α

2. γ → (α → γ)

3. [(α → (γ → δ)] → [(α → γ) → (α → δ)].

The easiest way to have these formulas provable, is to assume them as axioms.
We can thus state the result we were looking for.

Theorem 1.2.2 Equivalence of Hilbert Systems and Natural Deduction
(Gentzen [1935]) If H is any Hilbert system whose theorems include 1–3 of 1.2.3,
then for any Γ and β:

Γ %H β ⇐⇒ Γ %N β.

24 A. Implicational Calculus

Proof. 1 is provable in Natural Deduction as follows:

[α](1)

α(1) → α.

2 is provable as follows:
[α](1) [β](2)

α(1) → β
β(2) → (α → β).

3 is provable as follows:

[α](1) [α → β](2)
β

[α](1) [α → (β → γ)](3)
β → γ

γ
α(1) → γ

(α → β)(2) → (α → γ)
[α → (β → γ)](3) → [(α → β) → (α → γ)].

This was the only gap left open in the discussion of the equivalence result. !

The Deduction Theorem

To complete the equivalence proof between Hilbert Systems and Natural Deduction
we still need to prove the following announced result, whose proof will justify the
choice of axioms for H.

Theorem 1.2.3 Deduction Theorem (Herbrand [1928], Tarski [1930]) If
for any α, γ, δ the following are provable in H:

1. α → α

2. γ → (α → γ)

3. [(α → (γ → δ)] → [(α → γ) → (α → δ)],

then for any α, β and Γ:
Γ,α %H β
Γ %H α → β.

Proof. By hypothesis, we have a proof of β using only Modus Ponens, and whose
starting points are occurrences of either α, or axioms αi, or assumptions γj ∈ Γ.
The idea is to transform such a proof into a proof of α → β, by sticking ‘α →’ in
front of every formula in the original proof. We have three cases to consider.

Hilbert Systems 25

The occurrences of α in the original proof become occurrences of α → α, which
is an instance of 1 above.

The occurrences of assumptions γj in the original proof become occurrences of
α → γj , which can be deduced from the assumptions γj from instances of 2 above,
by Modus Ponens:

γj γj → (α → γj)
α → γj .

Similarly for the occurrences of axioms αi.
The occurrences of applications of Modus Ponens

γ γ → δ
δ

in the original proof become now occurrences of

α → γ α → (γ → δ)
α → δ.

These are not anymore applications of Modus Ponens, but from α → γ we can
obtain α → δ by Modus Ponens from

(α → γ) → (α → δ),

and this can be obtained from α → (γ → δ) by Modus Ponens from

[α → (γ → δ)] → [(α → γ) → (α → δ)],

which is an instance of 3 above. In other words, we can expand

α → γ α → (γ → δ)
α → δ

into the following segment of a proof by Modus Ponens:

α → γ
α → (γ → δ) [α → (γ → δ)] → [(α → γ) → (α → δ)]

(α → γ) → (α → δ)
α → δ.

Then 1, 2 and 3 allow us to transform the original proof of β from the assump-
tions Γ and α into a proof of α → β from the assumptions Γ. !

Exercises 1.2.4 Independence of the axioms.
a) 1 is derivable from 2 and 3 . (Hint: use the following axioms:

• α→ (α → α)

26 A. Implicational Calculus

• α→ [(α → α) → α]

• {α → [(α→ α) → α]} → {[α → (α → α)] → (α→ α)}.)
b) None of 2 and 3 can be derived from the other . (Hint: according to the third row

of the following truth-table for implication, 3 always receives value T but 2 does not.
According to the fourth row, 2 always receives value T but 3 does not.

α T T T F F F U U U
β T F U T F U T F U

α → β T U U U U T T T T
α → β T F U T T F T T T

Moreover, if α and α → β always receive value T then so does β, in both cases.)

Exercise 1.2.5 Transform the natural proof of α,α → β,β → γ "H γ, into a proof of

α → β,β → γ "H α → γ.)

1.3 Sequents

Hilbert systems retained →-elimination, and presented an alternative approach to
→-introduction, by substituting it with axioms from which all introductions could
be synthesized. We now present an alternative approach to →-elimination, while
retaining the rule of →-introduction.

The intuition for the new approach comes from an analysis of the following
usual example:

[α](1) [α → β](3)
β [β → γ](2)

γ
α(1) → γ

(β → γ)(2) → (α → γ)
(α → β)(3) → [(β → γ) → (α → γ)].

Such a proof proceeds from top to bottom, by first analyzing a bunch of assumptions
into atomic facts, and then recombining these facts into a compound conclusion.

The alternative approach proceeds from the center, i.e. from the atomic facts,
and builds the proof by simultaneously working downward towards the conclusion,
and upward towards the assumptions.

Consequence relation

The rules of the Sequent Calculus will only be →-introductions, but of two different
kinds: in the conclusions and in the hypotheses. Inductively, having already a piece
of a proof, we can either expand it at the bottom by complicating the conclusion,
or at the top by complicating the assumptions. In the definition of %S , this will

Sequents 27

correspond to introducing → on the right and on the left, respectively. This is a
treatment of assumptions radically different from that of N , where assumptions
were fixed and could loose their status (by being discharged), but not be modified.

It is not surprising that complicating a conclusion corresponds to the usual
→-introduction. Complicating an assumption β in a proof Dγ requires the intro-
duction of a proof ending with β: this is naturally done by →-elimination. But if
we only want to complicate β into α → β without introducing the new assumption
α, we will require a proof Dα of α. With additional assumptions Γ, this is pictured
as follows:

Γ,

Γ
Dα

α α → β
β
Dγ

γ.

We now give a formal inductive definition of the relation %S .

Definition 1.3.1 (Gentzen [1935]) The relation %S is inductively defined as
follows:

1. Assumptions. An assumption can be deduced from a set of assumptions to
which it belongs:

Γ,β %S β.

2. →-Introduction on the right. If β is deducible from Γ and α, then α → β
is deducible from Γ:

Γ,α %S β
Γ %S α → β.

3. →-Introduction on the left. If α is deducible from Γ and γ is deducible
from Γ and β, then γ is deducible from Γ and α → β:

Γ %S α Γ,β %S γ
Γ,α → β %S γ.

One nice feature of the rules of S is that they are backward deterministic, as
opposed to →-elimination of N and Modus Ponens of H (that, when read back-
wards, introduce an arbitrary extraneous formula). Another way of expressing this
is the Subformula Property: in a proof of a sequent Γ %S β, only subformulas
of β and of formulas in Γ can occur . A similar property does hold for N as well,
but only for normal proofs (1.1.2.2).

The assumptions can be weakened to the following special cases:

Γ, p %S p.

28 A. Implicational Calculus

Then Γ,β %S β becomes derivable by induction on β, as follows. If β = p, then
Γ, p %S p is given. And if β = α → γ, then

Γ,α %S α Γ,α, γ %S γ
Γ,α,α → γ %S γ
Γ,α → γ %S α → γ,

where the sequents in the first line are given by the induction hypothesis.
The following Thinning Rule is a derived rule, in the sense that whenever we

have a proof of the top sequent, we also have a proof of the bottom one (obtained
from the previous one by inserting ∆ on the left of every axiom, and continuing
the proof as in the original one):

Γ %S α
Γ ∪∆ %S α.

Then →-introduction on the left can be strengthened as:

Γ %S α ∆,β %S γ
Γ ∪∆,α → β %S γ.

This strengthened form will be tacitly used in the following, when convenient.

Equivalence with Natural Deduction

Since the axioms of N and S are the same, and the rule of →-introduction on the
right of %S is the same as →-introduction of N , the problem of the equivalence
between the two systems is reduced to the provability of the rule of →-introduction
on the left of S as a derived rule of N , and of the →-elimination rule of N as a
derived rule of S.

There is no problem if we want to prove

Γ %N α Γ,β %N γ
Γ,α → β %N γ.

Indeed, by the hypothesis Γ %N α we have a proof Dα of α from the set of as-
sumptions Γ. Similarly, we also have a proof Dγ of γ from the set of assumption
Γ and β. We then first obtain a proof of β by →-elimination (using α → β as an
additional hypothesis), and then substitute it above every occurrence of β used in
Dγ :

Γ,

Γ
Dα

α α → β
β
Dγ

γ.

Sequents 29

The assumptions of this proof are Γ and α → β, since the latter has not been
discharged. We thus have Γ,α → β %N γ.

There is instead a problem if we want to prove

Γ %S α Γ %S α → β
Γ %S β.

The →-introduction rule on the right allows us to introduce α → β, from the axiom
Γ,β %S β and one of the hypotheses (namely, Γ %S α):

Γ %S α Γ,β %S β
Γ,α → β %S β.

But we do not quite know what to do with this conclusion, i.e. how to match it
with the remaining hypothesis Γ %S α → β to get the wanted conclusion Γ %S β.
Of course, there would be no problem if we had a rule that allowed us to cut a
formula appearing in two sequents, once on the left and once on the right.

Definition 1.3.2 Cut Rule. The system S+Cut is defined as the system S, with
the additional rule:

Γ %S+Cut γ Γ, γ %S+Cut β
Γ %S+Cut β.

Notice that the Cut Rule reintroduces the nondeterministic element that was
present in N and H, because of →-elimination and Modus Ponens. Its justification
is of course the fact that in S+Cut we immediately get →-elimination as a derived
rule:

Γ %S+Cut α → β
Γ %S+Cut α Γ,β %S+Cut β

Γ,α → β %S+Cut β
Γ %S+Cut β.

The equivalence of the two systems N and S would thus be proved if we had
the following theorem.

Theorem 1.3.3 Cut Elimination (Gentzen [1935]) For any Γ and β:

Γ %S+Cut β =⇒ Γ %S β.

The intuitive reason why the Cut Elimination Theorem holds is symmetry.
Notice that an axiom

Γ,α % α

tells that an occurrence of α on the left of % implies an occurrence of α on the
right. Symmetrically, the Cut Rule

Γ % α Γ,α % β
Γ % β

30 A. Implicational Calculus

tells that an occurrence of α on the right of % implies an occurrence on the left.
By symmetry, since the axioms are necessary, cuts are eliminable.

The rest of the present section is devoted to giving two different proofs of this
result, which provide different information. A third one will be given in 2.2.7. Any
of these proofs will fill the remaining hole in the proof of the following result.

Theorem 1.3.4 Equivalence of the Sequent System and Natural Deduc-
tion (Gentzen [1935]) For any Γ and β:

Γ %S β ⇐⇒ Γ %N β.

A Cut Elimination procedure

We first exhibit a procedure that shows how to operate directly on a proof of a
given sequent in the system S + Cut, to transform it into a proof without cuts,
by direct manipulations. The present proof of the Cut Elimination Theorem is
thus constructive, and it also contains information on the complexity of the cut
elimination procedure.

Theorem 1.3.5 Cut Elimination Procedure (Gentzen [1935]) Every proof
in the sequent system with cut can be transformed into a proof in the sequent system
without cut, by means of an appropriate sequence of cut eliminations.

Proof. We eliminate cuts one at a time by starting with uppermost ones, i.e.
starting from cuts without any other cut above them. The reason is that then the
part of the proof above the cut was done in the system S without Cut, and we are
then able to go backwards in the proof, and know exactly what happened before
the cut.

We show how to eliminate one such cut:

Γ %S α Γ,α %S β
Γ %S+Cut β.

The cut is final when one of the premises of the cut is an assumption. In these
cases the cut is obviously redundant. Indeed, if Γ %S α was introduced as an
assumption then α belongs to Γ, and Γ %S β is equal to Γ,α %S β. If Γ,α %S β
was introduced as an assumption, then either β = α, and then Γ %S β is equal
to Γ %S α; or β belongs to Γ, and then Γ %S β can be introduced directly as an
assumption.

The cut is inductive when α has just been introduced on both sides, that is:
α = γ → δ for some γ and δ; Γ %S γ → δ has been obtained by →-introduction on
the right from Γ, γ %S δ; and Γ, γ → δ %S β has been obtained by →-introduction

Sequents 31

on the left from Γ %S γ and Γ, δ %S β. Then the cut looks like this:

Γ, γ %S δ
Γ %S γ → δ

Γ %S γ Γ, δ %S β
Γ, γ → δ %S β

Γ %S+Cut β.

The cut on γ → δ can be eliminated as follows, by substituting it with two cuts,
on the formulas γ and δ (of lower complexity):

Γ %S γ Γ, γ %S δ
Γ %S+Cut δ Γ, δ %S β

Γ %S+Cut β.

The appropriate measure of complexity is, as usual, the degree of a formula,
defined as in 1.1.3.

The cut is interlocutory when one or both the occurrences of α have been
introduced at steps preceeding the last ones (on the appropriate sides). In this
case we can simply move the cut upwards, until it can be eliminated as above. In
particular, we replace one cut on a given formula by one or two cuts on the same
formula, but closer to the place of introduction of the latter. For example, a cut
like

Γ %S α
Γ,α %S γ Γ,α, δ %S β

Γ, γ → δ,α %S β
Γ, γ → δ %S+Cut β

can be replaced by two as follows:

Γ %S α Γ,α %S γ
Γ %S+Cut γ

Γ, δ %S α Γ,α, δ %S β
Γ, δ %S+Cut β

Γ, γ → δ %S β,

where Γ, δ %S α can be obtained from Γ %S α by adding the assumption δ every-
where in the proof. The remaining cases are similar. !

Cut Elimination from Normalization

The proof of the Cut Elimination Theorem just given is obviously reminiscent of
the proof of the Normalization Theorem given in Section 1.1. We are now going to
show how we can actually translate cut-free proofs of S into normal proofs of N
and conversely. Thus the Cut Elimination Theorem for S and the Normalization
Theorem for N are equivalent results. For example, to prove the former from the
latter first note that N is closed under cut: indeed,

Γ %N α Γ,α %N β
Γ %N β

32 A. Implicational Calculus

corresponds to the step

from
Γ
Dα

α
and

Γ,α
Dβ

β
to Γ,

Γ
Dα

α
Dβ

β.

Then proofs in the system S + Cut can be translated into proofs of N , normalized
and retranslated back into cut-free proofs of S.

The precise result is the following.

Proposition 1.3.6 (Prawitz [1965]) There are canonical translations of cut-free
proofs in S to normal proofs in N , and conversely.

Proof. The translation from S to N given as half of the proof of the equivalence
of the two systems (1.3.4) already shows that (cut-free) proofs in S correspond to
normal proofs in N .

For the converse, the translation from N to sequents given in 1.3.4 is not useful
here, since it uses the cut rule (which was introduced precisely for the purpose
of that translation). That translation proceeds from top down, i.e. by forward
induction on the construction of the proof (starting from the first steps). We now
proceed from bottom up, i.e. by backward induction on the construction of the
proof (starting from the last step).

Suppose we have a normal proof of β from Γ in N . We proceed inductively on
the length of the proof of Γ %N β and show that Γ %S β, i.e. β can be deduced
from Γ in S by a cut-free proof. There are three cases:

1. If Γ %N β is an assumption then β belongs to Γ, and thus Γ %S β.

2. If β = γ → δ and Γ %N γ → δ has been obtained by →-introduction from a
normal proof of Γ, γ %N δ, then Γ, γ %S δ by the induction hypothesis, and
thus Γ %S γ → δ.

3. If Γ %N β has been obtained by →-elimination from Γ %N α and Γ %N α → β
by a normal proof, then α → β cannot have been obtained by →-introduction
in the last step of its proof, otherwise it would be a maximum (because the
next step is a →-elimination). Then either α → β is itself an assumption, or
it is obtained by →-elimination. By continuing upwards in the given normal
proof, we eventually reach an assumption γ → δ (see 1.1.2.1). We can thus

Sequents 33

suppose that Γ %N β has the following form:

Γ,

Γ
Dγ

γ γ → δ
δ
Dβ

β.

Notice that Dγ depends only on Γ. Indeed, other assumptions would have to
be discharged later on, but this is impossible because there are no introduction
rules and no minor premises in the path from γ → δ to β.
We can now apply the induction hypothesis to both Dγ and Dβ , and get
cut-free proofs Γ %S γ and Γ, δ %S β. By →-introduction on the left,

Γ %S γ Γ, δ %S β
Γ, γ → δ %S β.

But γ → δ, being an assumption, is already in Γ. The conclusion is thus
equivalent to Γ %S β. !

To give an example of the translation just introduced, consider the following
normal proof:

[α](1) [α → β](2)
β

[α](1) [α → (β → γ)](3)
β → γ

γ
α(1) → γ

(α → β)(2) → (α → γ)
(α → (β → γ))(3) → ((α → β) → (α → γ)).

The last three steps are→-introductions for N , which are the same as →-introductions
on the right for S. We thus only have to worry about the →-eliminations, which
are treated inductively as follows. First,

α α → β
β

α α → (β → γ)
β → γ

γ

is translated as:
α %S α α,α → β,β → γ %S γ
α,α → β,α → (β → γ) %S γ.

Then
α α → β

β β → γ
γ

34 A. Implicational Calculus

is translated as:
α,α → β %S β γ %S γ
α,α → β,β → γ %S γ.

Finally,
α α → β

β

is translated as:
α %S α β %S β
α,α → β %S β.

By putting everything together, we get the following translation of the original
proof:

α %S α

α %S α β %S β
α,α → β %S β γ %S γ
α,α → β,β → γ %S γ

α,α → β,α → (β → γ) %S γ
α → β,α → (β → γ) %S α → γ

α → (β → γ) %S (α → β) → (α → γ)
%S (α → (β → γ)) → ((α → β) → (α → γ)).

It should be noted that the two translations from cut-free proofs to normal
proofs and back are not (and cannot be) inverse of each other, since the translation
from S to N is not one-one: the same normal proof can be the translation of
different cut-free proofs. The reason is that sequent proofs specify an order in the
construction of the corresponding normal proof, but no trace of this order remains
after the proof has been constructed. For example, the normal proof

α α → β
β β → γ

γ

is the translation of the following two proofs of the sequent

α,α → β,β → γ %S γ,

originated by two different orders of →-introduction on the left:

α %S α β %S β
α,α → β %S β γ %S γ
α,α → β,β → γ %S γ,

and

α %S α
β %S β γ %S γ
β,β → γ %S γ

α,α → β,β → γ %S γ.
æ

Chapter 2

Semantics

The three approaches to implication introduced in Chapter 1 were syntactical, and
captured different aspects of its constructive meaning. We turn now to a semantical
characterization. In Section 1 we introduce the classical approach, and show its
limitations. In Sections 2 and 3 we modify the classical approach into a more
appropriate one.

2.1 Classical Semantics

Intuitively the implication α → β means that whenever we know α, then we know
β. This obviously imposes a restriction: under the intuitive notion of truth, if both
α and α → β are true, then so must be β. Equivalently, if α is true and β is false,
then α → β cannot be true. This necessary condition is turned into a necessary
and sufficient one by classical logic, according to which α → β is true in all other
cases.

Definition of truth

The classical approach to truth is simple. We define contingent worlds as possible
truth-value configurations of the linguistic atoms (the propositional letters), and
determine the contingent truth or falsity of every formula. Then necessary or
absolute truth (validity) is defined as truth in every possible worlds.

More formally, a classical possible world is a subset A of the propositional
letters and it determines, by induction, the truth-value of any formula α, as in the
following definition.

35

36 A. Implicational Calculus

Definition 2.1.1 Classical Truth (Tarski [1936]) The relation |= is inductively
defined as follows.

A |= p ⇔ p ∈ A
A |= α → β ⇔ (A |= α ⇒ A |= β).

We read A |= α as ‘α is true in A’, or ‘A is a model of α’. We also write
A -|= α for the negation of A |= α, and we read it as ‘α is false in A’.

Note that the implication ⇒ used in the definition is intended to be false only
in the case when the premise is true but the conclusion is false, and true in all
other cases.

There is no circularity in using ⇒ to define the meaning of →: both of them
are implications, but the former is used informally (in technical terms: metalin-
guistically), with an intended meaning, to talk about the formal one (used in the
language). The definition of |= is meant to force the meaning of → to mirror the
meaning of ⇒, at the appropriate level.

We turn now to global truth, independent of the world.

Definition 2.1.2 A formula α is a logical consequence of Γ (written Γ |= α)
if α is true in every world in which all formulas of Γ are true.

In the limit case of Γ empty, we get the notion of validity: α is valid (written
|= α) if α is true in every world.

Soundness

The next result shows that classical validity is an upper bound to provability in
any of the equivalent systems for intuitionistic logic considered so far.

Theorem 2.1.3 Classical Soundness. For any Γ and α:

Γ %N α ⇒ Γ |= α.

Proof. By induction on the definition 1.1.1.
If Γ,β %N β is an assumption, then Γ,β |= β is trivially true.
If Γ %N α → β is obtained from Γ,α %N β by →-introduction, then Γ,α |= β

by the induction hypothesis. Let A be any world that makes all formulas of Γ true.
If A makes α false, then it makes α → β true by definition 2.1.1. By the induction
hypothesis, if A makes α true, then it must make β true, and hence α → β true.
Thus Γ |= α → β.

If Γ %N β is obtained from Γ %N α and Γ %N α → β by →-elimination, then
Γ |= α and Γ |= α → β by the induction hypothesis. Let A be any world that
makes all formulas of Γ true. Then A makes α and α → β true by the induction
hypothesis, and hence β true by definition 2.1.1. Thus A |= β. !

Beth-Kripke Semantics 37

A counterexample to completeness

The previous theorem shows that the equivalent provability notions introduced in
this chapter are sound for classical semantics. The next formula, called Peirce’s
Law ,1 shows that the converse fails:

[(p → q) → p] → p. (2.1)

Indeed, consider any world A: p is either true or false in it. In the first case 2.1
is true (an implication with true consequence). In the second case: p → q is true
(false premise), (p → q) → p is false (true premise and false conclusion) and 2.1 is
true (false premise). Thus 2.1 is valid.

But 2.1 is not provable in N . This is immediate using the Sequent System and
the Cut Elimination Theorem 1.3.3. Indeed, the only possible cut-free proof of 2.1
in S would be

p %S q
%S p → q p %S p
(p → q) → p %S p

%S [(p → q) → p] → p.

However, this is not a proof because p %S q is not an axiom.

2.2 Beth-Kripke Semantics

The example of Peirce’s Law shows that the classical notion of truth is too sim-
pleminded to capture the essence of implication, as the latter is defined by any of
the equivalent systems N , H and S. The intuitive reason is easy to formulate, by
looking once again at the intended meaning of implication: α → β expresses the
fact that whenever we know α, then we know β. In classical worlds, there is no
‘whenever’: for what concerns knowledge, there is only one instant, in which any
formula is either true or false. In particular, there is no need for implication itself:
we either know α, and hence also β, or we don’t, and then the implication α → β
cannot be used.

Classical possible worlds are thus worlds for omniscient gods, whose knowledge
is complete and never changes. Implication is instead a human concept: we prove
α → β as a step towards β, that will be completed if and when we get to know α.
To capture the idea of changing states of knowledge, we introduce possible worlds
in which knowledge can expand.

The new semantics will thus be temporal and epistemic, in the sense that it will
deal with the concept of knowing something at a given time.

1Peirce’s Law will be put into a broader context in 21.2.4.

38 A. Implicational Calculus

Beth-Kripke models

The first assumption we make is that knowledge is monotone, in the sense that
we never forget what we already know. We are thus modelling social, rather than
personal knowledge: not what somebody knows and can forget, but what ‘is known’
at a given instant. Of course, there are different and incompatible ways of extending
knowledge at a given instant: even when building on a fixed past experience, there
are different directions research can take. A tree of possibilities will be a possible
world, and a branch of such a tree will determine a possible history of knowledge
in that particular world.

Recall that classical knowledge was determined by a set A of propositional
letters, representing the true atomic facts and determining, by exclusion, the false
ones as well. Instantaneous knowledge will now still be represented by sets Aσ of
propositional letters, representing the true atomic facts known in a given knowledge
state σ. But since knowledge can be expanded, letters not in Aσ are better thought
of as unknown at that instant, rather than false.

Definition 2.2.1 (Beth [1956], Kripke [1963]) An intuitionistic possible
world, is a triple

A = 〈PA,/A, {Aσ}σ∈PA〉

where:

1. PA is a nonempty set of elements, representing states of knowledge

2. (PA,/A) is a partial ordering

3. for each σ ∈ PA, Aσ is a set of propositional letters, representing the atomic
facts known in state σ

4. σ /A τ ⇒ Aσ ⊆ Aτ .

Forcing

We now rephrase the definition of global truth in a given classical world (2.1.1)
into a definition of local truth, relative also to given knowledge states

Definition 2.2.2 Forcing (Cohen [1963], Kripke [1963]) For a given possible
world A, the relation %A is inductively defined as follows.

σ %A p ⇔ p ∈ Aσ

σ %A α → β ⇔ (∀τ 3A σ)(τ %A α ⇒ τ %A β).

We read σ %A α as ‘α is true in A at σ’, or ‘σ forces α in A’.

Beth-Kripke Semantics 39

Forcing gives α → β a meaning closer to the intended one. More precisely,
α → β becomes true as soon as we come to know that, whenever in the future we
will know α, then we will know β.

Notice that the definition of forcing for intuitionistic implication involves a
classical quantifier and a classical implication: with forcing we thus interpret intu-
itionistic propositional logic by means of classical first order logic, in particular in
a very non constructive way. Thus the proposed semantics captures only certain
aspects of the intended meaning of intuitionistic implication.

Classical truth is obviously a special case of forcing, in which PA consists of
just one element a, and Aa is the final knowledge. Then

A |= α ⇔ a %A α,

because the definition of forcing for implication reduces, inductively, to

a %A α → β ⇔ (A |= α ⇒ A |= β).

The following is a trivial but crucial property.

Proposition 2.2.3 Monotonicity of Forcing. If a formula is forced at a given
state, it remains forced at every following state:

σ %A α ∧ σ /A τ ⇒ τ %A α.

Proof. By induction on α. The atomic case holds by monotonicity of knowledge.
The case of an implication follows from transitivity of /A. !

Intuitionistic validity

We now turn to global truth, independently of the world and of the states of
knowledge in it.

For shortness, we say that a formula α is forced in a world A if it is forced
at every state, i.e. if (∀σ ∈ PA)(σ % α).

Definition 2.2.4 A formula α is an intuitionistic logical consequence of Γ
(written Γ |=i α) if α is forced in every world in which all formulas of Γ are
forced.

A formula α is intuitionistically valid (written |=i α) if α is forced in every
world.

Formally, the previous definition amounts to following:

(∀A)[(∀σ ∈ PA)(σ % Γ) =⇒ (∀σ ∈ PA)(σ % α),

where σ % Γ means (∀γ ∈ Γ)(σ % γ).

40 A. Implicational Calculus

An alternative, apparently stronger definition would be the following:

(∀A)(∀σ ∈ PA)(σ % Γ =⇒ σ % α),

i.e. α is forced at every state in which all formulas of Γ are forced.
Using the stronger definition produces a stronger Soundness Theorem, and using

the weaker one produces a stronger Completeness Theorem. This is what we do
in the following two proofs, thus proving in passing an equivalence of the two
definitions.

Soundness and Completeness

Since classical worlds are special cases of intuitionistic ones, the next result extends
the Classical Soundness Theorem, and it is proved in a similar way.

Theorem 2.2.5 Intuitionistic Soundness (Beth [1956], Kripke [1963]) For
any Γ and α:

Γ %N α ⇒ Γ |=i α.

Proof. By induction on the definition 1.1.1.
If Γ,β %N β is an assumption, then Γ,β |=i β is trivially true.
If Γ %N α → β is obtained from Γ,α %N β by →-introduction, then Γ,α |=i β

by the induction hypothesis. Let σ be any state that forces all formulas of Γ in
some world A, and let τ be any extension of σ. If τ does not force α, then the
implication

τ %A α ⇒ τ %A β

is true. If τ forces α then, since τ also forces all formulas of Γ by monotonicity
(because it extends σ), τ forces β by the induction hypothesis. Thus σ forces α → β
by definition of forcing. Since σ and A are arbitrary, Γ |=i α → β.

If Γ %N β is obtained from Γ %N α and Γ %N α → β by →-elimination, then
Γ |=i α and Γ |=i α → β by the induction hypothesis. Let σ be any state that
forces all formulas of Γ in some world A. By the induction hypotheses, σ forces α
and α → β. By definition of forcing, then σ forces β. Since σ and A are arbitrary,
Γ |=i β. !

The next theorem tells us that the intuition that led us to the extended notion
of intuitionistic world was correct.

Theorem 2.2.6 Intuitionistic Completeness (Beth [1956], Kripke [1963])
For any Γ and α:

Γ |=i α ⇒ Γ %N α.

Beth-Kripke Semantics 41

Proof. We build a single possible world A such that if Γ -%N α, then there is a
state Θ in it such that Θ forces all formulas in Γ, but not α. Then the restriction
of A to all states above Θ provides a world in which all formulas in Γ are forced,
but α is not. This proves the contrapositive of the stated result.

The idea is to consider the sets of consequences of any possible Γ as the states
of knowledge. Thus the world A is defined as follows:

A = 〈F ,⊆, {AΘ}Θ∈F〉,

where:

1. F is the set of all sets of formulas Θ closed under %N , i.e. such that if Γ ⊆ Θ
and Γ %N α, then α ∈ Θ

2. ⊆ is the usual set-theoretical inclusion relation

3. AΘ is the set of formulas in Θ consisting only of a propositional letter, i.e.

AΘ = {p : p ∈ Θ}.

The main point is that, due to closure under %N , forcing is reduced to member-
ship: for any formula α,

Θ %A α ⇔ α ∈ Θ.

For α = p, this holds by the definition of forcing and of AΘ. For α = γ → δ
it is proved inductively as follows, using →-introduction in one direction and →-
elimination in the other:

• Suppose Θ %A γ → δ, i.e.

(∀∆ ⊇ Θ)(∆ %A γ ⇒ ∆ %A δ).

By the induction hypothesis,

(∀∆ ⊇ Θ)(γ ∈ ∆ ⇒ δ ∈ ∆).

We want γ → δ ∈ Θ. Suppose γ → δ -∈ Θ. By closure under %N , Θ -%N γ → δ.
By →-introduction, Θ, γ -%N δ. Let ∆ be the closure under %N of Θ ∪ {γ}.
Then ∆ ⊇ Θ and thus, by the induction hypothesis, if γ ∈ ∆ then δ ∈ ∆.
But γ ∈ ∆ (by definition), while δ -∈ ∆ (because ∆ is the closure under %N
of Θ ∪ {γ}, and Θ, γ -%N δ), contradiction.

• Suppose γ → δ ∈ Θ. We want Θ %A γ → δ, i.e.

(∀∆ ⊇ Θ)(∆ %A γ ⇒ ∆ %A δ)

42 A. Implicational Calculus

or, by the induction hypothesis,

(∀∆ ⊇ Θ)(γ ∈ ∆ ⇒ δ ∈ ∆).

Let ∆ ⊇ Θ, in particular γ → δ ∈ ∆. If γ ∈ ∆, then δ ∈ ∆ by →-elimination
and closure under %N .

Suppose now that Γ -%N α, and let Θ be the closure of Γ under %N . We have
proved that

Θ %A α ⇔ α ∈ Θ.

Since α -∈ Θ (because Γ -%N α), it follows that Θ does not force α. Since Θ does
force every formula in Γ, being an extension of it, it follows that Γ -|=i α. !

Notice that the proof of the Intuitionistic Completeness Theorem is constructive.
This is not automatic from the proof given above, since we actually proved the
contrapositive of the needed statement. But we will prove in 3.1.1 that N is
decidable. Then, given Γ and α, we can first of all decide whether Γ %N α holds. If
so, Γ |=i α by the Intuitionistic Soundedness Theorem. Otherwise, the proof just
given shows that Γ -|=i α. This proves in a constructive way that if Γ %N α, then
Γ |=i α.

Notice also that the proof provides a single world such that if α is not provable in
N , then it is not forced in it. Unfortunately, this single world is pretty complicated
because it has uncountably many states (all possible sets of formulas closed under
%N). We will present improvements of this result in a short while.

A possible use of the Intuitionistic Completeness Theorem is to show that a
formula is not intuitionistically provable, by exhibiting an intuitionistic world and
a state in which the formula is not forced. For example, to show that Peirce’s Law
is not provable, it is enough to consider a world A with two states ∅ and 0, and
such that A∅ = ∅ and A0 = {p}. No state forces p → q, because each state has an
extension (namely, 0) forcing p but not q. So every state forces (p → q) → p. Then
∅ does not force [(p → q) → p] → p, because it forces (p → q) → p but not p.

A semantical proof of Cut Elimination

From the Intuitionistic Completeness Theorem we immediately get a semantical
proof of the Cut Elimination Theorem. We only have to check that the Cut Rule
is a derived rule for |=i. By the Intuitionistic Soundness Theorem, this will imply
that if Γ %S+Cut α, then Γ |=i α. By the Intuitionistic Completeness Theorem and
the equivalence of N and S, we will then have Γ %S α.

Proposition 2.2.7 Cut is a derived rule for |=i, i.e.

Γ |=i α Γ,α |=i β
Γ |=i β.

Beth-Kripke Semantics 43

Proof. Suppose Γ |=i α and Γ,α |=i β. By the former, α must be forced at any
σ forcing all formulas of Γ in any A. By the latter, then β must be forced at any
such σ. Hence Γ |=i β by definition. !

Notice that, as it stands, this proof is not very interesting: it uses the equiv-
alence of N and S, whose proof already required the Cut Elimination Theorem!
But we can prove the Intuitionistic Completeness Theorem directly for S, with the
same proof as in 2.2.6.

Even after the adjustment just described, the present proof of Cut Elimination
remains quite indirect: given a proof of a sequent in the system with Cut, it only
tells that a proof in the system without Cut exists, but it does not show how to
obtain it (except for the trivial and inefficient method of generating all possible
proofs, until one is found).

In more complicated contexts, e.g. in Second Order Logic, this indirect feature
is balanced by an advantage: an analogue of the less informative semantical proof
is substantially easier to obtain than an analogue of the more informative, but more
complicated syntactical proof in the style of Section 1.3.

Refinements of the Completeness Theorem !

We now consider restrictions on the underlying partial orderings of intuitionistic
worlds, to see whether they still provide a class of worlds sufficiently rich to deter-
mine intuitionistic completeness.

Exercises 2.2.8 a) Trees are enough. (Hint: replace a world

A = 〈PA,$A, {Aσ}σ∈PA〉

with (PA,$A) a partial ordering, by a world

T = 〈TT ,$T , {Tσ}σ∈PT 〉

where: TT is the set of all possible finite sequences 〈σ1, . . . , σn〉 of distinct elements of
PA such that σ1 $A σ2 $A · · · $A σn; $T is the order of sequences by extension; and
T〈σ1,...,σn〉 = Aσn .)

b) Linear orderings are not enough. (Hint: this uses results proved later, as follows.
By 5.3.2.d, any linear Kripke model forces (α→ β) ∨ (β → α), which is not intuitionisti-
cally valid. Thus linear Kripke models are not enough for completeness.

To translate the disjunction into an implicational formula, first note that it is classi-
cally valid, and hence its double negation is intuitionistically valid by 21.1.3. By a series
of intuitionistically valid equivalences, in particular the ‘Good’ De Morgan Law discussed
in Section 21.2, we get:

¬¬[(α → β) ∨ (β → α)] ⇔ ¬[¬(α → β) ∧ ¬(β → α)]

⇔ {[(α → β) → ⊥] ∧ [(β → α) → ⊥]} → ⊥
⇔ [(α → β) → ⊥) → {[(β → α) → ⊥] → ⊥}.

44 A. Implicational Calculus

By replacing ⊥ by any formula γ, we get a stronger formula

[(α → β) → γ) → {[(β → α) → γ] → γ}

which is not anymore intuitionistically valid, but it is still forced in any linear Kripke

model.)

The Intuitionistic Completeness Theorem shows that if Γ %N α fails, then there
is an uncountable world in which all formulas in Γ are forced, but α is not. The
next result improves on this in two ways: the world is now both countable and a
tree.

Proposition 2.2.9 Countable Model Property. For any Γ there is a count-
able world AΓ in which all formulas of Γ are forced and such that, for every α, if
Γ %N α fails, then α is not forced in AΓ.

Proof. The proof of the Intuitionistic Completeness Theorem 2.2.6 builds a model
whose states of knowledge consist of the sets of formulas closed under %N and
extending Γ. The variant introduced by the present proof consists in considering
only the finitely generated extensions of Γ closed under %N , thus drastically cutting
down their number (to only countably many).

Since we only look for finitely generated extensions of Γ, we can easily describe
them uniformly as follows. Let {αn}n∈ω be an enumeration of all implicational
formulas, and σ, τ , etc. be sequences of 0’s and 1’s. Then the finite extensions of
Γ can be defined as follows:

Γ∅ = clN (Γ)
Γσ∗〈0〉 = Γσ
Γσ∗〈1〉 = clN (Γσ ∪ {αn}),

where
clN (Θ) = the closure of Θ under %N .

The idea is simply that, by being a 1 or a 0, the n-th digit of σ tells whether αn is
or is not a member of Γσ.

The world A is defined as follows:

A = 〈{Γσ}σ∈S ,⊆, {AΓσ}σ∈S〉,

where:

1. S is the set of all sequences of 0’s and 1’s

2. ⊆ is the usual set-theoretical inclusion relation

Beth-Kripke Semantics 45

3. AΓσ is the set of propositional letters in Γσ, i.e.

AΓσ = {p : p ∈ Γσ}.

As in 2.2.6, we can show that forcing is reduced to membership, thanks to clo-
sure under %N . For more details, see the proof of the next result. !

We have obtained a definite improvement over the uncountable model used in
2.2.6, but there is more to worry about than simple cardinality. In particular, the
fact that the construction of the model is not very effective. Indeed, at every node
we may perform the infinitary operation of taking the closure under N of a set of
formulas (which requires adding, in general, infinitely many consequences). The
proof of the next result eliminates this defect.

Proposition 2.2.10 Constructive Model Property. For any Γ there is a
constructively presented world AΓ in which all formulas of Γ are forced and such
that, for every α, if Γ %N α fails, then α is not forced in AΓ.

Proof. The problem discussed above concerns the use of actual infinity in the
construction: the closure operation is infinitary, and it has to be completed before
we can go on to the next level. The solution relies on an analysis of the role of
closure under %N in the proof of 2.2.6. What we notice is that such a closure was
needed only to be able to replace deducibility from a set of formulas by membership
in it. Without closure, we will have to use deducibility directly, but this is not a
problem. In other words, instead of proving that forcing is reduced to membership,
i.e.

Γσ %A α ⇔ α ∈ Γσ,

we will just prove that forcing is reduced to deducibility, i.e.

Γσ %A α ⇔ Γσ %N α.

The construction is thus modified as follows:

Γ∅ = Γ
Γσ∗〈0〉 = Γσ
Γσ∗〈n〉 = Γσ ∪ {αn},

where {αn}n∈ω is an enumeration of all implicational formulas.
The world A is defined as follows:

A = 〈{Γσ}σ∈S ,⊆, {AΓσ}σ∈S〉,

where:

46 A. Implicational Calculus

1. S is the set of all sequences of 0’s and 1’s

2. ⊆ is the usual set-theoretical inclusion relation

3. AΓσ is the set of propositional letters deducible from Γσ, i.e.

AΓσ = {p : Γσ %N p}.

Notice the change in the definition of AΓσ , which is needed to handle the atomic
case in the proof of the reduction of forcing to deducibility.

We can now prove that, for any formula α and any string σ,

Γσ %A α ⇔ Γσ %N α.

For α = p, this holds by the definition of forcing and of AΓσ . For α = γ → δ
it is proved inductively as follows, using →-introduction in one direction and →-
elimination in the other:

• Suppose Γσ %A γ → δ, i.e.

(∀Γτ ⊇ Γσ)(Γτ %A γ ⇒ Γτ %A δ).

By the induction hypothesis,

(∀Γτ ⊇ Γσ)(Γτ %N γ ⇒ Γτ %N δ).

We want Γσ %N γ → δ. Suppose Γσ -%N γ → δ. By →-introduction,
Γσ, γ -%N δ. Let n be such that γ = αn, and τ be an extension of σ such
that Γτ = Γσ ∪ {γ}: then Γτ ⊇ Γσ and thus, by the induction hypothesis,
if Γτ %N γ, then Γτ %N δ. But Γτ %N γ and Γτ -%N δ by definition of Γτ ,
contradiction.

• Suppose Γσ %N γ → δ. We want Γσ %A γ → δ, i.e.

(∀Γτ ⊇ Γσ)(Γτ %A γ ⇒ Γτ %A δ)

or, by the induction hypothesis,

(∀Γτ ⊇ Γσ)(Γτ %N γ ⇒ Γτ %N δ).

Let Γτ ⊇ Γσ, in particular Γτ %N γ → δ. If Γτ %N γ, then Γτ %N δ by
→-elimination.

Suppose now that Γ -%N α. Then, since forcing coincides with deducibility,
Γ∅ = Γ forces every formula in Γ but not α, and thus Γ -|=i α. !

The next result provides a further improvement on the previous ones, by show-
ing that finite worlds are enough.

Beth-Kripke Semantics 47

Proposition 2.2.11 Finite Model Property (Smorinsky [1973]) For any Γ
and α there is a finite world AΓ,α such that if Γ %N α fails, then all formulas of
Γ are forced, but α is not.

Proof. Since forcing for a given formula only involves forcing on its subformulas,
states that force exactly the same subformulas of (formulas in) Γ and α are indis-
tinguishable from the point of view of Γ and α, and can be collapsed. But there are
only finitely many (sets of) subformulas of Γ and α, and thus only finitely many
collapsed states.

Formally, given a world

A = 〈PA,/A, {Aσ}σ∈PA〉

we consider the set S Γ,α of all subformulas of Γ and α, and define the collapse

B = 〈PB,/B, {B[σ]}[σ]∈PB〉

of A w.r.t. S Γ,α as follows:

1. PB is the set of equivalence classes w.r.t. to the equivalence relation that
identifies states forcing the same subformulas, i.e. the set of all

[σ] = {τ : (∀β ∈ S Γ,α)(σ %A β ⇔ τ %A β)},

for σ ∈ PA. In particular, each equivalence class corresponds to a uniquely
determined subset of S Γ,α.

2. Equivalence classes are ordered as the associated subsets of SΓ,α:

[σ] /B [τ] ⇔ (∀β ∈ S Γ,α)(σ %A β ⇒ τ %A β)
⇔ τ forces all subformulas forced by σ.

3. Knowledge is preserved in the collapse:

B[σ] = {p : σ %A p} = Aσ.

Since forcing is determined by state knowledge, it is not surprising that it is
preserved by the collapse: for all β ∈ S Γ,α,

σ %A β ⇔ [σ] %B β.

This is proved by induction on β. The atomic case is trivial, since

σ %A p ⇔ p ∈ Aσ ⇔ p ∈ B[σ] ⇔ [σ] %B p.

For β = γ → δ we have:

48 A. Implicational Calculus

• σ %A γ → δ ⇒ [σ] %B γ → δ
Let σ %A γ → δ, i.e.

(∀τ 3A σ)(τ %A γ ⇒ τ %A δ).

We want [σ] %B γ → δ, i.e.

(∀[τ] 3B [σ])([τ] %B γ ⇒ [τ] %B δ).

From [σ] /B [τ] and σ %A γ → δ we have τ %A γ → δ (by definition of /B),
in particular

τ %A γ ⇒ τ %A δ.

By the induction hypothesis,

[τ] %B γ ⇒ [τ] %B δ.

Since [τ] is an arbitrary extension of [σ], [σ] %B γ → δ.

• [σ] %B γ → δ ⇒ σ %A γ → δ
Let [σ] %B γ → δ, i.e.

(∀[τ] 3B [σ])([τ] %B γ ⇒ [τ] %B δ).

We want σ %A γ → δ, i.e.

(∀τ 3A σ)(τ %A γ ⇒ τ %A δ).

From σ /A τ we have, by monotonicity of forcing, [σ] /B [τ] (since everything
forced by σ is also forced by τ). Thus

[τ] %B γ ⇒ [τ] %B δ

and, by the induction hypothesis,

τ %A γ ⇒ τ %A δ.

Since τ is an arbitrary extension of σ, σ %A γ → δ.

Suppose now that Γ %N α fails. By the Intuitionistic Completeness Theorem,
there is a world A in which all formulas of Γ are forced, but α is not. Then the
same happens in the collapse B, which is a finite world. !

The last result is the best possible, since 18.7.2 shows that it is not possible to
improve it by making AΓ,α dependent only on Γ, and independent of α. In other
words, there is in general no single finite world AΓ in which every formula in Γ is
forced, and every formula α such that Γ %N α fails is not.

Tableaux Semantics 49

Actually, 18.7.2 will prove that there is not even a single finite world in which
every formula α such that %N α fails is not forced. However, by combining 2.2.8.a,
2.2.11 and 2.2.9 we get a countable family {Tn}n∈ω of finite trees, as well as a
single countable tree Tω, that do the job. It is possible to just let T1 be a tree with
a single node, Tn+1 be the tree obtained by adding a single node on top of n + 1
copies of Tn, and Tω be the inverse limits of the Tn’s, but we do not spell this out
because in the following we will get more conspicuous algebraic results of the same
kind.

2.3 Tableaux Semantics !

Since the notion of forcing is defined classically, we can use classical methods to in-
vestigate it. In particular, we can rephrase everything in terms of classical tableaux
(see 19.1.5).

The idea is the following. First, note that we can restrict attention to worlds A
with a least element 0A, by adding 0A if it does not exist already, and defining A0A

as the intersection of the Aσ, for all minimal elements σ ∈ PA. Then 0A forces
exactly the formulas that are forced by every minimal element σ.

The advantage of having a least element is that, by monotonicity of forcing,
if a formula is not forced in A, then it is not forced already by 0A. Given α, to
determine whether α is intuitionistically valid we can use the definition of forcing
to look for worlds A in which 0A %A α fails. If the search is systematic, then either
we discover that it is impossible to falsify the condition 0A %A α (and then α is
intuitionistically valid), or we find a world in which α is not forced.

The rules for a systematic search derive from an analysis of the forcing defini-
tion:

σ %A α → β ⇔ (∀τ 3A σ)(τ %A α ⇒ τ %A β),

where the implication on the right is classical. In other words:

1. If σ %A α → β is true, then

τ %A α ⇒ τ %A β

holds for any extension τ of σ. By the classical meaning of implication, either
τ %A α fails or τ %A β holds, for any extension τ of σ.

2. If σ %A α → β is false, then

τ %A α ⇒ τ %A β

fails for some extension τ of σ. By the classical meaning of implication,
τ %A α must hold and τ %A β must fail, for some extension τ of σ.

50 A. Implicational Calculus

Intuitionistic tableaux

We now turn the previous remarks into formal rules.

Definition 2.3.1 An intuitionistic tableau is a tree with nodes consisting of
signed forcing assertions of the form Tσ % α or Fσ % α, and consistent with the
following formation rules:

1. If a node Tσ % α → β is on the tree, then we can split any branch going
through it by adding F τ % α in one direction and T τ % β in the other, where
τ is any extension of σ that has already been introduced. Graphically,

Tσ % α → β

F τ % α T τ % β,

where the double horizontal line shows that the bottom nodes do not have to
immediately follow the top one.

2. If a node Fσ % α → β is on the tree, then we can extend any branch going
through it by adding T τ % α and F τ % β, where τ is a new extension of σ
(incomparable with all other extensions of σ already introduced on the same
branch). Graphically,

Fσ % α → β

T τ % α
F τ % β.

Notice the asymmetric treatment: in the first case we split branches and con-
sider extensions of σ that have already been introduced; in the second case we
linearly extend branches and introduce new extensions of σ. The reason for the
different treatment of the extension of σ is quite obvious: in the first case we con-
sider only the states already introduced, leaving open the possibility of considering
new ones in the future, if needed; in the second case we only know that some ex-
tension of σ has the required property, and we introduce a new one because there
is no reason to believe that any of the ones already introduced is the appropriate
one.

Intuitionistic tableaux provide an alternative approach to provability, with a
strong semantical flavor.

Definition 2.3.2 A formula α is provable by intuitionistic tableaux from
Γ (written Γ "T α) if there is an intuitionistic tableau starting from the nodes
T 0 % γ, for all γ ∈ Γ, and F0 % α such that all its branch are contradictory,
in the sense that on every branch there is a pair of nodes of the form Tσ % β
and F τ % β, with σ and τ compatible (the same β for any given branch, although
possibly different β’s for different branches).

Tableaux Semantics 51

The use of different compatible states σ and τ can be avoided, if we add a
monotonicity rule as follows:

Tσ % α ∧ σ / τ =⇒ T τ % α.

The next definition captures the idea of systematic search.

Definition 2.3.3 A complete systematic tableau is a tableau in which the
rules have been used exhaustively, in the sense that:

1. For any node Tσ % α → β on the tree, any branch going through it and any
extension τ of σ used in the tree, there is a node on the branch that splits
into two branches going through the nodes F τ % α and T τ % β.

2. For any node Fσ % α → β on the tree and any branch going through it, there
is a node on the branch followed by two nodes T τ % α and F τ % β, where
τ is a new extension of σ (incomparable with all other extensions of σ that
previously occur in the given branch).

In an actual construction of a complete systematic tableau, nodes of the type
Fσ % α → β need be considered only once, by extending every branch going
through them in the appropriate way (in particular, by introducing a new extension
of σ for every such branch). Nodes of the type Tσ % α → β cannot instead be
considered once and for all, since new extensions of σ may be introduced in the
following: we thus need to periodically go back to such nodes, and consider all
newly introduced extensions of σ. In particular, a complete systematic tableau may
be infinite.

The procedure can obviously be carried through in an orderly fashion, thus
producing a complete systematic tableau, starting from any given signed forcing
assertion.

Obviously, whenever in the construction of a complete systematic intuitionistic
tableau we hit a contradiction along a branch, we can seal that branch off and stop
developing it, since every extension of it will remain contradictory.

Also, as partial orderings we only really need to consider suborderings of a
sufficiently universal one, e.g. the set of all finite strings of natural numbers ordered
lexicographically.

Soundness and Completeness

Since the notion of provability by tableaux was modelled on semantical notions,
the connections with semantics are particular transparent and easy to prove. We
first give two examples, to illustrate both a success and a failure, and then establish
the connection in the form of a Soundedness and Completeness Theorem.

52 A. Implicational Calculus

The first example shows that Axiom 3 of 1.2.3 is provable by intuitionistic
tableaux.

F0 % [p → (q → r)] → [(p → q) → (p → r)]
T 00 % p → (q → r)

F00 % (p → q) → (p → r)
T 000 % p → q
F000 % p → r

T 0000 % p
F0000 % r

F0000 % p T 0000 % q
F0000 % p T 0000 % q → r

F0000 % q T 0000 % r.

The linear top part comes from the analysis of the three false forcing conditions, as
they arise: each of them introduces a new extension. Then we analyze T 000 % p →
q and T 00 % p → (q → r), both times using 0000 as an extension (of 000 and 00,
respectively), since we can choose any extension. This produces contradictions on
every branch.

The second example shows that a complete systematic tableau for Peirce’s Law
does not close.

F0 % [(p → q) → p] → p
T 00 % (p → q) → p

F00 % p
F00 % p → q

T 000 % p
F000 % q

F000 % p → q
T 0000 % p
F0000 % q

· · ·

T 000 % q

T 00 % p

Note that all branches branching right are contradictory, but the tree continues
to grow in a periodical way, since nodes Fσ % p → q continue to introduce new
extension of 00, and this forces us to go back to the node T 00 % (p → q) → p.

The different behavior on the two examples is connected to the fact that the
first formula is intuitionistically valid, while the second is not. The connection is
the content of the next results.

Proposition 2.3.4 Soundness Theorem for Tableaux (Nerode [1990]) For
any Γ and α,

Γ %T α ⇒ Γ |=i α.

Tableaux Semantics 53

Proof. We prove the contrapositive, i.e. if there is a world A in which all formulas
in Γ are forced but α is not, then any intuitionistic tableau starting from T 0 % γ,
for all γ ∈ Γ, and F0 % α has a noncontradictory branch.

This is achieved by showing that if a world A agrees with the initial verteces of
an intuitionistic tableau, then it must agree with a branch of it, in the sense that
there is a way of interpreting states σ named on the branch by states σA ∈ PA in
such a way that

Tσ % α is on the branch ⇒ σA %A α
Fσ % α is on the branch ⇒ σA - %A α.

This is easily proved by induction on the construction of the tree: the initial verteces
agree with A by choice of A (by adding a smallest element 0A to PA if it does
not exist already), and the rules for the construction of tableaux were chosen to
mirror the definition of forcing. The only case that requires a small argument is
Fσ % α → β: if T τ % α and F τ % β are on the tree, it is enough to let τA be any
extension of σA such that τA %A α and τA - %A β, and such a state exists because,
by the induction hypothesis, σA - %A α → β.

Since a world cannot at the same time force and not force a formula, a branch
agreeing with a world cannot be contradictory. We have thus proved that no
intuitionistic tableau starting from T 0 % γ (for all γ ∈ Γ) and F0 % α has a
noncontradictory branch. !

Proposition 2.3.5 Completeness Theorem for Tableaux (Nerode [1990])
For any Γ and α,

Γ |=i α ⇒ Γ %T α.

Proof. We prove the contrapositive: if a branch of a complete systematic tableau
starting from T 0 % γ (for all γ ∈ Γ) and F0 % α is noncontradictory, then there is
a world A in which all formulas in Γ are forced but α is not.

This is achieved by building a world A that agrees with the branch, in the sense
of the previous proposition. We only have to use the information on the branch
itself, and turn it into a world. We thus let:

1. PA be the set of all states σ appearing on some node of the branch, in
particular σA = σ

2. /A be the lexicographical order on PA

3. Aσ be the set of all p such that T τ % p is on the branch, for some τ /A σ.

The consideration of all τ /A σ, instead of σ alone, ensures the required mono-
tonicity of Aσ.

We prove, by induction of formulas, that A agrees with the given branch. If
Tσ % p is on the branch then p ∈ Aσ by definition, and thus σ %A p. If Fσ % p is

54 A. Implicational Calculus

on the branch, then Tσ % p is not, because the branch is noncontradictory: then
p -∈ Aσ, and σ - %A p. The remaining cases are true by induction, since the rules
for the construction of tableaux were chosen to mirror the definition of forcing.

We have thus proved that there is a world A that forces all formulas in Γ and
does not force α, since the verteces T 0 % γ (for any γ ∈ Γ) and F0 % α are on
every branch, in particular on the noncontradictory one we considered. !

æ

Chapter 3

Complexity

Historically, the first presentations of the implicational calculus (actually, of the
full classical propositional calculus) were Hilbert Systems. They had the obvious
disadvantage of being based on the single rule of Modus Ponens, which does not
allow for a backward search of a proof of a theorem, because the premises contain
a formula unrelated to the conclusion. Proofs in the Hilbert Systems were usually
difficult to find, and cumbersome to write down.

Natural Deduction is a substantial improvement of Hilbert Systems, in which
axioms are reduced to trivial facts and replaced by rules. The disadvantage of
having Modus Ponens among the rules however remains, and again this does not
allow for a straightforward backward search of a proof. Normal proofs however
have the subformula property, and thus the normalization theorem shows that we
can restrict the search for possible proofs to normal ones, thus providing a decision
procedure.

The Sequent System has a built-in subformula property, which is destroyed
by the introduction of the Cut Rule for the purpose of proving equivalence with
Natural Deduction, and restored by the Cut Elimination Theorem. Working with
sequents provides the simplest decision procedure.

In this chapter we will first spell out various decision procedures for the impli-
cational calculus, and then measure their complexity.

3.1 Decision Procedures

The decision procedure for N is a consequence of the Subformula Property for
normal proofs (1.1.2.2). But some care is needed since, despite the Subformula
Property, a formula can have infinitely many different normal proofs. For example,

55

56 A. Implicational Calculus

in the following normal proof of the formula (p → p) → (p → p):

[p](1) [p → p](2)
p [p → p](2)

p
p(1) → p

(p → p)(2) → (p → p),

we can repeat the initial part (here repeated twice) any finite number of times.

Proposition 3.1.1 The relation %N is decidable.

Proof. By 1.1.3, every proof can be transformed into one in normal form. Given
Γ and α, it thus suffices to look for a proof of Γ %N α in normal form. By 1.1.2.2,
only subformulas of Γ and α can occur in such a proof: since there are only finitely
many such subformulas, there are only finitely many possible irredundant proofs
of Γ %N α, i.e. proofs in which the same formula never appears twice on the same
branch.

Notice that if a proof is not irredundant, it can be transformed into an irre-
dundant one (since what happens on the tree between two repetitions of the same
formula is inessential). It is thus enough to look for an irredundant proof, by
systematically checking all possible irredundant trees built from subformulas of Γ
and α according to the rules of N . If a proof is found, then Γ %N α is provable.
Otherwise, it is not. !

The decision procedure for S is again a consequence of the Subformula Prop-
erty. Again some care is needed because, as for normal proofs, a sequent can have
infinitely many different cut-free proofs . For example, in the following cut-free
proof of the sequent %S (p → p) → (p → p):

p %S p p %S p
p, p → p %S p p %S p

p, p → p %S p
p → p %S p → p

%S (p → p) → (p → p),

we can repeat the initial part (here repeated twice) any finite number of times.

Proposition 3.1.2 The relation %S is decidable.

Proof. Given a sequent Γ %S α, by the Subformula Property only subformulas
of Γ and α can occur in any of its proofs: since there are only finitely many such
subformulas, there are only finitely many possible irredundant proofs of Γ %S α,
i.e. proofs in which the same sequent never appears twice on the same branch.

Complexity of Decision Procedures 57

Notice that if a proof is not irredundant, it can be transformed into an irre-
dundant one (since what happens on the tree between two repetitions of the same
sequent is inessential). It is thus enough to look for an irredundant proof, by sys-
tematically checking all possible irredundant trees built from subformulas of Γ and
α according to the rules of S. If a proof is found, then Γ %S α is provable. Other-
wise, it is not. !

The decision procedure for |=i is a consequence of the Finite Model Property
2.2.11.

Proposition 3.1.3 The relation |=i is decidable.

Proof. The Finite Model Property shows that, for any given Γ and α, either
Γ %N α or there is a finite world in which all formulas of Γ are forced, but α is not.
We can thus simultaneously generate all proofs of N and all finite worlds, until one
of the two cases happens. !

Among the decision procedures proposed above, the most efficient is the one
based on sequents: we only have to start from the sequent Γ %S α and work our
way up, by systematically pursuing every possible →-introduction, both on the left
and on the right. Notice that, unlike in the classical case 19.3.1, not every possible
analysis of →-introduction produces a proof , even when a proof does exist. For
example,

p, p → q, s → t %S q

is provable, but the following is not a proof:

p %S p q %S s
p, p → q %S s t %S q
p, p → q, s → t %S q.

Thus we really have to consider every possible analysis, before claiming that a
formula is not provable.

3.2 Complexity of Decision Procedures

Computational Complexity

Theorem 3.2.1 (Statman [1976]) The complexity of |=i is PSPACE- com-
plete.

Proof.
!

58 A. Implicational Calculus

Complexity of Normalization

Proposition 3.2.2 A proof of height bounded by h and with maxima on formulas
of degree at most n can be replaced by an equivalent proof of height bounded by 2h

and maxima on formulas of degree at most n − 1.

Proof.
!

Corollary 3.2.3 Normalization Theorem. A proof of height bounded by h and
with maxima on formulas of degree at most n can be replaced by an equivalent
normal proof of height bounded by 22···2h

, with n iterations of the exponential.

Proof.
!

Complexity of Cut Elimination

Proposition 3.2.4 A proof of height bounded by h and with cuts on formulas of
degree at most n can be replaced by an equivalent proof of height bounded by 2h and
cuts on formulas of degree at most n − 1.

Proof.
!

Corollary 3.2.5 Cut Elimination Theorem. A proof of height bounded by h
and with cuts on formulas of degree at most n can be replaced by an equivalent
cut-free proof of height bounded by 22···2h

, with n iterations of the exponential.

Proof.
!

The effect of the elimination of cuts is thus an explosion of the size of the proof.
Equivalently, the advantage of using cuts is the possibility of giving compact proofs.
æ

Chapter 4

Conjunction

In this chapter we introduce the new connective of conjunction. On the one hand,
the present extension is uncontroversial and mild. On the other hand, however,
it allows for a full algebraic treatment of implication via Heyting !-algebras (see
Chapter 5), as well as for a complete description of models via cartesian closed
categories (see Chapter 6).

The main parallels among the various notions introduced in the book is succin-
tely stated in the following table:

Logic (Ch. 4) Algebra (Ch. 5) Categories (Ch. 6)
α %N β a / b Hom(A, B) -= ∅
α → β a ⇒ b A ⇒ B
α ∧ β a ! b A × B

α ∧ β %N γ
α %N β → γ

(a ! b) / c
a / (b ⇒ c)

Hom(A × B, C) -= ∅
Hom(A, B ⇒ C) -= ∅

T (true) 1 (greatest element) 1 (terminal object).

Additional extensions of the Implicational Calculus with Conjunction are treated
in Chapter 17, to which the interested reader can turn immediately after reading
the present chapter.

Implicational Calculus with Conjunction

We extend Implicational Calculus as follows:

1. the language has an added connective ∧ (conjunction)

2. the definition of formulas has an added inductive clause, i.e.

• if α and β are formulas, so is (α ∧ β).

59

60 A. Implicational Calculus

To increase readability, some parentheses can be omitted according to the prece-
dence rule: conjunction over implication. For example, the formula

α ∧ β → γ

that, as it stands, would be ambiguous, will be read as

(α ∧ β) → γ

and not as
α ∧ (β → γ).

The goal of this chapter is to determine which of the formulas of the Implica-
tional Calculus with Conjunction can be considered ‘true’, when the connective ∧
is intuitively taken as representing ‘conjunction’.

Following the blueprint of Chapters 1–3, we introduce different analyses and
study their equivalence and complexity. We continue to use the same symbols %N ,
%H, %S , %T and |=i, but they now refer to the extended system with implication
and conjunction.

4.1 Syntax

Natural Deduction

The extension of Natural Deduction to conjunction is unproblematic.

Definition 4.1.1 (Gentzen [1935]) The relation %N defined in 1.1.1 is extended
to conjunction as follows:

4. ∧-Introduction. If both α and β are deducible from Γ, then so is α ∧ β:

Γ %N α Γ %N β
Γ %N α ∧ β.

5. ∧-Elimination. If α ∧ β is deducible from Γ, then so is any of α and β:

Γ %N α ∧ β
Γ %N α

and Γ %N α ∧ β
Γ %N β.

An application of ∧-introduction combines two proofs Dα and Dβ into a proof
of α ∧ β. When followed by a ∧-elimination, we obtain a proof of α or β, for
example:

Γ
Dα

α

Γ
Dβ

β
α ∧ β
α.

Syntax 61

The occurrence of α ∧ β in such a proof is called a maximum (relative to ∧).
A more direct way of getting from Dα and Dβ to a proof of α is obviously to

forget about Dβ , and the step

from

Γ
Dα

α

Γ
Dβ

β
α ∧ β
α

to
Γ
Dα

α

is called a maximum elimination. A symmetric maximum elimination can be
obtained by working on β. A proof is in normal form if it has no maxima relative
to either → or ∧.

We can extend the notion of a descending path of a normal proof (p. 11) by
allowing the path to go through arbitrary ∧-eliminations or ∧-introductions (i.e.,
we only rule out going through minor premises of →-eliminations). Then the proof
of 1.1.2 actually proves the following.

Proposition 4.1.2 Structure of Normal Proofs (Prawitz [1965]) For a nor-
mal proof of N the following hold:

1. Elimination-Introduction Separation. Any descending path consists of
two (possibly empty) parts: a first (upper) one going only through elimina-
tions, and a second (lower) one going only through introductions.

2. Subformula Property. Any formula occurring in the proof is a subformula
of either an undischarged assumption or the conclusion.

Also the Weak Normalization Theorem continues to hold.

Theorem 4.1.3 Weak Normalization (Prawitz [1965]) Every proof can be
transformed into a normal proof, by means of an appropriate sequence of maxima
eliminations.

Proof. As in the case of maxima relative to →, the elimination of a maximum

Γ
Dα

α

Γ
Dβ

β
α ∧ β
α

into
Γ
Dα

α

can introduce a new maximum, by turning the final occurrence of α into a maximum
(if the last step of the proof Dα is an introduction of → or ∧, and the first one of the
rest of the proof below α is an elimination of the same connective). As in 1.1.3, we
only need to extend the notion of complexity to take care of the case of conjunction
as well, by adding to the definition of degree of a formula the following clause:

62 A. Implicational Calculus

• the degree of α ∧ β is 1 plus the greatest of the degrees of α and β.

The rest of the proof is as in 1.1.3. !

The Normalization Theorem and the last part of the Subformula Property show
that no new formulas of the Implicational Calculus can be proved in the extended
system with conjunction: if ∧ does not occur in the premises or in the conclusion
of a normal proof, then it does not occur at all in the proof. In technical terms, the
system with implication and conjunction is a conservative extension of the system
with implication alone.

Hilbert systems

When dealing with a new connective, we have two choices to extend a Hilbert
system: to add either new axioms , or new rules. Adding rules, however, does not
avoid the need of adding new axioms: for example, the three axioms of 1.2.3 were
needed to deal with the rule of Modus Ponens. It is thus better to simply add
axioms relative to the new connective, and keep Modus Ponens as the only rule.
The definition of %H is thus unchanged, and the Deduction Theorem is still valid
as before (since its validity only depends on the presence of Axioms 2 and 3 of
1.2.3, and the fact that Modus Ponens is the only rule).

The axioms for ∧ are chosen in such a way as to make the proof of the equiva-
lence of the systems N and H trivial. In particular, they mimic the ∧-introduction
and ∧-elimination rules.

Theorem 4.1.4 Equivalence of Hilbert Systems and Natural Deduction
(Gentzen [1935]) If H is any Hilbert system whose theorems include 1–3 of 1.2.3
and, for any α, β, and γ, the following:

4. α → (β → α ∧ β)

5. α ∧ β → α

6. α ∧ β → β,

then for any Γ and β:
Γ %H β ⇔ Γ %N β.

Proof. The right to left direction is obtained by induction on the definition of %N .
The only cases not dealt with in 1.2.2 are the ones relative to ∧, which we now
treat.

Suppose Γ %H α and Γ %H β. Then we get Γ %H α ∧ β by inserting the given
proofs of α and β from Γ above their occurrences in the following partial proof

Syntax 63

(from assumption 4):

β
α α → (β → α ∧ β)

β → α ∧ β
α ∧ β.

Suppose Γ %H α∧ β. Then we get Γ %H α by inserting the given proof of α∧ β
from Γ above its occurrence in the following partial proof (from assumption 5):

α ∧ β α ∧ β → α
α.

Similarly for Γ %H β, using 6.
For the right to left direction, we only need to show that 4, 5 and 6 are provable

in Natural Deduction. 4 is proved by

[α](2) [β](1)
α ∧ β

β(1) → α ∧ β
α(2) → (β(1) → α ∧ β).

5 is proved by
[α ∧ β](1)

α
(α ∧ β)(1) → α.

6 is proved similarly. !

Sequents

As already for Natural Deduction, the extension of the Sequent System to conjunc-
tion is unproblematic.

Definition 4.1.5 (Gentzen [1935]) The relation %S defined in 1.3.1 is extended
to conjunction as follows:

4. ∧-Introduction on the right. If both α and β are deducible from Γ, then
so is α ∧ β:

Γ %S α Γ %S β
Γ %S α ∧ β.

5. ∧-Introduction on the left. If γ is deducible from Γ, α or Γ, β, then it
is deducible from Γ and α ∧ β:

Γ,α %S γ
Γ,α ∧ β %S γ

and Γ,β %S γ
Γ,α ∧ β %S γ.

64 A. Implicational Calculus

Because of the fact that the Thinning Rule

Γ,%S γ
Γ,∆ %S γ

is a derived rule (see p. 20), we can actually rephrase the two rules of ∧-introduction
on the left as a single rule

Γ,α,β %S γ
Γ,α ∧ β %S γ,

which we will use in the following.
As usual, the rules of S are backward deterministic and the Subformula Prop-

erty continues to hold.
The systems N and S are obviously equivalent in presence of the Cut Rule. In

particular, the translation from N to S requires proving the rules of N as derived
rules of S. On the one hand, ∧-introduction of N corresponds to ∧-introduction on
the right. On the other hand, ∧-elimination can be dealt with by ∧-introduction
on the left and Cut, as follows:

Γ %S α ∧ β
Γ,α,β %S α
Γ,α ∧ β %S α

Γ %S+Cut α.

Also the translation from S to N poses no problem. On the one hand, ∧-
introduction on the right corresponds to ∧-introduction of N . On the other hand,
∧-introduction on the left can be dealt with as follows: given Γ,α,β %N γ, we insert
α∧ β above every undischarged occurrence of α and β, which is a permissible step
because of ∧-elimination, and this produces a proof from the assumptions Γ and
α ∧ β, i.e. Γ,α ∧ β %N γ.

To get the full equivalence between the two systems, we need to extend 1.3.3.

Theorem 4.1.6 Cut Elimination (Gentzen [1935]) For any Γ and β:

Γ %S+Cut β ⇒ Γ %S β.

Proof. The Cut Elimination procedure 22, to which we refer in the following, can
be extended to take care of the new connective ∧.

A cut was called inductive when the formula which is cut has just been intro-
duced on both sides:

Γ %S α Γ %S β
Γ %S α ∧ β

Γ,α,β %S γ
Γ,α ∧ β %S γ

Γ %S+Cut γ.

Syntax 65

Such a cut can be eliminated as follows, by substituting it with two cuts on the
formulas α and β (of lower degree):

Γ %S α
Γ %S β Γ,α,β %S γ

Γ,α %S+Cut γ
Γ %S+Cut γ.

A cut was called interlocutory when the formula which is cut has been intro-
duced at steps preceeding the last ones (on the appropriate sides). In this case we
simply move the cut upwards, until it can be eliminated as above. For example, a
cut like

Γ %S α
Γ,α, γ, δ %S β
Γ,α, γ ∧ δ %S β

Γ, γ ∧ δ %S+Cut β

can be replaced by one as

Γ %S α Γ,α, γ, δ %S β
Γ, γ, δ %S+Cut β
Γ, γ ∧ δ %S β.

The remaining cases are similar. !

The Cut Elimination Theorem fills the remaining gap in the proof of the fol-
lowing result.

Corollary 4.1.7 Equivalence of the Sequent System and Natural Deduc-
tion (Gentzen [1935]) For any Γ and β:

Γ %S β ⇔ Γ %N β.

A different proof of Cut Elimination comes from the following extension of 1.3.6.

Proposition 4.1.8 (Prawitz [1965]) There are canonical translations of cut-free
proofs in S to normal proofs in N , and conversely.

Proof. The translation from S to N given as half of the proof of the equivalence
of the two systems already shows that (cut-free) proofs in S correspond to normal
proofs in N .

For the converse, we only have to supplement 1.3.6. The case of the introduction
rules of N can be dealt with by induction and the corresponding introduction rules
on the right. For example, if Γ %N α∧β has been obtained by ∧-introduction from
normal proofs Γ %N α and Γ %N β, then Γ %S α and Γ %S β by the induction
hypothesis, and thus Γ %S α ∧ β by ∧-introduction on the right.

66 A. Implicational Calculus

The case of the elimination rules of N is the crucial one, and requires more
ingenuity because the natural translation uses the Cut Rule. The general schema
has been shown in 1.3.6: if Γ %N β has been obtained by an elimination rule,
the latter is either a →-elimination or a ∧-elimination. The two cases are treated
similarly, by climbing up in the given proof until an assumption is reached that
is eliminated in the first step of the given proof below it: this is possible because
the given proof is normal, and β has been obtained by an elimination rule. Such
an assumption must be of one of the following two forms: γ → δ and γ ∧ δ. The
former case has already been dealt with in 1.3.6, and we now consider the latter.
The given proof is then, for example, of the form:

Γ,
γ ∧ δ
γ
D
β.

We apply the induction hypothesis to D and get Γ, γ %S β. By ∧-introduction on
the left,

Γ, γ %S β
Γ, γ ∧ δ %S β.

But γ ∧ δ, being an assumption, is already in Γ. Thus the conclusion is equivalent
to Γ %S β. !

Obviously the translation from S to N is not one-one, since it was already not
so for the implicational fragment alone. We now give a counterexample using ∧
alone: the normal proof

α ∧ β
α

γ ∧ δ
γ

α ∧ γ

is the translation of the following two proofs of the sequent

α ∧ β, γ ∧ δ %S α ∧ γ,

originated by two different orders of ∧-introduction on the left:

α %S α γ %S γ
α, γ %S α ∧ γ

α ∧ β, γ %S α ∧ γ
α ∧ β, γ ∧ δ %S α ∧ γ

and

α %S α γ %S γ
α, γ %S α ∧ γ

α, γ ∧ δ %S α ∧ γ
α ∧ β, γ ∧ δ %S α ∧ γ.

Semantics 67

4.2 Semantics

Beth-Kripke models

The notions of intuitionistic possible world (or Beth-Kripke model) and intuitionis-
tic logical consequence do not refer to connectives, and can thus be retained in their
original forms 2.2.1 and 2.2.4. What needs to be supplemented is the definition of
forcing 2.2.2.

Definition 4.2.1 Forcing (Cohen [1963], Kripke [1963]) For a given possible
world A, the relation %A defined in 2.2.2 is extended to conjunction as follows:

σ %A α ∧ β ⇔ σ %A α and σ %A β.

The next result shows that the extension of forcing to ∧ captures the intended
meaning of conjunction.

Theorem 4.2.2 Intuitionistic Soundness and Completeness (Beth [1956],
Kripke [1963]) For any Γ and α:

Γ %N α ⇔ Γ |=i α.

Proof. For the Soundness direction, we supplement the proof of 2.2.5 by the cases
dealing with conjunction.

• If Γ %N α ∧ β is obtained from Γ %N α and Γ %N β by ∧-introduction, then
Γ |=i α and Γ |=i β by the induction hypothesis. Let σ be any state that
forces all formulas of Γ in some world A: then σ forces α and β, and hence it
forces α∧β by definition of forcing. Since σ and A are arbitrary, Γ |=i α∧β.

• If Γ %N α is obtained from Γ %N α ∧ β by ∧-elimination, then Γ |=i α ∧ β
by the induction hypothesis. Let σ be any state that forces all formulas of
Γ in some world A. By the induction hypothesis, σ forces α ∧ β, and hence
it forces α by definition of forcing. Since σ and A are arbitrary, Γ |=i α.
Similarly for the other ∧-elimination rule.

For the Completeness direction, we supplement the proof of 2.2.6 (to which we
refer) by the case of conjunction. We have to prove that

Θ %A γ ∧ δ ⇔ γ ∧ δ ∈ Θ,

where Θ is any set of formulas closed under %N .

• Suppose Θ %A γ ∧ δ. Then Θ %A γ and Θ %A δ, and by the induction
hypothesis γ ∈ Θ and δ ∈ Θ. We want γ ∧ δ ∈ Θ. Suppose γ ∧ δ -∈ Θ. By
closure under %N , Θ -%N γ ∧ δ. By ∧- introduction, Θ -%N γ or Θ -%N δ,
contradiction (because Θ contains both γ and δ).

68 A. Implicational Calculus

• Suppose γ ∧ δ ∈ Θ. We want Θ %A γ ∧ δ, i.e. Θ %A γ and Θ %A δ or, by the
induction hypothesis, γ ∈ Θ and δ ∈ Θ. But if γ ∧ δ is in Θ, then so are both
γ and δ, by ∧-elimination and closure under %N . !

In particular, we get a semantical proof of the Cut Elimination Theorem, as in
2.2.7.

Exercises 4.2.3 a) The Countable Model Property continues to hold . (Hint: see 2.2.9.)
b) The Constructive Model Property continues to hold . (Hint: see 2.2.10.)

c) The Finite Model Property continues to hold . (Hint: see 2.2.11.)

Intuitionistic tableaux

The notion of provability by intuitionistic tableaux does not refer to connectives,
and can thus be retained in the original form 2.3.2. What needs to be supplemented
is the definition of tableaux 2.3.1.

Definition 4.2.4 An intuitionistic tableau is a tree with nodes consisting of
signed forcing assertions of the form Tσ % α or Fσ % α, and consistent with the
formation rules of 2.3.1, as well as with the following:

3. If a node Tσ % α ∧ β is on the tree, then we can extend any branch going
through it by adding Tσ % α and Tσ % β. Graphically,

Tσ % α ∧ β

Tσ % α
Tσ % β,

where the double line shows that the bottom nodes do not have to immediately
follow the top one.

4. If a node Fσ % α∧β is on the tree, then we can split any branch going through
it by adding Fσ % α in one direction and Fσ % β in the other. Graphically,

Fσ % α ∧ β

Fσ % α Fσ % β.

The next result shows that the extension of the tableaux rules to ∧ captures
the intended meaning of validity.

Theorem 4.2.5 Soundness and Completeness for Tableaux (Nerode [1990])
For any Γ and α:

Γ %T α ⇔ Γ |=i α.

Complexity 69

Proof. The proofs of 2.3.4 and 2.3.5 are easily supplemented by the cases dealing
with conjunction, since the rules for the construction of tableaux were chosen to
mirror the definition of forcing. !

In conclusion, we have proved that all systems considered so far are equivalent:
for any Γ and α,

Γ %N α ⇔ Γ %H α ⇔ Γ %S α ⇔ Γ %T α ⇔ Γ |=i α.

4.3 Complexity

æ

70 A. Implicational Calculus

Part B

Categories

71

Chapter 5

Heyting !-Algebras

The gaol of the present chapter is to introduce an approach to semantics different
from (but, as it will turn out, related to) the one via Beth-Kripke models. The
main idea is to exploit the extra power provided by conjunction, which allows to
identify finite sets of premises with their conjunction. This is expressed by the
following equivalence:

γ1, . . . , γn %N α ⇔ γ1 ∧ · · · ∧ γn %N α,

which holds by associativity of ∧, and successive applications of the ∧-elimination
and ∧-introduction rules.

By an application of →-introduction we also get the following strengthening of
the Deduction Theorem:

γ1, . . . , γn %N α
%N γ1 ∧ · · · ∧ γn → α.

This shows that there is a strong interplay among the relation %N and the connec-
tives ∧ and →, which we now attempt to describe in a purely algebraic way.

We will provide the needed algebraic background, and refer to Grätzer [1978],
and Davey and Priestley [1990] for more detailed treatments. Similarly, Rasiowa
and Sikorski [1963], and Rasiowa [1974] are the references for detailed treatments
of the connections with logic.

5.1 Heyting !-Algebras

Algebraic models

To describe the interplay among %N , ∧ and → we consider algebraic structures
A with an underlying set A, one relation /A on A intended to model %N , and

73

74 B. Categories

two binary operations !A and ⇒A on A intended to model ∧ and →, respectively.
Such a structure will be used to define an interpretation function [[]]Aρ for formulas,
relative to a given interpretation (called environment) of the propositional letters,
i.e. to a function ρ from the set of all propositional letters to the underlying set A
of A.

As usual, we will drop the superscript A or the subscript ρ when no confusion
arises. In particular, there should be no confusion about the uses of ⇒ as a meta-
mathematical sign, i.e. as an abbreviation for an informal implication, and as an
algebraic sign, i.e. as an interpretation of a formal implication.

Definition 5.1.1 Canonical Algebraic Interpretation. Given a structure

A = 〈A,!,⇒〉

and an environment ρ on it, i.e. a function

ρ : Propositional Letters −→ A,

we define the canonical algebraic interpretation [[]]ρ by induction on formu-
las, as follows:

[[α]]ρ =

ρ(p) if α = p
[[β]]ρ ! [[γ]]ρ if α = β ∧ γ
[[β]]ρ ⇒ [[γ]]ρ if α = β → γ.

By induction, [[α]]ρ ∈ A for every α. Having the notion of interpretation, we
define the notion of model by mirroring %N , modulo the identification of finite sets
of premises with their conjunctions.

Definition 5.1.2 An algebraic model of Implicational Calculus with Conjunc-
tion is a structure

A = 〈A,/,!,⇒〉

such that, for every Γ = {γ1, . . . , γn} and α,

Γ %N α =⇒ (∀ρ)([[γ1]]ρ ! · · · ! [[γn]]ρ / [[α]]ρ).

Motivation

Our next goal is to determine conditions on A ensuring that A is an algebraic
model. The following observations on N provide sufficient conditions.

1. provable equivalence defines an equivalence relation on formulas, and %N
induces a partial ordering on the equivalence classes
Axioms provide reflexivity:

α %N α.

Heyting !-Algebras 75

The possibility of merging proofs as follows:

α
Dβ

β
and

β
Dγ

γ
into

α
Dβ

β
Dγ

γ

provides transitivity:

(α %N β) ∧ (β %N γ) =⇒ (α %N γ).

The following deduction:

α %N β
%N α → β

β %N α
%N β → α

%N (α → β) ∧ (β → α)
%N α ↔ β

provides antisymmetry:

(α %N β) ∧ (β %N α) =⇒ (%N α ↔ β).

In the following we will abuse language, and use %N to refer to the associated
partial ordering on the equivalence classes.

2. %N admits a greatest element
If β is any formula provable without any assumption, i.e. such that %N β,
then by the Thinning Rule we also have α %N β for any formula α, and thus
the equivalence class of β is the greatest element w.r.t. %N .

3. ∧ induces the greatest lower bound operation on the equivalence classes
The ∧-elimination rules show that ∧ induces a lower bound :

Γ %N α ∧ β
Γ %N α

says that anything less than α ∧ β must be less than α. Similarly for β.

The ∧-introduction rule shows that ∧ induces the greatest lower bound:

Γ %N α Γ %N β
Γ %N α ∧ β

says that anything below both α and β must also be below α ∧ β.

76 B. Categories

We leave to the reader the trivial check that the operation induced by ∧ is
well-defined on equivalence classes, in the sense that

Γ %N α ↔ α′ Γ %N β ↔ β′

Γ %N (α ∧ β) ↔ (α′ ∧ β′).

4. → induces an operation on the equivalence classes that behaves on the right
of %N as the operation induced by ∧ does on the left
Precisely,

(α ∧ β) %N γ ⇔ α %N (β → γ).

This is just a symmetric restatement of the →-introduction and →-elimination
rules, modulo the additional freedom allowed by ∧ in the treatment of the
hypotheses.

For the left to right direction, given a proof D of γ from α ∧ β, by ∧-
introduction and →-introduction we get:

α [β](1)
α ∧ β
D
γ

β(1) → γ.

For the right to left direction, given a proof D of β → γ from α, by ∧-
elimination and →-elimination we get:

α ∧ β
β

α ∧ β
α
D

β → γ
γ.

We leave to the reader the trivial check that the operation induced by → is
well-defined on equivalence classes, in the sense that

Γ %N α ↔ α′ Γ %N β ↔ β′

Γ %N (α → β) ↔ (α′ → β′).

Adjointness

The situation depicted by Property 4 above can be abstracted as follows.

Heyting !-Algebras 77

Definition 5.1.3 (Kan [1958]) Given a partial ordering / on a set A, a function
g on A is a right adjoint of a function f on A if, for every x and y in A,

f(x) / y ⇔ x / g(y).

Then, by letting fβ(x) = x∧β and gβ(y) = β → y, condition 4 above says that
gβ is a right adjoint of fβ w.r.t. %N , for every formula β. We will abuse language
and say that → is a right adjoint of ∧ w.r.t. %N .

The following simple fact shows that the adjointness condition is actually suf-
ficient to uniquely determine the meaning of → in terms of %N and ∧.

Proposition 5.1.4 Uniqueness of Right Adjoints. Given a partial ordering
/ on a set A, a function f on A has at most one right adjoint w.r.t. /.

Proof. If g is any right adjoint of f , then

f(x) / y ⇔ x / g(y).

In particular, for x = g(y),

f(g(y)) / y ⇔ g(y) / g(y).

Since the right-hand-side is always true, because / is a partial ordering, then

f(g(y)) / y

for every y.
Let now g1 and g2 be two right adjoints of f . Then

f(x) / y ⇔ x / g2(y)

because g2 is a right adjoint. In particular, for x = g1(y),

f(g1(y)) / y ⇔ g1(y) / g2(y).

Since the left-hand-side is always true, because g1 is a right adjoint,

g1(y) / g2(y).

By interchanging g1 and g2,
g2(y) / g1(y).

Since / is a partial ordering,
g1(y) = g2(y).

Then g1 = g2. !

78 B. Categories

Of course, there is nothing special about right adjoints. In definition 5.1.3 we
say that f is a left adjoint of g, and a proof dual to the one above, using this time
the fact that x / g(f(x)), shows that left adjoints are unique when they exist.

The next result provides an alternative characterization of adjointness in terms
of the properties discovered in the proof of uniqueness, and will be useful for gen-
eralizations in the next chapter.

Proposition 5.1.5 If f and g are monotone functions on a partial ordering, then
g is the right adjoint of f if and only if the following hold:

1. x / g(f(x))

2. f(g(y)) / y.

Proof. The necessity of the condition has been proved in the proof of the previous
result. For sufficiency, suppose first

f(x) / y.

Then
x / g(f(x)) / g(y)

by property 1 and monotonicity of g. Conversely, suppose

x / g(y).

Then
f(x) / f(g(y)) / y

by monotonicity of f and property 2. Thus

f(x) / y ⇐⇒ x / g(y),

and g is the right adjoint of f . !

Properties 1 and 2 are called, respectively, the unit and counit of the adjoint-
ness. In the special case of the right adjoint of !, they translate into

x / (y ⇒ (x ! y)) and ((x ⇒ y) ! x) / y.

An improved presentation of adjointness in terms of equalities, instead of inequal-
ities, will be given in 5.1.8.

Heyting !-Algebras 79

Definition

Having discovered the algebraic properties forced on %N , ∧ and → by the logical
rules, we now abstract them and introduce algebraic structures that, in the light
of the previous discussion, turn out to be algebraic models.

Definition 5.1.6 (Ogasawara [1939], Birkhoff [1940], McKinsey and Tarski
[1946]) A Heyting $-algebra (read as ‘inf-algebra’ or ‘meet-algebra’) is a
structure

A = 〈A,/, =,!,⇒, 1〉

such that:

1. / is a partial ordering with = as associated equality

2. 1 is the greatest element of A w.r.t. /

3. ! is the g.l.b. operation associated with /

4. ⇒ is the right adjoint of ! w.r.t. /.

Conditions 1 and 3 define a lowersemilattice, i.e. a partially ordered structure
in which every pair of elements has a g.l.b. This implies that every non empty finite
subset has a g.l.b., but leaves open the degenerate case of the empty set, which is
taken care of by condition 2 (since the g.l.b. of ∅ is the greatest element).

In other words, the first three conditions together establish that every finite
subset, empty or not, has a g.l.b.

Equational presentation !

The definition of a Heyting !-algebra can be rephrased in various ways. Here we are
interested in purely equational presentations, which show that Heyting !-algebras
are algebraic varieties.

Knowing that / and ! must be related as said, we can take either one of them
as primitive and define the other one accordingly. Precisely, we can either ask / to
be a partial ordering and ! to be its associated g.l.b., or we can impose conditions
on ! that would ensure that there is a unique partial ordering on A such that ! is
its associated g.l.b., and define / to be such an ordering.

Proposition 5.1.7 Equational Presentation of Lowersemilattices with Great-
est Element (Huntington [1904]) In a structure

A = 〈A,/, =,!, 1〉

80 B. Categories

/ is a partial ordering with = as associated equality, 1 as greatest element and !
as associated g.l.b. if and only if

x / y ⇔ (x ! y) = x,

and the following hold:

1. x ! x = x (idempotency)

2. x ! (y ! z) = (x ! y) ! z (associativity)

3. x ! y = y ! x (commutativity)

4. x ! 1 = x

Proof. The stated properties are obviously necessary. Conversely, suppose they
hold: we show that /, defined as

x / y ⇔ (x ! y) = x,

is a partial ordering.

1. reflexivity

x / x is translated as x ! x = x, which holds by property 1.

2. transitivity

If x / y and y / z, then x ! y = x and y ! z = y. By property 2

x ! z = (x ! y) ! z = x ! (y ! z) = x ! y = x,

i.e. x / z.

3. antisymmetry

If x / y and y / x, then x ! y = x and y ! x = y. By property 3, x = y.

4. greatest element

By property 4, x ! 1 = x, i.e. x / 1 for any x. !

We turn now to the additional adjointness condition.

Proposition 5.1.8 Equational Presentation of Adjointness (Monteiro [1955],
Rasiowa and Sikorski [1963]) In a lowersemilattice

A = 〈A,/, =,!,⇒, 1〉

(where / is a partial ordering, = the associated equality, ! the associated g.l.b.
and 1 the greatest element) ⇒ is the right adjoint of ! w.r.t. / if and only if the
following hold:

Heyting !-Algebras 81

5. (x ⇒ x) = 1

6. x ⇒ (y ! z) = (x ⇒ y) ! (x ⇒ z)

7. x ! (x ⇒ y) = x ! y

8. y ! (x ⇒ y) = y.

Proof. We first prove that the stated properties are necessary.

• (x ⇒ x) = 1

It is enough to show that
a / (x ⇒ x)

holds for every a. But this means

a ! x / x,

which is always true by definition of !.

• x ⇒ (y ! z) = (x ⇒ y) ! (x ⇒ z)

It is enough to note the following equivalences:

a / x ⇒ (y ! z)
⇐⇒ a ! x / y ! z

⇐⇒ (a ! x / y) ∧ (a ! x / z)
⇐⇒ (a / x ⇒ y) ∧ (a / x ⇒ z)
⇐⇒ a / (x ⇒ y) ! (x ⇒ z),

which hold by adjointness and definition of ! (twice).

• x ! (x ⇒ y) = x ! y

It is enough to note the following equivalences:

a / x ! (x ⇒ y)
⇐⇒ (a / x) ∧ (a / x ⇒ y)
⇐⇒ (a / x) ∧ (a ! x / y)
⇐⇒ (a / x) ∧ (a / y)
⇐⇒ a / x ! y,

which hold by definition of ! and adjointness.

82 B. Categories

• y ! (x ⇒ y) = y

By definition of ! this is equivalent to

y / (x ⇒ y),

and by adjointness it is equivalent to

y ! x / y,

which is obviously true.

We now prove that the stated properties are sufficient, by showing that if ⇒
satifies them, then

(x ! y) / z ⇐⇒ x / (y ⇒ z).

The right to left direction is immediate. If

x / (y ⇒ z),

then
x ! y / y ! (y ⇒ z),

and by 7
x ! y / y ! z / z.

For the left to right direction, suppose

(x ! y) / z.

If we prove that
[y ⇒ (x ! y)] / (y ⇒ z),

then we have: by 6,
(y ⇒ x) ! (y ⇒ y) / (y ⇒ z);

by 5,
(y ⇒ x) / (y ⇒ z);

and by 8, which implies x / (y ⇒ x),

x / (y ⇒ x) / (y ⇒ z).

It remains to prove the following monotonicity property (to be applied above
with b = x ! y and c = z):

if b / c, then (a ⇒ b) / (a ⇒ c).

Heyting !-Algebras 83

But if b / c, then b ! c = b. So

a ⇒ (b ! c) = (a ⇒ b),

and by 6
(a ⇒ b) ! (a ⇒ c) = (a ⇒ b),

i.e.
(a ⇒ b) / (a ⇒ c). !

Exercises 5.1.9 a) y $ (x ⇒ y). (Hint: from 8.)
b) x $ (x ⇒ y) if and only if x $ y. (Hint: from 7.)
c) (1 ⇒ x) = x. (Hint: from 7.)

d) (x ⇒ y) = 1 if and only if x $ y. (Hint: from 7.)

Filters and quotients !

The proof of the Intuitionistic Completeness Theorem 2.2.6 and 4.2.2 shows that
we can model the behavior of %N , ∧ and → by considering sets of formulas closed
under %N and ∧. It is thus natural to try to adapt the same proof, and to model
the behavior of /, ! and ⇒ by considering sets of elements with the same closure
properties.

Definition 5.1.10 (Cartan [1937]) Given a Heyting !-algebra

A = 〈A,/, =,!,⇒, 1〉,

a nonempty subset F of A is a filter if it is:

• upward closed under /, i.e. for any x and y in A,

x ∈ F ∧ x / y =⇒ y ∈ F

• closed under !, i.e. for any x and y in A,

x ∈ F ∧ y ∈ F =⇒ x ! y ∈ F.

The definition of filter was given in terms of / and ∧, but the next result shows
that we could have used ⇒ instead.

Proposition 5.1.11 In a Heyting !-algebra, a subset F is a filter if and only if:

1. 1 ∈ F

2. if a ∈ F and a ⇒ b ∈ F then b ∈ F .

84 B. Categories

Proof. The conditions are obviously necessary. A filter contains at least an element
a, because it is a nonempty subset, and hence it contains 1 by upward closure, since
a / 1. And if a filter contains a and a ⇒ b, then it contains a! (a ⇒ b) by closure
under !, a!b by Property 7 of 5.1.8, and hence b by upward closure, since a!b / b.

We now show that the two conditions are sufficient:

• if a, b ∈ F , then a ! b ∈ F

By 2 (twice), it is enough to show that a ⇒ (b ⇒ a ! b) ∈ F . But

a ! b / a ! b ⇐⇒ a / (b ⇒ a ! b)
⇐⇒ (a ⇒ a) / [a ⇒ (b ⇒ a ! b)]
⇐⇒ 1 / [a ⇒ (b ⇒ a ! b)]

by adjointness, monotonicity, and Property 5 of 5.1.8.
Thus [a ⇒ (b ⇒ a ! b)] = 1 ∈ F by 1.

• if a ∈ F and a / b, then b ∈ F

If a / b, then (a ⇒ a) / (a ⇒ b) by monotonicity, and 1 / (a ⇒ b) by
Property 5 of 5.1.8.
Now (a ⇒ b) = 1 ∈ F by 1, and then b ∈ F by 2. !

Exercises 5.1.12 Filter generated by a set. Given a Heyting +-algebra A and a
subset B of it, the filter generated by B is the smallest filter on A containing B.

a) The filter generated by B exists. (Hint: the intersection of a non empty family of
filters is a filter, and the family of filters containing B is not empty, because the set A is
in it.)

b) The filter generated by B is the upward closure of the set of all finite meets of
elements of B. (Hint: the upward closure of the set of all finite meets of elements of B is

a filter, and is contained in every filter containing B.)

Part of the interest of the notion of filter lies in the fact that it can be used for
the definition of quotient algebras.

Proposition 5.1.13 Given a Heyting !-algebra A and a filter F on it, the relation

x /F y ⇐⇒ (x ⇒ y) ∈ F

induces an equivalence relation, whose set of equivalence classes

A/F = {[x] : x ∈ A}

is a Heyting !-algebra (called the quotient of A w.r.t. F), with operations and
relations induced from those of A.

Heyting !-Algebras 85

Proof. We prove the following facts:

• the relation /F induces an equivalence relation

It is enough to show that /F is reflexive and transitive, since then the relation

x =F y ⇐⇒ x /F y ∧ y /F x

is reflexive, transitive and symmetric, i.e. an equivalence relation.
Reflexivity x /F x follows from Property 5 of 5.1.8, since (x ⇒ x) = 1 ∈ F .
For transitivity, suppose

x /F y and y /F z,

i.e.
(x ⇒ y) ∈ F and (y ⇒ z) ∈ F.

By closure of F under !, (x ⇒ y) ! (y ⇒ z) ∈ F . If we prove that

(x ⇒ y) ! (y ⇒ z) / (x ⇒ z),

then (x ⇒ z) ∈ F , i.e. x /F z, follows by upward closure of F .
Now

(x ⇒ y) ! (y ⇒ z) / (x ⇒ z)
⇐⇒ x ! (x ⇒ y) ! (y ⇒ z) / z

⇐⇒ x ! y ! (y ⇒ z) / z

⇐⇒ x ! y ! z / z

by adjointness and Property 7 of 5.1.8 twice, and the last line is obviously
true.

• the operation ! induces the g.l.b.

! induces on A/F the operation

[x] !F [y] = [x ! y].

To prove that this gives a lower bound , we need to show that (x ! y) /F x,
i.e. that (x ! y ⇒ x) ∈ F . If we prove that

(x ⇒ x) / (x ! y ⇒ x),

then we get (x ! y ⇒ x) ∈ F from the fact that (x ⇒ x) = 1 by Property 5
of 5.1.8, since a filter contains 1 and is closed upwards.

86 B. Categories

It remains to prove the following contravariance property (to be applied above
with a = x ! y, b = x and c = x):

if a / b, then (b ⇒ c) / (a ⇒ c).

For this it is enough to note that if

x / (b ⇒ c),

then
x ! b / c

by adjointness,
x ! a / c

because a / b, and
x / (a ⇒ c)

by adjointness.
To prove that ! induces the greatest lower bound, suppose

z /F x and z /F y,

i.e.
(z ⇒ x) ∈ F and (z ⇒ y) ∈ F.

Then
(z ⇒ x) ! (z ⇒ y) ∈ F

by closure under !, and
z ⇒ (x ! y) ∈ F

by Property 6 of 5.1.8. Thus

z /F (x ! y).

• the operation ⇒ induces a right adjoint

⇒ induces on A/F the operation

[x] ⇒F [y] = [x ⇒ y].

To prove that this gives a right adjoint of !F , we need to show that

[x] !F [y] /F [z] ⇐⇒ [x] /F ([y] ⇒F [z]),

i.e.
[x ! y] /F [z] ⇐⇒ [x] /F [y ⇒ z],

Heyting !-Algebras 87

and hence
(x ! y ⇒ z) ∈ F ⇐⇒ x ⇒ (y ⇒ z) ∈ F.

This follows from

a / (x ! y) ⇒ z

⇐⇒ a ! x ! y / z

⇐⇒ a ! x / (y ⇒ z)
⇐⇒ a / x ⇒ (y ⇒ z),

by adjointness.

• the class of equivalence of 1 is the greatest element

It is enough to show that x /F 1, i.e. (x ⇒ 1) ∈ F , for any x. But 1 / (x ⇒ 1)
by Property 8 of 5.1.8, and hence (x ⇒ 1) = 1 ∈ F . !

Exercise 5.1.14 If F is a filter, then F = {a : a =F 1}, i.e. [1] = F . (Hint: it is enough

to show that x ∈ F if and only if 1 $F x. But a filter contains 1 and is closed under ⇒.

Thus, if 1 ⇒ x is in F , so is x. Conversely, from x $ (1 ⇒ x) it follows that if x is in F ,
then so is 1 ⇒ x.)

In applications, a typical way of building a quotient of a Heyting !-algebra A
is via an onto homomorphism f : A → B. Then

F = {x : f(x) = 1}

is a filter, for the following reasons:

• F is upward closed, since if x / y, then f(x) / f(y) because f preserves /,
and thus if f(x) = 1, then f(y) = 1.

• F is closed under !, since f(x! y) = f(x) ! f(y) because f preserves !, and
thus if f(x) = f(y) = 1, then f(x ! y) = 1.

Moreover,

(x ⇒ y) ∈ F ⇐⇒ f(x ⇒ y) = 1 ⇐⇒ (f(x) ⇒ f(y)) = 1 ⇐⇒ f(x) / f(y),

i.e.
x =F y ⇐⇒ f(x) = f(y).

In other words, we identify classes on A with elements of the range of f . If f is
onto, then the range of f is B, and A/F is isomorphic to B.

88 B. Categories

5.2 Soundness and Completeness Theorem

We can view Heyting !-algebras as an analogue of intuitionistic worlds. Local truth
now means being evaluated to 1 under a given environment, and global truth means
being evaluated to 1 under every environment. The following notion is then the
analogue of intuitionistic logical validity (2.2.4).

Definition 5.2.1 A formula α is an algebraic consequence of Γ = {γ1, . . . , γn}
(written Γ |=a α) if for every Heyting !-algebra A and every environment ρ on it,

([[γ1]]ρ ! · · · ! [[γn]]ρ) / [[α]]ρ.

In the limit case of Γ empty, we get the notion of algebraic validity: α is
algebraically valid (written |=a α) if α evaluates to 1 in every Heyting !-algebra,
under every environment.

Lindenbaum algebras

We first show that any Heyting !-algebra is a model of the Intuitionistic Implica-
tional Calculus with Conjunction.

Theorem 5.2.2 Algebraic Soundness (McKinsey and Tarski [1948], Ra-
siowa [1951]) For any Γ and α,

Γ %N α =⇒ Γ |=a α.

Proof. We prove that if A is a Heyting !-algebra, then it is an algebraic model,
i.e. if ρ is an environment on A and Γ = {γ1, . . . , γn} and α are given, then

Γ %N α =⇒ ([[γ1]]ρ ! · · · ! [[γn]]ρ) / [[α]]ρ.

The definition of a Heyting !-algebra has been discovered precisely by looking
at the properties that would make the present proof work, and thus we only have
to repeat the work done above, proceeding by induction on %N . For simplicity we
write [[Γ]]ρ for [[γ1]]ρ ! · · · ! [[γn]]ρ.

If Γ,β %N β is an assumption, then

([[Γ]]ρ ! [[β]]ρ) / [[β]]ρ

follows from the fact that ! is a lower bound w.r.t. to /.
If Γ %N α → β is obtained from Γ,α %N β by →-introduction, then

([[Γ]]ρ ! [[α]]ρ) / [[β]]ρ

Soundness and Completeness Theorem 89

by the induction hypothesis, and hence

[[Γ]]ρ / ([[α]]ρ ⇒ [[β]]ρ) = [[α → β]]ρ

by right adjointness of ⇒ and definition of [[]]ρ.
If Γ %N β is obtained from Γ %N α and Γ %N α → β by →-elimination, then

[[Γ]]ρ / [[α]]ρ and [[Γ]]ρ / [[α → β]]ρ = ([[α]]ρ ⇒ [[β]]ρ)

by the induction hypothesis and definition of [[]]ρ, and hence

[[Γ]]ρ = ([[Γ]]ρ ! [[α]]ρ) / [[β]]ρ

by right adjointness of ⇒.
If Γ %N α ∧ β is obtained from Γ %N α and Γ %N β by ∧-introduction, then

[[Γ]]ρ / [[α]]ρ and [[Γ]]ρ / [[β]]ρ

by the induction hypothesis, and hence

[[Γ]]ρ / ([[α]]ρ ! [[β]]ρ) = [[α ∧ β]]ρ

because ! is the greatest lower bound w.r.t. /, and by definition of [[]]ρ.
If Γ %N α is obtained from Γ %N α ∧ β by ∧-elimination, then

[[Γ]]ρ / [[α ∧ β]]ρ = [[α]]ρ ! [[β]]ρ

by the induction hypothesis and definition of [[]]ρ, and hence

[[Γ]]ρ / [[α]]ρ

because ! is a lower bound w.r.t. /. Similarly for β. !

We now go back to the motivation that led to the very notion of a Heyting
!-algebra, and consider the so-called Lindenbaum algebra of Γ, i.e. the set of
equivalence classes of formulas under the equivalence relation induced by provable
equivalence from Γ.

Theorem 5.2.3 Algebraic Completeness (Jaskowski [1936], Stone [1937],
Tarski [1938]) For any Γ and α,

Γ |=a α =⇒ Γ %N α.

Proof. We show that if Γ %N α fails, then there is a Heyting !-algebra A and an
environment ρ on it such that [[γ]]ρ = 1 for all γ ∈ Γ, but [[α]]ρ -= 1. This proves
the contrapositive of the stated result.

We consider the structure

AΓ = 〈AΓ,/, =,!,⇒, 1〉

in which:

90 B. Categories

1. AΓ is the set of equivalence classes

[[β]] = {γ : Γ %N β ↔ γ}

2. / is induced by %N relatively to Γ, i.e.

[[β]] / [[γ]] ⇐⇒ Γ,β %N γ

3. = is induced by provable equivalence relatively to Γ, i.e.

[[β]] = [[γ]] ⇐⇒ Γ %N (β ↔ γ)

4. ! is induced by ∧, i.e.
[[β]] ! [[γ]] = [[β ∧ γ]]

5. ⇒ is induced by →, i.e.

[[β]] ⇒ [[γ]] = [[β → γ]]

6. 1 is the equivalence class of the formulas provable from Γ, i.e.

1 = {β : Γ %N β}.

Then A is a Heyting !-algebra, by the discussion motivating the definition of
the latter. Since

Γ %N β ⇐⇒ [[β]] = 1.

is the crucial property, we recall the essence of its proof. Basically, the left to right
direction comes from the fact that if a formula is provable from Γ, then it is also
provable from Γ and any other formula. The right to left direction comes from the
fact that if a formula is provably equivalent to a provable formula, then it is itself
provable.

In particular, [[γ]] = 1 for any γ ∈ Γ, but [[α]] -= 1 because Γ %N α fails by
hypothesis. The result then follows by noticing that [[]] is actually the canonical
algebraic interpretation of formulas on A, w.r.t. the environment defined as

ρ(p) = [[p]].

We thus have the needed Heyting !-algebra and environment. !

The Algebraic Completeness Theorem provides us with a canonical Heyting !-
algebra A∅, consisting of the equivalence classes of formulas under the equivalence
relation induced by intuitionistic provable equivalence.

Examples 91

The Algebraic Soundness Theorem shows that any function from the proposi-
tional letters to a Heyting !-algebra A, i.e. any environment on A, can be extended
to a homomorphism of Heyting !-algebras from A∅ to A, i.e. to the canonical al-
gebraic interpretation associated to the environment. This property is concisely
expressed by saying that A∅ is the free Heyting !-algebra on countably many gener-
ators : namely, the equivalence classes of propositional letters, which are countably
many because distinct letters cannot be provably equivalent.

Finite Heyting !-algebras

The next result is the analogue of the Finite Model Property 2.2.11, and by 5.3.10
it is actually a corollary of it (see 18.7.1 for an algebraic proof of it).

Proposition 5.2.4 Finite Model Property (Jaskowski [1936], McKinsey
and Tarski [1946]) If Γ |=a α fails, then there is a finite Heyting algebra A and
an environment ρ on it such that all formulas of Γ are evaluated to 1 under it, but
α is not.

Gödel [1933] has proved that no single finite Heyting !-algebra is enough, while
Jaskowski [1936] has proved that a canonical countable family of finite Heyting !-
algebras is enough. We prove the first result in 18.7.2. The second result follows
from 5.3.10, by considering the finite Heyting !-algebras associated with the finite
Kripke models of the canonical family considered in 18.7.1.

5.3 Examples !

We know that, given a lowersemilattice with greatest element, there is at most one
operation that would satisfy the definition of right adjoint of the g.l.b. operation,
but of course there might be none. We now look at specific lowersemilattices in
which ! does admit a right adjoint, thus providing examples of Heyting !-algebras.

Linear orderings with a greatest element

In a linear ordering the g.l.b. ! of two elements w.r.t. / is simply the smallest of
them, and the adjointness condition becomes

(x ! a) / b ⇐⇒ x / (a ⇒ b).

Proposition 5.3.1 (Gödel [1932]) Any linear ordering with a greatest element
is a Heyting !-algebra.

Proof. If a / b, then the left-hand-side of the adjointness condition holds for every
x, and hence so must the right-hand-side, i.e. a ⇒ b is the greatest element 1.

92 B. Categories

If b " a, then (x ! a) / b holds if and only if x / b, and thus

x / b ⇐⇒ x / (a ⇒ b),

i.e. a ⇒ b is b.
It is thus enough to let

(a ⇒ b) =
{

1 if a / b
b if b " a

to get the right adjoint of !. !

Linear orderings are not enough for completeness because they all satisfy the
formula

(α → β) ∨ (β → α),

which is not intuitionistically provable. The next exercises elaborate on this.

Exercises 5.3.2 Linear Heyting +-algebras and Kripke models (Dummett [1959],
Horn [1962]) We call a Heyting +-algebra linear if its underlying ordering is linear, and
similarly for a Kripke model.

a) Every linear Heyting +-algebra induces an equivalent linear Kripke model . (Hint:
given the linear Heyting +-algebra L = 〈L,$, 1〉 and an environment ρ on it, consider the
Kripke model A = 〈L,-, {Ax}x∈L〉, where Ax = {p : ρ(p) - x}. Then

x "A α ⇔ [[α]]ρ - x

by induction on α, and hence

1 "A α ⇔ [[α]]ρ = 1.

Notice that we inverted the order precisely because we wanted 1 to correspond to truth.
And that we could not simply let Ax = {p : ρ(p) = x}, because forcing is monotone while
ρ needs not be.)

b) Every linear Kripke model induces an equivalent linear Heyting +-algebra. (Hint:
given the linear Kripke model A = 〈P,$, {Aσ}σ∈P 〉, consider the set of all upward closed
subsets of P ordered by inclusion, and the environment

ρ(p) = {σ : σ "A p}.

Then
[[α]]ρ = {σ : σ "A α}

by induction on α.)
c) A Heyting +-algebra is linear if and only if it satisfies (a ⇒ b) = 1 or (b ⇒ a) = 1,

for any a and b. (Hint: since 1 + a = a and 1 + b = b, by adjointness the condition is
equivalent to a $ b or b $ a, i.e. to linearity.)

d) A Kripke model is linear if and only if it forces α → β or β → α, for any α and
β. (Hint: suppose σ . " α → β and τ . " β → α. Then σ " α but σ . " β, and τ " β but

Examples 93

τ . " α. By monotonicity of forcing, neither of σ and τ can be above the other, and the
model is not linear.

Conversely, suppose p ∈ Aσ − Aτ and q ∈ Aτ − Aσ. Since p ∈ Aσ but q .∈ Aσ,

σ . " p → q. Since q ∈ Aτ but p .∈ Aτ , τ . " q → p. Then the model does not force p → q
nor q → p.)

Power sets

In a power set P(A), consisting of all subsets of a set A ordered under inclusion,
the g.l.b. operation is set-theoretical intersection, and the adjointness condition
becomes

(x ∩ a) ⊆ b ⇐⇒ x ⊆ (a ⇒ b).

Proposition 5.3.3 Any power set, ordered under set-theoretical inclusion, is a
Heyting !-algebra.

Proof. Suppose (x ∩ a) ⊆ b. If z ∈ x, then either z -∈ a or z ∈ x ∩ a, and hence
z ∈ b. Thus z ∈ a∪b, where a is the complement of a (relative to A), and x ⊆ a∪b.
This suggests that

(x ∩ a) ⊆ b ⇐⇒ x ⊆ (a ∪ b),

since it proves the left to right direction. Conversely, let x ⊆ (a∪ b) and z ∈ x∩ a.
Then z ∈ b, and (x ∩ a) ⊆ b.

It is thus enough to let
(a ⇒ b) = a ∪ b.

to get the right adjoint of ∩. !

Power sets are not enough for completeness since they all satisfy the Law of
the Excluded Middle (or its implicational version, Peirce’s Law), which is not
intuitionistically provable.

Open sets

The example of the power set of a given set A can be generalized by considering
not all subsets of A, but only the open sets in a topology on A, again ordered under
inclusion. Recall that a topology T on A is a collection of subsets of A, called
open sets, with the following properties:

• ∅ and A are in T

• T is closed under arbitrary unions

• T is closed under finite intersections.

94 B. Categories

As a typical example of topology, we can take the subsets of the plane that are
unions of ‘open disks’, i.e. circles without their borders.

In general the complement of an open set in a topology is not open, and thus
we cannot define the right adjoint of ∩ as for power sets. But since

(x ∩ a) ⊆ b ⇐⇒ x ⊆ (a ∪ b)

continues to hold, we guess that the following would do:

(a ⇒ b) = the largest open set contained in a ∪ b

=
⋃

{x : x ∈ T ∧ (x ∩ a) ⊆ b}.

In technical terms, the right-hand-side is called the interior of a∪b, and is indicated
by (a ∪ b)◦.

Proposition 5.3.4 (Stone [1937], Tarski [1938]) The open sets of a topology,
ordered under set-theoretical inclusion, form a Heyting !-algebra (called a topo-
logical Heyting algebra).

Proof. Since the open sets of a topology T on A ordered by inclusion obviously
form a lowersemilattice, with set-theoretical intersection as g.l.b. and A as greatest
element, it remains to verify that

(x ∩ a) ⊆ b ⇐⇒ x ⊆ (a ∪ b)◦

for any open sets x, a and b in T .
The left to right direction holds by definition of interior. For the right to left

direction, let x ⊆ (a∪ b)◦ and z ∈ x∩ a. Since z ∈ x, z ∈ (a∪ b)◦, and hence there
is xz ∈ T such that (xz ∩ a) ⊆ b and z ∈ xz . Since z ∈ a, z ∈ xz ∩ a, and hence
z ∈ b. Thus (x ∩ a) ⊆ b. !

We can thus interpret intuitionistic logic by using open sets. Historically, this
is how the first complete interpretation was discovered. The idea underlying it was
to express incompleteness of knowledge by taking as truth-values not points, but
whole neighborhoods .

Tarski [1938] showed that there are single topological spaces which are enough
for completeness, for example the real line or any n-dimensional euclidean space
for n ≥ 1, with the usual topology (see 18.7.4).

Complete lattices with continuous g.l.b.

We used very little of the properties of open sets in the previous proof, and the
following result provides an abstract version.

Examples 95

Theorem 5.3.5 Adjoint Existence (Freyd [1964]) Any lowersemilattice

A = 〈A,/, =,!, 1〉

satisfying the following two conditions is a Heyting !-algebra:

1. every subset X of A has a l.u.b.
⊔

X

2. ! preserves
⊔

, i.e. the following !
⊔

-distributive law holds:

(
⊔

X) ! a =
⊔

{x ! a : x ∈ X}

Proof. As above, we define

(a ⇒ b) =
⊔

{x : (x ! a) / b},

and proves that
(x ! a) / b ⇐⇒ x / (a ⇒ b).

The left to right direction holds by definition of ⇒. For the right to left direc-
tion, let x / (a ⇒ b). Then

x ! a / (a ⇒ b) ! a

= (
⊔

{z : (z ! a) / b}) ! a

=
⊔

{z ! a : (z ! a) / b}
/ b,

respectively because ! preserves the order, by definition of ⇒, because ! preserves
l.u.b.’s, and because the l.u.b. of a set of elements all less than b is itself less than
b. !

Notice that the 3 part of condition 2 follows from condition 1, and thus only
the / part needs to be assumed.

The various properties used in the result are well-known. The existence of
arbitrary l.u.b.’s makes A a complete lattice, in the sense that g.l.b.’s and l.u.b.’s
exist for all subsets: indeed, the g.l.b. of a subset X of A is

⊔
{a : (∀x ∈ X)(a / x)}.

The property of preserving arbitrary l.u.b.’s is continuity in the sense of 6.3.7,
relative to all l.u.b.’s of arbitrary sets, not only of chains.

The following result is the converse of the previous one.

96 B. Categories

Proposition 5.3.6 Continuity of G.l.b.’s with Right Adjoints. In a low-
ersemilattice

A = 〈A,/, =,!, 1〉,
if ! has a right adjoint ⇒, then ! preserves all existing l.u.b.’s.

Proof. We prove that

(
⊔

X) ! a =
⊔

{x ! a : x ∈ X},

whenever
⊔

X exists.
If x ∈ X , then

x /
⊔

X

because
⊔

is an upper bound, and

(x ! a) / (
⊔

X) ! a

because ! preserves the order. Thus
⊔

{x ! a : x ∈ X} / (
⊔

X) ! a,

i.e.
⊔

X ! a is an upper bound.
Let now b be any other upper bound to

⊔
{x ! a : x ∈ X}. For any x ∈ X ,

(x ! a) / b,

so
x / (a ⇒ b)

by adjointness, ⊔
X / (a ⇒ b)

because
⊔

X is the least upper bound of X , and

(
⊔

X ! a) / b

by adjointness, i.e.
⊔

X ! a is the least upper bound. !

5.3.5 and 5.3.6 together show that a complete lattice is a Heyting algebra if and
only if it satisfies the !

⊔
-distributive law . Thus the classes of complete Heyting

algebras and of complete lattices satisfying the !
⊔

-distributive law coincide. How-
ever, the two descriptions of the same class stress different aspects: the existence
of ⇒ in the first case, and the interplay between ! and

⊔
in the second. This

gives rise to two different ‘categories’ (a concept that will be introduced in the
next chapter), in which the underlying objects are the same but the morphisms
preserve, on top of the lattice structure (i.e. ! and "), also the relevant additional
aspects. These two categories are called:

Examples 97

• complete Heyting algebras, when the morphisms preserve ⇒

• frames, when the morphisms preserve
⊔

.

The need to keep the two categories distinct comes from the fact that, although
⇒ can be defined in terms of ! and

⊔
, a morphism preserving the latter does not

necessarily preserve the former. What happens here is that, since

a ⇒ b =
⊔

{x : x ! a / b},

if f preserves ! and
⊔

, then

f(a ⇒ b) =
⊔

{f(x) : x ! a / b},

but
f(a) ⇒ f(b) =

⊔
{z : z ! f(a) / f(b)}.

The relation
f(a ⇒ b) / f(a) ⇒ f(b)

holds automatically, because if x!a / b, then f(x)!f(a) / f(b)). But the converse
relation is not necessarily true.

Exercise 5.3.7 There is a frame morphism which is not a morphism of complete Heyting
algebras. (Hint: if A is a finite linear ordering, a monotone function f : A → A preserves
+ and 0, and if it preserves 0 and 1 it is thus a frame morphism. If, for some b ! a, f
collapses the closed interval [b, a] into a single element .= 1, then

f(a ⇒ b) = f(b) .= 1 = (f(a) ⇒ f(b)),

and f does not preserve ⇒.)

Relationships with Beth-Kripke models !

Partially ordered sets can be given a natural topology, as follows.

Definition 5.3.8 The order topology OP on a partially ordered set (P,/) con-
sists of the subsets of P upward closed w.r.t. to /. I.e. B ⊆ P is open if and only
if, for every x and y in P :

x ∈ B ∧ x / y =⇒ y ∈ B.

It is clear that OP is a topology, since ∅ and P are trivially upward closed, and
arbitrary unions and intersections of upward closed sets are still upward closed.

98 B. Categories

Exercise 5.3.9 A topology T on X is called T0 if, for every x and y in X,

x .= y =⇒ Tx .= Ty ,

where Tx is the set of open sets to which x belongs. In other words, if x .= y, then there
is an open set containing one of x and y but not the other.

A topology is the order topology associated with some partial ordering if and only if it
is T0 and closed under arbitrary intersections. (Alexandrov [1937]) (Hint: the conditions
are sufficient. E.g. if x .= y, then x .$ y or y .$ x because $ is antisymmetric, and so y
does not belong to the upward closure of x or x does not belong to the upward closure of
y. Conversely, given a topological space T , define

x $ y ⇐⇒ Tx ⊆ Ty.

If T is T0, then $ is a partial ordering and it defines an order topology O. An open set
A in T is also open in O. If T is closed under arbitrary intersections, the opposite holds
too, since it does for the upward closure of elements (and these open sets generate the
topology). Indeed, given x, its upward closure is

{y : x $ y} = {y : Tx ⊆ Ty}
= {y : (∀B ∈ T)(x ∈ B ⇒ y ∈ B)}

=
⋂

{B : B ∈ T ∧ x ∈ B}.)

Having associated topologies with partial orderings allows us to see any Beth-
Kripke model

A = 〈P,/, {Aσ}σ∈P 〉
as a model of N in two different ways:

1. as a Beth-Kripke model
By definition of logical consequence 2.2.4 and the Intuitionistic Soundness
Theorem 2.2.5, we know that if Γ %N α, then any σ ∈ P forces α whenever
it forces all formulas in Γ.

2. as a topological Heyting !-algebra
Here we consider the order topology associated with (P,/), which is a Heyt-
ing !-algebra by 5.3.4. In this case the definition of a canonical algebraic
interpretation amounts to:

[[α]]ρ =

ρ(p) if α = p
[[β]]ρ ∩ [[γ]]ρ if α = β ∧ γ
([[β]]ρ ∪ [[γ]]ρ)◦ if α = β → γ.

By definition of algebraic consequence 5.2.1 and the Algebraic Soundness
Theorem 5.2.2, we know that if Γ %N α and Γ = {γ1, . . . , γn}, then

([[γ1]]ρ ∩ · · · ∩ [[γn]]ρ) ⊆ [[α]]ρ

for every environment ρ.

Examples 99

We now show that the former notion is actually a special case of the latter, for
a particular environment ρ.

Proposition 5.3.10 Canonical Topological Interpretation Induced by Forc-
ing. Given a Beth-Kripke model

A = 〈P,/, {Aσ}σ∈P 〉,

the environment
ρ(p) = {σ : σ %A p}

produces on the topological Heyting !-algebra

〈OP ,⊆,∩,⇒, P 〉

a canonical algebraic interpretation that coincides with forcing, in the sense that
for every formula α

[[α]]ρ = {σ : σ %A α}.

Proof. We prove that
σ ∈ [[α]]ρ ⇐⇒ σ %A α

by induction on α.
If α = p, then this holds by definition of ρ. Notice that ρ really is an envi-

ronment, since the set of states forcing a given formula, p in particular, is upward
closed by monotonicity of forcing.

If α = β ∧ γ, then

σ ∈ [[β ∧ γ]]ρ ⇐⇒ σ ∈ ([[β]]ρ ∩ [[γ]]ρ)
⇐⇒ σ ∈ [[β]]ρ ∧ σ ∈ [[γ]]ρ
⇐⇒ σ %A β ∧ σ %A γ

⇐⇒ σ %A β ∧ γ

by definition of [[]], induction hypothesis and definition of forcing for ∧.
If α = β → γ, then [[β → γ]]ρ is the interior of [[β]]ρ ∪ [[γ]]ρ, i.e. the union of all

open sets contained in it, and

σ %A β → γ ⇐⇒ (∀τ 3 σ)(τ %A β ⇒ τ %A γ).

If σ ∈ [[β → γ]]ρ, then σ belongs to an open set contained in [[β]]ρ∪[[γ]]ρ by definition
of interior. In particular, all extensions τ of σ are in the same set, because open
sets are upward closed. Then τ ∈ [[β]]ρ ∪ [[γ]]ρ, and hence

τ ∈ [[β]]ρ =⇒ τ ∈ [[γ]]ρ.

100 B. Categories

By the induction hypothesis,

τ %A β =⇒ τ %A γ.

Since τ is an arbitrary extension of σ, σ %A β → γ by definition of forcing.
Conversely, if σ %A β → γ, then

τ %A β =⇒ τ %A γ

for all extensions τ of σ. By the induction hypothesis,

τ ∈ [[β]]ρ =⇒ τ ∈ [[γ]]ρ,

i.e. all extensions of σ are in [[β]]ρ ∪ [[γ]]ρ. But the set of all extensions of σ is
upward closed, and hence an open set. Then σ belongs to an open set contained
in [[β]]ρ ∪ [[γ]]ρ, and hence is in its interior [[β → γ]]ρ. !

Now the fact that A is a Beth-Kripke model, i.e. that, for Γ = {γ1, . . . , γn},

Γ %N α =⇒ (∀σ ∈ P)(σ %A γ1 ∧ · · · ∧ γn =⇒ σ %A α),

can be translated as

Γ %N α =⇒ ([[γ1]]ρ ∩ · · · ∩ [[γn]]ρ) ⊆ [[α]]ρ,

and it is a special case of the fact that the order topology associated with A is a
Heyting !-algebra.

In particular, the Algebraic Soundness Theorem is a strengthening of the In-
tuitionistic Soundness Theorem, since it exhibits a larger class of interpretations
for provable formulas, and the Intuitionistic Completeness Theorem is a strength-
ening of the Algebraic Completeness Theorem, since it exhibits a smaller class of
counterexamples for disprovable formulas.

Both strengthenings are real by 5.3.9, which shows that not every topology
arises from a partial ordering, and hence that not every topological Heyting algebra
arises from a Beth-Kripke model.

Exercises 5.3.11 Forcing induced by a canonical interpretation.
a) Given a Heyting +-algebra

A = 〈A,$,+,⇒, 1〉,

any environment ρ on it produces a Beth-Kripke model

B = 〈P,$, {Bσ}σ∈P 〉

Representation Theorems 101

whose forcing coincides with the canonical algebraic interpretation, in the sense that, for
every formula α,

σ " α ⇐⇒ [[α]]ρ ∈ σ.

(Hint: let P = FA be the set of filters on A, $ be the set-theoretical inclusion, Bσ be
{p : [[p]]ρ ∈ σ}, and proceed by induction on α.

To treat →, we need to show that

(∀τ ⊇ σ)([[β]] ∈ τ =⇒ [[γ]] ∈ τ) ⇐⇒ ([[β]] ⇒ [[γ]]) ∈ σ.

The right to left direction follows from 5.1.11. For the left to right direction, given [[σ]],
consider the filter τ generated by σ ∪ {[[β]]}. By hypothesis [[γ]] ∈ τ , i.e. there is a ∈ σ
such that a + [[β]] $ [[γ]], and a $ ([[β]] ⇒ [[γ]]) by adjointness. By upward closure of σ,
([[β]] ⇒ [[γ]]) ∈ σ.)

b) The Beth-Kripke model FOP associated with a Heyting +-algebra OP associated
with a Beth-Kripke model P is isomorphic to P . (Hint: every filter on OP is principal,
because OP is closed under arbitrary intersections.)

c) The Heyting +-algebra OFA associated with a Beth-Kripke model FA associated

with a Heyting +-algebra A is not in general isomorphic to A. (Hint: by 18.3.4, not every
Heyting +-algebra is isomorphic to a topological one.)

5.4 Representation Theorems !

We now ask how far the examples of Heyting !-algebras produced in Section 5.3
are typical. The results of this section are generalizations of the ones of Section
20.3 on Boolean algebras. We thus suggest the reader to read that section first, to
see similar proofs in a simpler setting.

Lindenbaum algebras

Theorem 5.4.1 First Representation for Heyting $-algebras (Tarski [1935a])
Any Heyting !-algebra is isomorphic to a Lindenbaum algebra for the Implicational
Calculus with Conjunction.

Proof. Given a Heyting !-algebra A, consider a language for the Implicational
Calculus with Conjunction with as many propositional letters as there are elements
of A, and define an environment

ρ : Propositional Letters −→ A

which is onto A. Then let [[α]]ρ be the canonical algebraic interpretation of α w.r.t.
ρ.

By definition of canonical algebraic interpretation and the Algebraic Sound-
ness Theorem, [[]]ρ induces a homomorphism of Heyting !-algebras between the

102 B. Categories

Lindenbaum algebra of the given propositional language and A. Moreover, the
homomorphism is onto because A is already covered by ρ.

To get an isomorphism, we simply identify elements in the Lindenbaum algebra
that get mapped to the same element of A. This can be done canonically, by
defining a set of formulas Γ as follows:

α ∈ Γ ⇐⇒ [[α]]ρ = 1.

By definition of canonical algebraic interpretation and the Algebraic Soundness
Theorem, Γ is deductively closed, i.e.

Γ %N α ⇐⇒ [[α]]ρ = 1,

and
α ↔ β ∈ Γ ⇐⇒ [[α]]ρ = [[β]]ρ.

Then the Lindenbaum algebra associated with Γ is actually isomorphic to A. !

Open sets

The Algebraic Soundness Theorem shows that Heyting !-algebras provide us with
a general algebraic formulation of the notion of model for the Implicational Calcu-
lus with Conjunction. Conversely, we now show that the proof of the Intuitionistic
Completeness Theorem contains in a nutshell the ideas needed for a general repre-
sentation theorem for Heyting !-algebras which shows that, in a precise sense, the
only Heyting !-algebras are the topological ones and their subalgebras .

Theorem 5.4.2 Second Representation for Heyting $-algebras (Stone
[1937], McKinsey and Tarski [1946]) Any Heyting !-algebra is isomorphic
to a subalgebra of an algebra of open sets of a topology.

Proof. In 5.1.10 we introduced the notion of a filter of a Heyting !-algebra, by
modelling it on the properties of sets of formulas needed to prove the Intuition-
istic Completeness Theorem (2.2.6 and 4.2.2). We now exploit the analogy, by
considering the set FA of all filters on A, and the function f defined as follows:

f(x) = the set of all filters containing x

= {F : F ∈ FA ∧ x ∈ F}.

Notice that f is a function from A to the power set P(FA) of FA, which is a
lowersemilattice w.r.t. inclusion, with the following properties:

1. f preserves /
Given x / y, let F be a filter containing x. By upward closure, F also
contains y. Thus

x / y =⇒ f(x) ⊆ f(y).

Representation Theorems 103

Actually, the converse implication holds as well: if f(x) ⊆ f(y), then the
principal filter generated by x is in f(y), i.e. it contains y, and hence x / y.

2. f preserves !
Given x, y and a filter F , if F contains x!y, then it also contains x (by upward
closure, since x ! y / x) and y (similarly), and so f(x ! y) ⊆ f(x) ∩ f(y).

Conversely, if F contains x and y, then it also contains x! y by definition of
filter, and so f(x) ∩ f(y) ⊆ f(x ! y). Thus

f(x ! y) = f(x) ∩ f(y).

3. f preserves 1
1 is in any filter F , since it is the greatest element of A and F is upward
closed. Thus

f(1) = FA.

4. there is a topology on FA w.r.t. which f preserves ⇒
Since right adjointness can be presented equationally in terms of / and !
(5.1.8), which are preserved by f , ⇒ is automatically preserved whenever the
definition of right adjointness of ∩ in P(FA) only requires consideration of
elements in the range of f . This can be obtained by defining the topology
on FA as the topology generated by f(A), i.e. as the smallest topology for
which all elements in the range of f are open. More explictly, by defining
the open sets as arbitrary unions of elements of f(A). Notice that f(A) is
already closed under finite intersections by part 2 above, and it contains FA

by part 3.

To formally verify that f preserves ⇒, by uniqueness of right adjoints we
only need to show that, for any open set x,

x ∩ f(a) ⊆ f(b) ⇐⇒ x ⊆ f(a ⇒ b).

By definition of topology generated by f(A), there is a subset B of A such
that x =

⋃
z∈B f(z). Then

x ∩ f(a) ⊆ f(b)

⇐⇒ (
⋃

z∈B

f(z)) ∩ f(a) ⊆ f(b)

⇐⇒
⋃

z∈B

(f(z) ∩ f(a)) ⊆ f(b)

⇐⇒ (∀z ∈ B)[f(z) ∩ f(a) ⊆ f(b)]
⇐⇒ (∀z ∈ B)[f(z ! a) ⊆ f(b)]

104 B. Categories

⇐⇒ (∀z ∈ B)[z ! a / b]
⇐⇒ (∀z ∈ B)[z / a ⇒ b]
⇐⇒ (∀z ∈ B)[f(z) ⊆ f(a ⇒ b)]

⇐⇒ (
⋃

z∈B

f(z)) ⊆ f(a ⇒ b)

⇐⇒ x ⊆ f(a ⇒ b),

by definition of x, set-theoretical ∩
⋃

-distributive law, definition of adjointe-
ness, and preservation properties of f .

5. f is one-one
Given x and y, if x -= y, then (since / is a partial ordering, in particular
antisymmetric) x -/ y or y -/ x. If x -/ y, then the upward closure of x is
obviously a filter containing x but not y, and thus f(x) -= f(y). Similarly
when y -/ x. Thus

x -= y =⇒ f(x) -= f(y).

We have thus proved that f induces an isomorphism of Heyting !-algebras
between A and f(A), where f(A) is intended as a subalgebra of the topological
algebra P(FA). !

The set FA of filters of A and its topology generated by f(A) are respectively
called the Stone space of A and the Stone topology associated with it. Thus the
previous result can be reformulated in the following more informative way, usually
referred to as the Stone Representation Theorem: any Heyting !-algebra is
isomorphic to a subalgebra of the algebra of open sets of its Stone space.

This formulation of the Stone Representation Theorem raises two complemen-
tary questions:

• Which Heyting !-algebras are isomorphic not only to a subalgebra, but to a
full algebra of open sets of a topology?

• Which topologies arise as Stone topologies of Heyting !-algebras?

We will answer the first question in 18.3.4, and a dual version of the second in
18.5.7.

æ

Chapter 6

Cartesian Closed Categories

In the present chapter we pursue the idea that the proof of an implication is a
function from the set of proofs of (the conjunction of) its premises to the set
of proofs of its conclusion. More precisely, we describe a view of logic in which
formulas are interpreted as sets (of proofs), proofs as functions between formulas,
and deduction rules as operations on functions.

We will provide the needed categorical background, and refer to MacLane [1971],
Arbib and Manes [1975], Goldblatt [1979], Lawvere and Schanuel [1991], and Pierce
[1991] for more detailed treatment. Similarly, Lambek and Scott [1986], and Asperti
and Longo [1991] are the references for detailed treatmentes of the connections with
typed lambda calculus.

6.1 Cartesian Closed Categories

Categorical Models

To describe the interplay of %N , ∧ and → we consider categorical structures C with:

• A class1 ObC of sets called objects, intended to interpret formulas.

• A binary class function HomC that associates to every pair of objects A
and B a (possibly empty) set HomC(A, B) of functions with domain A and

1The word class is taken here in a technical sense, and not as a synonym of set . Basically,
unrestricted predicates define classes, while predicates restricted to sets define sets. Thus sets are
defined inductively, and the inductive conditions for the definition are given by the usual axioms
of Set Theory. We can also think of sets as ‘small classes’, or classes belonging to some (other)
class. Then ‘large’ classes, called ‘proper’, are classes that are not sets. Considering classes of
objects as opposed to sets will allow us to deal, in the following, with categories such as Set,
whose collection of objects constitutes a proper class.

105

106 B. Categories

codomain B called morphisms, intended to interpret proofs from premises
and hence to model %N . For convenience, we will often write f : A → B for
f ∈ Hom(A, B).

• Two binary class functions ×C and ⇒C , intended to model ∧ and →, respec-
tively.

Such a structure will be used to define an interpretation function [[]]Cρ for formulas,
relative to a given interpretation (called environment) of the propositional letters,
i.e. to a function ρ from the set of all propositional letters to the underlying class
ObC of C.

As usual, we will drop the superscript C or the subscript ρ when no confusion
arises.

Definition 6.1.1 Canonical Categorical Interpretation. Given a structure

C = 〈Ob,×,⇒〉

and an environment ρ on it, i.e. a function

ρ : Propositional Letters −→ Ob,

we define the canonical categorical interpretation [[]]ρ by induction on for-
mulas, as follows:

[[α]]ρ =

ρ(p) if α = p
[[β]]ρ × [[γ]]ρ if α = β ∧ γ
[[β]]ρ ⇒ [[γ]]ρ if α = β → γ.

By induction, [[α]]ρ ∈ Ob for every α. Having the notion of interpretation, we
define the notion of model by mirroring %N , modulo the identification of finite
sets of premises with their conjunctions. Since α %N β says that there is a proof
of β from α, and we interpret proofs as morphisms, then the relation %N will be
modelled by the fact that the appropriate Hom set is not empty.

Definition 6.1.2 A categorical model of Implicational Calculus with Conjunc-
tion is a structure

C = 〈Ob,Hom ,×,⇒〉

such that, for every Γ = {γ1, . . . , γn} and α,

Γ %N α =⇒ (∀ρ)(Hom([[γ1]]ρ × · · ·× [[γn]]ρ, [[α]]ρ) -= ∅).

Cartesian Closed Categories 107

Categories

Our next goal is to determine conditions ensuring that C is a categorical model.
The discussion proceeds as in Section 5.1.

Reflexivity and transitivity of %N show that the Hom sets must contain the
identity functions, and be closed under composition.

Definition 6.1.3 (Eilenberg and MacLane [1945]) A structure

C = 〈Ob,Hom〉

is a locally small, concrete category if the following hold, for every object A,
B and C:

1. idA ∈ Hom(A, A), where idA is the identity function on A defined by:

idA(x) = x;

2. if f ∈ Hom(A, B) and g ∈ Hom(B, C), then g ◦ f ∈ Hom(A, C), where ◦ is
the composition operator defined by:

(f ◦ g)(x) = f(g(x)).

C is a small concrete category if, in addition, Ob is a set.

An intuitive way of reformulating the rules just given is in terms of a deductive
system, with axioms

idA : A → A,

and a deduction rule
f : A → B g : B → C

g ◦ f : A → C.

In the previous definition, the word concrete refers to the fact that we required
each A ∈ Ob to be a set, and each f ∈ Hom(A, B) to be a set-theoretical function.
The words locally small refer instead to the fact that we required each Hom(A, B)
to be a set. In the main text we will only deal with locally small, concrete categories,
and thus drop the qualifiers. In the exercises we will instead introduce and use a
more general notion.

Exercises 6.1.4 Abstract categories. We consider a structure C = 〈Ob, Hom〉 as
above, but without supposing any of the following: the objects, i.e. the elements of Ob,
are sets; the morphisms, i.e. the elements of Hom(A,B), are set-theoretical functions; and
the collections of morphisms, i.e. the Hom(A,B) themselves, are sets.

Such a structure is called an abstract category if the following hold, for every object
A, B and C:

108 B. Categories

1. there is an operator ◦ called composition, such that:

(a) if f ∈ Hom(A,B) and g ∈ Hom(B, C), then g ◦ f ∈ Hom(A,C)

(b) ◦ is associative, i.e.
f ◦ (g ◦ h) = (f ◦ g) ◦ h,

2. there is a morphism idA ∈ Hom(A, A) called the identity on A, such that for every
morphism f ∈ Hom(A,B)

f ◦ idA = f and idB ◦ f = f.

An abstract category is locally small if, for every pair of objects A and B, Hom(A, B)
is a set. A locally small category is small if Ob is a set.

A concrete category is an abstract category . (Hint: the set-theoretical identities and

composition obviously satisfy the required additional properties.)

Antisymmetry of %N suggests the following notion, which plays the role of
equality between objects of a category.

Definition 6.1.5 In a category, two objects A and B are isomorphic (written
A % B) if there are morphisms f : A → B and g : B → A such that

g ◦ f = idA and f ◦ g = idB.

In that case, f is called an isomorphism of A and B.

Terminal object

When %N is interpreted as a partial ordering, the existence of formulas provable
without assumptions is translated in the existence of a greatest element 1. When
we interpret %N as the existence of morphisms, we notice that formulas provable
without assumptions are provable from any assumption, and this suggests the
consideration of an object 1 such that Hom(A, 1) -= ∅, for any object A. To
uniquely determine 1 we need something more: not only existence of a morphism,
but uniqueness of it.

Definition 6.1.6 In a category

C = 〈Ob,Hom〉,

an object 1 is called a terminal object if there is exactly one morphism tA in
Hom(A, 1), for any object A.

In terms of the deductive system introduced above, we have further axioms:

tA : A → 1

Cartesian Closed Categories 109

Proposition 6.1.7 A terminal object is unique up to isomorphism, when it exists.

Proof. If A and B are both terminal, there exist morphisms f : A → B and
g : B → A. Then g ◦ f and idA are both morphisms from A into A, and thus they
must be equal because A is terminal, i.e. g ◦ f = idA. Similarly, f ◦ g = idB. Thus
A and B are isomorphic. !

Exercise 6.1.8 Initial object. In a category, an object 0 is called an initial object if
there is exactly one morphism in Hom(0, A), for any object A.

An initial object is unique up to isomorphism, when it exists.

Exercises 6.1.9 Opposite category. Given an abstract category C, consider the struc-
ture Cop such that:

• the objects of Cop are the same as the objects of C
• the morphisms of Cop are the morphisms of C with inverted domains and codomains,

i.e. HomCop(A, B) = HomC(B, A).

a) Cop is an abstract category, called the opposite of C.

b) The initial object in C is the terminal object in Cop. This gives an alternative proof
of uniqueness of initial objects.

Products

We now interpret %N as the existence of morphisms, and ∧ by ×.
The ∧-elimination rules show that, whenever there is a morphism to A × B,

there must be morphisms to A and B too. The easiest way to ensure this is to
take advantage of closure under composition, and simply require the existence of
morphisms from A × B to A and B.

The ∧-introduction rule shows that, whenever there are morphisms to both A
and B, there must be a morphism to A × B, too.

As already for 1, purely existential properties would not be enough to determine
A × B up to isomorphim, and thus we also add a uniqueness condition.

Definition 6.1.10 In a category

C = 〈Ob,Hom〉,

an operation × is called a product if, for every pair of objects A and B:

1. there are morphisms lA,B : A × B → A and rA,B : A × B → B called,
respectively, the left and right projections

2. for every object C and any pair f : C → A and g : C → B of morphisms
from C to A and B, there is a unique morphism

〈f, g〉C,A,B : C → A × B

110 B. Categories

such that

f = lA,B ◦ 〈f, g〉C,A,B and g = rA,B ◦ 〈f, g〉C,A,B .

This can be represented pictorially by saying that in the following diagram

C

!
!

!
!

!"

f

#
#

#
#
#$

g

!!!!!!!!!!!!!%
〈f,g〉

A A × B B& l 'r

all morphisms from the same domain to the same codomain are equal (the dotted
arrow only focuses the attention on the principal morphism). We say in such cases
that the diagram commutes, or that it is commutative.

In terms of the deductive system introduced above, we have further axioms

lA,B : A × B → A and rA,B : A × B → B,

and an additional rule
f : C → A g : C → B

〈f, g〉 : C → A × B.

While the latter literally corresponds to ∧-introduction, ∧-elimination can be stated
as the pair of derived rules:

f : C → A × B
lA,B ◦ f : C → A

and f : C → A × B
rA,B ◦ f : C → B.

Proposition 6.1.11 The product of two objects is unique up to isomorphism, when
it exists.

Proof. Suppose A ×∗ B also satisfies the properties, i.e.

1. there are morphisms l∗A,B : A ×∗ B → A and r∗A,B : A ×∗ B → B

2. for every object C and any pair f : C → A and g : C → B of morphisms
from C to A and B, there is a unique morphism 〈f, g〉∗ : C → A ×∗ B such
that

f = l∗A,B ◦ 〈f, g〉∗ and g = r∗A,B ◦ 〈f, g〉∗.

Then, by letting C = A ×∗ B, f = l∗A,B and g = r∗A,B in the definition of A × B,
and C = A × B, f = lA,B and g = rA,B in the definition of A ×∗ B, we have that

〈l∗A,B, r∗A,B〉 ◦ 〈lA,B, rA,B〉∗ = idA×B

Cartesian Closed Categories 111

and
〈lA,B, rA,B〉∗ ◦ 〈l∗A,B, r∗A,B〉 = idA×∗B

by the uniqueness condition, and thus A × B and A ×∗ B are isomorphic. !

Exercises 6.1.12 The following hold in any category with terminal object and products.
a) A × B 8 B × A.
b) A × (B × C) 8 (A × B) × C.
c) A 8 A × 1.
d) 〈f ◦ h, g ◦ h〉 = 〈f, g〉 ◦ h. (Hint: consider the following diagram.

D

%

h

(
(

(
(

(
(

(
(

(
(()

f◦h

*
*
*
*
*
*
*
*
*
**+

g◦hC

%

〈f,g〉

!
!

!
!!"

f

#
#

#
##$

g

A A × B B.)& '

e) 〈lA,B , rA,B〉 = idA×B .

Exercises 6.1.13 Given an abstract category C and two objects A and B, consider the
structure C×

A,B such that:

• the objects of C×
A,B are the triples 〈C, f, g〉, where C is an object of C, and f : C → A

and g : C → B are two morphisms of C:

A C B& f 'g

• the morphisms h : (C1, f1, g1) → (C2, f2, g2) of C×
A,B are the morphisms h : C1 → C2

of C such that f1 = f2 ◦ h and g1 = g2 ◦ h:

C1

!
!

!!"

f1
#

#
##$

g1

!!!!!!!!%h
A C2 B.&f2 'g2

a) C×
A,B is an abstract category .

b) The product A × B in C is the terminal object in C×
A,B. This gives an alternative

proof of uniqueness of products in C.

For convenience, we introduce the following notation.

112 B. Categories

Definition 6.1.14 Given f : A → C and g : B → D, let

f × g : A × B → C × D

be the function defined by:

f × g = 〈f ◦ lA,B, g ◦ rA,B〉.

As usual, we can just say that the following diagram commutes:

A

%

f

A × B

!
!

!
!

!"

f◦lA,B

!!!!!!!!!!!!!%
f×g

#
#

#
#

#$

g◦rA,B

B

%

g

&lA,B 'rA,B

C C × D D.&lC,D 'rC,D

In terms of the deductive system introduced above, this corresponds to having
a derived rule

f : A → C g : B → D
f × g : A × B → C × D.

Exercises 6.1.15 The following hold in any category with products.

a) idA × idB = idA×B.

b) (f × h) ◦ (g × k) = (f ◦ g) × (h ◦ k). (Hint: consider the following diagram.

A

%

g

A × B

%

g×k

B

%

k

'&

C

%

f

C × D

%

f×h

D

%

h

'&

E E × F F.)'&

Cartesian Closed Categories 113

c) (f × h) ◦ 〈g, k〉 = 〈f ◦ g, h ◦ k〉. (Hint: consider the following diagram.

A

!
!

!
!!"

g

#
#

#
##$

k

%

〈g,k〉

B

%

f

B × C

%

f×h

C

%

h

'&

D D × E E.)'&

d) (f × id) ◦ 〈id, k〉 = 〈f, g〉. (Hint: from part c).)

Exercises 6.1.16 Given an abstract category C, consider the structure C→ such that:

• the objects of C→ are the morphisms f : A → B of C;

• the morphisms (h1, h2) : f → g of C→, where f : A → B and g : C → D, are the
pairs of morphisms h1 : A → C and h2 : B → D, such that g ◦ h1 = h2 ◦ f :

A

%

h1

B

%

h2

'f

C D.'g

a) C→ is an abstract category .

b) f × g in C is the product of f and g in C→.

Exercises 6.1.17 Sums. In a category C, an operation + is called a sum if, for every
pair of objects A and B:

1. there are morphisms iA,B : A → A + B and jA,B : B → A + B called, respectively,
the left and right injections

2. for every object C and any pair f : A → C and g : B → C of morphisms from
A and B to C, there is a unique morphism [f, g]A,B,C : A + B → C such that
f = [f, g]A,B,C ◦ iA,B and g = [f, g]A,B,C ◦ jA,B .

114 B. Categories

In other words, the following diagram commutes:

A

#
#

#
##$

f

A + B!!!!!!!!!!!!%
[f,g]

B

!
!

!
!!"

g

'i & j

C

a) The sum of two objects is unique up to isomorphism, when it exists.

b) The sum in C is the product in Cop (defined in 6.1.9). This shows that sums and

products enjoy dual properties.

Exponentials

We now interpret %N as the existence of morphisms, ∧ by ×, and → by ⇒
The →-elimination rule shows that, whenever there are morphisms to both A

and A ⇒ B, there must be a morphism to B too. The easiest way to ensure this
is to take advantage of closure under composition and product, and simply require
the existence of morphisms from (A ⇒ B) × A to B.

The →-elimination rule shows that, whenever there is a morphism from C ×A
to B, there must be a morphism from C to A ⇒ B, too.

As already for 1 and A × B, purely existential properties would not be enough
to determine A ⇒ B up to isomorphism, and thus we add a uniqueness condition.

Definition 6.1.18 In a category with products

C = 〈Ob,Hom,×〉,
an operation ⇒ is called an exponential if, for every triple of objects A, B and
C:

1. there is a morphism evalA,B : (A ⇒ B) × A → B called evaluation

2. for every object C and any morphism f : C × A → B, there is a unique
morphism curryC,A,B(f) : C → (A ⇒ B) such that

f = evalA,B ◦ (curryC,A,B(f) × idA).

As usual, we can just say that the following diagram commutes:

C × A!!!!!!!!!!!!%
curry(f)×id

B.'f

(A ⇒ B) × A
,

,
,

,
,

,,-

eval

Cartesian Closed Categories 115

In terms of the deductive system introduced above, we have further axioms

evalA,B : (A ⇒ B) × A → B,

and an additional rule

f : C × A → B
curry (f) : C → (A ⇒ B).

While the latter literally corresponds to →-introduction, →-elimination can be
stated as the derived rule

f : C → (A ⇒ B) g : C → A
evalA,B ◦ (f × g) : C → B.

Proposition 6.1.19 The exponential of two objects is unique up to isomorphism,
when it exists.

Proof. Suppose A ⇒∗ B also satisfies the properties, i.e.

1. there is a morphism eval∗ : (A ⇒∗ B) × A → B

2. for every object C and any morphism f : C × A → B, there is a unique
morphism curry∗(f) : C → (A ⇒∗ B) such that

f = eval∗ ◦ (curry∗(f) × idA).

Then, by letting C = A ⇒∗ B and f = eval∗ in the definition of A ⇒ B, and
C = A ⇒ B and f = eval in the definition of A ⇒∗ B, we have

curry (eval∗) ◦ curry∗(eval) = idA⇒B

and
curry∗(eval) ◦ curry (eval∗) = idA⇒∗B

by the uniqueness condition, and thus A ⇒ B and A ⇒∗ B are isomorphic. !

Exercise 6.1.20 The following hold in any category with products and exponentials.
a) (curry f) ◦ g = curry (f ◦ (g × id)). (Hint: consider the following diagram.

D × A
................./

curry (f◦ (g×id))×id

C × A

0
0

0
0

0
0

0
001

(curry f)×id

B'g×id 'f

(A ⇒ B) × A.

2

eval

b) curry (evalA,B) = idA⇒B.

116 B. Categories

Exercises 6.1.21 The following hold in any category with terminal object, products and
exponentials.

a) A ⇒ (B × C) 8 (A ⇒ B) × (A ⇒ C).
b) A ⇒ (B ⇒ C) 8 (A × B) ⇒ C.
c) (1 ⇒ A) 8 A.
d) (A ⇒ 1) 8 1.
If we had written the exponential A ⇒ B as the name implies, i.e. BA, then the

previous properties would become

(B × C)A 8 BA × CA (CB)A 8 CA×B A1 8 A and 1A 8 1,

thus assuming a more familiar aspect.

Exercises 6.1.22 Given an abstract category with products C and two objects A and
B, consider the structure C⇒

A,B such that:

• the objects of C⇒
A,B are the pairs (C, f), where C is an object of C, and f : C×A → B

is a morphism of C;

• the morphisms h : (C1, f1) → (C2, f2) of C⇒
A,B are the morphisms h : C1 → C2 of C

such that f1 = f2 ◦ 〈h, idA〉:

C1 × A!!!!!!!!!!!!!%
〈h,idA〉

B.'f1

C2 × A
!

!
!

!
!3

f2

a) C⇒
A,B is an abstract category .

b) The exponential A ⇒ B in C is the terminal object in C⇒
A,B. This gives an alternative

proof of uniqueness of exponentials.

Cartesian closed categories

Having discovered the categorical properties forced on Hom, × and ⇒ by the logical
rules on %N , ∧ and →, we now abstract them and introduce categories that, in the
light of the previous discussion, turn out to be categorical models.

Definition 6.1.23 (Lawvere [1964]) A cartesian closed category is a struc-
ture

C = 〈Ob,Hom,×,⇒, 1〉

such that:

1. 〈Ob,Hom〉 is a category

Cartesian Closed Categories 117

2. 1 is the terminal object

3. × is the categorical product

4. ⇒ is the categorical exponential.

The first three conditions define a category in which all finite families of objects
have products (the terminal object is the product of the empty family).

Adjointness !

The relationship between × and ⇒ expressed by the notion of exponential is rem-
iniscent of the adjointness property in Heyting !-algebras, and implies that the
function

curryC,A,B : Hom(C × A, B) → Hom(C, A ⇒ B)
is a set-theoretical isomorphism. Indeed:

• one-onennes

If curry (f) = curry (g), then

f = eval ◦ (curry(f) × idA) = eval ◦ (curry(g) × idA) = g

by definition of curry .

• ontoness

Given any function h : C → (A ⇒ B), then

h = curry(eval ◦ (h × idA))

by uniqueness of curry.

As in the case of Heyting !-algebras, we could have defined the notion of expo-
nential by first introducing a general notion of adjointness, and then requiring ⇒
to be the right adjoint of ×. The reason why we did not do so is that this road is
more cumbersome and less intuitive, as the present subsection (which is not needed
for the following) shows.

We introduce the notions of a ‘function’ on a category and an ‘isomorphism’ ∼=
of Hom sets, so that we can generalize the condition

f(x) / y ⇐⇒ x / g(y)

on partial orderings to

Hom(F (X), Y) ∼= Hom(X, G(Y))

on categories.
The following is the appropriate notion of a ‘function’ on a category, as a map

preserving all the categorical structure.

118 B. Categories

Definition 6.1.24 A class function F : C → C is a functor on C if it associates
an object F (A) to each object A, and a morphism F (f) to each morphism f , in
such a way that:

1. if f : A → B, then F (f) : F (A) → F (B)

2. F (idA) = idF (A)

3. if f : A → B and g : B → C, then F (g ◦ f) = F (g) ◦ F (f).

We can now introduce the notion of an ‘identity’ for functors on a category.
Since objects in a category can only be identified up to isomorphism, two functors
will be identical if their values are isomorphic (as sets). Moreover, we will ask that
these values be uniformly isomorphic, in the sense of preserving the categorical
structure.

Definition 6.1.25 Two functors F and G on a category C are naturally iso-
morphic (written F ∼= G) if, for every object X of C, there is a set-theoretical
isomorphism (i.e. a one-one, onto function)

ηX : F (X) → G(X)

such that, for every morphism f : X → X ′,

G(f) ◦ ηX = ηX′ ◦ F (f).

The definition expresses the fact that the following diagram commutes:

F (X) ηX−→ G(X)
↓ F (f) ↓ G(f)

F (X ′)
ηX′−→ G(X ′)

The notion of a natural isomorphism for functors is the inspiration for the
following definition.2

Definition 6.1.26 (Kan [1958]) A functor G on a category C is a right adjoint
of a functor F on C (written Hom(F (X), Y) ∼= Hom(X, G(Y))) if, for every
pair of objects X and Y in C, there is a set-theoretical isomorphism (i.e. a one-one,
onto function)

ηX,Y : Hom(F (X), Y) → Hom(X, G(Y))

such that, for every triple f : X ′ → X, g : Y → Y ′ and h : F (X) → Y of
morphisms,

G(g) ◦ ηX,Y (h) ◦ f = ηX′,Y ′(g ◦ h ◦ F (f)).
2It is actually the same notion, applied to the functors from Cop×C to Set that map (X, Y) to

Hom(F (X), Y) and Hom(X, G(Y)), respectively. Here Cop is the opposite of C defined in 6.1.9,
and Set is the category of all sets defined in 6.3.3.

Soundness and Completeness Theorems 119

The definition expresses the fact that the following diagram commutes:

Hom(F (X), Y)
ηX,Y−→ Hom(X, G(Y))

↓ ↓
Hom(F (X ′), Y ′)

ηX′,Y ′
−→ Hom(X ′, G(Y ′)),

along the upper path

h >−→ ηX,Y (h) >−→ G(g) ◦ ηX,Y (h) ◦ f

and the lower path

h >−→ g ◦ h ◦ F (f) >−→ ηX′,Y (g ◦ h ◦ F (f)).

Then, by letting FB(X) = X × B and GB(Y) = B ⇒ Y , GB is a right adjoint
of FB, for every object B. We will abuse language, and say that ⇒ is a right
adjoint of ×.

The following fact extends 5.1.4.

Proposition 6.1.27 Uniqueness of Right Adjoints. Given a category C, a
functor F on C has at most one right adjoint.

Proof. We mimick the proof of 5.1.4, and discover during it the condition needed
in the definition of functor and of natural isomorphism.

!

As for partial orderings, there is of course nothing special about right adjoints.
In definition 6.1.26 we can say that F is a left adjoint of G, and a proof as above
shows that left adjoints are unique, when they exist.

Exercise 6.1.28 In any cartesian closed category, Hom(X, Y) ∼= Hom(1, X ⇒ Y).

6.2 Soundness and Completeness Theorems

We can view cartesian closed categories as a further generalization of intuitionistic
worlds. Local truth in a given cartesian closed category C under a given environment
ρ now means that there is a morphism from 1 to [[α]]ρ, and global truth means that
there is such a morphism for every C and ρ. The following notion is then the
analogue of intuitionistic and algebraic validity (2.2.4 and 5.2.1).

Definition 6.2.1 A formula α is a categorical consequence of Γ = {γ1, . . . , γn}
(written Γ |=c α) if, for every cartesian closed category C and every environment
ρ on it,

Hom([[γ1]]ρ × · · ·× [[γn]]ρ, [[α]]ρ) -= ∅.

120 B. Categories

In the limit case of Γ empty, we get the notion of categorical validity: α is
categorically valid (written |=c α) if Hom(1, [[α]]ρ) -= ∅ for every cartesian closed
category, under every environment.

Theorem 6.2.2 Categorical Soundness. For any Γ and α,

Γ %N α =⇒ Γ |=c α.

Proof. We prove that if C is a cartesian closed category, then it is a categorical
model, i.e. if ρ is an environment on it and Γ = {γ1, . . . , γn} and α are given, then

Γ %N α =⇒ Hom([[γ1]]ρ × · · ·× [[γn]]ρ, [[α]]ρ) -= ∅.

The definition of cartesian closed category has been discovered precisely by
looking at the properties that would make the present proof work, and thus we
only have to repeat the work done above, proceeding by induction on %N . For
simplicity we write [[Γ]]ρ for [[γ1]]ρ × · · ·× [[γn]]ρ.

If Γ,β %N β is an assumption, then

Hom([[Γ]]ρ × [[β]]ρ, [[β]]ρ) -= ∅

follows from the existence of the right projection function r[[Γ]]ρ,[[β]]ρ.
If Γ %N α → β is obtained from Γ,α %N β by →-introduction, then

Hom([[Γ]]ρ × [[α]]ρ, [[β]]ρ) -= ∅

by the induction hypothesis, and so there is

f : [[Γ]]ρ × [[α]]ρ → [[β]]ρ.

Then
curry (f) : [[Γ]]ρ → ([[α]]ρ ⇒ [[β]]ρ),

and so
Hom([[Γ]]ρ, [[α → β]]ρ) = Hom([[Γ]]ρ, [[α]]ρ ⇒ [[β]]ρ) -= ∅

by definition of [[]]ρ.
If Γ %N β is obtained from Γ %N α and Γ %N α → β by →-elimination, then

Hom([[Γ]]ρ, [[α]]ρ) -= ∅

and
Hom([[Γ]]ρ, [[α]]ρ ⇒ [[β]]ρ) = Hom([[Γ]]ρ, [[α → β]]ρ) -= ∅

by definition of [[]]ρ and induction hypothesis, and so there are

f : [[Γ]]ρ → ([[α]]ρ ⇒ [[β]]ρ) and g : [[Γ]]ρ → [[α]]ρ.

Soundness and Completeness Theorems 121

Then
eval ◦ 〈f, g〉 : [[Γ]]ρ → [[β]]ρ,

and so
Hom([[Γ]]ρ, [[β]]ρ) -= ∅.

If Γ %N α ∧ β is obtained from Γ %N α and Γ %N β by ∧-introduction, then

Hom([[Γ]]ρ, [[α]]ρ) -= ∅ and Hom([[Γ]]ρ, [[β]]ρ) -= ∅

by the induction hypothesis, and so there are

f : [[Γ]]ρ → [[α]]ρ and g : [[Γ]]ρ → [[β]]ρ.

Then
〈f, g〉 : [[Γ]]ρ → [[α]]ρ × [[β]]ρ,

and so
Hom([[Γ]]ρ, [[α ∧ β]]ρ) = Hom([[Γ]]ρ, [[α]]ρ × [[β]]ρ) -= ∅

by definition of [[]]ρ.
If Γ %N α is obtained from Γ %N α ∧ β by ∧-elimination, then

Hom([[Γ]]ρ, [[α]]ρ × [[β]]ρ) = Hom([[Γ]]ρ, [[α ∧ β]]ρ) -= ∅

by definition of [[]]ρ and induction hypothesis, and so there is

f : [[Γ]]ρ → [[α]]ρ × [[β]]ρ.

Then
l[[α]]ρ,[[β]]ρ ◦ f : [[Γ]]ρ → [[α]]ρ,

and so
Hom([[Γ]]ρ, [[α]]ρ) -= ∅.

Similarly when Γ %N β is obtained from Γ %N α ∧ β by ∧-elimination, this time
using the right projection r[[α]]ρ,[[β]]ρ. !

We have noticed on p. 92 that the Algebraic Soundness Theorem is a strength-
ening of the Intuitionistic Soundness Theorem. We notice below (see 6.3.2) that,
quite trivially, every Heyting !-algebra is a cartesian closed category, from which it
follows that the Categorical Soundness Theorem is a strengthening of the Algebraic
Soundness Theorem. Thus cartesian closed categories provide the largest class of
interpretations for Implicational Calculus with Conjunction introduced so far.

For the same reason, the following result is weaker than the Algebraic Com-
pleteness Theorem, which in turn was weaker than the Intuitionistic Completeness
Theorem. We thus state it only for completeness, without proof.

Theorem 6.2.3 Categorical Completeness. For any Γ and α,

Γ |=c α =⇒ Γ %N α.

122 E. Categories

6.3 Examples !

In this section we provide a series of examples of cartesian closed categories, selected
with an eye to applications.

Heyting !-algebras

Our first example of a cartesian closed category connects the present notion with
the one studied in the previous chapter.

Definition 6.3.1 Given a Heyting !-algebra A, A is the categorical structure such
that:

• ObA is the class of all singletons containing elements of A, i.e.

ObA = {{x} : x ∈ A};

• for any pair of elements a and b of A,

HomA({a}, {b}) -= ∅ ⇐⇒ a / b.

Notice that between {a} and {b} there is exactly one function, namely the one
sending a to b: the previous definition says that such a function is a morphism of
A exactly when a / b.

Proposition 6.3.2 For any Heyting !-algebra A, A is a cartesian closed category.

Proof. A is obviously a category: the identities and composition exist because /
is, respectively, reflexive and transitive. We thus concentrate on showing that A is
cartesian closed.

• terminal object

{ 1 } is the terminal object. For any a, the existence of a (necessarily unique)
morphism between {a} and {1} follows from the fact that 1 is the greatest
element, i.e. that a / 1.

• products

Given two elements a and b, their categorical product is their g.l.b. a ! b.
The existence of the projections saying that a ! b / a and a ! b / b follows
from the fact that a ! b is a lower bound of a and b.
Moreover, given two morphisms f and g saying that c / a and c / b, the
existence of 〈f, g〉 saying that c / a! b follows from the fact that a! b is the
greatest lower bound of a and b.

Examples 123

• exponentials

Given two elements a and b, their categorical exponential is a ⇒ b.
The existence of eval , saying that a!(a ⇒ b) / b, follows from 5.1.8.8 (which
translates Modus Ponens).
Moreover, given a morphism f saying that c!a / b, the existence of curry (f)
saying that c / (a ⇒ b) follows from the adjunction property of ⇒ w.r.t. !.
!

Sets

The previous examples of cartesian closed categories are quite trivial from the
categorical point of view, since their Hom sets are severely restricted: they contain
either one or no morphism. We now turn to the other end of the spectrum, and
consider what is perhaps the most natural example of a cartesian closed category.

Definition 6.3.3 Set is the categorical structure such that:

• ObSet is the class of all sets;

• for any pair of sets A and B, HomSet(A, B) is the set of all functions from
A to B.

Proposition 6.3.4 Set is a cartesian closed category.

Proof. Since Set is obviously a category, we concentrate on showing that it is
cartesian closed. We define the appropriate objects and morphisms, and leave as
an exercise the verification of the properties required by 6.1.23.

• terminal object

We let 1 be any singleton set {x} (up to isomorphism), and tA : A → 1 be the
constant function with value x if A is non empty, and the undefined function
if A is empty.

• products

Given two sets A and B, we let

A × B = {(x, y) : x ∈ A ∧ y ∈ B}

and
lA,B(x, y) = x and rA,B(x, y) = y.

Moreover, given two functions f : C → A and g : C → B, we let

〈f, g〉(z) = (f(z), g(z)).

124 E. Categories

• exponentials

Given two sets A and B, we let

A ⇒ B = {f : f is a function from A to B},

and
evalA,B(f, x) = f(x).

Moreover, given a function f : C × A → B, we let

(curry f)(z) = the function x >→ f(z, x). !

Exercises 6.3.5 a) Check that 1, A × B, and A ⇒ B satisfy the properties required by
6.1.23.

b) In Set, a morphism is an isomorphism if and only if it is a one-one and onto
function. (Hint: it is enough to show that if g ◦ f = id, then f is one-one and g is onto.
For one-oneness, let f(x) = f(y): then g(f(x)) = g(f(y)), and so x = y. For ontoness,
given z, then g(f(z)) = z.)

c) In Set, two objects are isomorphic if and only if they are sets with the same
cardinality . (Hint: from part b).)

Chain complete partial orderings

The previous examples of cartesian closed categories are somewhat unsatisfactory,
since they contain either too little or too much. We now want to exhibit a less
trivial example, and experience with Heyting !-algebras suggests us to look at the
notion of topology.

The first thought would obviously be to look at the category Top having as
objects the topological spaces, and as morphisms the continuous functions. How-
ever, this is not very satisfactory. First, the possibility of endowing any set with
the discrete topology, in which every subset is open, shows that for many topolog-
ical spaces continuity would not be a restriction. Second, the category Top is not
cartesian closed anyway (see note 4 on p. 120).

We thus take an intermediate road and consider a notion of continuity that is,
at the same time, sufficiently general but also sufficiently restricted.

Definition 6.3.6 (Markowsky [1976]) A partially ordered set (D,/D) is a chain
complete partial ordering (c.c.p.o.) if every countable chain (i.e. every count-
able totally ordered set) of elements of D has a least upper bound (l.u.b.) in D.

We will indicate by
⊔D

n∈ω xn the l.u.b. of the chain x0 /D x1 /D · · ·. To
increase readability we will omit reference to D and/or /D, when no confusion
arises.

Examples 125

Notice that every c.c.p.o. has a least element , since we can consider in particular
the empty chain: every element of D is (trivially) an upper bound to that chain,
and the existence of the l.u.b. implies then the existence of the least element of D,
which will be indicated by ⊥D.

A typical example of a c.c.p.o. is the set P(ω) of all subsets of ω, ordered by
inclusion, and with set-theoretical union as l.u.b.

We now introduce the appropriate notion of continuity.

Definition 6.3.7 If (D1,/D1) and (D2,/D2) are two c.c.p.o.’s, then a function
f : D1 → D2 is:

1. monotone if it preserves the order, i.e.

x /D1 y ⇒ f(x) /D2 f(y)

2. chain continuous if it is monotone and it preserves l.u.b.’s of countable
chains, i.e.

f(
D1⊔

n∈ω
xn) =

D2⊔

n∈ω
f(xn).

Notice that the monotonicity condition in the definition of chain continuity is
required to insure that the appropriate chains have l.u.b.’s,3 as follows. If

x0 /D1 x1 /D1 · · ·

is a chain in D1, then
⊔D1

n∈ω xn exists. If f is monotone,

f(x0) /D2 f(x1) /D2 · · ·

is still a chain in D2, and
⊔D2

n∈ω f(xn) exists, and then it makes sense to require
that

f(
D1⊔

n∈ω
xn) =

D2⊔

n∈ω
f(xn).

In general, chain continuity is stronger than monotonicity. For example, the
function

f(A) =
{

∅ if A is finite
ω otherwise

is monotone on P(ω). But it is not chain continuous because, if An = {0, 1, . . . , n},
then

⋃
n∈ω f(An) is ∅, while f(

⋃
n∈ω An) is ω.

On the other hand, on finite c.c.p.o.’s chain continuity coincides with mono-
tonicity: a monotone function always preserves l.u.b.’s of finite chains, and on a

3In other settings, continuity implies monotonicity: see e.g. 6.3.19.

126 E. Categories

finite c.c.p.o. every chain is finite. More generally, the same holds for c.c.p.o.’s
having no infinite ascending chain.

The next exercises show that the word continuity has the usual topological
meaning, in the sense that a function f : A → B on two topological spaces A and
B is continuous if, for every open subset X of B, f−1(X) = {x : f(x) ∈ X} is an
open subset of A.

Exercise 6.3.8 Order topology on a partial ordering. Recall from 5.3.8 that the
order topology on a partial ordering is defined by taking the upward closed sets as the
open sets.

The monotone functions on partial orderings are exactly the functions continuous

w.r.t. their order topologies.

Exercises 6.3.9 Scott topology on a c.c.p.o. (Day and Kelly [1970], Scott [1972])
A subset U of a c.c.p.o. is Scott open if it is upward closed, and inaccessible by l.u.b.’s
of chains. In other words, given any chain x0 $ x1 $ · · ·, if (

⊔
n∈ω xn) ∈ U then xn ∈ U ,

for some n (and hence, by upward closure, for all sufficiently large n).
The topology defined by the Scott open sets is called the Scott topology, and the

functions continuous w.r.t. it are called Scott continuous.
a) The Scott open sets on a c.c.p.o. form a topology . (Hint: unions and intersections

of upward closed sets are still upward closed. If (
⊔

n∈ω xn) ∈ U1 ∩ U2, then xn is in
U1 from a certain n1 on, and in U2 from a certain n2 on. Then xn is in U1 ∩ U2 from
max{n1, n2} on. If

⊔
n∈ω xn is in

⋃
i∈I

Ui, then it is in Ui for some i. Then xn is in Ui,

and hence in
⋃

i∈I
Ui, from a certain point on.)

b) The chain continuous functions on a c.c.p.o. are exactly the Scott continuous func-
tions. (Hint: to show monotonicity of a Scott continuous function f , given x and y
consider the Scott open set X = {z : z .$ f(y)}, and use the fact that f−1(X) is Scott
open, and hence upward closed, to show that if f(x) .$ f(y) then x .$ y. To show preserva-
tion of the l.u.b. of a chain {xn}n∈ω , consider the Scott open set X = {z : z .$

⊔
f(xn)},

and use the fact that f−1(X) is Scott open, and hence inaccessible by l.u.b.’s of chains,
to show that f(

⊔
xn) $

⊔
f(xn). The opposite direction follows from monotonicity.

To show Scott continuity of a chain continuous function f , consider a Scott open set
X. Upward closure of f−1(X) follows from upward closure of X, using the fact that f
is monotone. Inaccessibility by l.u.b.’s of chains of f−1(X) follows from inaccessibility of
X, using the fact that f preserves l.u.b.’s of chains.)

c) On P(ω) the Scott open sets are exactly the unions of families {X : X ⊇ u}, where

u is a finite set, and the Scott continuous functions are exactly the functions determined
by their behavior on finite sets, in the sense that f(X) =

⋃
u⊆X

f(u). (Hint: if U is Scott

open and X ∈ U , then X =
⋃

n∈ω un for a chain {un}n∈ω of finite sets. Then un ∈ U for
some n because U is inaccessible by l.u.b.’s of chains, and {X : X ⊇ un} ⊆ U because

U is upward closed. Conversely, any U =
⋃

i∈I
{X : X ⊇ ui} is obviously upward closed,

and if (
⋃

n∈ω Xn) ∈ U for some chain {Xn}n∈ω, then (
⋃

n∈ω Xn) ⊇ ui for some i, and
Xn ⊇ ui for some n.)

Definition 6.3.10 Ccpo is the categorical structure such that:

Examples 127

• ObCcpo is the class of all c.c.p.o.’s;

• for any pair of c.c.p.o.’s D1 and D2, HomCcpo(D1, D2) is the set of all chain
continuous functions from D1 to D2.

Before we turn to the proof that Ccpo is a cartesian closed category, we intro-
duce the natural candidates for products and exponentials.

Definition 6.3.11 If (D1,/D1) and (D2,/D2) are two c.c.p.o.’s,

(D1 × D2, (D1×D2)

is defined as follows:

〈x, y〉 ∈ D1 × D2 ⇔ x ∈ D1 and y ∈ D2

〈x, y〉 /D1×D2 〈x′, y′〉 ⇔ x /D1 x′ and y /D2 y′.

Proposition 6.3.12 If D1 and D2 are two c.c.p.o.’s, then so is D1 × D2.

Proof. Let
〈x0, y0〉 /D1×D2 〈x1, y1〉 /D1×D2 · · ·

be a chain of elements of D1 × D2. Then

D1×D2⊔

n∈ω
〈xn, yn〉 = 〈

D1⊔

n∈ω
xn,

D2⊔

n∈ω
yn〉

because /D1×D2 is defined componentwise, using /D1 and /D2 . !

To increase readability we will write f(x, y) for f(〈x, y〉), when no confusion
arises.

Given three c.c.p.o.’s Di (i = 1, 2, 3), a function

f : D1 × D2 → D3,

is (by definition) chain continuous on D1 × D2 if, whenever

〈x0, y0〉 /D1×D2 〈x1, y1〉 /D1×D2 · · · ,

then

f(
D1×D2⊔

n∈ω
〈xn, yn〉) =

D3⊔

n∈ω
f(xn, yn).

We say that f is chain continuous on D1 alone if, whenever

x0 /D1 x1 /D1 · · · ,

128 E. Categories

then

f(
D1⊔

n∈ω
xn, y) =

D3⊔

n∈ω
f(xn, y).

Similarly, we say that f is chain continuous on D2 alone if, whenever

y0 /D2 y1 /D2 · · · ,

then

f(x,
D2⊔

n∈ω
yn) =

D3⊔

n∈ω
f(x, yn).

We now prove that these notions of chain continuity are nicely related, in the
following sense.

Proposition 6.3.13 A function f is chain continuous on D1 × D2 if and only if
it is chain continuous on D1 and D2 separately.4

Proof. If f is chain continuous on D1 × D2 and

x0 /D1 x1 /D1 · · · ,

then
〈x0, y〉 /D1×D2 〈x1, y〉 /D1×D2 · · ·

by definition of /D1×D2 , and hence

f(
D1⊔

n∈ω
xn, y) = f(

D1×D2⊔

n∈ω
〈xn, y〉) =

D3⊔

n∈ω
f(xn, y)

by definition of
⊔D1×D2

n∈ω , and chain continuity of f on D1 × D2. Thus f is chain
continuous on D1. Similarly, f is chain continuous on D2.

Conversely, suppose f is chain continuous on D1 and D2 separately, and

〈x0, y0〉 /D1×D2 〈x1, y1〉 /D1×D2 · · · .

4Notice that this property fails for the usual notion of continuity on the real numbers. For
example, the function

f(x, y) =

{
xy

x2+y2 if x "= 0 or y "= 0

0 otherwise

is continuous at (0, 0) in both x and y separately, but not in (x, y) together (Peano [1884]). Indeed,
f(x, y) = 0 if exactly one of x and y is equal to 0, but f(x, y) = 1

2 for x = y and x, y "= 0.

Examples 129

Then

f(
D1×D2⊔

n∈ω
〈xn, yn〉) = f(

D1⊔

n∈ω
xn,

D2⊔

n∈ω
yn)

=
D3⊔

p∈ω
f(xp,

D2⊔

n∈ω
yn)

=
D3⊔

p∈ω

D3⊔

q∈ω
f(xp, yq)

=
D3⊔

n∈ω
f(xn, yn)

by definition of
⊔D1×D2

n∈ω , chain continuity of f on D1, chain continuity of f on D2,
and monotonicity of f , which implies

f(xp, yq) /D3 f(xn, yn)

for any n ≥ p, q. !

We can now turn to the other fundamental notion of cartesian closed categories.

Definition 6.3.14 If (D1,/D1) and (D2,/D2) are two c.c.p.o.’s,

([D1 → D2], ([D1→D2])

is defined as follows:

f ∈ [D1 → D2] ⇔ f is a chain continuous function from D1 to D2

f /[D1→D2] g ⇔ (∀x ∈ D1)(f(x) /D2 g(x)).

In other words, chain continuous functions from D1 to D2 are naturally ordered
by their graphs, pointwise.

Proposition 6.3.15 If D1 and D2 are two c.c.p.o.’s, then so is [D1 → D2].

Proof. Let
f0 /[D1→D2] f1 /[D1→D2] · · ·

be a chain of functions in [D1 → D2]. By definition, for every x ∈ D1,

f0(x) /D2 f1(x) /D2 · · · .

130 E. Categories

We can thus define the l.u.b. of {fn}n∈ω as the function
⊔[D1→D2]

n∈ω fn that behaves
as follows, for any x ∈ D1:

(
[D1→D2]⊔

n∈ω
fn)(x) =

D2⊔

n∈ω
fn(x).

Then:

1.
⊔[D1→D2]

n∈ω fn is a chain continuous function from D1 to D2

If x0 /D1 x1 /D1 · · ·, then

(
[D1→D2]⊔

n∈ω
fn)(

D1⊔

m∈ω
xm) =

D2⊔

n∈ω
(fn(

D1⊔

m∈ω
xm))

=
D2⊔

n∈ω
(

D2⊔

m∈ω
fn(xm))

=
D2⊔

m∈ω
(

D2⊔

n∈ω
fn(xm))

=
D2⊔

m∈ω
(
[D1→D2]⊔

n∈ω
fn)(xm)

by definition of l.u.b. in [D1 → D2], chain continuity of fn, commutativity
of l.u.b.’s (which can be proved as an exercise), and definition of l.u.b. in
[D1 → D2] again.

2.
⊔[D1→D2]

n∈ω fn is the l.u.b. of {fn}n∈ω in [D1 → D2]
⊔[D1→D2]

n∈ω fn is an upper bound by definition of /[D1→D2] because, for every
x ∈ D1,

fm(x) /D2

D2⊔

n∈ω
fn(x) = (

[D1→D2]⊔

n∈ω
fn)(x),

and so fm /[D1→D2] (
⊔[D1→D2]

n∈ω fn), for every m.

Suppose g is any other upper bound, i.e.

fn /[D1→D2] g,

for every n. Then
fn(x) /D2 g(x)

Examples 131

for every x ∈ D1, and

(
[D1→D2]⊔

n∈ω
fn)(x) =

D2⊔

n∈ω
fn(x) /D2 g(x)

by definition of /[D1→D2], and properties of l.u.b.’s. !

Notice that ⊥[D1→D2], which must exist because [D1 → D2] is a c.c.p.o., is the
constant function on D1 with value ⊥D2 .

We now have all the ingredients needed to prove the main result.

Proposition 6.3.16 Ccpo is a cartesian closed category.

Proof. Ccpo is a category: the identities are obviously chain continuous functions,
and composition is naturally defined as usual. We thus concentrate on showing that
Ccpo is cartesian closed.

• terminal object

We show that the c.c.p.o. {⊥} is terminal. If D is any c.c.p.o., then there
is exactly one function f : D → {⊥}, namely the constant function with
value ⊥ if D is nonempty, and the undefined function if D is empty. Such a
function is obviously chain continuous.

• products

Given two c.c.p.o.’s (D1,/1) and (D2,/2), we show that their categorical
product is (D1 × D2,/D1×D2).

We obviously define

lD1,D2(x, y) = x and rD1,D2(x, y) = y

and, given two functions f : D → D1 and g : D → D2,

〈f, g〉(z) = 〈f(z), g(z)〉.

These functions satisfy the properties required by the definition of product,
since they already do so in Set. It only remains to show that they are
morphisms of Ccpo, i.e. that they are chain continuous.

Chain continuity of the projections follows immediately from 6.3.13 and the
fact that both the identities and the constant functions are chain continuous.

For the chain continuity of 〈f, g〉, let f and g be chain continuous and

x0 /D x1 /D · · · .

132 E. Categories

Then:

〈f, g〉(
D⊔

n∈ω
xn) = 〈f(

D⊔

n∈ω
xn), g(

D⊔

n∈ω
xn)〉

= 〈
D1⊔

n∈ω
f(xn),

D2⊔

n∈ω
g(xn)〉

=
D1×D2⊔

n∈ω
〈f(xn), g(xn)〉

=
D1×D2⊔

n∈ω
〈f, g〉(xn)

by definition of 〈f, g〉, chain continuity of f and g, definition of l.u.b. in
D1 × D2, and definition of 〈f, g〉 again.

• exponentials

Given two c.c.p.o.’s (D1,/1) and (D2,/2), we show that their categorical
exponential is ([D1 → D2],/[D1→D2]).
We obviously define

evalD1,D2(f, x) = f(x)

and, given a function f : D × D1 → D2,

(curry f)(z) = the function x >→ f(z, x).

These functions satisfy the properties required by the definition of exponen-
tial, since they already do so in Set. It only remains to show that they are
morphisms of Ccpo, i.e. that they are chain continuous.
For eval , by 6.3.13 it is enough to show chain continuity in each variable
separately.

1. first variable

If
f0 /[D1→D2] f1 /[D1→D2] · · · ,

then, for any x ∈ D1,

evalD1,D2(
[D1→D2]⊔

n∈ω
fn, x) = (

[D1→D2]⊔

n∈ω
fn)(x)

=
D2⊔

n∈ω
fn(x)

Examples 133

=
D2⊔

n∈ω
evalD1,D2(fn, x)

by definition of evalD1,D2 , of
⊔[D1→D2]

n∈ω , and of evalD1,D2 again.
2. second variable

If
x0 /D1 x1 /D1 · · · ,

then, for any f ∈ [D1 → D2],

evalD1,D2(f,
D1⊔

n∈ω
xn) = f(

D1⊔

n∈ω
xn)

=
D2⊔

n∈ω
f(xn)

=
D2⊔

n∈ω
evalD1,D2(f, xn)

by definition of evalD1,D2 , chain continuity of f , and definition of evalD1,D2

again.

For curry, we need to show two things:

1. curry f is well-defined

This amounts to show that, for every z ∈ D, (curry f)(z) ∈ [D1 → D2],
i.e. that (curry f)(z) is a chain continuous function from D1 to D2, and
it follows from 6.3.13: since f is chain continuous as a function of two
variables, it is also chain continuous as a function of the second variable
separately (with z fixed).

2. curry f is chain continuous

If
z0 /D z1 /D · · · ,

then

(curry f)(
D⊔

n∈ω
zn) = the function x >→ f(

⊔D
n∈ω zn, x)

= the function x >→
⊔D

n∈ω f(zn, x)

=
[D1→D2]⊔

n∈ω
(functions x >→ f(zn, x))

134 E. Categories

=
[D1→D2]⊔

n∈ω
(curry f)(zn)

by definition of curry , chain continuity of f , definition of
⊔[D1→D2]

n∈ω , and
definition of curry again. !

Complete partial orderings

While Ccpo is a nice restriction of Set, we can do better by imposing further
closure conditions.

Definition 6.3.17 A partially ordered set (D,/D) is a complete partial or-
dering (c.p.o.) if every set of elements of D has a least upper bound in D.

Notice that a complete partial ordering is a complete lattice, since the l.u.b. is
automatically defined, and the g.l.b. is the l.u.b. of the lower bounds.

Obviously, every c.p.o. is a c.c.p.o. (in particular, it has a least element ⊥), but
not conversely. A counterexample is provided by the c.c.p.o. used in 6.3.26, which
is not a c.p.o. because the set {y, z} has no l.u.b. A typical example of a c.p.o. is
the set P(ω) already considered as an example of a c.c.p.o.

The notion of monotonicity obviously applies to c.p.o.’s. We now extend the
notion of chain continuity.

Definition 6.3.18 If D1 and D2 are two c.p.o.’s, a function f : D1 → D2 is
continuous if it preserves arbitrary l.u.b.’s, i.e. for any subset X of D1

f(
D1⊔

X) =
D2⊔

f(X),

where f(X) = {f(x) : x ∈ X}.

The reason we did not require monotonicity in the definition of continuity, as
for chain continuity in 6.3.7, is the following.

Proposition 6.3.19 A continuous function on a c.p.o. is monotone.

Proof. If f is continuous, then

x / y =⇒ y =
⊔

{x, y}

=⇒ f(y) =
⊔

{f(x), f(y)}
=⇒ f(x) / f(y). !

Examples 135

Obviously, the crucial fact in the previous proof is that l.u.b.’s always exist in
c.p.o.’s, and in particular they exist for the pair of elements f(x) and f(y). On
c.c.p.o.’s they would instead exist, in general, only if f(x) and f(y) form a chain,
which is the case if f is monotone. The previous argument thus fails for arbitrary
c.c.p.o.’s.

We can now introduce the announced restriction of Ccpo.

Definition 6.3.20 Cpo is the categorical structure such that:

• ObCpo is the class of all c.p.o.’s;

• for any pair of c.p.o.’s D1 and D2, HomCpo(D1, D2) is the set of all contin-
uous functions from D1 to D2.

We leave to the reader the verification that all properties proved in the present
subsection for c.c.p.o.’s and chain continuous functions continue to hold for c.p.o.’s
and continuous functions. In particular:

Proposition 6.3.21 Cpo is a cartesian closed category.

Exercises 6.3.22 Directed or bounded sets. The notions of c.c.p.o. and c.p.o. are
obtained by requiring the existence of l.u.b.’s for countable chains and arbitrary subsets,
respectively. Intermediate between these two extremes are other possibilies, in particular
requiring the existence of l.u.b.’s for:

• directed subsets X: for any pair of elements x1, x2 ∈ X there exists an element
y ∈ X such that x1, x2 $ y;

• bounded subsets X: there exists an element y such that, for every x ∈ X, x $ y
(i.e. X has an upper bound).

The notions of directed complete partial ordering (d.c.p.o.) and bounded com-
plete partial ordering (b.c.p.o.) are obtained by requiring the existence of l.u.b.’s for
all directed and all bounded subsets, respectively. The notions of directed continu-
ous function and bounded continuous function are defined as is 6.3.18, by requiring
monotonicity and preservation of l.u.b.’s of directed and bounded subsets, respectively.
The categorical structures Dcpo and Bcpo are obtained in the obvious way.

a) The following are all the implications among the notions of completeness introduced
so far:

c.p.o.

0
0

0
0

0
001

d.c.p.o. c.c.p.o.' '

b.c.p.o.

(Hint: for the positive part, it is enough to note that a chain is a directed set. For the
negative part: the set P of partial functions on ω ordered by their graphs is an example of

136 E. Categories

a d.c.p.o. that is not complete; the set ω1 of countable ordinals ordered by magnitude is
an example of a c.c.p.o. that is not directed complete; the set ω of finite ordinals ordered
by magnitude is an example of a b.c.p.o. that is not chain complete; and the following

a b

c
44444444

d
55555555

⊥
#

#
#

#

!
!

!
!

is an example of a d.c.p.o. that is not bounded complete.)
b) Dcpo and Bcpo are cartesian closed categories.

Algebraic partial orderings

Having defined an abstract notion of continuity for (chain) complete partial order-
ings, we now attempt a similar abstraction for the notion of finiteness. The starting
point is given by the following trivial but crucial property.

Proposition 6.3.23 On the c.c.p.o. P(ω) of the sets of natural numbers ordered
by inclusion, a set A is finite if and only if, whenever A ⊆

⋃
n∈ω Xn for a chain

X0 ⊆ X1 ⊆ · · · ,

then A ⊆ Xn for some n.

Proof. If A is finite, let {a0, . . . , am} be an enumeration of its elements. If

X0 ⊆ X1 ⊆ · · ·

and A ⊆
⋃

n∈ω Xn, for every i ≤ m there is ni such that ai ∈ Xni . Since the chain
is increasing, A ⊆ Xmax{n0,...,nm}.

If A is infinite, let {a0, a1, . . . } be an enumeration of its elements. Consider the
increasing chain of sets defined by

Xn = {a0, . . . , an}.

Then A =
⋃

n∈ω Xn, but A -⊆ Xn for any n, since Xn is finite and A is not. !

The characterization of finiteness just given is purely order theoretic, and it can
thus be extended to arbitrary c.c.p.o.’s.

Examples 137

Definition 6.3.24 In a c.c.p.o. an element a is called finite if, whenever a /⊔
xn for a chain x0 /D x1 /D · · ·, then a / xn for some n.
A c.c.p.o. is called algebraic if, for every element x, there is a chain of finite

elements x0 /D x1 /D · · · such that x =
⊔

xn. In other words, the finite elements
generate the c.c.p.o.

Exercises 6.3.25 a) The algebraic c.c.p.o.’s, with the chain continuous functions as mor-
phisms, form a category .

b) Every finite c.c.p.o. is algebraic.

c) If D1 and D2 are algebraic c.c.p.o.’s, then so is D1 ×D2. (Hint: the finite elements

of D1 × D2 are exactly the pairs of finite elements of D1 and D2.)

Despite the good news of the previous exercises, the next result shows that the
notion of algebraic c.c.p.o. is not adequate for our purposes.

Proposition 6.3.26 There is an algebraic c.c.p.o. D such that [D → D] is not
algebraic.

Proof. Let
D = {⊥, y, z, x0, . . . , xn, . . . }

with the ordering described by the next diagram:

x0

x1

...

y
!

!
!!

z
#

#
##

⊥
!

!
!!

#
#

##

D is obviously an algebraic c.c.p.o., because there is no infinite ascending chain.
Thus every element is finite.

138 E. Categories

To prove that [D → D] is not algebraic, we show that the identity function idD

is not the l.u.b. of the finite elements below it. Since, obviously, idD cannot be the
l.u.b. of functions with range contained in {⊥, y, z}, it will be enough to show that
no monotone function f such that f /[D→D] idD and with range not contained in
{⊥, y, z} is finite.

Let thus f /[D→D] idD, i.e. f(x) /D x for every x. In particular, f(y) /D y
and f(z) / z. Since the range of f is not contained in {⊥, y, z}, there is some n0

such that f(xn0) 3D y, z. Then, by monotonicity, f(xn) 3D y, z for all n ≥ n0.
We can thus define, for each n ≥ n0, functions fn as follows:

fn(x) =
{

f(x) if x = ⊥, y, z, x0, . . . , xn

the predecessor of f(x) w.r.t. /D otherwise.

Then:

• for any n ≥ n0, fn is chain continuous

It is obviously monotone, and since there is no infinite ascending chain in D,
this is equivalent to being chain continuous.

• for any n ≥ n0, fn / fn+1

For any x -= xn+1, fn(x) = fn+1(x). And for x = xn+1,

fn(xn+1) = the predecessor of f(xn+1) " f(xn+1) = fn+1(xn+1).

• f =
⊔

n≥n0
fn

For x = ⊥, y, z, fn(x) = f(x) for any n. For x = xm, fn(x) = f(x) for any
n ≥ m.

• for any n ≥ n0, f -/ fn

It is enough to show that, for some x, f(x) -/ fn(x). For x = xn+1,

f(xn+1) -/ fn(xn+1) = the predecessor of f(xn+1).

Thus f is not finite. !

The previous example used in a crucial way the existence of sets (actually, pairs)
of elements without l.u.b. Since the set D is not only a c.c.p.o. but also a d.c.p.o.
(because any directed set of elements contains some xn, and hence it has a l.u.b.),
we turn to the consideration of c.p.o.’s.5

The starting point is again given by a simple fact on sets of natural numbers.
5Although the notions of directed or bounded completeness are not enough individually, their

combination (directed and bounded completeness) would be.

Examples 139

Proposition 6.3.27 On the c.p.o. P(ω) a nonempty set A is a singleton if and
only if, whenever A ⊆

⋃
X for a set X ⊆ P(ω), then A ⊆ X for some X ∈ X .

Proof. If A is a singleton {a} and A ⊆
⋃
X , then a ∈

⋃
X . By definition of union,

a ∈ X for some X ∈ X , i.e. A ⊆ X .
If A is not a singleton, consider the family

X = {{a} : a ∈ A}.

Then A ⊆
⋃
X . But A -⊆ {a} for any a ∈ A, since A is not a singleton. !

The characterization just given of being a singleton, which is a strong version
of finiteness, is again purely order theoretic, and can thus be extended to arbitrary
c.p.o.’s.

Definition 6.3.28 In a c.p.o. an element a is called strongly finite if, whenever
a /

⊔
X for a subset X, then a / x for some x ∈ X.

A c.p.o. is called algebraic if every element x is the l.u.b. of the strongly finite
elements below it, i.e.

x =
⊔

{a : a / x and a strongly finite}.

Definition 6.3.29 Alg is the categorical structure such that:

• ObAlg is the class of all algebraic c.p.o.’s;

• for any pair of algebraic c.c.p.o.’s D1 and D2, HomAlg(D1, D2) is the set of
all continuous functions from D1 to D2.

Proposition 6.3.30 Alg is a cartesian closed category.

Proof. Since Cpo is a cartesian closed category, it is enough to show that Alg is
closed with respect to the appropriate operations.

• terminal object

The c.p.o. {⊥}, which is the terminal object in Cpo, is algebraic because it
is finite.

• products

That D1 × D2 is an algebraic c.p.o. if D1 and D2 are, follows from the fact
that the strongly finite elements of D1 ×D2 are exactly the pairs of storngly
finite elements of D1 and D2.
Let a and b be strongly finite in D1 and D2, and 〈a, b〉 /D1×D2

⊔
X . If

X1 = {x1 : 〈x1, x2〉 ∈ X} and X2 = {x2 : 〈x1, x2〉 ∈ X},

140 E. Categories

then a /D1

⊔
X1 and b /D2

⊔
X2. By strong finiteness, a / x1 and b / x2

for some x1 ∈ X1 and x2 ∈ X2, i.e. 〈a, b〉 / 〈x1, x2〉 ∈ X .
Let now 〈a, b〉 be strongly finite in D1 ×D2. To show that a is strongly finite
in D1, let a /

⊔
X1. Then 〈a, b〉 /

⊔
(X1 × {b}), and by strong finiteness

〈a, b〉 / 〈x1, b〉 for some x1 ∈ X1, i.e. a / x1. Similarly, b is strongly finite in
D2.

• exponentials

We prove that [D1 → D2] is an algebraic c.p.o., if D1 and D2 are. For any
pair of elements a of D1 and b of D2, consider the following step function:

fab(x) =
{

b if a / x
⊥D2 otherwise.

We first note the following:

– fab is continuous, i.e. it belongs to [D1 → D2]
Given any set X , we consider two exhaustive cases.
If a /

⊔
X , then f(

⊔
X) = b by definition. Moreover, by strong finite-

ness, a / x for some x ∈ X , and hence also
⊔

f(X) = b.
If a -/

⊔
X , then f(

⊔
X) = ⊥ by definition. Moreover, for every x ∈ X

it must also be a -/ x, and thus
⊔

f(X) = ⊥.
In both cases, then, f(

⊔
X) =

⊔
f(X).

– if a is strongly finite in D1 and b is strongly finite in D2, then fab is
strongly finite in [D1 → D2]
Given any set F of continuous functions, suppose fab /[D1→D2]

⊔
F .

We want to find f ∈ F such that fab /[D1→D2] f , i.e. fab(x) /D2 f(x)
for every x ∈ D1. By definition of fab, it is enough to find f ∈ F such
that b /D2 f(x), for every x ∈ D1 such that a / x. But

b = fab(a) /D2 (
[D1→D2]⊔

F)(a) =
D2⊔

{f(a) : f ∈ F}.

Since b is strongly finite, there is f ∈ F such that b /D2 f(a). Moreover,
if a / x, then f(a) / f(x) because f is monotone, and hence b / f(x)
for all such x.

To prove that [D1 → D2] is algebraic it is now enough to show that, for every
continuous f : D1 → D2,

f =
[D1→D2]⊔

{fab : fab /[D1→D2] f ∧ fab is strongly finite}.

Examples 141

Actually, we prove that

f =
[D1→D2]⊔

{fab : b / f(a) ∧ fab is strongly finite}.

– (
⊔
{fab : b / f(a) ∧ fab is strongly finite}) / f

Suppose b / f(a). There are two cases.
If a / x, then fab(x) = b / f(a) / f(x) by monotonicity of f .
If a -/ x, then fab(x) = ⊥ / f(x).
Thus fab / f .

– f /
⊔
{fab : b / f(a) ∧ fab is strongly finite}

Given any x, consider all strongly finite elements a / x. Since D1 is
algebraic, x is the l.u.b. of such a’s. Since f is continuous, f(x) is the
l.u.b. of the f(a)’s for such a’s. Since D2 is algebraic, each such f(a) is
the l.u.b. of all strongly finite elements b / f(a).
Thus f(x) is the l.u.b. of all strongly finite b’s such that b / f(a), for
some strongly finite a such that a / x. Hence, f(x) is the l.u.b. of all
fab(x), for all strongly finite fab such that b / f(a). !

Exercise 6.3.31 Given an algebraic c.p.o. D1 and a c.p.o. D2, a function f : D1 → D2

is continuous if and only it is determined by its behavior on the strongly finite elements,
in the sense that

f(x) =
⊔

{f(a) : a $ x ∧ a strongly finite}.

(Hint: one direction is immediate by continuity. Conversely, if a function is determined
by its behavior on the strongly finite elements, then it is obviously monotone, and hence⊔

f(X) $ f(
⊔

X). Conversely, if a is strongly finite and a $
⊔

X, then a $ x for some
x ∈ X, and so

f(
⊔

X) =
⊔

{f(a) : a $
⊔

X ∧ a strongly finite}

$
⊔

{f(a) : a $ x ∧ a strongly finite ∧ x ∈ X}

=
⊔

{f(x) : x ∈ X}

=
⊔

f(X).

Thus f is continuous.)

Subcategories

representations (as for Heyting algebras)?
æ

142 E. Categories

Chapter 7

The Lawvere-Lambek
Isomorphism

Implicit in the proof of the Categorical Soundness Theorem there is an actual trans-
lation of proofs in Natural Deductions into categorical language. In this section
we show how to make this translation explicit, thus providing an isomorphism of
languages.

7.1 Equational Presentation of Cartesian Closed
Categories

In a way similar to what we did for Heyting !-algebras, we can present the theory
of cartesian closed categories in a purely equational way.

Proposition 7.1.1 Equational Presentation of Cartesian Closed Categories
(Lambek [1968], [1969], [1972]) A categorical structure

C = 〈Ob,Hom,×,⇒, 1〉

is cartesian closed if and only if there are morphisms

idA tA lA,B rA,B evalA,B

and functions
◦ 〈 〉C,A,B curryC,A,B

of the appropriate types, i.e. satisfying the following axioms:

• idA : A → A

143

144 B. Categories

• tA : A → 1

• lA,B : A × B → A

• rA,B : A × B → B

• evalA,B : (A ⇒ B) × A → B

and the following rules:

• f : A → B g : B → C
g ◦ f : A → C

• f : C → A g : C → B
〈f, g〉C,A,B : C → A × B

• f : C × A → B
curryC,A,B(f) : C → (A ⇒ B),

and such that the following equations hold:

1. f = tA, for all f : A → 1

2. lA,B ◦ 〈f, g〉C,A,B = f

3. rA,B ◦ 〈f, g〉C,A,B = g

4. 〈lA,B ◦ h, rA,B ◦ h〉C,A,B = h

5. evalA,B ◦ (curryC,A,B(f) × idA) = f

6. curryC,A,B(evalA,B ◦ (h × idA)) = h.

Proof. The conditions are obviously necessary. To show that they are sufficient,
we have to prove the following:

• 1 is the terminal object

Property 1 says that there is a unique morphism from A to 1.

• × is the categorical product

Properties 2 and 3 are the same as in the definition of product. It is thus
enough to show that 〈f, g〉 is the unique morphism h such that

f = lA,B ◦ h and g = rA,B ◦ h.

By property 4,
〈f, g〉 = 〈lA,B ◦ h, rA,B ◦ h〉 = h.

Natural Deduction and Categories 145

• ⇒ is the categorical exponential

Property 5 is the same as in the definition of exponential. It is thus enough
to show that curry (f) is the unique morphism h such that

f = eval ◦ (h × idA).

By property 6,

curry (f) = curry (eval ◦ (h × idA)) = h. !

7.2 Natural Deduction and Categories

We now examine more closely the inductive procedure in the proof of the Categor-
ical Soundness Theorem, that produces a morphism f : [[Γ]] → [[α]] associated to
any derivation Γ %N α.

The language of Category Theory

Since we are dealing here not with a specific category, but only with the general
language of category theory, we will not talk of interpreting formulas, but rather
of translating them.

Thus, instead of associating to a formula α an object [[α]], we will associate to
it a letter A in the language of category theory, and use the convention that Latin
letters are associated to corresponding Greek letters.

We will keep the correspondence between → and ∧ on the one hand, and ⇒
and × on the other. In particular, a proof of α from premises Γ = {γ1, . . . , γn}
will be translated into a morphism from C = C1 × · · ·× Cn to A.

Premises

The first part of the translation turns the assumptions of Natural Deduction into
identities. This can be done in two ways, depending on which presentation of
Natural Deduction we choose.

If we consider proof trees, then the axioms are simply formulas, and their
translations will be identity functions. In particular, a premise α is translated
as idA : A → A.

If we consider derivations instead, then the axioms take the form Γ %N α, where
Γ is a set of formulas containing α. The translation involves here two steps: first we
translate Γ as a cartesian product, and then we translate Γ %N α as a projection
from a product to one of its factors.

146 B. Categories

We have to argue first that the translation is possible, and then that it is well
defined. The projections

pn,i
A1,...,An

: A1 × · · ·× An → Ai

can be defined inductively, as follows:

p1,1
A1

= idA1

pn+1,1
A1,...,An+1

= lA1,A2×···×An+1

pn+1,i+1
A1,...,An+1

= pn,i
A2,...,An+1

◦ rA1,A2×···×An+1

where, obviously,

lA,B : A × B → A and rA,B : A × B → B.

These projections are well-defined because of 6.1.12.a and 6.1.12.b, asserting asso-
ciativity and commutativity of the cartesian product.

Notice that the case n = 1 reduces to the case of a single assumption, and it is
treated consistently with it, by using the appropriate identity function.

Introduction and elimination rules

The second part of the translation turns the introduction and elimination rules of
Natural Deduction into axioms and rules of cartesian closed categories.

We first look at conjunction, and translate the left-hand-side into the right-
hand-side:

Γ
D1

α

Γ
D2

β
α ∧ β

f1 : C → A f2 : C → B
〈f1, f2〉 : C → A × B

Γ
D

α ∧ β
α

f : C → A × B
lA,B ◦ f : C → A

Γ
D

α ∧ β
β

f : C → A × B
rA,B ◦ f : C → B.

Natural Deduction and Categories 147

We then look at implication, and translate the left-hand-side into the right-
hand-side:

Γ, [α](1)
D
β

α(1) → β
f : C × A → B

curry (f) : C → (A ⇒ B)

Γ
D1

α → β

Γ
D2

α
β

f1 : C → (A ⇒ B) f2 : C → A
evalA,B ◦ 〈f1, f2〉 : C → B.

An example

Before proceeding further, we give an example of how the previous translation is
already sufficient to code proofs in Natural Deduction into the categorical language.
By letting

Γ = {α → (β → γ),α → β,α},

we consider

Γ % α → (β → γ) Γ % α
Γ % β → γ

Γ % α → β Γ % α
Γ % β

α → (β → γ),α → β,α % γ
α → (β → γ),α → β % α → γ

α → (β → γ) % (α → β) → (α → γ)
% [α → (β → γ)] → [(α → β) → (α → γ)].

By letting
C = (A ⇒ (B ⇒ D)) × (A ⇒ B) × A,

this is translated into:

p3,1
C p3,3

C

eval ◦ 〈p3,1
C , p3,3

C 〉
p3,2

C p3,3
C

eval ◦ 〈p3,2
C , p3,3

C 〉
eval ◦ 〈eval ◦ 〈p3,1

C , p3,3
C 〉, eval ◦ 〈p3,2

C , p3,3
C 〉〉

curry (eval ◦ 〈eval ◦ 〈p3,1
C , p3,3

C 〉, eval ◦ 〈p3,2
C , p3,3

C 〉〉)
curry (curry (eval ◦ 〈eval ◦ 〈p3,1

C , p3,3
C 〉, eval ◦ 〈p3,2

C , p3,3
C 〉〉))

curry (curry (curry (eval ◦ 〈eval ◦ 〈p3,1
C , p3,3

C 〉, eval ◦ 〈p3,2
C , p3,3

C 〉〉))).

148 B. Categories

Normalization steps

The third part of the translation turns the normalization steps of Natural Deduction
into equations of cartesian closed categories.

There are two normalization rules for conjunction, according to whether the
left or right formula of a conjunction is eliminated.

The step

from

Γ
D1

α

Γ
D2

β
α ∧ β
α

f1 : C → A f2 : C → B
〈f1, f2〉 : C → A × B

lA,B ◦ 〈f1, f2〉 : C → A

to

Γ
D1

α
f1 : C → A

corresponds to equation 7.1.1.2:

lA,B ◦ 〈f1, f2〉 = f1.

Similarly, the step

from

Γ
D1

α

Γ
D2

β
α ∧ β
β

f1 : C → A f2 : C → B
〈f1, f2〉 : C → A × B

rA,B ◦ 〈f1, f2〉 : C → B

to

Γ
D2

β
f2 : C → B

corresponds to equation 7.1.1.3:

rA,B ◦ 〈f1, f2〉 = f2.

Natural Deduction and Categories 149

Finally, the step

from

Γ, [α](1)
D1

β
α(1) → β

Γ
D2

α
β

f1 : C × A → B
curry (f1) : C → (A ⇒ B) f2 : C → A

eval ◦ 〈curry (f1), f2〉 : C → B

to

Γ,

Γ
D2

α
D1

β

f1 ◦ 〈idC , f2〉 : C → B

corresponds to the following equation:

eval ◦ 〈curry (f1), f2〉 = f1 ◦ 〈idC , f2〉.

Since this equation is not exactly 7.1.1.5, we now show that it actually follows
from it.

Proposition 7.2.1 The equation

eval ◦ 〈curry (f), g〉 = f ◦ 〈id, g〉

is a consequence of 7.1.1.5.

Proof. It is enough to notice that

eval ◦ 〈curry (f), g〉
= eval ◦ (curry (f) × id) ◦ 〈id, g〉
= f ◦ 〈id, g〉

by 6.1.15.d and 7.1.1.5. !

Equation 7.1.1.5
eval ◦ (curry (f) × idA) = f

150 B. Categories

corresponds not to the general normalization step, but to the following special case
of it:

from

Γ, [α](1)
D
β

α(1) → β α
β

f : C × A → B
curry (f) : C → (A ⇒ B) idA : A → A

eval ◦ (curry (f) × idA) : C × A → B

to

Γ,α
D
β

f : C × A → B.

Notice how, since here the two first subderivations do not have the same sets of
premises, we are forced to use the operation f×g in place of 〈f, g〉. The same would
hold in general, if our presentation of Natural Deduction allowed different sets of
premises in the rules. For example, the ∧-introduction rule would then become

Γ1

D1

α

Γ2

D2

β
α ∧ β

f1 : C1 → A f2 : C2 → B
f1 × f2 : C1 × C2 → A × B.

Similarly for the →-introduction rule, and the two normalization rules.

Symmetric normalization steps

At this point we have translated all axioms and rules of Natural Deduction in the
categorical language, but we have left out the crucial equations 7.1.1.4 and 7.1.1.6,
which were introduced to ensure uniqueness of products and exponentials.

As the previous ones, these equations too corresponds to normalization steps
in natural deduction, symmetric to the ones considered so far. They get rid not
of introductions followed by eliminations , but rather of eliminations followed by
introductions .

Natural Deduction and Categories 151

The symmetric normalization step for conjuction:

from

Γ
D

α ∧ β
α

Γ
D

α ∧ β
β

α ∧ β

h : C → A × B
lA,B ◦ h : C → A

h : C → A × B
rA,B ◦ h : C → B

〈lA,B ◦ h, rA,B ◦ h〉 : C → A × B

to

Γ
D

α ∧ β
h : C → A × B,

corresponds to equation 7.1.1.4:

〈lA,B ◦ h, rA,B ◦ h〉 = h.

The symmetric normalization step for implication:

from

Γ
D

α → β [α](1)
β

α(1) → β

h : C → (A ⇒ B) idA : A → A
eval ◦ (h × idA) : C × A → B

curry(eval ◦ (h × idA)) : C → (A ⇒ B)

to

Γ
D

α → β
h : C → (A ⇒ B),

corresponds to equation 7.1.1.6:

curry(eval ◦ (h × idA)) = h.

The isomorphism

We can now finally state the result we have proved.

152 B. Categories

Theorem 7.2.2 The Lawvere-Lambek Isomorphism (Mann [1975], Seely
[1977], [1983]) There is an isomorphism between:

• the intuitionistic proof theory of implication and conjunction, with the Nat-
ural Deduction rules of introduction, elimination, normalization and inverse
normalization;

• the equational theory of cartesian closed categories.

7.3 Functional Completeness

The isomorphism between Natural Deduction and Cartesian Closed Categories
immediately raises the question of the relationship of the latter with other formu-
lations of logic, in particular Hilbert systems.

Theorem 7.3.1 Functional Completeness (Lambek [1972], [1974]) For ev-
ery indeterminate x : 1 → A and polynomial ϕ(x) : 1 → C over a cartesian closed
category, it is possible to factor x out of ϕ(x). More precisely, there are unique
morphisms

g : A → C such that ϕ(x) = g ◦ x
h : 1 → (A ⇒ C) such that ϕ(x) = eval ◦ 〈h, x〉.

Proof. First we notice that it is enough to show that there exists a unique poly-
nomial ϕ∗ : A × 1 → C not containing x, and such that

ϕ(x) = ϕ∗ ◦ 〈x, id1〉,

where
1 A × 1 C.'〈x,id1〉 'ϕ∗

From ϕ∗ we can easily obtain the following:

• definition of g

By the properties of 1, the identity function id1 can be decomposed as follows:

1 A 1.'x 'tA

Then

ϕ(x) = ϕ∗ ◦ 〈x, id1〉
= ϕ∗ ◦ 〈x, tA ◦ x〉
= ϕ∗ ◦ 〈idA, tA〉 ◦ x

by 6.1.12.d, and it is enough to let

g = ϕ∗ ◦ 〈idA, tA〉.

Functional Completeness 153

• definition of h

Having now
1 × A A C,'r1,A 'g

we get
1 A ⇒ C.'curry (g◦r1,A)

By letting
h = curry (g ◦ r1,A),

we have

eval ◦ 〈h, x〉 = eval ◦ (h × id) ◦ 〈id, x〉
= eval ◦ (curry (g ◦ r1,A) × id) ◦ 〈id, x〉
= g ◦ r1,A ◦ 〈id, x〉
= g ◦ x

= ϕ(x)

by 6.1.15.d.

We thus concentrate on the definition of ϕ∗, by induction on its construction. To
make the induction possible we need to prove a slightly more general fact, namely:
for every indeterminate x : 1 → A and polynomial ϕ(x) : B → C over a cartesian
closed category, there is a unique polynomial ϕ∗ : A × B → C not containing x,
and such that

ϕ(x) = ϕ∗ ◦ 〈x ◦ tB, idB〉,
where

B A × B C.'〈x◦tB ,idB〉 'ϕ∗

The proof procedes in a number of steps.

1. definition of ϕ∗

By induction on the construction of ϕ(x), we let:

ϕ∗ =

ϕ(x) ◦ rA,B if ϕ(x) does not contain x
lA,1 if ϕ(x) = x
ϕ∗

1 ◦ 〈lA,B,ϕ∗
2〉 if ϕ(x) = ϕ1(x) ◦ ϕ2(x)

〈ϕ∗
1,ϕ

∗
2〉 if ϕ(x) = 〈ϕ1(x),ϕ2(x)〉

curry (ϕ∗
1 ◦ aA,B,C1) if ϕ(x) = curry ϕ1(x),

where
aA,B,C1 : (A × B) × C1 −→ A × (B × C1)

is the obvious isomorphism given by associativity of product (see 6.1.12.b).
We first check that the definition makes sense, i.e. that ϕ∗ : A × B → C.

154 B. Categories

• If ϕ(x) does not contain x, then

A × B B C.'rA,B 'ϕ(x)

• If ϕ(x) = x, then
A × 1 A.'lA,1

• If ϕ(x) = ϕ1(x) ◦ ϕ2(x) and

B D C,'ϕ2(x) 'ϕ1(x)

then

A × B D and A × D C'ϕ∗
2 'ϕ∗

1

by the induction hypothesis. So

A × B A × D C.'〈lA,B ,ϕ∗
2〉 'ϕ∗

1

• If ϕ(x) = 〈ϕ1(x),ϕ2(x)〉 and

B C1 and B C2,'ϕ1(x) 'ϕ2(x)

then

A × B C1 and A × B C2
'ϕ∗

1 'ϕ∗
2

by the induction hypothesis. So

A × B C1 × C2.'〈ϕ∗
1 ,ϕ∗

2〉

• If ϕ(x) = curry ϕ1(x) and

B × C1 C2,'ϕ1(x)

then

(A × B) × C1 A × (B × C1) C2
'aA,B,C1 'ϕ∗

1

by the induction hypothesis. So

A × B C1 ⇒ C2.'curry (ϕ∗
1◦aA,B,C1)

Functional Completeness 155

2. existence of ϕ∗

We now check that ϕ∗ defined above does indeed satisfy

ϕ(x) = ϕ∗ ◦ 〈x ◦ tB, idB〉.

• If ϕ(x) does not contain x, then

ϕ∗ ◦ 〈x ◦ tB , idB〉 = ϕ(x) ◦ rA,B ◦ 〈x ◦ tB, idB〉
= ϕ(x) ◦ idB

= ϕ(x).

• If ϕ(x) = x, then

ϕ∗ ◦ 〈x ◦ tB, idB〉 = lA,1 ◦ 〈x ◦ tB, idB〉
= x ◦ tB
= x ◦ id1

= x,

where tB = id1 because B = 1, and both t1 and id1 are morphisms from
1 to 1 (by 7.1.1.1, there can be only one such morphism).

• If ϕ(x) = ϕ1(x) ◦ ϕ2(x), then

ϕ∗ ◦ 〈x ◦ tB, idB〉 = ϕ∗
1 ◦ 〈lA,B,ϕ∗

2〉 ◦ 〈x ◦ tB, idB〉
= ϕ∗

1 ◦ 〈lA,B ◦ 〈x ◦ tB, idB〉,ϕ∗
2 ◦ 〈x ◦ tB, idB〉〉

= ϕ∗
1 ◦ 〈x ◦ tB,ϕ2(x)〉

= ϕ∗
1 ◦ 〈x ◦ tD ◦ ϕ2(x),ϕ2(x)〉

= ϕ∗
1 ◦ 〈x ◦ tD, idD〉 ◦ ϕ2(x)

= ϕ1(x) ◦ ϕ2(x)
= ϕ(x),

where everything follows by 6.1.12.d, 7.1.1.2, one induction hypothesis,
the fact that tB = tD ◦ ϕ2(x) because both are morphisms from B to 1,
6.1.12.d again, and the other induction hypothesis.

• If ϕ(x) = 〈ϕ1(x),ϕ2(x)〉, then

ϕ∗ ◦ 〈x ◦ tB, idB〉 = 〈ϕ∗
1,ϕ

∗
2〉 ◦ 〈x ◦ tB, idB〉

= 〈ϕ∗
1 ◦ 〈x ◦ tB, idB〉,ϕ∗

2 ◦ 〈x ◦ tB, idB〉〉
= 〈ϕ1(x),ϕ2(x)〉
= ϕ(x),

where everything follows by 6.1.12.d, and induction hypotheses.

156 B. Categories

• If ϕ(x) = curry ϕ1(x), then

ϕ∗ ◦ 〈x ◦ tB, idB〉
= curry (ϕ∗

1 ◦ aA,B,C1) ◦ 〈x ◦ tB, idB〉
= curry (ϕ∗

1 ◦ aA,B,C1 ◦ (〈x ◦ tB, idB〉 × idC1))
= curry (ϕ∗

1 ◦ aA,B,C1 ◦ (〈〈x ◦ tB, idB〉 ◦ lB,C1 , rB,C1〉))
= curry (ϕ∗

1 ◦ aA,B,C1 ◦ (〈〈x ◦ tB ◦ lB,C1, lB,C1〉, rB,C1〉))
= curry (ϕ∗

1 ◦ 〈x ◦ tB ◦ lB,C1 , 〈lB,C1 , rB,C1〉〉))
= curry (ϕ∗

1 ◦ 〈x ◦ tB ◦ lB,C1 , idB×C1〉)
= curry (ϕ∗

1 ◦ 〈x ◦ tB×C1 , idB×C1〉)
= curry (ϕ1(x))
= ϕ(x),

where everything follows by 6.1.20.a, definition of ×, 6.1.12.d, definition
of a (i.e. associativity of product), 6.1.12.e, the fact that tB ◦ lB,C1 =
tB×C1 because both are morphisms from B × C1 to 1, and induction
hypothesis.

3. uniqueness of ϕ∗

We now show that if ψ is any polynomial not containing x and such that

ϕ(x) = ψ ◦ 〈x ◦ tB, idB〉,

then ψ = ϕ∗.
We first note that, by repeated applications of the clauses of the definition of
ϕ∗ indicated on the right:

(ψ ◦ 〈x ◦ tB , idB〉)∗
= ψ∗ ◦ 〈lA,B, 〈x ◦ tB, idB〉∗〉 composition
= ψ ◦ rA,B ◦ 〈lA,B, 〈x ◦ tB , idB〉∗〉 f (not containing x)
= ψ ◦ 〈x ◦ tB, idB〉∗
= ψ ◦ 〈(x ◦ tB)∗, id∗B〉 〈 〉
= ψ ◦ 〈x∗ ◦ 〈lA,B, t∗B〉, id∗B〉 composition
= ψ ◦ 〈lA,1 ◦ 〈lA,B, t∗B〉, id∗B〉 x
= ψ ◦ 〈lA,B, id∗B〉
= ψ ◦ 〈lA,B, idB ◦ rA,B〉 idB (not containing x)
= ψ ◦ 〈lA,B, rA,B〉
= ψ ◦ idA×B by 6.1.15.a
= ψ.

This would show uniqueness, if we could claim at the beginning that

ϕ∗ = (ψ ◦ 〈x ◦ tB, idB〉)∗.

Functional Completeness 157

Since we only supposed

ϕ(x) = ψ ◦ 〈x ◦ tB, idB〉,

we still need to prove that the ∗ operation preserves equality.

4. preservation of equality

We proceed by induction on the definition of =, i.e. on the six clauses of 7.1.1,
by repeated applications of the definition of ∗.

• f = tA, for all f : A → 1

Since f∗ = f ◦ rA,B and t∗A = tA ◦ rA,B are both morphisms from A×B
to 1, they must be equal by 7.1.1.1.

• lA,B ◦ 〈f, g〉 = f

(lA,B ◦ 〈f, g〉)∗
= l∗A,B ◦ 〈l, 〈f, g〉∗〉
= lA,B ◦ r ◦ 〈l, 〈f, g〉∗〉
= lA,B ◦ 〈f, g〉∗ by 7.1.1.3
= lA,B ◦ 〈f∗, g∗〉
= f∗ by 7.1.1.2.

• rA,B ◦ 〈f, g〉 = g

Similarly to the previous one.

• 〈lA,B ◦ h, rA,B ◦ h〉 = h

〈lA,B ◦ h, rA,B ◦ h〉∗
= 〈(lA,B ◦ h)∗, (rA,B ◦ h)∗〉
= 〈l∗A,B ◦ 〈l, h∗〉, r∗A,B ◦ 〈l, h∗〉〉
= 〈lA,B ◦ r ◦ 〈l, h∗〉, rA,B ◦ r ◦ 〈l, h∗〉〉
= 〈l∗A,B ◦ h∗, r∗A,B ◦ h∗〉 by 7.1.1.3
= h∗ by 7.1.1.4.

• evalA,B ◦ (curry (f) × idA) = f

158 B. Categories

(evalA,B ◦ (curry (f) × idA))∗
= eval∗A,B ◦ 〈l, (curry (f) × idA)∗〉
= evalA,B ◦ r ◦ 〈l, (curry (f) × idA)∗〉
= evalA,B ◦ (curry (f) × idA)∗ by 7.1.1.3
= evalA,B ◦ 〈curry (f) ◦ l, r〉∗ by definition of ×
= evalA,B ◦ 〈(curry (f) ◦ l)∗, r∗〉
= evalA,B ◦ 〈(curry f)∗ ◦ 〈l, l∗〉, r∗〉
= evalA,B ◦ 〈curry (f∗ ◦ a) ◦ 〈l, l∗〉, r∗〉
= evalA,B ◦ (curry (f∗ ◦ a) × id) ◦ 〈〈l, l∗〉, r∗〉 by 6.1.15.c
= f∗ ◦ a ◦ 〈〈l, l∗〉, r∗〉 by 7.1.1.5
= f∗ ◦ 〈l, 〈l∗, r∗〉〉 by definition of a
= f∗ ◦ 〈l, 〈l, r〉∗〉
= f∗ ◦ 〈l, id∗〉 by 6.1.12.e
= f∗ ◦ 〈l, id ◦ r〉
= f∗ ◦ 〈l, r〉
= f∗ ◦ id by 6.1.12.e
= f∗.

• curry (evalA,B ◦ (h × id)) = h

curry∗(evalA,B ◦ (h × id))
= curry ([evalA,B ◦ (h × id)]∗ ◦ a)
= curry (eval∗A,B ◦ 〈l, (h × id)∗〉 ◦ a)
= curry (evalA,B ◦ r ◦ 〈l, (h × id)∗〉 ◦ a)
= curry (evalA,B ◦ (h × id)∗ ◦ a) by 7.1.1.3
= curry (evalA,B ◦ 〈h ◦ l, r〉∗ ◦ a) by definition of ×
= curry (evalA,B ◦ 〈(h ◦ l)∗, r∗〉 ◦ a)
= curry (evalA,B ◦ 〈(h∗ ◦ 〈l, l∗〉, r∗〉 ◦ a)
= curry (evalA,B ◦ (h∗ × id) ◦ 〈〈l, l∗〉, r∗〉 ◦ a) by 6.1.15.c
= curry (evalA,B ◦ (h∗ × id) ◦ 〈l, 〈l∗, r∗〉〉) by definition of a
= curry (evalA,B ◦ (h∗ × id) ◦ id) as above
= curry (evalA,B ◦ (h∗ × id))
= h∗ by 7.1.1.6. !

Exercise 7.3.2 Generalized Functional Completeness. For every indeterminate x :
D → A and polynomial ϕ(x) : D → C over a cartesian closed category, there is a unique
morphism g : A → C such that ϕ(x) = g ◦ x. (Hint: for every indeterminate x : D → A
and polynomial ϕ(x) : B → C, there is a unique polynomial ϕ∗ : (D ⇒ A) × B → C not
containing x such that

ϕ(x) = ϕ∗ ◦ 〈curry (x ◦ rB,D), idB〉,

Normalization 159

where

B (D ⇒ A) × B C.'〈curry (x◦rB,D),idB〉 'ϕ∗

The crucial difference with the case above is the definition of ϕ∗ for the atomic cases,
which is now:

ϕ∗ =

{
ϕ(x) ◦ rD⇒A,B if ϕ(x) does not contain x
evalA,B if ϕ(x) = x.)

7.4 Symmetric Normalization

The isomorphism proved above does not allow us to deduce normalization and the
Church-Rosser properties for the categorical equations, since we did not consider
the symmetric normalization rules in the proof of the Normalization Theorem. We
thus have to strengthen the result.

WARNING: church-rosser not yet discussed!
Characterization of models of typed lambda calculus as cartesian closed cate-

gories?
æ

160 B. Categories

Part C

Typed Lambda Calculus

161

Chapter 8

Syntax

In the previous chapters we have developed two substantially different but equiva-
lent formalisms, namely the Intuitionistic Implicational Calculus with Conjunction
and the theory of cartesian closed categories. We turn now to a third presentation
of the same topic in terms of the Typed Lambda Calculus, which is a theory of
functions with the following characteristics:

1. Functions are defined intensionally, by sets of rules that allow the computa-
tion of their values for given arguments.

2. Together with the definition of a function, a description is given of the type
of both arguments and values.

The intensional approach is in accord both with classical (pre-Dirichlet) math-
ematical practice, as well as with the current needs of Computer Science, whose
programs are intensional. But it is opposed to the modern, set-theoretical math-
ematical practice that defines a function f extensionally by means of its graph,
i.e.

Gf = {(x, y) : f(x) = y}.

The specification of types for arguments and values is a logical consequence of
the shift from the extensional back to the intensional approach, since in the former
the graph automatically describes all possible arguments and values, and hence it
implicitly defines domain and range, while in the latter an isolated rule defines in
general a class of functions, rather than a single one. For example, the rule

‘give as output the input itself’

computes the identity function on A, for any given set A.

163

164 C. Typed Lambda Calculus

8.1 Typed Lambda Terms

Instead of deriving the presentation of the Typed Lambda Calculus from the In-
tuitionistic Implicational Calculus, as we did for Heyting algebras and cartesian
closed categories, we develop it independently in a parallel way. At the cost of
some repetition, this provides an autonomous treatment that can be read indepen-
dently of the previous chapters.

Types

Intuitively, a type is a set that can serve as the domain or the range of a function.
Atomic types represent atomic domains and ranges, i.e. sets whose elements

are not further analyzed. As a first approximation to a theory of functions we
will consider only unspecified atomic types, and denote them by type letters . In
a second approximation we can also consider specific atomic types, representing
particular sets of interest, and denote them by type constants , for example Nat
for the natural numbers, Real for the real numbers, Bool for the Boolean algebra
of truth values (variously denoted by {0, 1}, {F, T } or {⊥,B}). The presence of
type constants distinguishes an applied theory of functions from a pure one.

Given types α and β, we can consider functions with arguments of type α and
values of type β. These functions are objects of a different type, denoted by α → β.

The language for the description of types consists of:

• type letters p, q, r, . . .

• parentheses ‘(’ and ‘)’

• the type constructor → (arrow).

Types are defined inductively as follows:

• type letters are types (atomic types)

• if α and β are types, so is (α → β).

To increase readability some parentheses can either be omitted, when no con-
fusion arises, or written differently, e.g. as ‘[’ and ‘]’. We will use lowercase Roman
letters such as p for atomic types, and lowercase Greek letters such as α for types.

Terms

The intuitive way of looking at terms in a given language is to see them as de-
scriptions of objects: more precisely, as proper names of individual objects, or as
generic names of objects in a given set. For example, in Arithmetic a polynomial
expression is a typical term, and it describes either a number (if it has no variables,

Typed Lambda Terms 165

as in 32 + 5 · 7) or a generic element in the range of an n-ary function (if it has n
distinct variables, for example two in x2 + 5 · y).

In the Typed Lambda Calculus we are concerned with names needed in a the-
ory of functions: names for the functions themselves, as well as names for their
arguments and values.

To define a (unary) function as a rule of computation, we follow the usual
mathematical practice: we exhibit a generic description of the value uβ of a given
type β, describing the range, depending on a generic description of the argument
xα of a given type α, describing the domain. A subtle ambiguity occurs here:
a description uβ in which xα occurs can be taken either as a description of the
value of a function for the generic argument xα, or as a description of the function
itself. It would be impossible to distinguish between the two uses, without a further
specification of what is meant. For example, if x is a variable ranging over natural
numbers, then 2x describes both a generic even number , and the function that
associates to any number its double. These ambiguities are not precisely what we
need in a rigorous theory, and some device is needed to distinguish between these
two uses. We choose to always use a term uβ to denote an object of type β. When
we want to write a name for the function

xα >−→ uβ

we will use the special symbol λ, and denote the function by

(λxα. uβ)α→β .

The subtle ambiguity has now been eliminated, but it is replaced by a subtle
distinction: when we consider uβ as the description of a value, an occurrence of xα

in it is seen as the description of a generic argument; but after we have named the
function a change in the status of xα has happened, since (λxα. uβ)α→β already
contains the information that xα is used as an argument. Technically, we say
that xα was (possibly) free in uβ and has become bound in (λxα. uβ)α→β . Only
free variables are really variables, in the sense of describing generic objects, while
bound variables are simply devices used to describe a function: they are used in a
description, but are not a description.1

We not only want to be able to define functions, but also to use them. This is
done by applying a function to an argument. Since a function uα→β has specified
domain and range, the argument should be the description of an object of the right
type. Thus (uα→βvα)β will be a description of an object in the range of uα→β , and
hence of type β.

1In current mathematics, where the λ-notation is not used, we often drop the variable in the
name of the value of a function to obtain the name of function itself, e.g. by stepping from ‘sin x’
to ‘sin’.

166 C. Typed Lambda Calculus

We now proceed to give a formal inductive definition of typed λ-terms and,
simultaneously, of their free and bound variables.

The language for the description of terms consists of:

• for any type α, variables xα, yα, . . .

• parentheses ‘(’ and ‘)’

• dot ‘.’

• the term constructor λ (lambda operator).

This language is enough for a first approximation to a theory of functions,
in which we consider only unspecified atomic terms, and denote them by term
variables . In a second approximation we can also consider specific atomic terms,
representing particular objects or functions of interest, and denote them by term
constants , for example an object 0 of atomic constant type Nat, or a function
Succ of type Nat → Nat. The presence of term constants distinguishes an applied
theory of functions from a pure one.

Definition 8.1.1 Typed λ-Terms (Church [1941]) Typed λ-terms are defined
inductively as follows.

1. Variables. A variable xα is a term of type α, and xα occurs free in it.

2. Functional Application. If uα→β and vα are terms of type α → β and α,
then (uα→βvα)β is a term of type β. An occurrence of a variable is free or
bound in it if it was so in uα→β or vα.

3. Functional Abstraction. If xα is a variable of type α and uβ is a term
of type β, then (λxα. uβ)α→β is a term of type α → β. An occurrence of a
variable is free or bound in it if it was so in uβ, with the exception of the free
occurrences of xα in uβ, which become bound.

Terms in which no variable occurs free are called closed.

We should stress the fact that it is not variables that are free or bound in a
term, but occurrences of them. In particular, a variable may occur both free and
bound in the same term. For example, in (λxα. xα)α→αxα the last occurrence of
xα is free, the first one is bound.

To increase readability some parentheses can either be omitted, when no con-
fusion arises, or written differently, e.g. as ‘[’ and ‘]’. Similarly for the explicit
indications of types. We will use the letters x, y, z, . . . for variables, and t, u, v,
. . . for terms.

Typed Lambda Terms 167

Functions of many variables

The λ-operator allows us to abstract only on a single variable, and thus to define
only unary functions (of one argument). But any self-respecting theory of functions
should be able to deal with functions of many arguments as well, since they often
arise in common practice.

The main observation here is that the presence of all type levels allows us to
replace functions of many variables by iterated unary functions . Even if at first
sight this may sound strange, it is used in familiar practice. For example, in the
classical inductive definition of the sum S of integers, due to Grassmann [1861]:

{
S(x, 0) = x
S(x, y + 1) = S(x, y) + 1.

This defines the binary function S(x, y) by induction on only one variable y, with
x appearing in the definition as a parameter. In other words, for any fixed x we
are actually defining the unary function

Sx : y >−→ S(x, y)

as follows: {
Sx(0) = x
Sx(y + 1) = Sx(y) + 1.

The definition of the binary function S is thus reduced to the definition of a family
{Sx}x∈N of unary functions. But a family of unary functions indexed by numbers
is simply a higher type function from numbers to unary functions. Thus the binary
function

(x, y) >−→ S(x, y)

from numbers to numbers is reduced to a unary function

x >−→ Sx or x >−→ (y >−→ S(x, y))

from numbers to unary functions, each of them from numbers to numbers.
Since in the Typed Lambda Calculus all type levels are available, we can play

the same trick and identify functions of many variables with successive applications
of unary functions, i.e. step from

(xα1
1 , xα2

2 , . . . , xαn
n) >−→ uβ

to
xα1

1 >−→ (xα2
2 >−→ · · · (xαn

n >−→ uβ) · · ·).
In our present notation, this corresponds to the following convention on multiple
λ-abstractions, that defines λ-abstraction on n-tuples of variables:

λxα1
1 · · ·xαn

n . uβ
def= λxα1

1 . (· · · (λxαn
n . uβ) · · ·),

168 C. Typed Lambda Calculus

where the right-hand-side has type

α1 → (· · · (αn → β) · · ·).

A complementary convention on multiple applications, consistent with the
previous one, allows us to consider the simultaneous application of a single term
tα1→(···(αn→β)···) to an n-tuple of terms with the appropriate types:

tα1→(···(αn→β)···)vα1
1 · · · vαn

n
def= (· · · (tv1) · · · vn),

where the right-hand-side has type β.
Since multiple abstractions are defined in terms of single abstractions, it makes

sense to apply a term defined by an n-ary abstraction to less than n arguments:
this only means that we perform less than n iterated applications.

Bound variables

As explained above, while a free occurence of a variable describes an object, al-
though a generic one, a bound occurrence of a variable is simply a device indicating
the argument of a function in the description of its generic value. It can thus be
thought of as a pointer to an empty place waiting to be filled up by an argument,
and the information it conveys should be independent of its name.

On the one hand, all variables of type α indicate a generic object of type α, and
in this respect they are interchangeable. For example, the description λxα. xα of the
identity function on objects of type α can be rephrased without any reference to xα

as ‘the function which associates any object of type α to itself’. In particular, the
same function would still be described by λyα. yα, where yα is any other variable
of type α.

On the other hand, there is a difference in considering two generic objects of
the same type, that need not be equal, and the same generic object twice. This is
reflected in the distinction between occurrences of different variables of the same
type, and different occurrences of the same variable. In other words, variables
are not completely interchangeable. For example, the description λxα. yα can be
rephrased as ‘the constant function that associates to any object of type α the
generic object yα’. This reformulation does not contain any reference to xα, but
it still refers to yα. In particular, the same function would still be described by
λzα. yα, but not by λyα. yα: the latter describes the identity function on objects
of type α, and not a constant function of unspecified value. The lesson of this
example can be rephrased in the following general credo, to be followed while
renaming bound variables:

whatever was free, should remain free.

Typed Lambda Terms 169

The previous example can be pushed a bit further, by quantifying over the
missing variable. If we consider λyα. (λxα. yα), then we are describing the one-
one function that to every object of type α associates the constant function with
that element as value. But λxα. (λxα. xα), in which the first bound variable has
been renamed, describes now the constant function that to every element of type
α associates the identity function. What happened is that yα was free in the
subterm λxα. yα, but has become bound after the renaming. Thus the credo has
to be interpreted in a strong form, as referring not only to global freedom in a
term, but also to local freedom in all subterms.

We can now formulate a rule for correct renaming of bound variables. In prac-
tice, the easiest way to fulfill the conditions is to rename bound variables by vari-
ables that do not occur at all in a given term, either free or bound.

Definition 8.1.2 α-Rule. In a given term we can change every bound occurrence
of a variable with occurrences of another variable of the same type, as long as no
free occurrence of any variable in any subterm of the original term becomes bound
in that subterm after the change.

The α-rule will be tacitly applied when needed, and we will not keep track of it.
In other words, we will identify terms that can be obtained one from the other by
correct applications of the α-rule, and consider them as inessential variations one
of the others. Technically, this means that we are really considering as terms the
equivalence classes of our original terms, under the equivalence relation induced by
the α-rule.

Reductions

In Arithmetic, a polynomial expression can be evaluated at a given argument x, by
plugging in some number for the variable. For example, x2 +5 ·x can be evaluated
at 3, with the result 32 + 5 · 3. More generally, we could evaluate the original
polynomial expression at an argument that is still itself a polynomial expression,
e.g. at y3, thus getting (y3)2 + 5 · y3. Formally, these evaluation steps consist in
the substitution of a description of a number for a variable.

The following rule allows us to do the same for the abstract terms introduced
above. Intuitively it says that, since λxα. uβ denotes the function whose generic
value is described by uβ (in terms of the generic description xα of the variable), a
description of the value of the function for a particular argument vα can be obtained
from the generic description of the value, by substituting the description vα of a
specific argument for the generic description of the argument (i.e., the variable xα).

Definition 8.1.3 β-Rule. Given terms uβ and vα, we can step from (λxα. uβ)α→βvα

(called a redex) to uβ [xα := vα] (called a reduct2), where the latter is the result
2Some authors call it a contractum.

170 C. Typed Lambda Calculus

of the substitution of vα for the free occurrences of xα in uβ. We write

(λxα. uβ)vα −→1β uβ[xα := vα]

to state that one step of the β-rule has been applied to the left-hand-side to produce
the right-hand-side.

Formally, uβ [xα := vα] is defined by induction on uβ, as follows:

uβ [xα := vα] =

vα if uβ = xα

uβ if uβ = yβ -= xα

(uγ→β
1 [xα := vα])(uγ2 [xα := vα]) if uβ = uγ→β

1 uγ2
λyγ . (uδ1[xα := vα]) if uβ = λyγ . uδ1,

where in the last clause we tacitly use the α-rule to ensure that the bound variable
is not xα itself. Notice that, by induction, uβ[xα := vα] has still type β.

The α-rule can be expressed, in terms of substitution, as follows (with the
appropriate restrictions on yα):

λxα. uβ = λyα. (uβ [xα := yα]).

Normal forms

Particularly simple polynomial expressions are the ones in normal form, i.e. the
ones inside which no arithmetical reduction (using the definitions of sum and prod-
uct) is possible:3 in particular, the ones without variables are simply the decimal
representations of numbers. The following well-known arithmetical fact is the fun-
damental computational property of simplification that will concern us here: given
a polynomial expression, any sequence of reductions will eventually produce one in
normal form, which depends on the original expression but is independent of the
chosen sequence of reductions. The independence is useful in practice: for example,
in a polynomial expression of the form p1 · p2 such that one of p1 and p2 reduces
to 0, there is an advantage in reducing it first, since then the whole expression
would reduce to 0 in one more step. This requires freedom of choice in the re-
duction steps, and it would not be possible if we only knew that a fixed reduction
procedure produces the normal form.

Sections 3 and 4 are devoted to showing that similar results hold for the Typed
Lambda Calculus as well, in the following sense. A λ-term is said to be in β-
normal form if no application of the β-rule is possible inside it, i.e. the term

3This obviously requires seeing the definitions of both sum and product as expressing not
equalities, but reductions rules. For example,

(x + y) + 1 = x + (y + 1)

should be read as a reduction rule of the left-hand-side to the right-hand-side, but not conversely.

Typed Lambda Terms 171

does not contain any redex. Then, given a λ-term, any sequence of applications
of the β-rule to it will eventually produce a term in β-normal form (Strong β-
Normalization Theorem, 8.3.2 or 8.3.8), that depends on the original term but
is independent of the chosen sequence of β-reductions (Uniqueness of β-Normal
Forms, 8.4.5 or 8.5.7).

The expression ‘to apply the β-rule inside a term’ should be intuitively clear.
Formally, we need to extend the β-rule (as defined in 8.1.3) to allow for its appli-
cation not only to a term that is a redex, but also to any term that contains a
redex. For example, we should be allowed to step from

λyγ . [(λxα→β . xα→β)uα→β]vα

to
λyγ . uα→βvα.

The simplest way of doing this is by introducing rules that allow the reconstruction
of a term from a reduct, in the same way the original term was constructed from
a redex. Formally, we inductively extend the meaning of −→1β as follows:

Definition 8.1.4 One-Step β-Reducibility. The reducibility −→1β is defined
inductively by the following clauses:

(λxα. uβ)vα −→1β uβ[xα := vα] (8.1)

uα→β
1 −→1β uα→β

2

uα→β
1 vα −→1β uα→β

2 vα
(8.2)

vα1 −→1β vα2
uα→βvα1 −→1β uα→βvα2

(8.3)

uβ1 −→1β uβ2
λxα. uβ1 −→1β λxα. uβ2 ,

(8.4)

where the first clause (i.e. the β-rule) can be thought of as an axiom, and the
remaining ones as deduction rules.

Now the previous example can be dealt with by successively applying rules 1,
2 and 4, as follows:

(λxα→β . xα→β)uα→β −→1β uα→β

[(λxα→β . xα→β)uα→β]vα −→1β uα→βvα

λyγ . [(λxα→β . xα→β)uα→β]vα −→1β λyγ . (uα→βvα).

A further extension, needed in the informal discussion above on normal forms,
requires the application of the β-rule inside a given term not only once, but any
finite number of times. This defines the notion of β-reducibility, which we will

172 C. Typed Lambda Calculus

indicate by −→β , and of which −→1β constitutes a single step. By definition, −→β

is simply the reflexive and transitive closure of −→1β . Formally, it is defined as
follows:

Definition 8.1.5 β-Reducibility. The reducibility −→β is defined inductively by
the following clauses:

uα −→β uα (8.5)
uα1 −→1β uα2
uα1 −→β uα2

(8.6)

uα1 −→β uα2 uα2 −→β uα3
uα1 −→β uα3 ,

(8.7)

where the first clause can be thought of as an axiom, and the remaining ones as
deduction rules.

To increase readability the subscripts 1β or β can be omitted, when no confusion
arises.

Equality

The identification of normal forms with the objects dealt with in the Typed Lambda
Calculus induces an identification of terms that have the same normal form, as
descriptions of the same object. This could be taken as a definition of β-equality
for terms. Since normal forms always exist in the Typed Lambda Calculus, two
terms have the same normal form if and only if they reduce to a common term.
This could be taken as an equivalent definition of β-equality, working also for the
Untyped Lambda Calculus (where normal forms do not always exist).

However, these definitions would not make it immediate to prove the funda-
mental property of equality, of being an equivalence relation. We thus turn things
upside down and define β-equality, which we will indicate as =β, as the equivalence
relation generated by −→β , i.e. as the symmetric and transitive closure of −→β.
Formally, =β is defined as follows:

Definition 8.1.6 β-Equality. The equivalence relation =β is defined inductively
by the following clauses:

u1 −→β u2

u1 =β u2
(8.8)

u1 =β u2

u2 =β u1
(8.9)

u1 =β u2 u2 =β u3

u1 =β u3,
(8.10)

Combinators ! 173

where the first clause can be thought of as an axiom, and the remaining ones as
deduction rules.

To increase readability, the subscript β can be omitted, when no confusion
arises.

Proposition 8.1.7 If two terms reduce to a common term, then they are β-equal.

Proof. Suppose u1 and u2 both reduce to t. Then

u1 −→β t
u1 =β t

u2 −→β t
u2 =β t
t =β u2

u1 =β u2

is a derivation of u1 =β u2 from rules 8.8 (twice), 8.9 and 8.10. !

Corollary 8.1.8 If two terms have the same normal form, then they are β-equal.

The converse of Corollary 8.1.8 follows from Existence and Uniqueness of Nor-
mal Forms, with a proof working only for the Typed Lambda Calculus (see 8.4.6).
The converse of Proposition 8.1.7 follows from the Diamond Property, with a proof
working also for the Untyped Lambda Calculus (see 8.5.8). Thus the proposed
definitions of β-equality are all equivalent.

8.2 Combinators !

Our first approach to terms for the description of functions has been analytical
(top-down): we introduced an operator λ that allows us to name a unary function
whenever we specify its argument, as well as a description of its generic value in
terms of that argument.

We look now for a synthetical (bottom-up) approach, in which a few λ-terms
called atomic combinators are selected, and combinators are built up from
them by means of application alone. The question arises of finding nontrivial
atomic combinators, such that the terms built up from them and the variables by
means of application alone, which we will call combinatorial terms,4 somehow
represent all λ-terms. Since we do not know beforehand whether this is possible,
and even if we did know it we would have no clue as to which atomic combinators
would do the job, we just attempt a proof of the possibility. In the process of
proving the result we will discover which atomic combinators are needed for the
proof to go through. It is thus advisable for the reader to disregard on a first reading
the statement of the next result, which would look completely unmotivated, and
to come back to it only after having read the proof.

4The usual combinators are closed combinatorial terms, i.e. the ones without free variables.

174 C. Typed Lambda Calculus

Theorem 8.2.1 Combinatorial Completeness (Schönfinkel [1924], Curry
[1930]) Define the atomic combinators as follows, for any types α, β, and γ:

• Iα→α = λxα. xα

• Kγ→(α→γ) = λyγxα. yγ

• S[α→(γ→δ)]→[(α→γ)→(α→δ)] = λxα→(γ→δ)yα→γzα. (xz)γ→δ(yz)γ.

Then for every λ-term t there is a combinatorial term tc built up from atomic
combinators and variables by application alone, such that tc is β-reducible to t.

Proof. By definition 8.1.1, a λ-term t is built up from variables by application
and λ-abstraction. If we want to get rid of the latter, we have to find special cases
of it (the atomic combinators) that, together with the variables, are sufficient to
generate all λ-abstractions by application.

We proceed inductively on the definition of λ-abstraction, and show how to
turn λxα. uβ into a combinatorial term, when uβ is already such. The idea is to
transform a definition of uβ as a combinatorial term into one of λxα. uβ by sticking
‘λxα.’ in front of every subterm used in the original definition of uβ. Since uβ is
built up from variables and atomic combinators by application, we have four cases
to consider.

1. The occurrences of the variable xα in the definition of uβ become occurrences
of λxα. xα, which is the atomic combinator Iα→α.

2. The occurrences of a variable yγ different from xα in the definition of uβ

become occurrences of the term (λxα. yγ)α→γ . The idea is to postulate an
atomic combinator K that would reduce to it when applied to the variable
yγ . We thus need a name for the function

yγ >−→ λxα.yγ

and, using the convention of multiple λ-abstractions, this is precisely how
Kγ→(α→γ) is defined in 2 above. Then

Kγ→(α→γ)yγ −→β λxα. yγ .

3. The occurrences of an atomic combinator Cγ in the definition of uβ become
occurrences of the term λxα.Cγ , and this case can be treated as the previous
one, since

Kγ→(α→γ)Cγ −→β λxα.Cγ .

Combinators ! 175

4. The occurrences of an application uγ→δ
1 uγ2 in the definition of uβ become

occurrences of the term
λxα. uγ→δ

1 uγ2 .

The idea is to postulate an atomic combinator S that would reduce to it
when applied to λxα. uγ→δ

1 and λxα. uγ2 , which we have by the induction
hypothesis. We thus need a name for the binary function

(λxα. uγ→δ
1 ,λxα. uγ2) >−→ λxα. uγ→δ

1 uγ2 .

Since xα is bound both in the arguments and in the value, to avoid confusion
we change its name to zα in the latter by using the α-rule:

(λxα. uγ→δ
1 ,λxα. uγ2) >−→ λzα. (uγ→δ

1 uγ2)[xα := zα].

We now know that S will be a binary function whose values are unary func-
tions. Equivalently, using the convention on functions of many variables, we
can think of it as a ternary function, as follows:

(λxα. uγ→δ
1 ,λxα. uγ2 , zα) >−→ (uγ→δ

1 uγ2)[xα := zα].

By definition of substitution,

(uγ→δ
1 uγ2)[xα := zα] = (uγ→δ

1 [xα := zα])(uγ2 [xα := zα]).

Since, for i = 1, 2,
(λxα. ui)zα −→β ui[xα := zα],

it is enough to define S as a ternary function that first applies its first two
arguments separately to the third, and then applies the two results. This is
precisely how S is defined in 3 above.
We can now check that this intuition works:

S[α→(γ→δ)]→[(α→γ)→(α→δ)](λxα. u1)(λxα. u2)
−→β λzα. [(λxα. u1)zα][(λxα. u2)zα]
−→β λzα. (u1[xα := zα])(u2[xα := zα])
−→β λzα. (u1u2)[xα := zα]
−→β λxα. u1u2,

where the next to last step holds by definition of substitution (in the case of
an application), and the last step holds by the α-rule. !

The names of the three families of atomic combinators introduced above reflect
their definitions: I stands for identity; K indicates (to German speakers) the fact
that its values are constant functions; and S recalls that its definition involves a
substitution (plus composition).

176 C. Typed Lambda Calculus

It should be noted that the family of atomic combinators Iα→α, one for each α,
is actually derivable from the other two, as SKK. More precisely, as:

(S{α→[(α→α)→α]}→{[α→(α→α)]→(α→α)}Kα→[(α→α)→α])Kα→(α→α).

Thus only two families of atomic combinators are enough to synthesize every typed
λ-term by composition alone, starting from the variables.

In a nutshell, the proof just given amounts to the following inductive translation
of λ-terms into combinatorial terms, where we drop types for readability:

λx. x = I
λx. y = Ky
λx.C = KC (C = K or S)

λx. u1u2 = S(λx. u1)(λx. u2).

It should be noted that: globally, K and S are not the only possible choice of
atomic combinators (and historically, not even the first ones); locally, the previous
translation is not the only possible one, in terms of K and S. Different choices of
atomic combinators and/or translations are made with an eye to issues of efficiency
and complexity, discussed in Peyton Jones [1987].

Exercise 8.2.2 A single family of atomic combinators is enough to synthesize every typed
λ-term. (Meredith and Prior [1963], Barendregt) (Hint: we can look for a combinator C
such that CS = K. Since S is a function of two variables, it is enough to let

C = λx. xabc,

with a, b and c combinators to be determined. Then

CS = Sabc = (ac)(bc),

and to get K as a result it is enough to let a = c = K. It remains to determine b in such
a way that some iteration of C produces S. If

C = λx. xKbK,

then automatically
CC = KK and C(CC) = b.

It is thus enough to let
C = λx. xKSK

to have C(CC) = S and CS = K.
Obviously, we have to consider different typed versions of K in the definition of C,

and different typed versions of C in the various iterations. Thus, if

Ci = λx. xKiSiK
∗
i ,

then C1C2 = K∗
2K

∗
1, C3(C1C2) = S3, and C4S3 = K4.

Combinators ! 177

Symmetrically, we can look for a combinator D such that DK = S. Since K is a
function of three variables, it is enough to let

D = λx. xab,

with a and b combinators to be determined. Then

DK = Kab = a,

and to get as result S it is enough to let a = S. It remains to determine b in such a way
that some iteration of D produces K. If

D = λx. xSb,

then automatically
DD = λz. (bz)(bbz).

To get K directly it is enough to define b as a function of two variables that applied to z
and anything else produces λy. z, so that

λz. (bz)(bbz) = λz.λy. z = K.

Then it is enough to let

b = λzxy. z and D = λx. xSb

to have DD = K and DK = S.)

Having shown how combinatorial terms are actually sufficient to define all λ-
terms, we can take a further step and develop a Typed Theory of Combinators
independently of the Typed Lambda Calculus, and as an alternative approach to
it. Briefly, this goes as follows.

The notion of a typed combinator is defined inductively, as in 8.1.1, using in a
first approximation only the two constants K and S (in a second approximation,
the presence of other combinator constants distinguishes the pure from an applied
theory of combinators):

1. The constants Kγ→(α→γ) and S[α→(γ→δ)]→[(α→γ)→(α→δ)] are combinators of
the indicated types.

2. If Cα→β and Dα are combinators of type α → β and α, respectively, then
(Cα→βDα)β is a combinator of type β.

Notice how λ-abstraction has disappeared, and with it any notion of bound variable
(together with the relative α-rule).

To increase readability some parentheses or types can be omitted, when no
confusion arises. We will use the letters x, y, z, . . . for variables, and C, D, E, . . .
for combinators.

178 C. Typed Lambda Calculus

The notion of combinatorial β-reducibility −→cβ is defined in analogy with
β-reducibility, by replacing the β-rule with its two instances needed to give the
constants K and S their appropriate operational meaning. Precisely, −→cβ is
the reflexive and transitive closure of the single step reducibility −→1cβ , defined
inductively as:

Kγ→(α→γ)CγDα −→1cβ Cγ

S[α→(γ→δ)]→[(α→γ)→(α→δ)]Cα→(γ→δ)Dα→γEα −→1cβ (CE)γ→δ(DE)γ

Cα→β
1 −→1cβ Cα→β

2

Cα→β
1 Dα −→1cβ Cα→β

2 Dα

Dα
1 −→1cβ Dα

2

Cα→βDα
1 −→1cβ Cα→βDα

2 .

The notion of combinatorial β-equality =cβ is defined as the symmetric and tran-
sitive closure of −→cβ.

A combinator is in β-normal form if no β-reduction is possible inside it or,
equivalently, if it does not contain any subcombinator of the form KCD or SCDE.

The proof of 8.2.1 shows how to define, for every λ-term t, a combinator tc that
β-reduces to it. On the other hand, any combinator C can be directly translated
into a λ-term Cλ, by plugging in the definitions of S and K given in 8.2.1. The
question naturally arises of how the two translations are related, in particular
whether one is the inverse of the other. This will be aswered in the affirmative by
8.6.9 and 8.6.10, in the presence of extensionality rules.

8.3 Existence of Normal Forms

The terms of the Typed Lambda Calculus can be considered as descriptions of
objects. Among them the ones with nonatomic types, i.e. with types of the form
α → β, can be considered as descriptions of functions. The β-rule describes an
atomic step in the computation of a value of a given function for a given argument.
The β-reduction procedure allows the performance of this atomic step any finite
number of times, inside given terms. If a β-reduction is a computation, then its
values are reached when the computation terminates, i.e. when a term in normal
form is obtained.

For practical purposes, terms in normal form can thus be taken not only as
describing the objects of the Typed Lambda Calculus, as all other terms, but as
being the objects themselves. If this sounds odd, we can go back again to the
example of the calculus of polynomial expressions. Here we do have the natural
numbers as intended objects in mind, but their definition, although a philosophi-
cally interesting problem, is neither needed nor useful in the calculus. For practical

Existence of Normal Forms 179

purposes, a number can just be thought of as coinciding with a polynomial expres-
sion in normal form, i.e. its decimal representation, since the calculus is going to
stop there anyway. And this practical attitude is all that is needed to carry out
computations.

Weak Normalization

We now show that every typed λ-term has a meaning, i.e. it denotes an object
in the sense just described. Otherwise said, every λ-term has a normal form. A
corollary of this is that the Typed Lambda Calculus is a calculus of total functions,
i.e. the value of a function for a given argument always exists.

It would not be very useful to have a nonconstructive proof of the existence of
normal forms, without an algorithm to obtain them. The proof of the next theorem
is constructive, and it can be abstractly seen as consisting of two parts: the descrip-
tion of a computational strategy, specifying how reductions should performed, and
a termination proof showing that the strategy works, i.e. that it always produces
a normal form.

Theorem 8.3.1 Weak Normalization (Turing [1942], Curry and Feys [1958])
Every typed λ-term can be reduced to a normal term, by means of an appropriate
sequence of β-reductions.

Proof. Notice that the reduction of a redex (λxα. uβ)α→βvα inside a given term t
into the redex uβ [xα := vα] can have the following two bad effects:

• it can increase the total number of redexes, since it substitutes vα (and hence
all redexes occurring in it) for every free occurrence of xα in uβ, and there
may be many such occurrences;

• it can introduce new redexes, in two different ways:

– if α = γ → δ and vγ→δ is of the form λzγ . vδ1, by turning certain subterms
of t of the form xγ→δwγ (precisely, the ones in the scope of the redex in
question) into redexes (λzγ . vδ1)wγ

– if β = γ → δ and uγ→δ[xα := vα] is of the form λzγ . uδ1, by turn-
ing certain subterms of t of the form ((λxα. uγ→δ)vα)wγ

1 into redexes
(λzγ . uδ1)w

γ
1 .

The main observation is that the second obstacle is not traumatic, since the new
redexes possibly introduced are of complexity lower than the one being eliminated.
The appropriate measure of complexity for (λxα. uβ)α→βvα is in this case the
degree of the type α → β, defined inductively as follows:

• atomic types, i.e. type letters, have degree 0

180 C. Typed Lambda Calculus

• the degree of α → β is 1 plus the greatest of the degree of α and β.

The idea of the normalizing procedure is thus to eliminate, at every step, a
redex of greatest degree, until all of them have been disposed of. The first obstacle
is overcome by choosing, at every step, a redex (λxα. uβ)vα of greatest degree, such
that in vα no redex of greatest degree occurs (so that only the number of redexes
of degree smaller than the greatest one can be increased).5

By so doing, at every step we eliminate one redex of greatest degree, and do not
introduce new ones of the same degree. Once the last redex of greatest degree has
been eliminated, we attack the ones of the next greatest degree (whose number, in
the meantime, may have greatly increased), and so on, until all redexes have been
eliminated. !

Formally, the proof of the Weak Normalization Theorem is by so-called ω2-
induction, i.e. induction on pairs of natural numbers (a, b) lexicographically ordered
by

(a, b) ≺ (a′, b′) ⇔ (a < a′) ∨ (a = a′ ∧ b < b′).

At every step the pair

(greatest degree, number of redexes with greatest degree)

strictly decreases in the ordering ≺. In other words, either the greatest degree
decreases, or it remains the same but the number of redexes with greatest degree
decreases by one.

Syntactical proof of Strong Normalization

The Weak Normalization Theorem showed that a clever strategy of reductions
always produces a normal form. The Strong Normalization Theorem shows that
we do not have to be clever in choosing our reduction strategy: any order would
eventually do.

Theorem 8.3.2 Strong Normalization (Hinatani [1966], Hinata [1967],
Sanchis [1967], Shoenfield [1967], Tait [1967], Dragalin [1968]). For every
typed λ-term tα, there is no infinite sequence of reductions starting from tα.

Corollary 8.3.3 For every typed λ-term tα, the tree of all possible reductions start-
ing from tα is finite.

5Such a redex can be found by the following inductive procedure. First choose a redex of
greatest degree. If it contains no redex of greatest degree, then stop. Otherwise, choose one of
the redexes of greates degree contained in it, and start again. After finitely many steps we must
hit a redex of greatest degree containing no redexes of greatest degree.

Existence of Normal Forms 181

Proof of Corollary. The tree of all possible reductions starting from a given term
is finitely branching, since only finitely many reductions are possible inside a given
term. Then the corollary is a trivial consequence of 8.3.2 and of König’s Lemma,
according to which a finitely branching tree with no infinite branch is finite.

We prove the contrapositive of König’s Lemma: if a finitely branching tree is
infinite, then it has an infinite branch. Let n0 be the root of the tree. Consider
the nodes of level 1, i.e. those immediately following the root n0. By definition of
finitely branching tree, there are only finitely many. And since the tree is infinite,
at least one of these nodes has infinitely many successors. Choose one node n1

of level 1 with infinitely many successors, and consider the nodes of level 2 which
immediately follow n1. As above, there must be one node n2 following n1 and
having infinitely many successors. By continuing the procedure, we get a sequence
of nodes n0, n1, n2, . . ., each a successor of the previous ones. Moreover, each of
these nodes has infinitely many successors, and thus the procedure never stops. In
particular, the ni’s define an infinite branch. !

We turn now to a proof of the Strong Normalization Theorem. We call a term
strongly normalizable if there is no infinite sequence of reductions starting from it.
The theorem then says that every term is strongly normalizable.

Since we are dealing with typed λ-terms, to prove the theorem we can proceed
by induction either on types or on terms.

If we do induction on types, we can easily deal with the case of nonatomic
types. Given tα→β , to be able to apply the induction hypothesis we need an object
of a lower type, and a natural choice is tα→βxα, with xα any variable of type α.
Any infinite sequence of reductions in tα→β would produce an infinite sequence of
reductions in tα→βxα, which is impossible by the induction hypothesis.

The real problem is how to deal with terms of atomic type. We will attempt a
proof by induction on terms in a moment, but first we stop to notice that we have
actually proved that if C is any class of terms

1. containing only strongly normalizable terms of atomic type

2. closed under application to variables,

then C contains only strongly normalizable terms.

We can now try to fill the gap in the first proof, by attempting to prove that
every term of atomic type is strongly normalizable. In fact, we may just as well
try to prove the full theorem by induction on terms. If t is a variable, then no
reduction is possible inside it, and thus t is strongly normalizable. If t is a λ-
abstraction λx. u, then the only possible reductions are inside u, which is strongly
normalizable by the induction hypothesis.

182 C. Typed Lambda Calculus

The real problem is how to prove that the application uv of two strongly nor-
malizable terms u and v is still strongly normalizable. The difficulty is due to the
fact that u might be a λ-abstraction, and thus in uv there might be reductions not
retraceable to reductions inside u and v. Then the induction hypothesis cannot be
applied.

We can now merge the two approaches, in two steps. First, we strengthen the
condition on C above and request closure not only under applications to variables,
but under every application. Second, we turn such a condition into a definition, by
changing an implication (‘if tα→β ∈ C, then tα→βuα ∈ C, for any uα ∈ C’) into an
equivalence.

Then the first proof, by induction on types, will show that all terms in C are
strongly normalizable, and the second proof, by induction on terms, will show that
every term is in C. The two proofs together will then show that every term is
strongly normalizable.

Definition 8.3.4 (Tait [1967]) The class C of computable terms is defined
by induction on types, as follows:

1. for α atomic,
tα ∈ C ⇔ tα is strongly normalizable

2. for α → β,
tα→β ∈ C ⇔ (∀uα ∈ C)(tα→βuα ∈ C).

The first proof above would be immediately reproducible, if we knew that C
contains all variables. Actually, since variables are only needed to lower the type,
it would be enough to know C is not trivial , i.e. that it contains at least one term
(precisely, a variable) for any given type.

To try to prove that xα ∈ C, we can proceed by induction on types. If α is
atomic, then xα ∈ C because a variable is strongly normalizable. But xα→β ∈ C if
and only if xα→βuα ∈ C, for any uα ∈ C. Now xα→βuα does have a type β smaller
than α → β, but the induction does not apply: it tells us that variables of type
smaller than α → β are in C, but xα→βuα is not a variable.

We thus need to strengthen the induction hypothesis, and attempt to prove not
that xα is in C, but rather that xαuα1

1 · · ·uαn
n is, for any u1, . . . , un ∈ C with the

appropriate types. We proceed, as before, by induction on types. Now the inductive
step has been fixed, but we find a difficulty at atomic types: if xα→βuα1

1 · · ·uαn
n

has an atomic type, then it is in C if and only if it is strongly normalizable. For
this we need to know that the ui are strongly normalizable, while we only know
that they are in C. Notice how the fact that ‘terms in C are strongly normalizable’
is exactly what we are trying to prove!

The atomic step would go through if we only wanted to prove that xα→βuα1
1 · · ·uαn

n

is in C when the ui are strongly normalizable. Is this weaker statement enough to

Existence of Normal Forms 183

proceed inductively? It would be, if at types α → β we knew that terms u in C
with smaller types are strongly normalizable. This would be given by the induction
hypothesis, if we were trying to prove simultaneously that ‘terms in C are strongly
normalizable’. This finally produces the needed conditions.

Proposition 8.3.5 (Tait [1967]) By simultaneous induction on types we can
prove:

1. if u1, . . . , un are strongly normalizable, then (xu1 · · ·un)α ∈ C

2. if tα ∈ C, then tα is strongly normalizable.

Proof. We first consider atomic types. If xu1 · · ·un has an atomic type, then it is
in C if and only if it is strongly normalizable. But since x is a variable and

xu1 · · ·un = (· · · (xu1) · · ·un),

the only possible reductions are inside the ui, which are strongly normalizable.
Thus xu1 · · ·un is strongly normalizable.

If tα has atomic type, then it is strongly normalizable if it is in C, by definition
of C.

We now consider arrow types. If xu1 · · ·un has type α → β, then it is in C if
and only if xu1 · · ·unuα is, for any uα ∈ C. By the induction hypothesis 2, uα is
strongly normalizable. Since the induction hypothesis 1 works for any number of
terms, in particular for n + 1, then xu1 · · ·unu is in C.

Given tα→β ∈ C, by the induction hypothesis 1 (with n = 0) xα ∈ C. Then
tα→βxα is in C by definition, and is strongly normalizable by the induction hypoth-
esis 2 (having type β). Then tα→β is strongly normalizable too, since any infinite
sequence of reductions inside it would produce an infinite sequence of reductions
inside tα→βxα. !

We turn now to the second half of the proof, and try to prove that every term
is in C, by induction on terms. We already know from 8.3.5.1 (with n = 0) that
all variables are in C. If u and v are in C then so is uv, since C is closed under
application by definition. We are left with the case of a term (λxα. uβ)α→β , which
is in C if and only if (λxα. uβ)α→βvα is, for any vα ∈ C. Now (λxα. uβ)α→βvα only
reduces to uβ[xα := vα], and we find two difficulties. First, even if we knew that
the latter reduct is in C, we would need to prove that the original redex is. Second,
the induction hypothesis is too weak to show that uβ[xα := vα] is in C, since it
only ensures that uβ is in C.

The second difficulty can easily be remedied, by strengthening the induction
hypothesis. The next lemma takes care of the first difficulty.

184 C. Typed Lambda Calculus

Proposition 8.3.6 (Tait [1967]) For any term uβ and vα and any variable xα,

uβ[xα := vα] ∈ C ∧ vα ∈ C ⇒ (λxα. uβ)vα ∈ C.

Proof. By the inductive definition of types, the general form of the type β of
(λxα. uβ)vα is

α1 → (α2 → · · · (αn → αn+1) · · ·),

with αn+1 atomic. By repeatedly using the definition of C, we have to prove that

uα1
1 , . . . , uαn

n ∈ C ⇒ (λxα. uβ)vαuα1
1 · · ·uαn

n ∈ C.

The right-hand-side has atomic type αn+1, and it is thus in C if and only if it is
strongly normalizable.

Any reduction in (λxα. uβ)vαuα1
1 · · ·uαn

n either eliminates the first λ and pro-
duces uβ[xα := vα]uα1

1 · · ·uαn
n , or it can also be performed inside the latter term

(if it is made inside uβ or some uαi
i), or it is a reduction in vα.6 In all cases, only

finitely many such reductions can be performed, since both uβ[xα := vα]uα1
1 · · ·uαn

n

and vα are in C (the first one by closure of C under composition and the hypothesis
uβ[xα := vα] ∈ C, the second one by the hypothesis vα ∈ C), and by 8.3.5 every
term in C is strongly normalizable. !

The next result provides the final step, with the appropriate strengthening of
the induction hypothesis.

Proposition 8.3.7 (Tait [1967]) By induction on terms, we can prove that for
any tα, xαi

i and uαi
i :

uα1
1 , . . . , uαn

n ∈ C ⇒ tα[xα1
1 := uα1

1 , . . . , xαn
n := uαn

n] ∈ C,

where the substitutions are performed simultaneously.

Proof. To improve readability, we write

[.x := .u] for [xα1
1 := uα1

1 , . . . , xαn
n := uαn

n].

If t is a variable, then either it is xαi
i , in which case the result of the substitution

is uαi
i , which is in C by the induction hypothesis; or it is a variable different from

all xαi
i ’s, in which case the substitution has no effect and t is in C, being a variable.

If t is an application t1t2, then

(t1t2)[.x := .u] = (t1[.x := .u])(t2[.x := .u])
6Note that the this case is superfluous if xα occurs free in uβ , but is needed otherwise because

then uβ [xα := vα] does not contain occurrences of vα, and reductions inside vα cannot necessarily
be performed inside uβ [xα := vα]uα1

1 · · ·uαn
n .

Existence of Normal Forms 185

by definition of substitution. By the induction hypothesis, both t1[.x := .u] and
t2[.x := .u] are in C, and hence so is the above right-hand-side, by closure of C under
composition. Then so is the left-hand-side.

If t is a λ-abstraction λyα. t1, where y may be supposed to be different from all
the .x by the α-rule, then

(λy. t1)[.x := .u] = λy. (t1[.x := .u])

by definition of substitution. The right-hand-side is in C if and only if, for any
vα ∈ C,

[λyα. (t1[.x := .u])]vα ∈ C.

This reduces to
t1[.x := .u, xα := vα],

in which the substitutions can be supposed to be performed simultaneously (by
possibly renaming the bound variable yα). Since the induction hypothesis applies
to t1, this term is in C. Hence so is [λyα. (t1[.x := .u])]vα, by 8.3.6. !

Corollary 8.3.8 Strong Normalization. Every typed λ-term tα is strongly nor-
malizable.

Proof. By 8.3.7, tα ∈ C. By 8.3.5, tα is strongly normalizable. !

Regarding the complexity of the proof just given, we should notice that the
original definition 8.3.4 of the class C is quite complicated: it introduces a new
quantifier at every type level, and it thus roughly requires n quantifiers for terms
whose type degree is at most n. In particular, the definition of the full class C seems
to require ‘infinitely many quantifiers’. Technically stated, and modulo a coding
of λ-terms as numbers, the definition of C given in the proof is not arithmetical,
and the proof given above is not formalizable in First-Order Arithmetic. Of course,
the proof shows that C is actually the class of all terms, which is certainly easily
definable, but this is after the facts.

On the proofs of Strong Normalization !

The proof of Strong Normalization given above consists of two separate parts: one
proved by induction on types (8.3.5), and the other by induction on terms (8.3.7).
Its interest lies in the fact that it generalizes to a number of other type systems,
and it is thus very useful. However, it does not provide an intuitive picture of what
is going on.

More perspicuous is the proof given by Howard [1970] in the style of 8.3.1, which
consists in assigning ordinals to terms in such a way that they strictly decrease at
every reduction step of any reduction procedure (not only of a particular one,

186 C. Typed Lambda Calculus

as in 8.3.1). We provide a semantical version of such a proof in 10.5, in which
the ordinal assignment is replaced by an interpretation of terms on elements of
appropriate well-founded sets. Incidentally, such a proof will be formalizable in
First-Order Arithmetic.

For those only interested in the result itself, without concerns of generality or
perspicuity, we now give a short and direct alternative proof by induction on terms,
as follows. The cases of a variable and of a λ-abstraction are trivial. Consider then
an application uv of two strongly normalizable terms u and v, and let h(u) and
h(v) be the height of the reduction trees starting from u and v, respectively. It
is enough to prove, by induction on h(u) + h(v), that every term which is one
reduction step away from uv is strongly normalizable.

If the reduction step is made inside u or v, then one of h(u) and h(v) decreases,
and the induction hypothesis applies. We are thus reduced to the case in which u
is a λ-abstraction, and the reduction step is of the form

(λx. u1)v −→1β u1[x := v].

This is taken care of by the following proposition.

Proposition 8.3.9 (Nederpelt [1973]) If tβ and vα are strongly normalizable,
then so is tβ [xα := vα].

Proof. By a triple induction on:

1. the height h(t) + h(v)

2. the type α

3. the term t,

we prove that every term which is one reduction step away from t[x := v] is strongly
normalizable. There are two cases:

• If the reduction step is made inside t or v and produces a term of the form
t1[x := v] or t[x := v1], then the induction hypothesis 1 applies because one
of h(t) or h(v) decreases.

• Otherwise, the reduced redex is of the form (λy. s)w, and it must have been
created by the substitution of λy. s for x. By replacing (λy. s)w by a fresh
variable z, we obtain a term t′ such that

t[x := v] = t′[z := (λy. s)w].

Since λy. s has the same type as x, z must have a smaller type. By the
induction hypothesis 2, to prove that every term which is one reduction step
away from t[x := v] is strongly normalizable, it is enough to show that both
t′ and (λy. s)w are strongly normalizable. There are two cases:

Uniqueness of Normal Forms 187

– If t[x = v] is different from (λy. s)w, then both t′ and (λy. s)w are
obtained by substituting v for x in subterms of t, and they are strongly
normalizable by the induction hypothesis 3.

– If t[x = v] is equal to (λy. s)w, then the only possible reductions from
it must be inside s, w or s[y := w]. The terms s and w are strongly
normalizable by the hypothesis, because they are subterms of v and t.
The term s[y := w] is strongly normalizable by the induction hypothesis
2, because y has type smaller than x. !

8.4 Uniqueness of Normal Forms

Having disposed of the problem of existence of normal forms, we now turn to the
complementary problem of uniqueness.

The idea behind the proof of uniqueness is quite simple: if we start from a given
term t and β-reduce it into different ways, thus obtaining two terms t1 and t2, then
permuting the steps (i.e. doing in t1 what we did in t to get t2, and in t2 what we
did in t to get t1) should produce the same term t∗. This is the so-called Diamond
Property, pictured as follows:

t → t1
↓ ↓
t2 → t∗

From this, uniqueness of normal forms follows immediately: if t1 and t2 are already
in normal form, they cannot be reduced and thus

t1 = t∗ = t2.

The obvious strategy to prove the Diamond Property is to proceed by induction,
by finding an appropriate way of splitting →β in blocks of steps ⇒, and proving
the Diamond Property for ⇒, i.e.

u ⇒ u1

⇓ ⇓
u2 ⇒ u∗.

Then we can proceed inductively on the number of applications of ⇒ from t = t00

188 C. Typed Lambda Calculus

to t1 = t0n and t2 = tm0, in a way that we will refer to as ‘diagram chasing’:

t00 ⇒ t01 ⇒ t02 ⇒ t03 · · · t0n

⇓ ⇓ ⇓
... ⇓

t10 ⇒ t11 ⇒ t12 ⇒ · · · · · · t1n

⇓ ⇓ ⇓
... ⇓

t20 ⇒ t21 ⇒ · · · · · · · · · · · · t2n

⇓ ⇓
...

... ⇓
t30 ⇒ · · · · · · · · · · · · · · · · · · t3n
...

...
...

...
...

tm0 ⇒ tm1 ⇒ tm2 ⇒ tm3 · · · tmn.

The Weak Diamond Property

The first splitting of →β that comes to mind is of course →1β . Unfortunately, the
Diamond Property fails for β-reductions consisting of at most one application of
the β-rule. What does hold is the so-called Weak Diamond Property: not quite
as symmetric as we would like, but still both a first step toward the full result,
and sufficient to prove uniqueness of normal forms (when coupled with Strong
Normalization, as we will see in 8.4.5).7

Proposition 8.4.1 Weak Diamond Property (Newmann [1942]) If t1 and
t2 are terms obtained from t by at most one application of the β-rule, then they
reduce to a common term t∗ by a finite number (depending on t) of applications of
the β-rule.

Proof. We proceed by induction on t. Since types play no role in the proof, we
do not bother to write them down.

If t is a variable, then no application of the β-rule is possible inside t. Hence
t1 = t2 = t∗.

If t = λx. u, then applications of the β-rule are possible only inside u. Hence
t1 = λx. u1 and t2 = λx. u2, where u1 and u2 are obtained from u by at most one
application of the β-rule. By the induction hypothesis, they reduce to a common
term u∗, and thus both t1 and t2 reduce to t∗ = λx. u∗.

If t = uv, then there are a number of possibilities:

7Notice that the lack of symmetry in the Weak Diamond Property for −→1β forbids its use in
a proof of the full Diamond Property for −→β by induction on the number of β-reduction. One
β-reduction is in general replaced by many, and the induction produces an expanding diagram
that does not converge.

Uniqueness of Normal Forms 189

• t1 and t2 are obtained by at most one application of the β-rule inside u. Then
t1 = u1v and t2 = u2v. By the induction hypothesis, u1 and u2 reduce to a
common term u∗, and thus both t1 and t2 reduce to t∗ = u∗v.

• t1 and t2 are obtained by at most one application of the β-rule inside v. This
case is similar to the previous one.

• t1 and t2 are obtained by at most one application of the β-rule inside u and
v, separately. Thus e.g. t1 = u1v and t2 = uv2, and they reduce to t∗ = u1v2.

• One of t1 and t2 is obtained by at most one application of the β-rule inside
u, and the other is obtained by one application across u and v. Thus e.g.
u = (λx. u′), t = (λx. u′)v, t1 = u′[x := v] and t2 = (λx. u′

2)v. Then t1 and
t2 reduce to the common term t∗ = u′

2[x := v]. This is trivial for t2, and
requires a simple proof for t1 (see 8.4.2).

• One of t1 and t2 is obtained by at most one application of the β-rule inside
v, and the other is obtained by one application across u and v. Thus e.g.
u = (λx. u′), t = (λx. u′)v, t1 = u′[x := v] and t2 = (λx. u′)v2. Then t1 and
t2 reduce to the common term t∗ = u′[x := v2]. This is trivial for t2, and
requires a simple proof for t1 (see 8.4.4). !

We have left two loose strings in the proof just finished, which we now tie.

Proposition 8.4.2 For any u, u∗ and t,

u −→1β u∗

u[x := t] −→1β u∗[x := t].

Proof. By induction on u −→1β u∗.

1. (λy. u1)v −→1β u1[y := v]
By definition of substitution:

u[x := t] = (λy. u1[x := t])(v[x := t])
u∗[x := t] = (u1[y := v])[x := t].

Now
(λy. u1[x := t])(v[x := t]) −→1β (u1[x := t])[y := v[x := t]].

By the following property of substitution:

(u1[x := t])[y := v[x := t]] = (u1[y := v])[x := t]

the result follows.

190 C. Typed Lambda Calculus

The property just quoted amounts to saying that if we first substitute v for
y in u1, and then t for x in the result, then we obtain the same result as if
we first substitute t for x in both u1 and v separately, and then substitute
v[x := t] for y in u1. This is quite intuitive, and can easily be proved using
the definition of substitution (see 8.4.3).

2. u1v −→1β u2v, with u1 −→1β u2

By definition of substitution:

u[x := t] = (u1v)[x := t] = (u1[x := t])(v[x := t])
u∗[x := t] = (u2v)[x := t] = (u2[x := t])(v[x := t]).

And
u1 −→1β u2

u1[x := t] −→1β u2[x := t]
(u1[x := t])(v[x := t]) −→1β (u2[x := t])(v[x := t])

by hypothesis, induction hypothesis, and 8.2 of 8.1.4.

3. u1v1 −→1β u1v2, with v1 −→1β v2

Similar to part 2, using 8.3 of 8.1.4.

4. λy. u1 −→1β λy. u2, with u1 −→1β u2

By definition of substitution:

u[x := t] = (λy. u1)[x := t] = λy. (u1[x := t])
u∗[x := t] = (λy. u2)[x := t] = λy. (u2[x := t]).

And
u1 −→1β u2

u1[x := t] −→1β u2[x := t]
λy. (u1[x := t]) −→1β λy. (u2[x := t])

by hypothesis, induction hypothesis, and 8.4 of 8.1.4. !

Exercise 8.4.3 Substitution Property. If y is not free in t, then

(u[x := t])[y := v[x := t]] = (u[y := v])[x := t].

(Hint: by induction on u. The crucial case is when u = x. Then

(u[x := t])[y := v[x := t]] = t[y := v[x := t]] and (u[y := v])[x := t] = t,

and the two sides are equal if y is not free in t. Obviously, the latter condition is crucial

here, but it does no harm in the proof of 8.4.2, where y is bound by λ, and thus the α-rule

allows us to suppose that y is not free in t.)

Uniqueness of Normal Forms 191

Proposition 8.4.4 For any t, t∗ and u,

t −→1β t∗

u[x := t] −→β u[x := t∗].

Proof. By induction on u.

1. If u = x, then u[x := t] = t and u[x = t∗] = t∗, and t −→β t∗ is given by
hypothesis.
If u is a variable different from x, then u[x := t] = u[x := t∗] = u, and
u −→β u by definition of −→β.

2. If u = u1u2, then

u[x := t] = (u1u2)[x := t] = (u1[x := t])(u2[x := t])
u[x := t∗] = (u1u2)[x := t∗] = (u1[x := t∗])(u2[x := t∗])

by definition of substitution. Notice that

t −→1β t∗

u1[x := t] −→β u1[x := t∗]
(u1[x := t])(u2[x := t]) −→β (u1[x := t∗])(u2[x := t])

by hypothesis, induction hypothesis, and 8.2 of 8.1.4. Similarly,

t −→1β t∗

u2[x := t] −→β u2[x := t∗]
(u1[x := t∗])(u2[x := t]) −→β (u1[x := t∗])(u2[x := t∗])

by hypothesis, induction hypothesis, and 8.3 of 8.1.4. By transitivity, i.e. 8.7
of 8.1.5, we then have

(u1[x := t])(u2[x := t]) −→β (u1[x := t∗])(u2[x := t∗]).

3. If u = λy. u1, then

u[x := t] = (λy. u1)[x := t] = λy. (u1[x := t])
u[x := t∗] = (λy. u1)[x := t∗] = λy. (u1[x := t∗])

by definition of substitution. And

t −→1β t∗

u1[x := t] −→β u1[x := t∗]
λy. (u1[x := t]) −→β λy. (u1[x := t∗])

by hypothesis, induction hypothesis, and 8.4 of 8.1.4. !

192 C. Typed Lambda Calculus

The last result and a look at the proofs of 8.4.1, 8.4.2 and 8.4.4 show that we
‘almost’ proved the Diamond Property for −→1β . What we missed is the strong
form of 8.4.4, namely

t −→1β t∗

u[x := t] −→1β u[x := t∗].

What went wrong in the proof of 8.4.4 is case 2, where we needed to apply transi-
tivity of −→β , which obviously does not hold for −→1β .

Actually, it is not only the proposed proof that fails, but result itself. To
step from u[x := t] to u[x := t∗] we need to perform the step from t to t∗ in
every occurrence of t inside u[x := t], and the number of such occurrences may be
arbitrarily high. Indeed, every free occurrence of x in u produces an occurrence of
t in u[x := t], and there may be any number of such free occurrences.

In particular, no limitation on the number of applications of the β-rule is going
to produce the symmetric inversion of steps needed for the Diamond Property.
What we would need is the possibility of making parallel independent reductions ,
e.g. of making the same reduction inside v in all occurrences of v inside u. This
suggests the definition of a notion of parallel reduction, which will be introduced
in the next section.

For our present purposes, however, the Weak Diamond Property is already
enough for a proof of the following result, as noticed by Huet [1980].

Theorem 8.4.5 Uniqueness of Normal Forms. Every typed λ-term has exactly
one normal form.

Proof. The existence part follows from the Weak Normalization Theorem 8.3.1.
The uniqueness part is proved by induction on the height of the tree of all possible
reductions, and this requires the Strong Normalization Theorem 8.3.2 (to know
that the tree has finite height).

Given t, let t1 and t2 be two terms in normal form to which it reduces, and
consider the first step t′1 and t′2 in each of the two reductions. Since they are
obtained from t by one application of the β-rule, by the Weak Diamond Property
8.4.1 they reduce to a common term t∗, that we may suppose to be in normal form
(otherwise, by the Normalization Theorem we just reduce it to a normal form).

Consider now the tree of all possible reductions from t′1. Since t reduces to
t′1, this tree is a subtree of the tree of all possible reductions from t, and it has a
height smaller than it by at least one, since one reduction is required to go from t
to t′1. Then, by the induction hypothesis, any two normal forms of t′1 are equal. In
particular, t1 = t∗.

Similarly, by working on the tree relative to t′2, we get t2 = t∗. But then t1 = t2,
since they are both equal to t∗. !

The Church-Rosser Theorem 193

Equality again

From existence and uniqueness of normal forms we can deduce an alternative char-
acterization of β-equality.

Proposition 8.4.6 Two typed terms are β-equal if and only if they have the same
normal form.

Proof. One direction has been proved in 8.1.8. For the opposite direction, suppose
u1 =β u2. By induction on 8.1.6, there are three cases:

• u1 −→β u2

Then the normal form of u2, which exists and is unique by 8.3.1 and 8.4.5, is
also the normal form of u1.

• u2 =β u1

By the induction hypothesis, u2 and u1 have the same normal form.

• u1 =β t and t =β u2

By the induction hypothesis, u1 and t have the same normal form, and so do
t and u2. Then u1 and u2 have the same normal form. !

Corollary 8.4.7 =β is decidable.

Proof. By 8.4.6, to check whether u1 and u2 are equal it is enough to compute
their normal forms, and see if they are the same. !

The complexity of the previous decision procedure depends on the complexity
of its two steps, i.e. normalization and comparison of normal forms. The latter is
trivial. The complexity of the former will be determined in 11.4.1 and 11.4.2.

8.5 The Church-Rosser Theorem !

The work in the previous section was motivated by the search for a proof of the
following result.

Theorem 8.5.1 Diamond Property (Church and Rosser [1936]) If t1 and
t2 are terms obtained from t by −→β, then there is a term t∗ which can be obtained
from t1 and t2 by −→β.

If we really only wanted a proof, then we could already give two:

• by Weak Normalization and Uniqueness of Normal Forms
If t1 and t2 are obtained from t by −→β , it is enough to let t∗ be the normal
form of t1 and t2, which is uniquely determined because it also the normal
form of t.

194 C. Typed Lambda Calculus

• by Strong Normalization and Weak Diamond Property
We proceed as in 8.4.5. Let t′1 and t′2 be the first steps of the reductions of
t to t1 and t2. By the Weak Diamond Property, they reduce to a common
term t′. By the induction hypothesis applied to t′1, t1 and t′ reduce to a
common term u1. By the induction hypothesis applied to t′2, t′ and t2 reduce
to a common term u2. By the induction hypothesis applied to t′, u1 and u2

reduce to a common term t∗.

t1

#
##$β

t′1

!
!!3
β

#
##$β

u1

#
##$β

t
!

!!3
1β

#
##$1β

t′
!

!!3
β

#
##$β

t∗

t′2

!
!!3
β

#
##$β

u2

!
!!3
β

t2
!

!!3
β

However, both of these proofs use a form of normalization, and they would thus
not work for the Untyped Lambda Calculus.

The goal of this section is to give a simplified version of the original proof due
to Church and Rosser, which avoids any use of normalization.

Parallel reductions

The proof of the Weak Diamond Property showed quite clearly what is needed for
a notion of reduction to have the Diamond Property: it should commute with the
term formation rules for the trivial cases to go through, and it should avoid the
trouble expressed by the failure of the rule

v −→1β v∗

u[x := v] −→1β u[x := v∗],

i.e. allow for parallel reductions. Such a notion can be defined inductively, following
the pattern of 8.1.4.

Since notations will be pretty heavy and types play no role in the proof, as in
8.4.1 we do not bother to write them down.

The Church-Rosser Theorem 195

Definition 8.5.2 Parallel Reducibility (Tait, Martin-Löf) The reducibility
=⇒ is defined inductively by the following clauses:

u =⇒ u (8.11)
u =⇒ u1 v =⇒ v1

uv =⇒ u1v1
(8.12)

u =⇒ u1

λx. u =⇒ λx. u1
(8.13)

u =⇒ u1 v =⇒ v1

(λx. u)v =⇒ u1[x := v1],
(8.14)

where the first clause can be thought of as an axiom, and the remaining ones as
deduction rules.

As a special case of equation 8.14 we have

u =⇒ u v =⇒ v
(λx. u)v =⇒ u[x := v],

where the top line consists of axioms. Thus −→1β implies =⇒. Inductively, we
easily see that =⇒ implies −→β. Then −→β is the transitive closure of =⇒, since
it is the transitive closure of −→1β .

But =⇒ is not transitive itself. For example,

(λxα→α. xα→αyα)(λzα. zα) =⇒ (λzα. zα)yα =⇒ yα

holds because each step is a single application of β-reduction, but

(λxα→α. xα→αyα)(λzα. zα) =⇒ yα,

fails because of the following crucial properties of =⇒:

1. if λx. u =⇒ v, then v = λx. u1, with u =⇒ u1

2. if uv =⇒ t, then one of the following holds:

• t = u1v1 with u =⇒ u1 and v =⇒ v1

• u = λx. u′ and t = u′
1[x := v1], with u′ =⇒ u′

1 and v =⇒ v1.

In other words, the lack of transitivity allows us to retrace our steps back. In logical
terminology, the deduction system associated with =⇒ is cut-free.

Before proving the Diamond Property for =⇒ we prove the substitution prop-
erty that held in some special cases (8.4.2), but failed in general for −→1β. The
result is a simultaneous version of 8.4.2 and 8.4.4, and the proof combines the
proofs of 8.4.2 (by induction on −→1β) and 8.4.4 (by induction on u).

196 C. Typed Lambda Calculus

Proposition 8.5.3 (Tait, Martin-Löf) The following is a derived rule for =⇒:

u =⇒ u∗ t =⇒ t∗

u[x := t] =⇒ u∗[x := t∗].

Proof. By induction on u =⇒ u∗.

1. u =⇒ u
We want

t =⇒ t∗

u[x := t] =⇒ u[x := t∗],

which we prove by induction on u.

(a) If u = x, then u[x := t] = t and u[x = t∗] = t∗, and t =⇒ t∗ is given by
hypothesis.
If u is a variable different from x, then u[x := t] = u[x := t∗] = u, and
u =⇒ u is an axiom.

(b) If u = u1u2, then

u[x := t] = (u1u2)[x := t] = (u1[x := t])(u2[x := t])
u[x := t∗] = (u1u2)[x := t∗] = (u1[x := t∗])(u2[x := t∗])

by definition of substitution. And

t =⇒ t∗

u1[x := t] =⇒ u1[x := t∗]
t =⇒ t∗

u2[x := t] =⇒ u2[x := t∗]
(u1[x := t])(u2[x := t]) =⇒ (u1[x := t∗])(u2[x := t∗])

by hypothesis, induction hypothesis, and 8.12 of 8.5.2.

(c) If u = λy. u1, then

u[x := t] = (λy. u1)[x := t] = λy. (u1[x := t])
u[x := t∗] = (λy. u1)[x := t∗] = λy. (u1[x := t∗])

by definition of substitution. And

t =⇒ t∗

u1[x := t] =⇒ u1[x := t∗]
λy. (u1[x := t]) =⇒ λy. (u1[x := t∗])

by hypothesis, induction hypothesis, and 8.13 of 8.5.2.

The Church-Rosser Theorem 197

2. u1v1 =⇒ u2v2, with u1 =⇒ u2 and v1 =⇒ v2

By definition of substitution:

u[x := t] = (u1v1)[x := t] = (u1[x := t])(v1[x := t])
u∗[x := t∗] = (u2v2)[x := t∗] = (u2[x := t∗])(v2[x := t∗]).

And

u1 =⇒ u2 t =⇒ t∗

u1[x := t] =⇒ u2[x := t∗]
v1 =⇒ v2 t =⇒ t∗

v1[x := t] =⇒ v2[x := t∗]
(u1[x := t])(v1[x := t]) =⇒ (u2[x := t∗])(v2[x := t∗])

by hypothesis, induction hypothesis, and 8.12 of 8.5.2.

3. λy. u1 =⇒ λy. u2, with u1 =⇒ u2

By definition of substitution:

u[x := t] = (λy. u1)[x := t] = λy. (u1[x := t])
u∗[x := t∗] = (λy. u2)[x := t∗] = λy. (u2[x := t∗]).

And
u1 =⇒ u2 t =⇒ t∗

u1[x := t] =⇒ u2[x := t∗]
λy. (u1[x := t]) =⇒ λy. (u2[x := t∗])

by hypothesis, induction hypothesis, and 8.13 of 8.5.2.

4. (λy. u1)v1 =⇒ u2[y := v2], with u1 =⇒ u2 and v1 =⇒ v2

By definition of substitution:

u[x := t] = (λy. u1[x := t])(v1[x := t])
u∗[x := t∗] = (u2[y := v2])[x := t∗].

Notice that

u1 =⇒ u2 t =⇒ t∗

u1[x := t] =⇒ u2[x := t∗]
v1 =⇒ v2 t =⇒ t∗

v1[x := t] =⇒ v2[x := t∗]
(λy. u1[x := t])(v1[x := t]) =⇒ (u2[x := t∗])[y := v2[x := t∗]]

by hypothesis, induction hypothesis, and 8.14 of 8.5.2. Since

(u2[x := t∗])[y := v2[x := t∗]] = (u2[y := v2])[x := t∗]

by the Substitution Property (8.4.3), the result follows. !

We can now prove the result that motivated the introduction of =⇒.

198 C. Typed Lambda Calculus

Proposition 8.5.4 Strong Diamond Property for =⇒ (Takahashi [1995])
For any term t there is a term t∗ such that if t =⇒ t1, then t1 =⇒ t∗.

Proof. Intuitively, we define t∗ by performing all possible reductions in t in parallel.
Formally, we define t∗ by induction on t, as follows:

t∗ =

x if t = x
u∗v∗ if t = uv and u is not a λ-abstraction
λx. u∗ if t = λx. u
u∗[x := v∗] if t = (λx. u)v.

We prove by induction on t that if t =⇒ t1, then t1 =⇒ t∗.

1. t = x
If t =⇒ t1, it must be t1 = x. Then

t1 = x =⇒ x = t∗

by 8.11 of 8.5.2.

2. t = uv, with u not a λ-abstraction
If t =⇒ t1, it must be t1 = u1v1, with u =⇒ u1 and v =⇒ v1. Then

u1 =⇒ u∗ v1 =⇒ v∗

t1 = u1v1 =⇒ u∗v∗ = t∗

by the induction hypothesis and 8.12 of 8.5.2.

3. t = λx. u
If t =⇒ t1, it must be t1 = λx. u1, with u =⇒ u1. Then

u1 =⇒ u∗

t1 = λx. u1 =⇒ λx. u∗ = t∗

by the induction hypothesis and 8.13 of 8.5.2.

4. t = (λx. u)v
If t =⇒ t1, there are two subcases:

(a) t1 = (λx. u1)v1, with u =⇒ u1 and v =⇒ v1

Then
u1 =⇒ u∗ v1 =⇒ v∗

t1 = (λx. u1)v1 =⇒ u∗[x := v∗] = t∗

by the induction hypothesis and 8.14 of 8.5.2.

The Church-Rosser Theorem 199

(b) t1 = u1[x := v1], with u =⇒ u1 and v =⇒ v1

Then
u1 =⇒ u∗ v1 =⇒ v∗

t1 = u1[x := v1] =⇒ u∗[x := v∗] = t∗

by the induction hypothesis and 8.5.3. !

Corollary 8.5.5 Diamond Property for =⇒ (Tait, Martin-Löf) If t1 and
t2 are terms obtained from t by =⇒, then there is a term t∗ which can be obtained
from t1 and t2 by =⇒. Graphically,

t ⇒ t1
⇓ ⇓
t2 ⇒ t∗.

Theorem 8.5.6 Diamond Property for −→β (Church and Rosser [1936])
If t1 and t2 are terms obtained from t by −→β, then there is a term t∗ which can
be obtained from t1 and t2 by −→β. Graphically,

t → t1
↓ ↓
t2 → t∗.

Proof. By ‘diagram chasing’ (as at the beginning of this section), using the fact
that −→β can be split into a sequence of −→1β , and hence of =⇒. !

Corollary 8.5.7 Uniqueness of Normal Forms. Every typed λ-term has ex-
actly one normal form.

Proof. If t1 and t2 are normal forms of t, by the previous corollary they reduce
to a common term t∗. But since they are in normal form, no reduction is possible
inside them, and thus t1 = t∗ = t2. !

Normalization and the Church-Rosser Theorem !

Note that the rules 8.5.2 defining =⇒ can be taken as the inductive definition of
a class of reductions ϕ, with the following properties (where u =⇒ v is written as
v = ϕ(u)):

ϕ(u) = u (8.15)
ϕ(uv) = ϕ(u)ϕ(v) (8.16)

ϕ(λx. u) = λx.ϕ(u) (8.17)
ϕ((λx. u)v) = ϕ(u)[x := ϕ(v)]. (8.18)

200 C. Typed Lambda Calculus

Thus u =⇒ v means that there is a sequence of reductions that works inside
out, i.e. from inner redexes to outer ones, and such a sequence is called a minimal
development . We mark a certain number of λ’s, and eliminate them by successively
reducing minimal ones, i.e. ones with no inner λ’s. If 8.15 above is replaced by

ϕ(x) = x,

then, by descending to the atomic terms, i.e. the variables, we get sequences called
complete minimal developments .

The content of the proof of the Church-Rosser Theorem given above is thus
similar to a Weak Normalization Theorem, showing that a particular reduction
strategy produces the desired result.

An alternative proof of the Church-Rosser Theorem would be the following,
similar to a Strong Normalization Theorem:

1. Show that for any term there are only finitely many possible developments.
This is done by assigning indices to terms in such a way that they decrease
along any development.

2. Show that all complete developments of a term w.r.t. a given set of λ’s have
the same value. This follows by considering any pair of selected redexes, and
seeing what happens after they have been reduced in different orders (by
cases on the various possibilities, i.e. on whether the redexes are disjoint or
overlapping).

3. Show that the notion

u # v ⇔ there is a complete development from u to v

has the Diamond Property. This follows from the two parts above: if u # u1

and u # u2, consider the sets R1 and R2 of redexes selected in u to go to u1

and u2, and complete the two developments (which were only complete w.r.t.
R1 and R2, respectively) w.r.t. R1 ∪ R2. The procedure terminates by part
1, and it produces the same result by part 2.

4. The Church-Rosser Theorem then follows by diagram chasing, since −→β is
the transitive closure of #.

Equality once more

From the Diamond Property we can deduce another characterization of β-equality
which also works for the Untyped Lambda Calculus, unlike the previous character-
ization 8.4.6.

The Church-Rosser Theorem 201

Proposition 8.5.8 Two terms are β-equal if and only if they reduce to a common
term.

Proof. One direction has been proved in 8.1.7. For the opposite direction, suppose
u1 =β u2. By induction on 8.1.6, there are three cases:

• u1 −→β u2

Then there is nothing to prove.

• u2 =β u1

By the induction hypothesis, u2 and u1 reduce to a common term.

• u1 =β t and t =β u2

By the induction hypothesis, u1 and t reduce to a common term v1, and t
and u2 reduce to a common term v2. By the Diamond Property, v1 and v2

reduce to a common term t∗:

u1

#
#

##$
β

v1

#
#

##$
β

t

#
#

##$
β

!
!

!!3
β

t∗

v2

!
!

!!3
β

u2

!
!

!!3
β

Then u1 and u2 reduce to a common term t∗. !

8.6 Extensionality

Since the terms of the Typed Lambda Calculus code programs that compute func-
tions, the problem arises of extensionally identifying intensionally different pro-
grams that compute the same function. In this section we introduce a number of
equivalent solutions to the problem, and study the extensional version of the Typed
Lambda Calculus thus obtained.

202 C. Typed Lambda Calculus

When needed to avoid confusion, we will explicitly refer to notions, symbols
and results of the previous sections by attaching a β to them. For example, we will
talk of β-normal forms, parallel β-reductions ⇒β and strong β-normalization.

Extensional reductions

There are at least three possible ways of identifying different terms that compute
the same function:

• the infinitary ext-rule, which is a version of Leibniz’s principle of indis-
cernibles, identifies two terms u and v if they cannot be distinguished on
the basis of their behavior on arbitrary terms t:

(∀t)(ut =β vt)
u =ext v

• the finitary ς-rule, which is a different version of the previous one, identifies
two terms u and v if they cannot be distinguished on the basis of their
behaviour on an arbitrary variable x not occurring free in any of them:

ux =β vx
u =ς v

• the finitary η-rule identifies a term u with the function λx. ux whose values
are obtained by applying u to a generic argument x not occurring free in u:

λx. ux =η u.

The next proposition shows that, luckily, we do not have to choose among the
various rules.

Proposition 8.6.1 The rules ext, ς and η are equivalent in the Typed Lambda
Calculus.

Proof. ς follows from η:

ux =β vx
λx. ux =β λx. vx

u =η λx. ux =β λx. vx =η v.

ext follows from ς:
(∀t)(ut =β vt)

ux =β vx
u =ς v.

The Church-Rosser Theorem 203

η follows from ext because, since (λx. ux)t =β ut holds for any t by the β-rule,
then λx. ux =ext u. !

In particular, the infinitary ext-rule can be equationally presented by the η-rule,
to which we confine in the following. The η-rule has been stated in the form of an
equality rule, but it can easily be turned into a reduction rule as follows.

Definition 8.6.2 η-rule. Given a term u and a variable x not occurring free in
it, we can step from λx. ux (called an η-redex) to u (called an η-reduct). We
write

λx. ux −→1η u

to state that one step of the η-rule has been applied to the left hand side to produce
the right hand side.

The following definition is the analogue of 8.1.4, 8.1.5 and 8.1.6.

Definition 8.6.3 η-Reducibility and η-Equality. The reducibility −→1η is
defined inductively, by replacing in 8.1.4 the first clause by the following:

λx. ux −→1η u,

when x is not free in u.
The reducibility −→η is the reflexive and transitive closure of −→1η.
The relation =η is the symmetric and transitive closure of −→η.

The reducibility relation −→η is not particularly interesting on its own. For
example, if we say that a term is in η-normal form if no application of the η-rule
is possible in it, then it is immediate to notice that given a term, any sequence
of applications of η-reductions to it will eventually produce a term in η-normal
form (Strong η-Normalization), that is independent of the chosen sequence of
η-reductions (Uniqueness of η-Normal Forms). The first result is a trivial
consequence of the observation that any application of the η-rule decreases the
length of the term to which it is applied. The second result follows, as in 8.4.5,
from the first and the Weak Diamond Property for η-reduction (the latter requires
only the trivial part of the proof of 8.4.1).

It is thus more interesting to consider the η-rule not as a replacement of the
β-rule, as above, but as a supplement to it.

Definition 8.6.4 βη-Reducibility and βη-Equality. The reducibility −→1βη

is defined inductively, by adding to 8.1.4 the following clause:

λx. ux −→1η u,

when x is not free in u.
The reducibility −→βη is the reflexive and transitive closure of −→1βη.
The relation =βη is the symmetric and transitive closure of −→βη.

204 C. Typed Lambda Calculus

Notice that βη-equality is coarser than pure β-equality, since e.g. λx. yx -=β y,
because the two sides are in β-normal form and different, but λx. yx =βη y by
definition.

As above, we say that a term is in βη-normal form if no application of the
β-rule or η-rule is possible in it. In the following we prove that given a term, any
sequence of applications of βη-reductions to it will eventually produce a term in
βη-normal form (Strong βη-Normalization, 8.6.11), that is independent of the
chosen sequence of βη-reductions (Uniqueness of βη-Normal Forms, 8.6.16).

Combinators !

Of the three extensionality rules for the Typed Lambda Calculus introduced above,
two admit obvious analogues for the Typed Theory of Combinators, namely:

• the infinitary ext-rule, which identifies two combinators D and E if they can-
not be distinguished on the basis of their behavior on arbitrary combinators
C:

(∀C)(DC =cβ EC)
D =ext E

• the finitary ς-rule, which identifies two combinators D and E if they cannot
be distinguished on the basis of their behaviour on an arbitrary variable x
not occurring in any of them:

Dx =cβ Ex
D =ς E.

Proposition 8.6.5 The rules ext and ς are equivalent in the Typed Theory of
Combinators.

Proof. To show that ς follows from ext, suppose Dx =cβ Ex for some x not
occurring in D or E. By substitution, DC =cβ EC for any C. Then D =ext E.

To show that ext follows from ς, suppose (∀C)(DC =cβ EC). Then Dx =cβ Ex
for some x not occurring in D or E. Thus D =ς E. !

By adding any of the two equivalent extensionality rules to the theory of cβ-
equality, we obtain a theory of cβη-equality. Curry [1930] has proved that it is
possible to equationally present such a theory by means of a finite set of equations.
This is a better result than the one achieved above for the theory of βη-equality in
the Typed Lambda Calculus, since the η-rule is only an infinite schema of equations
(one for each term).

However, since our emphasis is on the extensional Typed Lambda Calculus, we
do not develop here the extensional Typed Theory of Combinators, and content

The Church-Rosser Theorem 205

ourselves with showing that it possible to mutually translate one into the other. In
one direction the translation is trivial, and it simply translates the atomic combi-
nators in the natural way.

Definition 8.6.6 Lambda Translation of Combinators. Given a combinator
C, we inductively translate it into a λ-term Cλ as follows:

Cλ =

x if C = x
λx. x if C = I
λxy. x if C = K
λxyz. (xz)(yz) if C = S
DλEλ if C = DE.

In the other direction the translation is subtler, since it has to replace every
possible occurrence of a λ-abstraction by a combinator.

Definition 8.6.7 Combinatorial Translation of Lambda Terms (Curry and
Feys [1958]) Given a λ-term t, we inductively translate it into a combinator tc as
follows:

tc =

x if t = x
ucvc if t = uv
I if t = λx. x
Ky if t = λx. y
KC if t = λx.C (C = I, K or S)
S(λx. u)c(λx. v)c if t = λx. uv
(λx. uc)c if t = λx. u and u is a λ-abstraction.

Before proving that the two translations are inverse one of the other, we state a
pair of lemmas that will make it easier to deal with the crucial case of λ-abstraction.

Proposition 8.6.8 For any combinator C:

1. (λx.C)cx =cβ C

2. (λx.C)cλ =βη λx.Cλ.

Proof. Part 1 is proved by induction on C:

1. if C = x, then
(λx. x)cx = Ix =cβ x.

2. if C = y, then
(λx. y)cx = Kyx =cβ y.

206 C. Typed Lambda Calculus

3. if C = I, K or S, then

(λx.C)cx = KCx =cβ C.

4. if C = DE, then

(λx.DE)cx = S(λx.D)c(λx.E)cx =cβ ((λx.D)cx)((λx.E)cx) =cβ DE

by the induction hypothesis.

Part 2 is also proved induction on C:

1. if C = x, then
(λx. x)cλ = Iλ = λx. x = λx. xλ.

2. if C = y, then

(λx. y)cλ = (Ky)λ = Kλyλ = (λzx. z)yλ =β λx. yλ.

3. if C = I, K or S, then

(λx.C)cλ = (KC)λ = KλCλ = (λzx. z)Cλ =β λx.Cλ.

4. if C = DE, then

(λx.DE)cλz = (S(λx.D)c(λx.E)c)λz
= Sλ(λx.D)cλ(λx.E)cλz
=βη Sλ(λx.Dλ)(λx.Eλ)z by the induction hypothesis
=β ((λx.Dλ)z)((λx.Eλ)z)
=β (Dλ[x := z])(Eλ[x := z])
= (DλEλ)[x := z]
= (DE)λ[x := z]
=β (λx. (DE)λ)z.

By extensionality, (λx.DE)cλ =βη λx. (DE)λ. !

The next proposition shows that if we translate a combinator into a λ-term and
the latter back into a combinator, we get an extensional identity.

Proposition 8.6.9 For any combinator C, (Cλ)c =cβη C.

Proof. We proceed by induction on C.

• If C = x, then
(xλ)c = xc = x.

The Church-Rosser Theorem 207

• If C = I, then
(Iλ)c = (λx. x)c = I.

• If C = K, then

(Kλ)cxy = (λxy.x)cxy = (λx. (λy. x)c)cxy =cβ (λy. x)cy =cβ x =cβ Kxy

by 8.6.8.1 twice. By extensionality, (Kλ)c =cβη K.

• If C = S, then

(Sλ)cxyz = (λxyz. (xz)(yz))cxyz
= (λx. (λyz. (xz)(yz))c)cxyz
=cβ (λyz. (xz)(yz))cyz
= (λy. (λz. (xz)(yz))c)cyz
=cβ (λz. (xz)(yz))cz
=cβ (xz)(yz)
=cβ Sxyz

by 8.6.8.1 three times. By extensionality, (Sλ)c =cβη S.

• If C = DE, then

((DE)λ)c = (DλEλ)c = (Dλ)c(Eλ)c =cβη DE

by the induction hypothesis. !

Similarly, the next proposition shows that if we translate a λ-term into a com-
binator and the latter back into a λ-term, we get an extensional identity.

Proposition 8.6.10 For any λ-term t, (tc)λ =βη t.

Proof. We proceed by induction on t.

• If t = x, then
(xc)λ = xλ = x.

• If t = uv, then
(uv)cλ = (ucvc)λ = ucλvcλ =βη uv

by the induction hypothesis.

• If t = λx. x, then
(λx. x)cλ = Iλ = λx. x.

• If t = λx. y, then

(λx. y)cλ = (Ky)λ = Kλyλ = (λzx. z)y =β λx. y.

208 C. Typed Lambda Calculus

• If t = λx. uv, then

(λx. uv)cλz = (S(λx. u)c(λx. v)c)λz
= Sλ(λx. u)cλ(λx. v)cλz
=βη Sλ(λx. u)(λx. v)z by the induction hypothesis
=β ((λx. u)z)((λx. v)z)
= (u[x := z])(v[x := z])
= (uv)[x := z]
=β (λx. uv)z.

By extensionality, (λx. uv)cλ =βη λx. uv.

• If t = λx. u and u is a λ-abstraction, then

(λx. u)cλ = (λx. uc)cλ =βη λx. ucλ =βη λx. u

by 8.6.8.2 and the induction hypothesis. !

Normal Forms

We do not repeat here the whole story about existence and uniqueness of normal
forms told in Sections 3–5, and content ourselves with extending to βη-reducibility
the strongest results there obtained for β-reducibility.

Theorem 8.6.11 Strong βη-Normalization. Every typed λ-term is strongly
βη-normalizable.

Proof. We define the class of computable terms as in 8.3.4. The proofs of proposi-
tions 8.3.5, 8.3.7 and 8.3.8 remain valid, and we only need to supplement the proof
of 8.3.6 as follows.

In the last paragraph of the proof, we must allow for the additional possibil-
ity that a reduction in (λxα. uβ)vαuα1

1 · · ·uαn
n reduces uβ to a term of the form

tα→βxα, with xα not free in tα→β , so that (λxα. tα→βxα)vαuα1
1 · · ·uαn

n reduces to
tα→βvαuα1

1 · · ·uαn
n . However, since xα is not free in tα→β , the latter term is equal

to (tα→βxα)[xα := vα]uα1
1 · · ·uαn

n , i.e. any reduction from it can also be performed
inside uβ [xα := vα]uα1

1 · · ·uαn
n . Thus the η-rule does not introduce additional com-

plications. !

Having thus proved the existence of normal forms, we now turn to their unique-
ness. We first extend the notion of parallel β-reducibility =⇒β as we did for the
notion of β-reducibility.

The Church-Rosser Theorem 209

Definition 8.6.12 Parallel βη-Reducibility (Tait, Martin-Löf) The reducibil-
ity =⇒βη is defined inductively, by adding to 8.5.2 the following clause:

u =⇒βη u1

λx. ux =⇒βη u1,
(8.19)

when x is not free in u.

As a special case of equation 8.19 we have

u =⇒βη u
λx. ux =⇒βη u,

where the top line consists of an axiom. Thus −→1η implies =⇒βη. Inductively, we
easily see that =⇒βη implies −→βη. Then −→βη is the transitive closure of =⇒βη,
since it is the transitive closure of −→1βη.

Proposition 8.6.13 (Tait, Martin-Löf) The following is a derived rule for
=⇒βη:

u =⇒βη u∗ t =⇒βη t∗

u[x := t] =⇒βη u∗[x := t∗].

Proof. We only need to supplement the proof of 8.5.3 by the following case:

5. λy. u1y =⇒βη u2, with u1 =⇒βη u2

By definition of substitution:

u[x := t] = (λy. u1y)[x := t] = λy. (u1[x := t])y
u∗[x := t∗] = u2[x := t∗].

And
u1 =⇒βη u2 t =⇒βη t∗

u1[x := t] =⇒βη u2[x := t∗]
λy. (u1[x := t])y =⇒βη u2[x := t∗]

by hypothesis, induction hypothesis, and 8.19 of 8.6.12. !

Proposition 8.6.14 Strong Diamond Property for =⇒βη (Takahashi [1995])
For any term t there is a term t∗ such that if t =⇒βη t1, then t1 =⇒βη t∗.

Proof. We only need to supplement the proof of 8.5.4 by the following definition:

t∗ =
{

λx. u∗ if t = λx. u with u not of the form u1x, with x not free in u1

u∗ if t = λx. ux and x not free in u

and the following case:

210 C. Typed Lambda Calculus

5. t = λx. ux, with x not free in u
If t =⇒βη t1, there are three subcases:

(a) t1 = λx. u1x, with u =⇒βη u1

Then
u1 =⇒βη u∗

t1 = λx. u1x =⇒βη u∗ = t∗

by the induction hypothesis and 8.19 of 8.6.12.
(b) t1 = u1, with u =⇒βη u1

Then
t1 = u1 =⇒βη u∗ = t∗

by the induction hypothesis.
(c) u = λy. v and t1 = λx. v1[y := x] = λy. v1, with v =⇒βη v1

Then
v =⇒βη v1

λy. v =⇒βη λy. v1

by 8.13 of 8.5.2, and hence

t1 = λy. v1 =⇒βη (λy. v)∗ = u∗ = t∗

by the induction hypothesis. !

Theorem 8.6.15 Diamond Property for βη-Reduction (Curry and Feys
[1958]) If t1 and t2 are terms obtained from t by −→βη, then there is a term t∗

which can be obtained from t1 and t2 by −→βη.

Corollary 8.6.16 Uniqueness of βη-Normal Forms. Every typed λ-term has
exactly one βη-normal form.

The proof of the Diamond Property given above is useful because it works
unchanged for the Untyped Lambda Calculus as well. However, the next exercise
shows that for the Typed Lambda Calculus alone a much simpler proof is possible.

Exercise 8.6.17 The Diamond Property for βη-reduction can be proved as in the proof
of Strong Normalization. (Statman [1985]) (Hint: define a class C of terms as in 8.3.4, by
changing the definition at atomic types α to:

tα ∈ C ⇔ the Diamond Property holds when starting from tα.

The definition at arrow types is the same. We then prove by induction on types that for

every term t in C the Diamond Property holds when starting from t, and by induction
on terms that every typed term is in C. For the first part, we need to reduce the type

of tα→β. By the induction hypothesis, the Diamond Property holds when starting from
tα→βxα. By inserting λ’s everywhere, the Diamond Property holds when starting from

λxα. tα→βxα. By the η-rule, the latter is equal to tα→β itself.)

æ

Chapter 9

The Curry-Howard
Isomorphism

In the previuous chapters we introduced the Typed Lambda Calculus independently
of logic, as a theory of computable functions. We now look at the relationships.

Such a relationship is beneficial in both directions: on the one hand logic can
be seen in a computational way (as a calculus whose objects are proofs), and on
the other hand the simple system of types of Chapter C can be extended to reflect
various well-known systems of logic, in a process that will lead us to powerful
systems.

THREE THEORIES:

1. arrow types: implication

2. arrow and product types: implication and conjunction

3. surjective pairs: symmetric reduction rules

9.1 The Curry-Howard Isomorphism

Theorem 9.1.1 The Curry-Howard Isomorphism (??) There is an isomor-
phism between:

• the intuitionistic proof theory of implication and conjunction, with the Nat-
ural Deduction rules of introduction, elimination, normalization and inverse
normalization;

• the reduction theory of the Typed Lambda Calculus, with the β-rule and sur-
jective pairs.

211

212 C. Typed Lambda Calculus

To know whether a formula has a proof: look for a term with the formula as
type.

To know whether a type admits a terms with that type (is inhabited) see
whether the type is provable (as a formula).

9.2 Normal forms

Strong Normalization and uniqueness of normal form for proof in N .
Discussion of the relationships with Cut Elimination: non uniqueness.

9.3 Semantics

Turning models of the Typed Lambda Calculus into models of Implicational Logic
and conversely.

Proving strong normalization by Kripke Models (Gallier).

9.4 Complexity

Complexity of reduction procedures and of type inhabitation.
æ

Chapter 10

Semantics

Until now we have developed the Typed Lambda Calculus as a purely syntactical
theory, with terms as objects that can be manipulated according to the reduction
rules. Intuitively, however, we always had an intended interpretation in mind:
terms of nonatomic types were thought of as naming functions, and the β-rule
was intended to codify an atomic step in the evaluation of a function at a given
argument.

The question of the relationship between the two levels, i.e. the syntactical
manipulation of terms and the functional intended meaning, was already indirectly
addressed in Chapter 8, where we showed that the Typed Lambda Calculus can
be seen as a theory of functions in the abstract sense that the evaluation of a term
always terminates, with a uniquely determined answer.

We now address the problem of the relationship between the two levels in a
more direct and conventional way, by looking for possible interpretations of typed
λ-terms as functions in the usual mathematical sense. This will be achieved by
exhibiting a number of possible models.

10.1 Models

In our example of polynomial expressions, we had in mind natural numbers as
intended meanings. This can be reformulated by saying that the set N of natural
numbers was the ‘intended model’ for the calculus of polynomial expressions. Of
course, it is not enough to specify which objects we had in mind: we also have
to say how we associate to every polynomial expression a number that such an
expression describes.

This is quite clear if the expression has no variables: then the intented meaning
is the number described by that expression, e.g. 44 in the case of 32 + 5 · 7. If

213

214 C. Typed Lambda Calculus

there are variables, the situation is slightly more complicated: the meaning will
ultimately depend on the value assigned to the variables, e.g. x2 + 5 · 7 will denote
a number for any fixed x, and hence by itself it denotes a generic number of a
certain form, i.e. a function from N to N .

An obvious property of the ‘meaning’ of polynomial expressions is that they
coincide for polynomial expressions that can be obtained one from the other by
formal manipulations, i.e. for polynomial expressions with the same normal form.

All this can now be generalized to λ-terms, in a natural way. First, we have
here terms of different possible types, and thus we need a set Mα of ‘meanings’
for each type α. We further need to interpret terms tα as descriptions of elements
[[tα]] of Mα. Recall that, from the start, terms have been taken as descriptions of
objects. The novelty here is that we now specify which objects we have in mind
(namely, elements of Mα).

The fact that a description tα could be either a generic or a proper name,
depending on whether tα has free variables or not, is reflected in the fact that its
interpretation [[tα]] is either a generic object of Mα, i.e. the value of a function
with values in Mα, or a specific object of Mα. More precisely, if tα is closed, then
[[tα]] ∈ Mα. And if tα has free variables xα1

1 , . . . , xαn
n , then [[tα]] is a function

[[tα]] : Mα1 × · · ·× Mαn −→ Mα.

Since λ-abstraction allows us to abstract xα in uβ even if the former does not occur
free in the latter, we will need to consider [[tα]] as such a function also when the free
variables of tα are only among xα1

1 , . . . , xαn
n . This is somewhat unsatisfactory, since

the same interpretation is considered as a different function in different situations.
Finally, the interpretation function should respect β-equality, i.e. we should

have
tα1 =β tα2 ⇒ [[tα1]] = [[tα2]],

where the equality on the right indicates identity of mathematical objects. This
is somewhat unclear, since e.g. t1 might contain free variables while t2 might be
closed: in the first case the interpretation will be an element, in the second a
function, and we should then explain how they could be considered ‘equal’.

Environments

The treatment of free variables, which is the source of some of the unsatisfactory
features of the formulation above, is much simplified by a simple observation. In-
stead of considering the interpretation of a term as a function of some variables, we
consider it as a function of all (infinitely many!) variables. This is possible because,
instead of individual variables ranging separately over the appropriate domains, we
can consider the set of all variables ranging globally over all possible domains. This
process is easily described in terms of environments for {Mα}α, i.e. interpretations
of every variable by an element of {Mα}α of the appropriate level.

Models 215

Definition 10.1.1 An environment for {Mα}α is a function

ρ : Variables −→
⋃

α

Mα

such that
ρ(xα) ∈ Mα.

We denote by E the set of environments, by ρ an environment, and by ρ[xα := a]
the modification of the environment ρ obtained by interpreting xα as a ∈ Mα, i.e.

(ρ[xα := a])(yβ) =
{

a if yβ = xα

ρ(yβ) otherwise.

Notice that the two notations

u[x := v] and ρ[x := a]

are related, as the similarity of notation underlines, but different. The first denotes
a syntactical substitution of the term v for the variable x in the term u. The second
denotes a semantical assignment of the value a to the variable x in the environment
function ρ.

The advantage of environments is simply uniformity of notation. They allow
us to consider the interpretation of a term tα not as a function

[[tα]] : Mα1 × · · ·× Mαn −→ Mα,

but rather as a function of all variables

[[tα]] : E −→ Mα.

We will write [[tα]]ρ for the interpretation of tα under the environment ρ.

Models

We can now use environments to restate the previous description of interpretation
in a more compact and transparent way.

Definition 10.1.2 A model of the Typed Lambda Calculus is a structure

M = 〈{Mα}α, [[]]M〉

with the following properties, where ρ is any environment for {Mα}α:

1. if tα is a term of type α, then (∀ρ)([[tα]]Mρ ∈ Mα).

216 C. Typed Lambda Calculus

2. [[]]M respects β-equality, i.e.

tα1 =β tα2 ⇒ (∀ρ)([[tα1]]Mρ = [[tα2]]Mρ),

where the equality on the right indicates identity of objects in Mα.

An extensional model is a model that respects βη-equality, i.e.

tα1 =βη tα2 ⇒ (∀ρ)([[tα1]]Mρ = [[tα2]]Mρ).

To improve readability we can omit either of the indeces ρ or M in [[]]Mρ , when
no confusion arises. Moreover, we will also write

M |= tα1 = tα2 for (∀ρ)([[tα1]]Mρ = [[tα2]]Mρ),

so that the soundness conditions in the definition of a model can be stated more
succinctly as

tα1 =β tα2 ⇒ M |= tα1 = tα2

or
tα1 =βη tα2 ⇒ M |= tα1 = tα2 .

10.2 Term Models

The example of polynomial expressions shows how a model can easily be obtained
by identifying the objects of the calculus with their normal forms. Thus, for ex-
ample, we can write both

[[32 + 5 · 7]]N = [[44]]N ,

to mean that 32 + 5 · 7 and 44 are descriptions of the same natural number, and

[[32 + 5 · 7]]N = 44,

to mean that 32 + 5 · 7 is a description of the number 44. This corresponds to the
discussion above, on how numbers can be taken not only to be described by normal
expressions in decimal notation, but to be such expressions.

This can be done for the Typed Lambda Calculus as well, by taking terms in
normal form to be not only as particularly simple descriptions of objects, but as
the objects themselves. The interpretation of a term will thus be its normal form.

Definition 10.2.1 The first term model T1 is defined as follows:

1. The underlying structure consists of:

Tα = {terms of type α in normal form}

Term Models 217

2. Let ρ be an environment for {Tα}α, i.e. a function assigning to every variable
a term in normal form of the same type. Then

[[tα]]T1
ρ = the normal form of tα[.x := ρ(.x)],

where tα[.x := ρ(.x)] indicates the result of the simultaneous substitution of
the term ρ(x) for any free variable x of tα.

Notice that it is not enough to consider only the closed terms, because in a pure
theory there is no closed term of atomic type.

The next result shows not only that T1 is a model of λ-calculus, i.e. β-equal
terms have the same interpretation under every assignment, but also that β-
different terms have different interpretations under at least one assignment. This
property of models is related to what is called full abstraction in the literature.

Proposition 10.2.2 The structure T1 is a model of the Typed Lambda Calculus.
Actually,

tα1 =β tα2 ⇔ T1 |= tα1 = tα2 .

Proof. If tα1 =β tα2 , then

tα1 [.x := ρ(.x)] =β tα2 [.x := ρ(.x)],

because =β is invariant under simultaneous substitutions. But β-equal terms have
the same normal form, and thus

[[tα1]]ρ = [[tα2]]ρ.

Conversely, suppose tα1 -=β tα2 . Then they have different normal forms. If ρ is
the identity function, which is an environment because the variables are terms in
normal form, then

tα1 [.x := ρ(.x)] = tα1 -=β tα2 = tα2 [.x := ρ(.x)].

Thus
[[tα1]]ρ -= [[tα2]]ρ,

because tα1 [.x := ρ(.x)] and tα2 [.x := ρ(.x)] have different normal forms. !

The first term model is very natural, but to interpret a term as a normal form
obviously requires the existence of normal forms. Thus the model will have no
parallel in the Untyped Lambda Calculus. However, a simple modification of it
will. Since a model has to identify terms that are β-equal, the new idea is to
consider the set of all terms that are β-equal to a given term as an interpretation
of it. Technically, we consider equivalence classes of terms w.r.t. the equivalence
relation =β.

218 C. Typed Lambda Calculus

Definition 10.2.3 The second term model T2 is defined as follows:

1. The underlying structure consists of:

Tα = {equivalence classes of terms of type α w.r.t. =β}

2. Given an environment ρ on {Tα}α, i.e. a function assigning to every variable
the equivalence class of a term of the same type, let ρ∗ be a choice function for
ρ, i.e. a function that associates to every variable x a term in the equivalence
class ρ(x). Then

[[tα]]T2
ρ = the equivalence class of tα[.x := ρ∗(.x)],

where tα[.x := ρ∗(.x)] indicates the result of the simultaneous substitution of
the term ρ∗(x) for any free variable x of tα.

Proposition 10.2.4 The structure T2 is a model of the Typed Lambda Calculus.
Actually,

tα1 =β tα2 ⇔ T2 |= tα1 = tα2 .

Proof. If tα1 =β tα2 , then

tα1 [.x := ρ∗(.x)] =β tα2 [.x := ρ∗(.x)],

because =β is invariant under simultaneous substitutions. But β-equal terms are
in the same equivalence class, and thus

[[tα1]]ρ = [[tα2]]ρ.

Conversely, suppose tα1 -=β tα2 . Then they are in different equivalence classes.
If ρ is the environment associating its equivalence class to every variable, we can
choose as ρ∗ the identity function. Then

tα1 [.x := ρ∗(.x)] = tα1 -=β tα2 = tα2 [.x := ρ∗(.x)],

and hence
[[tα1]]ρ -= [[tα2]]ρ,

because tα1 [.x := ρ∗(.x)] and tα2 [.x := ρ∗(.x)] are in different equivalence classes. !

Extensional term models can be defined similarly, by considering βη normal
forms and βη-equality, respectively.

Despite their advantages, the term models provide semantical interpretations
of terms too close to the original syntactical presentation. In other words, they are
well-behaved but not very insightful. This is the reason to continue, in the next
sections, the search for other more informative models.

Functional Models 219

10.3 Functional Models

We now turn to the consideration of models in which terms of arrow types are
interpreted as functions in the usual mathematical sense, and terms of atomic types
are interpreted as elements of given sets. In particular, Mα→β is here considered
as a subset of the set (Mβ)Mα of all functions from Mα to Mβ.

In practice, we define the interpretation function [[]]M in the following canonical
way, which reduces it to the definition of a structure {Mα}α, and the verification
of closure under informal abstraction.

Definition 10.3.1 Canonical Interpretation. Given {Mα}α such that, for ev-
ery α and β,

Mα→β ⊆ (Mβ)Mα ,

and an environment ρ on it, we define [[]]ρ by induction on terms, as follows:

[[tα]]ρ =

ρ(xα) if tα = xα

[[uγ→α]]ρ([[vγ]]ρ) if tα = uγ→αvγ

ΛXγ . [[uβ]]ρ[xγ :=Xγ] if tα = λxγ . uβ,

where ΛXγ . [[uβ]]ρ[xγ :=Xγ] denotes the function

a ∈ Mγ >−→ [[uβ]]ρ[xγ :=a] ∈ Mβ .

Note that Λ is simply shorthand for ‘the function with argument . . . and
value . . . ’. The use of a different symbol stresses the fact that Λ is an infor-
mal abstraction operator that produces names for mathematical functions on the
structure {Mα}α, while λ is a formal operator that produces names for terms . Ob-
viously the two uses are related, in the sense that λ is meant to formally capture
some intuitive properties of Λ.

A similar discussion holds for Xγ , which is used as an informal variable ranging
over elements of Mγ , while xγ is a formal variable ranging over terms of type γ.
Again the two uses are related, in the sense that elements of Mγ are meant to
interpret terms of type γ.

We should check, inductively, that [[tα]]ρ is a member of Mα. In the first clause,
it is so by definition of environment. In the second clause, it is so by the induction
hypothesis, since then [[uγ→α]]ρ is an element of Mγ→α, and hence a function from
Mγ to Mα. In the last case, by the induction hypothesis, we certainly obtain a
function from Mγ to Mβ , but not necessarily an element of Mγ→β, without further
hypotheses on {Mα}α. For specific structures, this will have to be verified .

220 C. Typed Lambda Calculus

Full functional models

The simplest (and most simpleminded) class of functional models we can think of
is obtained by not imposing any restriction on the class of functions we consider at
arrow type levels. The underlying structure of such a model is defined as follows.

Definition 10.3.2 For any set A, the full type hierarchy over A is the struc-
ture {Aα}α defined as follows:

1. Aα = A for α atomic

2. Aα→β is the full function space, i.e. the set AAα
β of all functions from Aα to

Aβ.

The definition of the model becomes then the following.

Definition 10.3.3 The full functional model over A is the structure

FA = 〈{Aα}α, [[]]FA〉,

where [[]]FA is the canonical interpretation over {Aα}α.

The main point here is that the interpretation of [[λxγ . uβ]]ρ, which by definition
is a function from Aγ to Aβ , is now an element of Aγ→β because the latter contains
all such functions. Thus [[]]FA is automatically well-defined.

Theorem 10.3.4 Soundness for Full Functional Models. For any nonempty
set A, the structure FA is an extensional model of the Typed Lambda Calculus.
More precisely,

tα1 =βη tα2 ⇒ FA |= tα1 = tα2 .

Proof. Since two terms are βη-equal if they reduce to the same term, it is enough
to prove the result when tα1 −→βη tα2 . By induction on the number of steps, it is
enough to prove the result when tα1 −→1βη tα2 . This is proved by induction on the
definition of −→1βη. There are five cases, the first two of which are the crucial
verifications, while the three remaining ones hold trivially.

1. (λxα. uβ)vα −→1βη uβ[xα := vα]
Then

[[(λxα. uβ)vα]]ρ = [[λxα. uβ]]ρ([[vα]]ρ)
= (ΛXα. [[uβ]]ρ[xα:=Xα])([[vα]]ρ)

= [[uβ]]ρ[xα:=[[vα]]ρ]

= [[uβ[xα := vα]]]ρ.

Functional Models 221

The first two equalities hold by definition of [[]]. The third holds by definition
of Λ as a mathematical function, which is computed by instantiating the
variable to the argument. The last equality holds by the fact, proved in
10.3.5, that substitutions in terms and in environments commute.

2. λxα. tα→βxα −→1βη tα→β

Then

[[λxα. tα→βxα]]ρ = ΛXα. [[tα→βxα]]ρ[xα:=Xα]

= ΛXα. [[tα→β]]ρ[xα:=Xα]([[xα]]ρ[xα:=Xα])

= ΛXα. [[tα→β]]ρ[xα:=Xα](Xα)

= [[tα→β]]ρ.

The first three equalities hold by definition of [[]]. The last holds by definition
of Λ as a mathematical function.

3. uα→β
1 vα −→1βη uα→β

2 vα

By the induction hypothesis, uα→βη
1 −→1β uα→β

2 . Hence, for any ρ,

[[u1]]ρ = [[u2]]ρ.

Then the two interpretations are the same function, and have the same value
for the same argument [[v]]ρ. Hence

[[u1v]]ρ = [[u1]]ρ([[v]]ρ) = [[u2]]ρ([[v]]ρ) = [[u2v]]ρ,

where the two outer equalities hold by definition of [[]].

4. uα→βvα1 −→1βη uα→βvα2
By the induction hypothesis, vα1 −→1βη vα2 . Hence, for any ρ,

[[v1]]ρ = [[v2]]ρ.

Then the two interpretations are the same element, and any function [[u]]ρ
applied to them has the same value. Hence

[[uv1]]ρ = [[u]]ρ([[v1]]ρ) = [[u]]ρ([[v2]]ρ) = [[uv2]]ρ,

where the two outer equalities hold by definition of [[]].

5. λxα. uβ1 −→1βη λxα. uβ2
By the induction hypothesis, uβ1 −→1βη uβ2 . Hence, for any ρ,

[[u1]]ρ = [[u2]]ρ.

222 C. Typed Lambda Calculus

In particular, for any aα ∈ Aα,

[[u1]]ρ[xα:=aα] = [[u2]]ρ[xα:=aα].

Then

[[λxα. uβ1]] = ΛXα. [[uβ1]]ρ[xα:=Xα] = ΛXα. [[uβ2]]ρ[xα:=Xα] = [[λxα. uβ2]],

where the two outer equalities hold by definition of [[]]. !

Exercise 10.3.5 Substitution Lemma. For any u, v and ρ,

[[u]]ρ[x:=[[v]]ρ] = [[u[x := v]]]ρ.

(Hint: by induction on u. The only non trivial case is u = λy. u1. By possibly using the
α-rule, we may suppose that y is not free in v and is distinct from x. Then

[[u[x := v]]] = ΛY. [[u1[x := v]]]ρ[y:=Y]

= ΛY. [[u1]](ρ[y:=Y])[x:=[[v]]ρ[y:=Y]]

= ΛY. [[u1]](ρ[y:=Y])[x:=[[v]]ρ]

= ΛY. [[u1]](ρ[x:=[[v]]ρ])[y:=Y]

= [[u]]ρ[x:=[[v]]ρ].

The first equality holds by definition of [[]]ρ, because u[x := v] = λy. u1[x := v]). The

second holds by the induction hypothesis applied to the environment ρ[y := Y]. The third

holds because y does not occur free in v. The fourth holds because y and x are distinct.
The last holds by definition of [[]]ρ[x:=[[v]]ρ].)

Completeness

If A is a finite set, we do not expect the opposite implication to hold in the previous
result, i.e. FA to be able to distinguish among different terms. Indeed, if A is finite,
then A(p→p)→(p→p) is finite, but there are infinitely many distinct closed terms of
type (p → p) → (p → p). For example, the following:

λfp→pxp. f(· · · (f︸ ︷︷ ︸
n times

(x)) · · ·).

However, the next result proves that the finiteness of A is the only obstacle.

Theorem 10.3.6 Completeness for Full Functional Models (Friedman [1975])
For any infinite set A,

tα1 =βη tα2 ⇔ FA |= tα1 = tα2 .

Functional Models 223

Proof. The left to right direction has already been proved in 10.3.4.
For the right to left direction, we take advantage of the fact that two terms are

βη-equal if and only if they have the same normal form, and rewrite the requirement

FA |= tα1 = tα2 ⇒ tα1 =βη tα2

as
FA |= tα1 = tα2 ⇒ tα1 and tα2 have the same normal form.

To satisfy this, it is enough to find a single environment ρ on FA such that

[[tα1]]ρ = [[tα2]]ρ ⇒ tα1 and tα2 have the same normal form.

We are thus looking for an environment ρ and a function I such that

I([[tα]]ρ) = the normal form of tα.

From this the result follows, since

FA |= tα1 = tα2 ⇒ [[tα1]]ρ = [[tα2]]ρ
⇒ I([[tα1]]ρ) = I([[tα2]]ρ)
⇒ tα1 and tα2 have the same normal form
⇒ tα1 =βη tα2 .

Since I is defined on
⋃
α Aα, i.e. on interpretation of terms, it can be seen as a

canonical inversion map for the interpretation function [[]]ρ. Moreover:

• To ensure that I is properly defined on interpretations, we require it to be
level preserving, and thus to be a family of functions Iα sending elements of
Aα to terms in normal form of type α.

• Since not every element of Aα can be the interpretation of a term of type α,1
Iα will in general be partial .

• To ensure that every interpretation is inverted, Iα has to be onto the set of
terms of type α and in normal form.

• Finally, since the family {Iα}α is intended to invert canonical interpretations,
which by definition have the property that

[[uα→βvα]] = [[uα→β]]([[vα]]),

we require the following amalgamation property: if f ∈ Aα→β , a ∈ Aα and
the relevant values are defined, then

Iβ(f(a)) =βη Iα→β(f)(Iα(a)).
1Except possibly for atomic types, each Aα contains uncountably many elements, because A

is infinite, while there are only countably many terms.

224 C. Typed Lambda Calculus

This concludes the plan of the proof, and we now turn to its implementation.
We start by defining an inversion function I = {Iα}α, by induction on types:

• atomic types α
Let Iα be any partial function from A onto the set of terms of type α in normal
form. Notice that such an Iα exists because A is infinite. The hypothesis is
needed because there are infinitely many terms of type α in normal form, e.g.
all distinct variables of type α.

• arrow types α → β
If Iα and Iβ are partial functions onto the sets of terms in normal form of
type α and β, respectively, we define Iα→β using the amalgamation property.
Given f ∈ Aα→β , we let Iα→β(f) be any term tα→β in normal form, if it
exists, such that

(∀a ∈ Aα)[Iα(a) defined ⇒ Iβ(f(a)) D the normal form of tIα(a)],

where D means ‘defined and equal to’.
First, Iα→β is a partial function. Indeed, for any f there is at most one such
a term t. Since Iα is onto the set of terms of type α in normal form, the
definition of t determines its behaviour on (the normal form of) every term
of type α. Any two possible choices of t thus behave the same way on all
terms of type α, and they must thus be βη-equal. Since they are in normal
form, and normal forms are unique, they must then be the same term.
Second, Iα→β is onto the set of terms of type α → β in normal form. Indeed,
for any such term t, we can define f ∈ Aα→β such that Iα→β(f) = t as
follows. Given a ∈ Aα, if Iα(a) is defined, then it is a term of type α, and
tIα(a) is a term of type β. Since Iβ is onto the set of terms of type β in
normal form, there is ba ∈ Aβ such that

Iβ(ba) = the normal form of tIα(a).

Let f ∈ Aα→β be any function that assigns to any a ∈ Aα the element ba if
Iα(a) is defined, and an arbitrary element of Aβ otherwise.

We now define an environment ρ in such a way that I inverts precisely [[]]ρ.
Since the interpretation is uniquely determined by the behaviour of ρ on variables,
it is enough to define ρ as any assignment such that

Iα(ρ(xα)) = xα.

The definition makes sense because each variable xα is a term of type α in normal
form, and hence it is in the range of Iα. Then ρ simply picks up any element
a ∈ Aα such that Iα(a) = xα.

Functional Models 225

It remains to check that

Iα([[tα]]ρ) D the normal form of tα.

Since Iα([[tα]]ρ) is a term in normal form, when defined, by uniqueness of normal
forms it is enough to show that

Iα([[tα]]ρ) =βη tα.

We proceed by induction on terms:

1. If t = xα, then
I([[xα]]ρ) = I(ρ(xα)) = xα,

where the first equality holds by definition of [[]]ρ, and the second by defini-
tion of ρ.

2. If t = uα→βvα, then

Iβ([[uα→βvα]]ρ) = Iβ([[uα→β]]ρ([[vα]]ρ))
=βη Iα→β([[uα→β]]ρ)(Iα([[vα]]ρ))
=βη uα→βvα,

where the first equality holds by definition of [[]]ρ, the second by the amal-
gamation property, and the last by the induction hypothesis.

3. If t = λxα. uβ , then we want

Iα→β([[λxα. uβ]]ρ) =βη λxα. uβ.

By extensionality and normalization it is enough to show that, for any term
vα in normal form,

Iα→β([[λxα. uβ]]ρ)vα =βη (λxα. uβ)vα

and hence, by the β-rule, that

Iα→β([[λxα. uβ]]ρ)vα =β uβ[xα := vα].

Since Iα is onto the set of terms of type α in normal form, there is a ∈ Aα

such that a = [[vα]]ρ and Iα(a) = vα. Then

Iα→β([[λxα. uβ]]ρ)vα = Iα→β([[λxα. uβ]]ρ)Iα(a)
= Iβ([[λxα. uβ]]ρ(a))
= Iβ([[uβ]]ρ[xα:=a])
= Iβ([[uβ]]ρ[xα:=[[vα]]ρ])
= Iβ([[[uβ [xα := vα]]]ρ)
=βη uβ[xα := vα],

226 C. Typed Lambda Calculus

where the equalities hold by choice of a, amalgamation property, definition of
[[]], choice of a, Substitution Lemma (10.3.5), and the induction hypothesis.
!

The previous proof can be abstractly seen as an embedding of the first term
model T1 into a quotient of FA, with a transfer of the completeness property from
the former (for which it holds trivially, see 10.2.2) to the latter. The embedding is
provided by the inverse relations I−1

α (since Iα is a partial onto function, its inverse
I−1
α is a total one-one relation, but not necessarily a function), and the quotient is

generated on each Aα by the partial equivalence relation Rα induced by the partial
function Iα as follows: if a, b ∈ Aα, then

aRαb ⇔ Iα(a) D Iα(b).

The definition of Iα implies that if f, g ∈ Aα→β , then

fRα→βg ⇔ (∀a, b ∈ Aα)[aRαb ⇒ f(a)Rβg(b)].

Thus, proceeding by induction on types, we consider functions compatible with the
equivalence relations previously defined, and identifies all functions that induce the
same restriction on the previously defined quotients. The need for equivalence rela-
tions comes from the fact that many functions can induce the same restriction. The
need for partial equivalence relations comes from the fact that not every function
induces a compatible restriction.

Plotkin [1980] and Statman [1985] have characterized the elements of
⋃
α Aα

that are interpretations of terms under a given environment ρ.

Exercises 10.3.7 a) If A has smaller cardinality than B, then FB distinguishes all the
βη-different terms already distinguished by FA. (Berardi) (Hint: modify the proof of
10.3.6 to show that if FB identifies two terms, then so does FA.)

b) Two βη-different terms can be distinguished in FA, for some finite set A. (Statman
[1980]) (Hint:)

Thus we can restrict attention to the models F{0,...,n} and Fω, and the latter can be

seen as the limit of the family {F{0,...,n}}n∈ω.

The Completeness Theorem shows that βη-different terms can be distinguished
in appropriate functional models, by giving them different interpretations. Of
course, we cannot expect to improve the result to hold for β-different terms. On
the one hand, the functional models are extensional, and thus cannot distinguish
βη-equal terms. On the other hand, there are β-different terms that behave exten-
sionally the same way, i.e. are βη-equal.

Categorical Models 227

10.4 Categorical Models

By the Lawvere-Lambek and Currry-Howard isomorphisms,

proofs of logic = terms of λ-calculus = morphisms of cartesian closed categories.

So c.c.c.’s should be models of the Typed Lambda Calculus.

Prove Soundness and Completeness Theorems, as for functional models.

Main observation: in the functional models we used only eval and curry, so the

result should extend to any c.c.c.

Full functional models provide an interesting class, with regularity properties

expressed by the Soundness and Completeness Theorem, but with one drawback:
the absurd cardinality of the sets involved. Indeed, at every arrow type we intro-
duce a power set (the set of all functions from a given set to another). If A is
countably infinite, then FA is actually comparable with the following segment of
the cumulative hierarchy of Set Theory:

V0 = ∅
Vn+1 = P(Vn)
Vω =

⋃
n∈ω Vn

Vω+n+1 = P(Vω+n)
Vω+ω =

⋃
n∈ω Vω+n.

It is certainly no surprise that Vω+ω is a model of the Typed Lambda Calculus,
since it is already a model of a substantial fragment of Set Theory.2 In particular,
the elements used to interpret the countably many terms are only a fraction of the
elements available, and the model is highly redundant.

We try now to cut down such a model to a more manageable one, in which
fewer elements are introduced. This is parallel to the procedure in Set Theory, in
which thinner hierarchies are obtained by replacing the full power set operation P
by restricted versions of it (e.g. taking not every subset of a given set, but only the
ones ‘definable’ in an appropriate language).

The main idea is well illustrated by considering functions on real numbers.
There are of course lots of functions from reals to reals, since each function is
determined by its full graph

{(x, f(x)) : x ∈ R}

2More precisely, the axioms of Zermelo [1908], i.e. the usual ones without replacement, but
including infinity.

228 C. Typed Lambda Calculus

But there aren’t too many continuous functions, since each continuous function f
is actually determined by the partial graph

{(r, f(r)) : r ∈ Q},

i.e. by its values on the rationals: indeed, for every x ∈ R,

f(x) = lim
r∈Q∧r<x

f(r)

In particular, while the functions are more than the reals, there are only as many
countinuous functions as there are reals.3

We now try to formulate the notion of continuity in more generality. Of course,
a whole branch of mathematics (called topology) deals with such a problem. Here
we only need a special version of continuity, and at present we have no need for
general topological notions. For our purposes, the following notion is sufficiently
general and simple.

Categorical models

We can now apply the previous concepts to the construction of models of the Typed
Lambda Calculus. The idea is to proceed as in the case of the full functional models,
with the following differences: we start not with any set, but with any c.c.p.o.; and
we proceed by taking not all functions, but only the continuous ones.

Definition 10.4.1 For any object D of a cartesian closed category C, the cate-
gorical type hierarchy over D is the structure {Dα}α defined as follows:

1. Dα = D, for α atomic

2. Dα→β = Dα ⇒ Dβ.

The definition of the model becomes then the following.

Definition 10.4.2 The categorical model over D in C is the structure

CD = 〈{Dα}α, [[]]CD 〉,

where [[]]CD is the canonical interpretation over {Dα}α.

The next result shows that typed λ-terms can be interpreted not only as func-
tions, but as morphisms in any cartesian closed category.

3This can be made precise by using the notion of cardinality in Set Theory: there are 2ℵ0

reals, and hence 22ℵ0 functions on the reals; but there are only ℵ0 rationals, and hence only 2ℵ0

continuous functions on the reals, i.e. as many as the reals themselves.

Categorical Models 229

Theorem 10.4.3 Soundness for Categorical Models. For any object D in a
cartesian closed category C, the structure CD is an extensional model of the Typed
Lambda Calculus.

Proof. The proof consists of two parts: to show that the canonical interpretation is
well-defined, and to show that βη-equality is preserved. The second part is literally
the same as the proof of 10.3.4, and we thus concentrate on the first one.

Replace everything in terms of id, eval , curry, and use only the adjointness

property.
Continuous = morphism

We prove, by induction on t, that [[tα]]ρ ∈ Dα for any environment ρ on {Dα}α.

Recall that, by definition 10.3.1,

[[tα]]ρ =

ρ(xα) if tα = xα

[[uγ→α]]ρ([[vγ]]ρ) if tα = uγ→αvγ

ΛXγ. [[uβ]]ρ[xγ :=Xγ] if tα = λxγ . uβ ,

where ΛXγ . [[uβ]]ρ[xγ :=Xγ] denotes the function

a ∈ Dγ >−→ [[uβ]]ρ[xγ :=a] ∈ Dβ .

In the first case, [[tα]]ρ ∈ Dα by definition of environment. In the second case,
[[uγ→α]]ρ is an element of Dγ→α, and hence a function from Dγ to Dα, by the
induction hypothesis. Then [[tα]]ρ ∈ Dα, by the induction hypothesis [[vγ]]ρ ∈ Dγ .
In the last case, [[uβ]]ρ ∈ Dβ by the induction hypothesis, and thus [[tα]]ρ is a
function from Dγ to Dβ. The whole point is to show that it is a continuous
function, since then it is in Dγ→β = Dα.

We prove, by induction on u, that [[uβ]]ρ[xα:=Xα] is a continuous function of
Xα, for any type α. In the course of the proof we will discover that we need a
number of facts, which we will prove separately at the end.

If uβ is a variable, there are two cases: if β = α and uβ = xα then

[[uβ]]ρ[xα:=Xα] = [[xα]]ρ[xα:=Xα] = Xα

and obviously, for every α, the identity function on Dα is continuous; if uβ = yβ

with yβ -= xα then

[[uβ]]ρ[xα:=Xα] = [[yβ]]ρ[xα:=Xα] = ρ(yβ)

does not depend on Xα and obviously, for every α and β, any constant function
from Dα to Dβ is continuous.

230 C. Typed Lambda Calculus

If uβ = uγ→β
1 uγ2 then

[[uβ]]ρ[xα:=Xα] = [[uγ→β
1 uγ2]]ρ[xα:=Xα] = [[uγ→β

1]]ρ[xα:=Xα]([[u
γ
2]]ρ[xα:=Xα]).

By the induction hypothesis, both [[uγ→β
1]]ρ[xα:=Xα] and [[uγ2]]ρ[xα:=Xα] are continu-

ous functions of Xα. For every γ and β, we let the application function

Appγ,β : [Dγ → Dβ] × Dγ → Dβ

be defined, for fγ→β ∈ [Dγ → Dβ] and a ∈ Dγ , as

Appγ,β(f
γ→β, a) = fγ→β(a).

Then, since

[[uβ]]ρ[xα:=Xα] = Appγ,β([[u
γ→β
1]]ρ[xα:=Xα], [[u

γ
2]]ρ[xα:=Xα]),

we will need to show that Appγ,β is continuous, and that the composition of
continuous functions is still continuous (the latter condition is needed because [[u]]
is the composition of App with [[u1]] and [[u2]]).

Finally, if β = γ → δ and uβ = λyγ . uδ1, then

[[uβ]]ρ[xα:=Xα] = [[λyγ . uδ1]]ρ[xα:=Xα] = ΛY γ . [[u1]]ρ[xα:=Xα;yγ :=Y γ].

By the induction hypothesis, [[u1]]ρ[xα:=Xα;yγ :=Y γ] is a continuous function of Xα

and Y γ , separately. Thus we need to know that it is continuous in both variables
simultaneously, and that the Λ-abstraction w.r.t. one variable of a function contin-
uous in two variables yields a continuous function of the remaining variable (we also
need the continuity of composition, but this has already been considered above).

We now prove all these separate facts, in some generality. This will require a
few preliminary steps.

The next result is the analogue of 10.3.6.

Theorem 10.4.4 Completeness for Continuous Functional Models (Plotkin
[1980]) For any infinite c.c.p.o. (D,/),

tα1 =βη tα2 ⇔ CD |= tα1 = tα2 .

How general is this? for which cartesian closed categories does it hold?

Completeness Theorem: every model of typed λ-calculus is a categorical model.
Comment on categories as:

• syntactically equivalent to lambda calculus via the isomorphisms (equational
theory)

• semantically adequate as models (the examples of c.c.c.)

Semantical Proof of Strong Normalization ! 231

10.5 Semantical Proof of Strong Normalization !

We have proved the Strong Normalization Theorem in 8.3.2, by means of a syn-
tactical proof which was appropriate in two respects. First, the result itself is
syntactical, and hence there is no apparent need to use semantical notions to prove
it. Second, the particular proof we used is quite flexible, and is applicable to other
type systems.

We are now going to give a semantical proof which, although not as flexible, will
provide a clearer picture of what is going on, thus adding an element of intuition
to a crucial phenomenon.

The main idea is to use the semantical notions to build a model not of β-equality,
but rather of β-reduction.

Well-founded relations and monotone functions

We define a type hierarchy {Nα}α over the set of natural numbers, with well -
founded partial orderings <α propagated from the usual ordering of natural num-
bers, and by taking at arrow levels not all functions, but only the strictly monotone
ones. Well-foundedness and monotonicity are the main ideas of the proof, to be
exploited as follows.

We define the interpretation of terms in such a way that the interpretation
of a redex is strictly greater than the interpretation of its reduct. By hereditary
monotonicity, the interpretation of a term will be strictly greater than the in-
terpretation of any term obtained from it by one application of β-reduction. By
well-foundedness, the interpretation of a term can decrease only finitely often. Thus
only finitely many successive β-reductions can be performed, starting from a given
term. This is exactly what Strong Normalization claims.

We start by defining the type hierarchy over N , together with the associated
partial orderings.

Definition 10.5.1 (Gandy [1980]) The Gandy type hierarchy is the struc-
ture {(Nα, <α)}α defined as follows:

1. Nα = N and <α = < for α atomic

2. Nα→β is the set of all strictly monotone functions from Nα to Nβ, i.e.

Nα→β = {f ∈ (Nβ)Nα : (∀a, b ∈ Nα)(a <α b ⇒ f(a) <β f(b))},

ordered by:
f <α→β g ⇔ (∀a ∈ Nα)(f(a) <β g(a)).

Note that f <α→β g if and only if the graph of f is pointwise below the graph
of g, in the ordering <β.

232 C. Typed Lambda Calculus

We first consider the canonical interpretation over {Nα}α defined in 10.3.1.
Given an environment ρ on

⋃
α Nα, i.e. a function assigning to every variable of

type α an element of Nα, then

[[tα]]ρ =

ρ(xα) if tα = xα

[[uγ→α]]ρ([[vγ]]ρ) if tα = uγ→αvγ

ΛXγ. [[uβ]]ρ[xγ :=Xγ] if tα = λxγ . uβ ,

where ΛXγ . [[uβ]]ρ[xγ :=Xγ] denotes the function

a ∈ Nγ >−→ [[uβ]]ρ[xγ :=a] ∈ Nβ .

Unfortunately, this definition does not provide an interpretation as it stands, since
in the last clause xγ may not occur free in uβ, in which case ΛXγ . [[uβ]]ρ[xγ :=Xγ]

is a constant function, hence not a member of Nγ→β (which contains only strictly
monotone functions from Nγ to Nβ).

We thus have to modify the canonical interpretation, by ensuring that we always
obtain strictly monotone functions. The idea is to combine, in a way preserving
monotonicity, [[uβ]]ρ[xγ :=Xγ] with some expression depending explicitly on Xγ . The
simplest such expression is of course Xγ itself, but the problem is that [[uβ]]ρ[xγ :=Xγ]

describes an element of Nβ , while Xγ describes an element of Nγ . This is easily
taken care of. It is enough to choose any function Lγ→β ∈ Nγ→β, and to project
Xγ over Nβ , by using Lγ→β(Xγ) in a monotone way. This requires the existence
of Lγ→β, which we will have to prove later. For the rest of the argument, the
particular form of Lγ→β is inessential.

The second problem is how to combine pairs of elements of Nβ into a single one,
in a monotone way. At atomic levels, where the underlying structure is the set N
of natural numbers, this is easily obtained by considering the sum function, which
is monotone in both arguments. It is then enough to propagate such a function at
every level.

1. +α = + for α atomic

2. +α→β is obtained by adding values pointwise, i.e. by defining

(f +α→β g)(a) def= f(a) +β g(a)

for f, g ∈ Nα→β and a ∈ Nα.

Given an environment ρ on
⋃
α Nα, we now define:

[[tα]]ρ =

ρ(xα) if tα = xα

[[uγ→α]]ρ([[vγ]]ρ) if tα = uγ→αvγ

ΛXγ . ([[uβ]]ρ[xγ :=Xγ] +β Lγ→β(Xγ)) if tα = λxγ . uβ.

Semantical Proof of Strong Normalization ! 233

It is now an immediate, by induction, that [[tα]]ρ ∈ Nα, because

[[uβ]]ρ[xγ :=Xγ] +β Lγ→β(Xγ)

is monotone in Xγ .
At this point it can be proved quite easily, by induction on u, that [[u]]ρ[x:=X] is a

non-decreasing function of X . Thus the interpretation of a redex will automatically
be greater than or equal to the interpretation of its reduct. Indeed,

[[(λxα. uβ)vα]]ρ = [[λxα. uβ]]ρ([[vα]]ρ)
= (ΛXα. [[uβ]]ρ[xα:=Xα] +β Lα→β(Xα))([[vα]]ρ)
= [[uβ]]ρ[xα:=[[vα]]ρ] +β Lα→β([[vα]]ρ)
= [[uβ [xα := vα]]]ρ +β Lα→β([[vα]]ρ)
≥β [[uβ [xα := vα]]]ρ.

However, in general we do not have a strict inequality. E.g., if α and β are both
atomic, then [[vα]]ρ might be 0, and Lα→β might be the identity (actually, this is
how it is defined below). Then Lα→β([[vα]]ρ) = 0.

We thus need to modify our definition of interpretation one last time, by using in
the last clause a strictly increasing function. At atomic levels, where the underlying
structure is the set N of natural numbers, this is easily obtained by considering
e.g. the successor function S. It is then enough to propagate such a function at
every level.

1. Sα = S for α atomic

2. Sα→β is obtained by increasing values pointwise, i.e. by defining

Sα→β(f)(a) def= Sβ(f(a))

for f ∈ Nα→β and a ∈ Nα.

We are now ready to define the appropriate structure for our proof.

Definition 10.5.2 (Gandy [1980]) Given the Gandy structure

G = {(Nα, <α, +α, Sα)}α,

and an environment ρ on it, we define the Gandy interpretation [[]]Gρ by induc-
tion on terms, as follows:

[[tα]]Gρ =

ρ(xα) if tα = xα

[[uγ→α]]Gρ ([[vγ]]Gρ) if tα = uγ→αvγ

ΛXγ . Sβ([[uβ]]Gρ[xγ :=Xγ] +β Lγ→β(Xγ)) if tα = λxγ . uβ.

234 C. Typed Lambda Calculus

Theorem 10.5.3 (Gandy [1980]) The interpretation [[tα]]G of a term tα strictly
decreases in <α when a β-reduction is performed inside it. Precisely, for any
environment ρ:

tα1 −→1β tα2 ⇒ [[tα1]]Gρ >α [[tα2]]Gρ .

Proof. By induction on the definition of −→1β . For the base case of a redex we
have:

[[(λxα. uβ)vα]]ρ = [[λxα. uβ]]ρ([[vα]]ρ)
= (ΛXα. Sβ([[uβ]]ρ[xα:=Xα] +β Lα→β(Xα)))([[vα]]ρ)
= Sβ([[uβ]]ρ[xα:=[[vα]]ρ] +β Lα→β([[vα]]ρ))
= Sβ([[uβ [xα := vα]]]ρ +β Lα→β([[vα]]ρ))
>β [[uβ [xα := vα]]]ρ.

The remaining cases are easily dealt with by induction as in 10.3.4, using mono-
tonicity. !

Corollary 10.5.4 Strong Normalization Theorem. For every typed λ-term
tα, there is no infinite sequence of reductions starting from tα.

Proof. By the theorem, it is enough to show that the partial orderings <α are
well-founded, i.e. there is no infinite descending sequence of elements at any level.
Then there can be no infinite descending sequence of interpretations, and hence of
β-reductions.

That <α is well-founded is easily proved by induction on α. For α atomic, it is
so for < on N . For α → β, any infinite descending sequence of functions

f0 >α→β f1 >α→β f2 >α→β · · ·

would produce, by definition of <α→β , an infinite descending sequence

f0(a) >β f1(a) >β f2(a) >β · · · ,

where a is any element of Nα. !

We still have to tie one loose string, namely the existence of elements Lα in
every level Nα. This step of proving that the hierarchy is not trivial corresponds,
in the syntactical proof of Strong Normalization, to the step of proving that C is
not trivial (by showing that every variable is in C).

This is easily done by induction on α, as follows (where, for simplicity, 0 indi-
cates any atomic type):

L0 = 0 ∈ N
L0→0 = ΛX0. X0

L(α→β)→0 = ΛY α→β . Lβ→0(Y α→β(Lα))
Lα→(β→γ) = ΛXα. [ΛY β . (Lα→γ(Xα) +γ Lβ→γ(Y α))].

Semantical Proof of Strong Normalization ! 235

It is easy to check, inductively, that the Lα’s are strictly monotone functions. Thus
they do belong to Nα.

Regarding the formal difficulty of the proof, we cannot yet claim that it is
formalizable in First-Order Arithmetic, because the statement that there is no
infinite sequence of reductions is not even expressible in a first-order language
(we need functions to formalize infinite sequences, and we cannot quantify over
functions in a first-order language). But an additional step does show that for every
term tα there is a number ntα such that every finite proper sequence of reductions
starting from tα must be of length less than ntα , and both this statement and its
proof can be expressed in First-Order Arithmetic.

The strengthened result can be obtained as follows. From 10.5.3, by monotonic-
ity of Lα→0, we have

tα1 −→1β tα2 ⇒ Lα→0([[tα1]]ρ) > Lα→0([[tα2]]ρ).

It is thus enough to let
ntα = Lα→0([[tα]]ρ)

for any fixed assignment ρ, e.g. for

ρ(xα) = Lα.

Of course, in a formal proof we need to show that Lα→0([[tα]]ρ) is indeed a number,
and this can be proved as in the Weak Normalization Theorem (whose proof is
easily formalizable). Thus a formal proof actually consists of two separate steps:

1. a proof that Weak Normalization implies Strong Normalization (10.5.4 plus
the additional remarks above)

2. a proof of Weak Normalization (as in 8.3.1).

æ

236 C. Typed Lambda Calculus

Chapter 11

Computability

We have introduced the Typed Lambda Calculus as a theory of functions and
proved a number of results about it, but we have not said yet how we can actually
perform practical computations, for example of numerical functions. The goal of
this chapter is to introduce numbers in our theory, and to characterize both its
computational power and its computational complexity.

Since we will discover that, in a precise sense, the ‘power’ of the Typed Lambda
Calculus is quite limited, there are good reasons to devise stronger systems. Ac-
tually, to reach a computational power equivalent to the usual universal systems,
such as the Turing machines, we will have to drop type restrictions completely and
step to the Untyped Lambda Calculus.

11.1 Numerals

The idea we exploit to introduce natural numbers in the Typed Lambda Calculus is
quite simple. If we think of the use of natural numbers, as opposed to their abstract
meaning, we notice that they appear in everyday life as numbers of something.
For example, a request of ‘giving three apples’ can be interpreted as a request
of iterating the operation of ‘giving an apple’ three times. In the Typed Lambda
Calculus, where all we can do is to perform operations, we can thus think of numbers
as exponents of such operations, telling how many times we have to iterate them.

The notion of iteration of a unary function f on a given argument x is defined
inductively as:

f (0)(x) = x

f (n+1)(x) = f(f (n)(x)).

The first clause is simply a convention, justified by the desire of having the second

237

238 C. Typed Lambda Calculus

clause work for all n, including 0. In this case we obtain a single iteration, which
correspond to usual applications:

f (1)(x) = f(f (0)(x)) = f(x).

We can now think of the number n as being an operator that, given a function
f and an argument x, produces the n-th iteration f (n)(x) of f on x. Since in the
Typed Lambda Calculus all we really have is unary functions, this is a perfectly
general intuition, and can be taken as a definition of numbers in the theory.

Definition 11.1.1 (Peano [1891], Wittgenstein [1921], Church [1933]) For
any type α, the numeral n of type

Nα = (α → α) → (α → α)

is the λ-term that produces n iterations of an object of type α → α on an object of
type α, i.e.

nNα = λfα→αxα.f (n)x,

where
f (n)x = f(· · · (f︸ ︷︷ ︸

n times

x) · · ·).

To increase readability types can be omitted, when no confusion arises.
Notice that f has to have type α → β, if we want to apply it to an argument x

of type α. Then fx has type β. If we want to be able to iterate f , i.e. to apply it
to fx, then we must have β = α. This justifies the type α → α for f .

The way it stands, the definition of numerals is parametrized on the given type
α. In particular, there are numerals at every type level Nα. The results that follow
will not depend on the particular α we choose to start with, in the sense that they
will be uniform in α.

Since numerals are terms in normal form, by the Church-Rosser Theorem they
are β-different if they are syntactically different. Thus

n -= m ⇒ nNα -=β mNα .

11.2 Representable Functions

Having at hand a version of numbers inside the Typed Lambda Calculus, we can
represent a numerical function f by a term F that behaves on the numerals n the
way f behaves on the numbers n.

Representable Functions 239

Definition 11.2.1 A n-ary function f is representable in the Typed Lambda
Calculus at level Nα if there is a closed typed term F such that, for every x1, . . . ,
xn and y,

f(x1, . . . , xn) = y ⇔ FNα→(···(Nα→Nα)···)xNα
1 · · ·xNα

n =β yNα .

It is important to note that, while α can be any type in the previous definition,
it has to be the same for arguments and values. A different definition, usually
referred to as skew representability, allows different types for arguments and
values, i.e.

f(x1, . . . , xn) = y ⇔ FNα1→(···(Nαn→Nβ)···)x
Nα1
n · · ·xNαn

n =β yNβ .

The reason we adopt the stricter definition is that it gives better results. In partic-
ular, a complete characterization of the skew representable functions in the Typed
Lambda Calculus is not known, and does not appear to be any natural class of
functions, whereas this is the case for the representable functions.

Examples

We start by representing the basic functions of arithmetic.

Proposition 11.2.2 The constant functions, as well as sum and product, are rep-
resentable in the Typed Lambda Calculus.

Proof. First, the constant function with value n is representable in the natural
way, as

λxNα . nNα .

Second, iterating a function m+n times is the same as iterating it first m times,
and then n times. Since

f (m+n)(x) = f (m)(f (n)(x)) ⇒ m + nfx =β mf(nfx),

sum is representable by

λmNαnNαfα→αxα. mf(nfx).

Notice that, although we are interested in the behavior of this term only on nu-
merals m and n, we do not have variables ranging over numerals, and we thus use
variables m and n (not to be confused with numbers!) ranging over all terms. Thus
the term just defined can actually be applied to any pair of terms of type Nα, not
only to numerals. However, the only closed terms of type Nα are the numerals.

240 C. Typed Lambda Calculus

Third, iterating a function m ·n times is the same as iterating n times its m-fold
iteration. Since

f (m·n)(x) = (f (m))(n)(x) ⇒ m · nfx =β n(mf)x,

product is representable by

λmNαnNαfα→αxα. n(mf)x. !

Corollary 11.2.3 All polynomials with natural numbers as coefficients are repre-
sentable in the Typed Lambda Calculus.

Proof. It is enough to notice that the class of representable functions is obviously
closed under composition. Indeed, the term representing a composition of functions
is the application of the terms representing the composed functions. !

We could think of continuing in the same vein, and representing the exponential
function in a similar way. Indeed, iterating a function mn times is the same as
iterating n times the function that iterates its argument m times. Thus

f (mn)(x) = f

n times︷ ︸︸ ︷
m · · ·m(x) ⇒ mnfx =β (n m)fx.

However, this does not produce a permissible representation. If the types of m,
f and x are Nα, α → α and α, then n must have a type Nα → Nα = Nα→α.
This goes against the definition of representability, which requires the same type
for arguments and values. The nonpermissible term

λnNα→αmNαfα→αxα. (nm)fx

does show, in the terminology introduced above, that the exponential function
is skew representable. Obviously, this discussion only shows that the particular
representation we had in mind does not work. A more sophisticated argument,
given below, is needed to prove that the exponential function is not representable
in our sense, i.e. that no representation for it exists.

The next result shows that the polynomials do not exhaust the class of repre-
sentable functions.

Proposition 11.2.4 Test on zero is representable in the Typed Lambda Calculus.

Proof. Formally, test on zero is the function δ defined as follows:

δ(x1, x2, y) =
{

x1 if y = 0
x2 otherwise

The idea for the representation of δ comes from the following observations.

Representable Functions 241

• Given the numeral 0, then its application to two arguments of the appropriate
types gives the second one. Thus, if we want the output to be x1, we just
have to put it as the second argument.

• Given the numeral n + 1, then its application to two arguments of the appro-
priate types applies the first one at least once. Thus, if we want the output
to be x2, we just have to put the constant function with value x2 as the first
argument.

We are thus led to consider the expression

y(λz. x2)x1.

The problem is that this is not a term, because the types do not match. Indeed,
y has a fixed type Nα, and its arguments must then have type α → α and α,
respectively. But if x1 and x2 are numerals, they have type Nα. Thus, even if
z has type α, the first argument λz. x2 of y has type α → Nα, and the second
argument x1 has type Nα.

This is easy to fix, by first applying x1 and x2 to the arguments fα→α and xα,
and then abstracting f and x at the end. In other words, since

λzα. xNα
2 fα→αxα and xNα

1 fα→αxα

have type α → α and α, respectively, we can use

λxNα
1 xNα

2 yNαfα→αxα. y(λzα. x2fx)(x1fx)

for the representation of δ. !

Piecewise polynomials

We now combine the previous examples into a general result.

Definition 11.2.5 An n-ary piecewise polynomial is a function f of the fol-
lowing form:

f(x1, . . . , xn) = pA if (∀i)1≤i≤n(xi = 0 ⇔ i ∈ A),

where A ⊆ {1, . . . , n}, and pA is a polynomial in the variables xi such that i -∈ A.

Thus a piecewise polynomial of n variables is a function defined by 2n cases, each
one of them determined by which variables are 0, and giving rise to a polynomial
in the remaining variables. For example, in the case of two variables we have:

f(x1, x2) =

c if x1 = 0 ∧ x2 = 0
p1(x1) if x1 -= 0 ∧ x2 = 0
p2(x2) if x1 = 0 ∧ x2 -= 0
p3(x1, x2) if x1 -= 0 ∧ x2 -= 0,

with c is a constant, and p1, p2 and p3 are polynomials of the indicated variables.

242 C. Typed Lambda Calculus

Proposition 11.2.6 All piecewise polynomials with natural numbers as coefficients
are representable in the Typed Lambda Calculus.

Proof. The work done above is already sufficient to prove the result, once we
notice that the piecewise polynomials can actually be defined as the smallest class
of functions containing the constant functions, sum, product and δ, and closed
under composition.

More precisely, by adding among the initial functions the projection functions

In
i (x1, . . . , xn) = xi

for 1 ≤ i ≤ n, then we only need composition in the form

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)),

since the projection functions allow trivial manipulations such as interchange, iden-
tification and introduction of variables.

It is obvious that In
i is representable by

λx1 · · ·xn. xi.

Moreover, if g, h1, . . . , hm are representable by G, H1, . . . , Hm, respectively, then
f is representable by

λx1 · · ·xn. G(H1x1 · · ·xn) · · · (Hmx1 · · ·xn).

We now check that the piecewise polynomials are indeed the functions belong-
ing to the class defined above. In one direction, we notice that all polynomials
are easily obtainable by composition from constants, sums and products, possibly
by manipulating variables by use of the projections. Moreover, n-ary piecewise
polynomials can be defined by a nesting of 2n case definitions of the form

g(x1, . . . , xn, y) =
{

h1(x1, . . . , xn) if y = 0
h2(x1, . . . , xn) otherwise,

each of which is reducible to composition and δ, as follows:

g(x1, . . . , xn, y) = δ(h1(x1, . . . , xn), h2(x1, . . . , xn), y).

Conversely, every function belonging to the class defined above can be shown
to be a piecewise polynomial, by induction on the definition of the class. !

11.3 Nonrepresentable Functions !

Having studied the representable functions, we now turn to the nonrepresentable
ones, with the goal of obtaining a complete classification.

Nonrepresentable Functions ! 243

Examples

We use a gentle, semantical method to show that certain functions are not repre-
sentable.

Proposition 11.3.1 (Statman [1982]) The characteristic function of equality is
not representable in the Typed Lambda Calculus.

Proof. If the characteristic function of equality were representable in the Typed
Lambda Calculus, there would be a term E such that, for any pair of natural
numbers n and m,

E nNαmNα =β

{
1Nα if n = m

0Nα otherwise,

where 0Nα = λfα→αxα. x and 1Nα = λfα→αxα. yx. For simplicity of notation, we
drop the types in the following.

Given any model of the Typed Lambda Calculus, from the representability of
E it would follow that

n -= m ⇒ E n m =β 0 ⇒ [[E]]([[n]], [[m]]) = [[0]],

and
n = m ⇒ E n m =β 1 ⇒ [[E]]([[n]], [[m]]) = [[1]].

Consider now the full functional model over a two-element set A = {a, b} defined
in 10.3.3, and let α be an atomic type. Since Nα = (α → α) → (α → α) and A

has two elements, there are only (22)(2
2) = 256 elements of type Nα. Since there

are infinitely many numerals, there must exist distinct natural numbers n and m
with coinciding interpretations [[n]] and [[m]]. It follows from the above that

[[0]] = [[E]]([[n]], [[m]]) = [[E]]([[n]], [[n]]) = [[1]],

because n -= m, [[n]] = [[m]] and n -= n. Thus [[0]] = [[1]].
But the model uses the canonical interpretation of terms, i.e.

[[0]] = ΛFΛX. X and [[1]] = ΛFΛX. F (X).

It is then enough to choose a function F such that F (a) = b, to have

[[0]](F, a) = a -= b = [[1]](F, a),

i.e. [[0]] -= [[1]]. !

The proof shows that in the Typed Lambda Calculus equality is not repre-
sentable, because there are nontrivial finite models. The same proof shows that
in the Untyped Lambda Calculus there are no nontrivial finite models, because
equality is representable (see 13.2.3).

244 C. Typed Lambda Calculus

Corollary 11.3.2 The characteristic function of the ordering, as well as predeces-
sor and subtraction, are not representable in the Typed Lambda Calculus.

Proof. Suppose ≤ were representable. Then so would be =, because

x = y ⇔ x ≤ y ∧ y ≤ x,

and ∧ is representable because so is product (11.2.2).
Suppose subtraction were representable. Then so would be ≤, because

x ≤ y ⇔ x − y = 0 ⇔ δ(x − y) = 1,

and δ is representable (11.2.4).
Suppose predecessor were representable by P . Then so would be subtraction,

because
m − n = nP m,

i.e. m − n is the n-th iteration of the predecessor on m. !

Exercises 11.3.3 a) The model of the Lambda Calculus used in the proof of 11.3.1 has
exactly three distinct interpretations of numerals. Actually, [[n]] = [[1]] for any odd n, and
[[n]] = [[2]] for any even n .= 0. (Hint: there are only four possible functions f on {a, b},
and all of them satisfy f (3) = f . To prove that [[0]] .= [[2]], use the constant function with
value b. To prove that [[1]] .= [[2]], use the function that interchanges a and b.)

b) There is a model of the Typed Lambda Calculus with exactly two distinct interpreta-
tions of numerals. Actually, [[n]] = [[1]] for any n ≥ 1. (Hint: consider the model obtained
by starting with {a, b} with the order a ! b at atomic types, and taking only monotone
or constant functions at arrow types. Then there are only three possible such functions
f on {a, b}, and all of them satisfy f (2) = f .)

c) In any nontrivial model of the Typed Lambda Calculus, [[n]] .= [[0]] for any n ≥ 1.
(Hint: otherwise, test on zero would not be representable.)

d) The theory of βη-equality is not maximal . (Hint: the equation 1 = 2 is not derivable
because 1 .=βη 2, but it is consistent by part b).)

e) There is no maximal extension of the theory of βη-equality . (Hint: the equation

0 = 2 is not derivable, but it is consistent. By part d), any maximal theory would make

0 = 1, contradicting part c).)

The Characterization Theorem

We now prove the converse of 11.2.6, thus characterizing the class of functions
representable in the Typed Lambda Calculus. Unlike in the previous examples, we
are here forced to use a brutal, syntactical method.

Theorem 11.3.4 (Schwichtenberg [1975], Statman) If a function is repre-
sentable in the Typed Lambda Calculus, then it is a piecewise polynomial.

Nonrepresentable Functions ! 245

Proof. We prove the result only for the case of unary functions, the case of n-ary
functions being more cumbersome but similar. Let f be a unary function and F
be a closed typed term such that, for some α and every n and m,

f(n) = m ⇔ FNα→NαnNα =β mNα .

By the Normalization Theorem, we may suppose that F is in normal form. Since
it has type Nα → Nα, it must be either of the form

λxNα . xNα ,

in which case f is the identity function, or of the form

F = λxNαfα→α. uα→α

for some u, in which case

Fn =β λfα→α. u[x := n].

If n = 0, then the effect of substituting nNα for xNα inside u is to replace every
subterm of the form xNαvα→α by the term 0v. Since 0 = λgα→αzα.zα,

0vα→α =β λzα. zα = Iα→α,

which does not depend on n. Thus u[x := n] is a constant term. By the hypothesis
on F , the normal form of Fn is a numeral. Then it is equal to c, for some c.

If n -= 0, we analyze the structure of u, which is a term in normal form of type
α → α, with fα→α and xNα as the only possible free variables, and α, α → α and
Nα as the only possible types of subterms. We will discover that in this case the
normal form of Fn is a numeral p(n) for some polynomial p, so that in the end

Fn =β

{
c if n =β 0
p(n) if n -=β 0.

Then
f(n) =

{
c if n = 0
p(n) if n -= 0,

and f is a piecewise polynomial. The analysis proceeds in two steps:

1. inductive characterization of all terms in normal form of type α → α, with
fα→α and xNα as the only possible free variables, and α, α → α and Nα as
the only possible types of subterms
We first note that the class N of all terms in normal form can be inductively
generated as follows,with all terms of the appropriate types:

246 C. Typed Lambda Calculus

• all variables are in N
• if z is a variable and v1, . . . , vn ∈ N , then zv1 · · · vn ∈ N
• if v ∈ N , then λy. v ∈ N .

Indeed, this is simply a restatement of the inductive definition of the class of
all terms, with the additional constraint that in an application of two terms,
the first one cannot start with a λ. Then, inductively, it must be either a
variable or an application that does not start with a λ. In finitely many steps
we reduce to variables, and hence to the second clause.

We consider the class U of all terms in normal form of type α → α, with
fα→α, xNα and any zα as the only possible free variables, and α, α → α and
Nα as the only possible types of subterms . Notice that u belongs to U .1 We
now prove that U can be inductively generated as follows:

(a) for any yα and zα, λyα. zα ∈ U
(b) fα→α ∈ U
(c) if vα→α ∈ U , then xNαvα→α ∈ U
(d) if v1, . . . , vm ∈ U are not λ-abstractions, then λyα. v1 · · · (vmzα) ∈ U .

Every term inductively generated by the previous clauses is obviously in U .
To prove the converse, we consider any term tα→α ∈ U and proceed by
induction on the previous characterization of N .

• If tα→α is a variable, it must be fα→α, xNα or some zα. Since only
fα→α has the right type, we are in case (b).

• If tα→α is of the form zv1 · · · vn, with v1, . . . , vn in normal form, then z
must either be one of fα→α and xNα , or have type α.

– In the first case, t = f . Then we are in case (b).
– In the second case, t = xNαvα→α. Since fα→α, xNα and any zα are

the only possible free variables in t, and α, α → α and Nα are the
only possible types of subterms of t, the same is true for v. Then
v ∈ U , and we are in case (c).

– The third case cannot occur. Indeed, zα cannot be applied to any
term, because every subterm of a term in U must have type α,
α → α or Nα. Then zα should occur alone. But it cannot, because
it has the wrong type.

1u actually belongs to the class of terms of type α→ α in normal form, with fα→α and xNα

as the only possible free variables, and α, α → α and Nα as the only possible types of subterms.
The definition of U , which also admits free variables of type α, provides a stronger induction
hypothesis needed to make the inductive characterization below possible (see Note 2).

Nonrepresentable Functions ! 247

• If tα→α is of the form λyα. vα, with v in normal form, then v is a term
of type α in which only xNα , fα→α and variables of type α can occur
free. By induction on the characterization of N , we have the following
possibilities.
If vα is a variable, it must be some zα, because fα→α and xNα have the
wrong type. Then we are in case (a).
If vα is of the form zv1 · · · vn, with all vi in normal form, then every vi

must have type α, α → α or Nα. Moreover, z must either be one of
fα→α and xNα , or have type α.

– In the first case, vα = fα→αvα1 . But fα→α ∈ U , and vα1 is a term of
type α in which only fα→α, xNα and variables of type α can occur
free. Then we can start again on it.

– In the second case, vα = xNαvα→α
1 vα2 , and only fα→α, xNα and any

zα can occur free in v1 and v2. Thus v1, which has type α → α, is
in U .2 Hence xNαvα→α

1 is in U as well. Since v2 has type α, we can
start again on it.

– In the third case, it must be n = 0. Then vα = zα and t = λyα. zα.
In the first two cases, we reduce to (d) in finitely many steps. In the
last, we are in case (a).
If vα is of the form λy. v1, then v1 has type α, α → α or Nα, and v
cannot have type α. So this case cannot occur.

2. proof by induction on the previous characterization
We now prove that if u ∈ U and n ≥ 1, then the normal form of

u[x := n]

can only have the following three forms:

fα→α λyα. f (p(n))yα λyα. f (p(n))zα,

for some polynomial p of n. Then the normal form of

Fn = λfα→α. u[x := n]

can only have the following three forms:

λfα→α. fα→α λfα→αyα. f (p(n))yα λfα→αyα. f (p(n))zα.

Since they must all be numerals, the first and third cases (for zα -= yα) cannot
occur. In the second case, we get p(n).

2It is here that the extended definition of U is needed. Without allowing variables of type α
to occur free, we could not claim that v1 ∈ U .

248 C. Typed Lambda Calculus

We proceed by induction on the previous characterization of U .
If u = λyα. zα, possibly with zα = yα, then u[x := n] = λyα. zα. This is of
the required form, with p(n) = 0.
If u = fα→α, then u[x := n] = fα→α. This is of the required form.
If u = xNαvα→α, then

u[x := n] = n(v[x := n]).

By the induction hypothesis for v[x := n], we have three possibilities:

• v[x := n] = fα→α. Then nfy = f (n)y, and so

nf = λy. f (n)y,

which is of the required form, with p(n) = n.
• v[x := n] = λyα. f (p(n))yα. Then n(λy. f (p(n))y)y produces, by defini-

tion, the n-th iteration of the first argument on the second, i.e. f (p(n)·n)y,
and so

n(λy. f (p(n))y) = λy. f (p(n)·n)y

• v[x := n] = λyα. f (p(n))zα, with zα -= yα. Then n(λy. f (p(n))z)y pro-
duces, as above, the n-th iteration of the first argument on the second.
But the first argument is a constant function, which is applied at least
once because n ≥ 1. Thus we get f (p(n))z, and so

n(λy. f (p(n)z) = λy. f (p(n))z.

If u = λyα. v1 · · · (vmzα), then

u[x := n] = λyα. (v1[x := n]) · · · ((vm[x := n])zα).

By the induction hypothesis for the vi[x := n], we have the following possi-
bilities:

• No vi[x := n] is a constant function. Then there are polynomials pi such
that vi[x := n] = λy. f (pi(n))y, and

u[x := n] = λy. f (p1(n)+···+pm(n))z,

where pi(n) = 1 if vi[x := n] = f .
• Some vi[x := n] is a constant function λy. f (pi(n))z. Let i be the first

index such that this happens. Then

u[x := n] = λy. f (p1(n)+···+pi(n))z.

Complexity 249

The various cases above introduce constants, identities, sums and products
in the exponents, thus producing polynomials by induction.

It should be clear from the proof just given that the case of n-ary functions
does not present essential differences with the one just dealt with. We only have
to consider, for any variable, the various cases in which it is equal to 0 or not, and
they give rise to 2n possibilities. !

Corollary 11.3.5 Characterization of the Representable Functions. The
functions representable in the Typed Lambda Calculus are exactly the piecewise
polynomials.

Proof. By 11.2.6 and 11.3.4. !

11.4 Complexity

The results of the previous sections characterize the computational power of the
Typed Lambda Calculus, in terms of its representable functions. We now turn
to a complementary characterization of the computational complexity, in terms
of the number of steps needed to perform normalizations. By the Curry-Howard
isomorphism, the results transfer automatically from term normalization in the
Typed Lambda Calculus to proof normalization in Natural Deduction.

We refer to Odifreddi [1999] for backgroung on Computational Complexity.
For our purposes here, it suffices to say that we measure the complexity of a
normalization procedure by evaluating the number of steps it takes, in terms of the
following fast growing functions:

e0(x) = x en+1(x) = xen(x) s(x) = ex(x).

Notice that e1 is the usual exponential function, en is a generalized exponential
function with a fixed stack of n exponents, and s is a superexponential function
with a variable stack of exponents, depending on the argument.

A lower bound

Our first goal is to determine a lower bound to the number of steps needed to
obtain the normal form of a term. The idea is to find, for infinitely many n, a term
of length n so complicated that roughly s(n) reductions are needed to reduce it to
a normal form. This proves that the complexity of normalization is greater than
any generalized exponential, and is at least superexponential.

Proposition 11.4.1 (Statman [1979]) For infinitely many typed λ-terms, any
normalization procedure takes at least a superexponential number of steps.

250 C. Typed Lambda Calculus

Proof. By the definition of numerals as iterators (11.1.1), we have

nfx =β f (n)x = f (e0(n))x.

From the example of skew representability on p. 232, we have

(n n)fx =β f (nn)x = f (e1(n))x.

By induction, we similarly obtain

(n · · ·n)︸ ︷︷ ︸
m + 1 times

fx =β f (em(n))x

and
(n · · ·n)︸ ︷︷ ︸

n + 1 times

fx =β f (en(n))x = f (s(n))x.

Obviously, the types of the various n are all distinct.
We now compute how many steps are needed to perform the normalization

(n · · ·n)︸ ︷︷ ︸
n + 1 times

fx −→β f (s(n))x = f · · · f︸ ︷︷ ︸
s(n) times

x.

Notice that, since n has approximately length n, the left-hand-side has length of
order n2. The right-hand-side has instead length of order s(n).

The main observation is that if a term t has length l, then any subterm of t has
length at most l, and it has at most l occurrences of any given variable. Since any
application of the β-rule to a subterm (λx. u)v of t replaces all occurrences of the
variable x in the subterm u by the subterm v, it can at most square the length of
the given term t.

We must thus go from a term having length of order n2 to a term having length
of order s(n), by a series of steps that can at most square the length:

n2 (n2)2 = n22
(n22

)2 = n23
· · · n2m

· · ·

To get a value n2m
of the order of s(n) = en(n), i.e. with a stack of n exponents,

we need an m of the order of en−2(n), i.e. with a stack of n − 2 exponents. In
particular, we need at least s(n − 2) steps. !

In the terminology of Computational Complexity, the previous result can be
reformulated by saying that the normalization procedure is not elementary, i.e. it
does not belong to the class E3 of the Grzegorczyk Hierarchy (see Odifreddi [1999],
Section VIII.7).

Complexity 251

An upper bound

Our second goal is to determine an upper bound to the number of steps needed to
obtain the normal form of a term. The idea is to find a normalization procedure
so simple that reduces every λ-term of length n to a normal form in at most s(n)
steps, for any sufficiently large n. This proves that the complexity of normalization
really is at most superexponential.

Proposition 11.4.2 (Statman [1979]) For almost all typed λ-terms, the proce-
dure provided by the Weak Normalization Theorem ?? does not take more than a
superexponential number of steps.

Proof. Recall that the normalization procedure defined in 8.3.1 reduces at each
step a redex (λxα. uβ)vα of greatest degree, such that in vα no redex of greatest
degree occur.

A term of length n can contain at most n redexes of greatest degree, and at most
n redexes of smaller degree. The normalization procedure reduces the redexes of
greatest degree one at a time, in at most n steps. At each such step, the number of
redexes of smaller degree can at most be squared, as in the previous proof. After all
redexes of greatest degree have been eliminated, the number of redexes of smaller
degree can thus become at most

n + n2 + (n2)2 + · · ·︸ ︷︷ ︸
n times

≤ n2n

≤ e3(n).

In particular, there can be at most e3(n) redexes of a new greatest degree. Again,
they are reduced one at a time, in at most e3(n) steps. At each such step, the
number of redexes of smaller degree can at most be squared, and become at most

(e3(n))2
e3(n)

≤ e3(e3(n)) = e(2)
3 (n),

and so on. In the end, approximately e(n)
3 (n) steps, i.e. a superexponential number,

are sufficient to reduce all redexes and produce the normal form. !

In the terminology of Computational Complexity, the previous result can be
reformulated by saying that the normalization procedure is superelementary , i.e. it
belongs to the class E4 of the Grzegorczyk Hierarchy (see Odifreddi [1999], Section
VIII.8).

An analysis of the semantical proof of the Strong Normalization given in 10.5.3
shows that the previous result actually holds for every normalization procedure,
and not only for the particular one provided by ??.

æ

252 C. Typed Lambda Calculus

Part D

Untyped
Lambda Calculus

253

Chapter 12

Syntax

In Part C we studied the Typed Lambda Calculus. It would be possible to greatly
enlarge its expressive power by enriching its type structure, for example by stepping
to the Polymorphic Lambda Calculus. In this part we bypass all intermediate steps
and perform the ultimate step toward complete freedom, by completely dropping
all type restrictions.

The basic idea behind the Untyped Lambda Calculus is that rules can express
algorithms without specified domains and ranges . For example, the rule

‘give as output the input itself’

is perfectly understandable as an abstract identity function, without any particular
specification of the type of arguments. But in classical mathematics it would not
define a function, because its intended domain, i.e. the collection of all objects, is
not a set. The Untyped Lambda Calculus is meant to be a theory of such general
rules.

In set-theoretical terms, we could compare the Typed Lambda Calculus to a
formal theory of sets, and the Untyped Lambda Calculus to a theory of classes .
Historically, the unrestricted versions of both Set Theory and the Lambda Calculus
were introduced and developed before their restricted versions. Actually, the step
from the former to the latter was forced by the discovery of inconsistencies, such as
Russell’s Paradox. With historical insight, the Untyped Lambda Calculus is thus
highly suspicious, and part of its interest lies precisely in its surprising immunity
to the usual set-theoretical paradoxes.

In the following we could easily refer directly to the treatment of Chapter 8, by
just dropping types everywhere. We choose a middle way, by repeating the main
definitions and statements but not their motivations and proofs.

255

256 D. Untyped Lambda Calculus

12.1 Untyped Lambda Terms

Terms

As in the Typed Lambda Calculus, terms will be seen as names for functions, their
arguments and their values. The novelty here is the lack of type restrictions.

The language for the description of terms consists of:
• variables x, y, . . .

• parentheses ‘(’ and ‘)’

• dot ‘.’

• the term constructor λ (lambda operator).
This language is enough for a first approximation to a theory of untyped func-

tions, in which we consider only unspecified atomic terms, and denote them by
term variables . In a second approximation we can also consider specific atomic
terms, representing particular objects or functions of interest, and denote them by
term constants . The presence of term constants distinguishes an applied theory of
functions from a pure one.

Definition 12.1.1 Untyped λ-Terms (Church [1933]) Untyped λ-terms are
defined inductively as follows.

1. Variables. A variable x is a term, and x occurs free in it.

2. Functional Application. If u and v are terms, then (uv) is a term. An
occurrence of a variable is free or bound in it if was so in u or v.

3. Functional Abstraction. If x is a variable and u is a term, then (λx. u)
is a term. An occurrence of a variable is free or bound in it if was so in u,
with the exception of the free occurrences of x in u, which become bound.

Terms in which no variable occurs free are called closed.

To increase readability some parentheses can either be omitted, when no con-
fusion arises, or written differently, e.g. as ‘[’ and ‘]’. We will use the letters x, y,
z, . . . for variables, and t, u, v, . . . for terms.

As in Chapter 8, we adopt the following convention on multiple λ-abstractions,
that defines λ-abstractions on n-tuples of variables:

λx1 · · ·xn. u
def= λx1. (· · · (λxn. u) · · ·).

A complementary convention on multiple applications, consistent with the
previous one, allows us to consider the simultaneous application of a single term t
to any n-tuple of terms:

tv1 · · · vn
def= (· · · (tv1) · · · vn).

Untyped Lambda Terms 257

Reductions

The following rules are intuitively justified as in Chapter 8.

Definition 12.1.2 α-Rule. In a given term we can change every bound occur-
rence of a variable with occurrences of another variable, as long as no free occur-
rence of any variable in any subterm of the original term becomes bound in that
subterm after the change.

Definition 12.1.3 β-Rule. Given terms u and v, we can step from (λx. u)v
(called a redex) to u[x := v] (called a reduct1), where the latter is the result of
the substitution of v for the free occurrences of x in u. We write

(λx. u)v −→1β u[x := v]

to state that one step of the β-rule has been applied to the left-hand-side to produce
the right-hand-side.

Formally, u[x := v] is defined by induction on u, as follows:

u[x := v] =

v if u = x
u if u = y -= x
(u1[x := v])(u2[x := v]) if u = u1u2

λy. (u1[x := v]) if u = λy. u1,

where in the last clause we tacitly use the α-rule to ensure that the bound variable
is not x itself.

The α-rule can be expressed, in terms of substitution, as follows (with the
appropriate restrictions on y):

λx. u = λy. (u[x := y]).

As usual, a λ-term is said to be in β-normal form if no application of the
β-rule is possible inside it, i.e. the term does not contain any redex. We will
later prove that, unlike in the Typed Lambda Calculus, not every λ-term has a
β-normal form (12.2.1). Moreover, not every sequence of applications of the β-rule
necessarily produces the β-normal form of a term that has one (12.2.8). However,
as in the Typed Lambda Calculus, if a β-normal form exists, then it is unique
(Uniqueness of β-Normal Forms, 12.2.7).

As usual, to formally define the expression ‘to apply the β-rule inside a term’
we need to extend the β-rule (as defined in 12.1.3) to allow for its application not
only to a term that is a redex, but also to any term that contains a redex, by
inductively extending the meaning of −→1β as follows.

1Some authors call it a contractum.

258 D. Untyped Lambda Calculus

Definition 12.1.4 One-Step β-Reducibility. The reducibility −→1β is defined
inductively by the following clauses:

(λx. u)v −→1β u[x := v] (12.1)
u1 −→1β u2

u1v −→1β u2v
(12.2)

v1 −→1β v2

uv1 −→1β uv2
(12.3)

u1 −→1β u2

λx. u1 −→1β λx. u2,
(12.4)

where the first clause (i.e. the β-rule) can be thought of as an axiom, and the
remaining ones as deduction rules.

A further extension, needed in the informal discussion above on normal forms,
requires the application of the β-rule not only once inside a given term, but any
finite number of times. This defines the notion of β-reducibility, which we will
indicate by −→β , and of which −→1β constitutes a single step. By definition, −→β

is simply the reflexive and transitive closure of −→1β . More formally:

Definition 12.1.5 β-Reducibility. The reducibility −→β is defined inductively
by the following clauses:

u −→β u (12.1)
u1 −→1β u2

u1 −→β u2
(12.2)

u1 −→β u2 u2 −→β u3

u1 −→β u3
(12.3)

where the first clause can be thought of as an axiom, and the remaining ones as
deduction rules.

Equality

The final extension of β-reducibility that we consider is the notion of β-equality,
which we will indicate by =β, and is defined as the symmetric and transitive closure
of −→β . More formally:

Definition 12.1.6 β-Equality. The equivalence relation =β is defined inductively
by the following clauses:

u1 −→β u2

u1 =β u2
(12.4)

Untyped Lambda Terms 259

u1 =β u2

u2 =β u1
(12.5)

u1 =β u2 u2 =β u3

u1 =β u3,
(12.6)

where the first clause can be thought of as an axiom, and the remaining ones as
deduction rules.

The next property is proved as in 8.1.7 and 8.5.8, using the untyped version of
the Diamond Property (12.2.6).

Proposition 12.1.7 Two terms are β-equal if and only if they reduce to a common
term.

In the Untyped Lambda Calculus the notion of β-equality cannot be charac-
terized solely in terms of normal forms, as it was the case for the Typed Lambda
Calculus (see 8.4.6). The connections between β-equality and normal forms are
determined in the next exercises.

Exercises 12.1.8 a) Any term β-equal to a term having a normal form, also has a normal
form. (Hint: by 12.2.6 and 8.5.8.)

b) Terms having a normal form are β-equal if and only if they have the same normal
form.

c) Not all terms without a normal form are β-equal .(Hint: the terms ∆∆ and ∆y∆y

used in the proof of 12.2.2 are not β-equal.)

Combinators !

As for the Typed Lambda Calculus, we can present the Untyped Lambda Calculus
in a synthetical way, in which a few λ-terms called atomic combinators are
selected, and combinators are built up from them by means of application alone.
The question again arises of finding nontrivial atomic combinators, such that the
terms built up from them and the variables by means of application alone, which
we will call combinatorial terms,2 somehow represent all λ-terms. The answer
is given by the next result, whose proof is like the one in 8.2.1.

Theorem 12.1.9 Functional Completeness (Schönfinkel [1924], Curry [1930])
Define the atomic combinators as follows:

1. I = λx. x

2. K = λyx. y

2The usual combinators are closed combinatorial terms, i.e. the ones without free variables.

260 D. Untyped Lambda Calculus

3. S = λxyz. (xz)(yz).

Then for every λ-term t there is a combinatorial term tc built up from atomic
combinators and variables by application alone, and such that tc is β-reducible to
t.

The main difference with the Typed Lambda Calculus is that we only have here
three combinators, as opposed to three families of them, one for each possible type.
As usual, I is derivable from the other two as SKK, and thus only two combinators
are enough to synthesize every λ-term, by composition alone and starting from the
variables.

Having shown how combinators are actually sufficient to define all λ-terms, we
can take a last step and develop a theory of combinators independently of the
Untyped Lambda Calculus, and as an alternative approach to it.

The notion of a combinator is defined inductively, as in 12.1.1, using in a first
approximation only the two constants K and S (in a second approximation, the
presence of other combinator constants distinguishes the pure from an applied the-
ory of combinators):

1. The constants K and S are combinators.

2. If C and D are combinators, then (CD) is a combinator.

To increase readability some parentheses can be omitted, when no confusion arises.
We will use the letters x, y, z, . . . for variables, and C, D, E, . . . for combinators.

The notion of combinatorial β-reducibility −→cβ is defined in analogy with
β-reducibility, by replacing the β-rule with its two instances needed to give the
constants K and S the appropriate operational meaning. Precisely, −→cβ is the
reflexive and transitive closure of the single step reducibility −→1cβ , defined induc-
tively as:

KCD −→1cβ C
SCDE −→1cβ (CE)(DE)

C1 −→1cβ C2

C1D −→1cβ C2D

D1 −→1cβ D2

CD1 −→1cβ CD2.

The notion of combinatorial β-equality =cβ is defined as the symmetric and tran-
sitive closure of −→cβ.

A combinator is in β-normal form if no reduction as above is possible inside
it or, equivalently, if it does not contain any subcombinator of the form KCD or
SCDE.

Normal Forms 261

As for the Typed Theory of Combinators and the Typed Lambda Calculus,
it is possible to define mutual translations of a combinator C into a λ-term Cλ,
and of a λ-term t into a combinator tc (see 8.6.6 and 8.6.7). In the presence of
extensionality rules the two translations turn out to be inverse one of the other,
i.e.

(Cλ)c = C and (tc)λ = t

(see 8.6.9 and 8.6.10).

12.2 Normal Forms

We consider in this section the topic of normal forms. It is here that the Typed
and Untyped Lambda Calculi radically depart way. In the former, every term has
a unique normal form, and any reduction procedure eventually produces it. In
the latter, not every term has a normal form, and even when it does, not every
reduction procedure eventually produces it .

However, one result that was true of the Typed Lambda Calculus remains
true, namely that normal forms are unique, when they exist . This shows that
the Untyped Lambda Calculus can still be considered as a calculus of functions,
although not anymore of total ones.

Terms without normal form

The next result shows that even the Weak Normalization Theorem fails for the
Untyped Lambda Calculus.

Proposition 12.2.1 There is a term without normal form.

Proof. The idea is to construct a term that perpetually selfreproduces, and hence
it never reaches a normal form. To be able to selfreproduce, such a term must be
(or at least contain) an application, otherwise we could not apply the β-rule to it
(or a subterm of it). We are thus looking for a term of the form uv, where u is
a λ-abstraction. Moreover, for uv to be able to reproduce itself, u must produce
an application when applied to v. The simplest term u that is an abstraction and
produces an application is ∆ = λx. xx. Then

∆v −→β vv.

By applying ∆ to itself, i.e. by letting v = ∆, we get

∆∆ −→β ∆∆,

and thus ∆∆ selfreproduces.

262 D. Untyped Lambda Calculus

Of the two occurrences of λ in ∆∆ = (λx. xx)(λx. xx), the rightmost one cannot
be reduced because it is not applied to any term. Thus the only possible applica-
tion of the β-rule inside ∆∆ is precisely the one that forces it to selfreproduce, and
no normal form exists. !

Notice that the selfreproduction of∆∆ occurs in exactly one step of β-reduction.
The proof just given actually shows that ∆∆ is the only term for which this hap-
pens.

Fixed points

The technique just used can be easily extended to obtain the following crucial
result, for which we provide two different proofs.

Theorem 12.2.2 Fixed Point Combinator (Kleene [1936], Turing [1937],
Curry [1942], Rosenbloom [1950]) Every untyped λ-term has a fixed point,
i.e. for every u there is v such that

v −→β uv.

Actually, there is a fixed point combinator Y that, when applied to u, produces
a fixed point of it:

Yu =β u(Yu).

First Proof. We start with an informal argument. Recall that in 12.2.1 we defined

∆ = λx. xx,

and noticed that
∆v −→β vv,

so that
∆∆ −→β ∆∆.

We now want a term that reproduces not itself, but u applied to itself. The natural
guess is to use

∆u = λx. u(xx).

Indeed,
∆uv −→β u(vv),

and
∆u∆u −→β u(∆u∆u).

Actually, ∆u∆u is obtained uniformly in u, and by abstracting u we obtain the
required fixed point combinator:

Y = λy.∆y∆y = λy. (λx. y(xx))(λx. y(xx)).

Normal Forms 263

Then

Yu = (λy.∆y∆y)u
→β ∆u∆u

→β u(∆u∆u)
=β u(Yu).

Notice that the last step is really only a β-equality, and not a β-reduction, because
we are going from the reduct ∆u∆u to the redex (λy.∆y∆y)u = Yu, i.e. in the
direction opposite to −→β.

Second Proof. We now give a proof based on the contrapositive of the diagonal
method, in the style of Owings [1973]. Given a term u, suppose v −→β uv as
required. Then v is β-equal to a term of the form titj , for some ti and tj . We can
thus think of u as acting on terms of the form titj . Consider then an enumeration
of all pairs of λ-terms:

t0t0 t0t1 t0t2 t0t3 · · ·
t1t0 t1t1 t1t2 · · ·
t2t0 t2t1 t2t2 · · ·
t3t0 · · · · · · · · ·
· · ·

and the effect of u on the diagonal:

u(t0t0) u(t1t1) u(t2t2) · · ·

This is β-equal to a row of the previous matrix. More precisely, to the n-th one,
with n such that

tn = λx. u(xx),

because
tnti −→β u(titi).

In particular,
tntn −→β u(tntn),

i.e. tntn is a fixed point of u. Actually,

tntn = (λx. u(xx))(λx. u(xx))

is obtained uniformly in u, and by abstracting u we obtain the required fixed point
combinator:

Y = λy. (λx. y(xx))(λx. y(xx)).

264 D. Untyped Lambda Calculus

At this point, we can proceed as in the previous proof. !

Y is sometimes called the paradoxical combinator, because it embodies the
argument used in Russell’s paradox . The connection is established by the following
correspondence:

Set Theory Lambda Calculus
element argument

set function
membership application
set formation λ-abstraction.

Russell’s paradox is obtained by considering the set

A = {x : x -∈ x}.

Then
x ∈ A ⇔ x -∈ x,

and
A ∈ A ⇔ A -∈ A.

The last assertion is a contradiction.
In terms of the Lambda Calculus, negation can be considered as term u that is

never the identity. Since membership corresponds to application, and set formation
to λ-abstraction, the set A corresponds to the term

∆u = λx. u(xx).

Then
∆ux =β u(xx),

and
∆u∆u =β u(∆u∆u).

The last assertion is now true, and not a contradiction. Rather, from it we deduce
that a term u that is never the identity cannot exist.

Uniqueness of normal forms

In Chapter 8 we have provided two different proofs of uniqueness of normal forms.
One (8.4.5) used the Strong Normalization Theorem and obviously has no coun-
terpart here, since even the Weak Normalization Theorem fails. The other (8.5.7)
followed from the Church-Rosser Theorem (8.5.6), and goes through here with no
change, by simply erasing types.

We only restate the relevant definitions and results, and refer to Section 8.4 for
motivations and proofs.

Normal Forms 265

Definition 12.2.3 Parallel Reducibility (Tait, Martin-Löf) The reducibility
=⇒ is defined inductively by the following clauses:

u =⇒ u (12.1)
u =⇒ u1 v =⇒ v1

uv =⇒ u1v1
(12.2)

u =⇒ u1

λx. u =⇒ λx. u1
(12.3)

u =⇒ u1 v =⇒ v1

(λx. u)v =⇒ u1[x := v1],
(12.4)

where the first clause can be thought of as an axiom, and the remaining one as
deduction rules.

As a special case of equation 12.4 we have

u =⇒ u v =⇒ v
(λx. u)v =⇒ u[x := v],

where the top line consists of axioms. Thus −→1β implies =⇒. Inductively, we
easily see that =⇒ implies −→β. Then −→β is the transitive closure of =⇒, since
it is the transitive closure of −→1β .

The next results are proved as in 8.5.4, 8.5.5, 8.5.6 and 8.5.7.

Proposition 12.2.4 Strong Diamond Property for =⇒ (Takahashi [1995])
For any term t there is a term t∗ such that if t =⇒ t1, then t1 =⇒ t∗.

Corollary 12.2.5 Diamond Property for =⇒ (Tait, Martin-Löf) If t1 and
t2 are terms obtained from t by =⇒, then there is a term t∗ which can be obtained
from t1 and t2 by =⇒. Graphically,

t ⇒ t1
⇓ ⇓
t2 ⇒ t∗.

Theorem 12.2.6 Diamond Property for −→β (Church and Rosser [1936])
If t1 and t2 are terms obtained from t by −→β, then there is a term t∗ which can
be obtained from t1 and t2 by −→β. Graphically,

t → t1
↓ ↓
t2 → t∗.

Corollary 12.2.7 Uniqueness of Normal Forms. Every untyped λ-term has
at most one normal form.

266 D. Untyped Lambda Calculus

Normalizing reduction strategies

Due to the presence of selfreproducing terms and the possibility of cancellations, a
term may have a normal form, because bad subterms are eventually cancelled out,
but some reduction strategy may not produce it, because it may get stuck in the
evaluation of a subterm without normal form.

Proposition 12.2.8 There is a term with a normal form, and such that some
reduction strategy does not produce it.

Proof. Consider (λxy.y)(∆∆). Then:

• by reducing the outermost λ we get λy. y, which is in normal form

• by always reducing the outermost λ in ∆∆, we continue to obtain the term
itself, since ∆∆ selfreproduces. !

The problem then arises of whether there is a reduction strategy that would
always produce the normal form of a term, whenever it exists. We get a positive
answer by using the following notions.

Definition 12.2.9 A one-step β-reduction u −→1β v is called:

1. a head reduction (u −→1h v) if

u = λy1 · · · yn. (λx. u0)u1 · · ·um

and v is obtained from it by reducing (λx. u0)u1, i.e.

v = λy1 · · · yn. (u0[x := u1])u2 · · ·um.

2. an internal reduction (u −→1i v) if it is not a head reduction, i.e.

u = λy1 · · · yn. (λx. u0)u1 · · ·um or λy1 · · · yn. zu0 · · ·um,

and the reduction is performed inside one of the terms ui.

3. a leftmost reduction (u −→1l v) if it reduces the leftmost λ that can be
reduced.

We define −→h, −→i and −→l as in 12.1.5, i.e. as the reflexive and transitive
closure of −→1h, −→1i and −→1l.

We define =⇒i as in 12.2.3, i.e. as the parallel version of −→1i.

Normal Forms 267

Obviously, there is no parallel version of either −→1h or −→1l, because at most
one head or leftmost reduction can be performed on a given term. It is instead
possible to perform different internal reductions, and =⇒i allows us to perform
some of them in parallel.

We now prove that a parallel reduction can always be factored into a sequence
of head reductions, followed by an internal parallel reduction.

Theorem 12.2.10 Normal Form of Parallel Reductions (Takahashi [1989])
If u =⇒ v, then there exists a term t such that u −→h t =⇒i v.

Proof. We prove by induction on u =⇒ v that there exist terms ti =⇒ v such that

u −→1h t1 −→1h · · · −→1h tn =⇒i v.

1. u =⇒ u
In this case there is nothing to prove.

2. u1u2 =⇒ v1v2, with u1 =⇒ v1 and u2 =⇒ v2

By the induction hypothesis on u1 =⇒ v1, there exist terms ti =⇒ v1 such
that

u1 −→1h t1 −→1h · · · −→1h tn =⇒i v1.

We append u2 everywhere, and notice that:

(a) If none of u1, t1, . . . , tn is a λ-abstraction, then

u1u2 −→1h t1u2 −→1h · · · −→1h tnu2

because no new head reduction becomes possible by appending u2.
(b) Since tn =⇒i v1 and u2 =⇒ v2, then

tnu2 =⇒i v1v2.

Indeed, any reduction internal in tn remains internal in tnu2. And any
reduction in u2 is internal in tnu2.

Then
u1u2 −→1h t1u2 −→1h · · · −→1h tnu2 =⇒i v1v2,

i.e. Case 2 holds if none of u1, t1, . . . , tn is a λ-abstraction. Otherwise, there
are two cases.

(c) If u1 is a λ-abstraction, then

u1u2 =⇒i v1v2.

Indeed, any reduction in u1 is internal in u1u2, because u1 is a λ-
abstraction. And any reduction in u2 is internal in u1u2. Then Case 2
holds trivially.

268 D. Untyped Lambda Calculus

(d) Otherwise, let tm be the first such term which is a λ-abstraction. Then

u1u2 −→1h t1u2 −→1h · · · −→1h tmu2 =⇒i v1v2.

Indeed, the head reductions hold as in (a), because none of u1, t1, . . . , tm−1

is a λ-abstraction. And the internal parallel reduction holds as in (c),
because tm =⇒ v1 by the additional induction hypothesis, which was
introduced precisely to make this case work.

3. λx. u =⇒ λx. v, with u =⇒ v
By the induction hypothesis on u =⇒ v, there exist terms ti =⇒ v such that

u −→1h t1 −→1h · · · −→1h tn =⇒i v.

If we prefix λx everywhere, we trivially get λx. ti =⇒ λx. v and

λx. u −→1h λx. t1 −→1h · · · −→1h λx. tn =⇒i λx. v.

4. (λy. u1)v1 =⇒ u2[y := v2], with u1 =⇒ u2 and v1 =⇒ v2

By the inductive hypothesis on u1 =⇒ u2, there exist terms ti =⇒ u2 such
that

u1 −→1h t1 −→1h · · · −→1h tn =⇒i u2.

If we substitute v1 for y everywhere, we get

(λy. u1)v1 −→1h u1[y := v1] −→1h t1[y := v1] −→1h · · · −→1h tn[y := v1].

Notice that:

• u1[y := v1] =⇒ u2[y := v2]
This follows from 8.5.3, by the hypotheses u1 =⇒ u2 and v1 =⇒ v2.

• ti[y := v1] =⇒ u2[y := v2]
This follows from 8.5.3, by the inductive hypothesis ti =⇒ u2 and the
hypothesis v1 =⇒ v2.

To conclude the proof, it would thus be enough to prove

tn[y := v1] =⇒i u2[y := v2].

We do this below, but in one case we can only prove that

tn[y := v1] −→h=⇒i u2[y := v2].

This is still sufficient, but it introduces additional terms between tn[y := v1]
and u2[y := v2], which must be proved to be reducible to u2[y := v2] by
means of parallel reductions.

Normal Forms 269

By the induction hypothesis on v1 =⇒ v2, we have v1 −→h=⇒i v2, with
intermediate terms reducible to v2 by parallel reductions. We now prove that

tn =⇒i u2 v1 −→h=⇒i v2

tn[y := v1] −→h=⇒i u2[y := v2].

Since we step from tn to u2 by internal reductions, there are two cases:

(a) tn = λx1 · · ·xp. zs1 · · · sq and u2 = λx1 · · ·xp. zs∗1 · · · s∗q , where si =⇒ s∗i .
Since the λ’s can be added later on, as in Case 3, we can restrict attention
to the rest of the terms. There are two subcases:

• if z = y, then

(zs1 · · · sq)[y := v1] = v1(s1[y := v1]) · · · (sq[y := v1])
−→h=⇒i v2(s∗1[y := v2]) · · · (s∗q [y := v2])

= (zs∗1 · · · s∗q)[y := v2]

by v1 −→h=⇒i v2 and si =⇒ s∗i .
The condition that the additional terms thus introduced are re-
ducible to u2[y := v2] by parallel reductions, follows from the in-
duction hypothesis on v1 −→h=⇒i v2 and from 8.5.3, which implies

si =⇒ s∗i v1 =⇒ v2

si[y := v1] =⇒ s∗i [y := v2].

• if z -= y, then

(zs1 · · · sq)[y := v1] = z(s1[y := v1]) · · · (sq[y := v1])
=⇒i z(s∗1[y := v2]) · · · (s∗q [y := v2])
= (zs∗1 · · · s∗q)[y := v2]

by si =⇒ s∗i and v1 =⇒ v2.
(b) tn = λx1 · · ·xp. (λz. s0)s1 · · · sq and u2 = λx1 · · ·xp. (λz. s∗0)s∗1 · · · s∗q .

Since we may suppose z -= y by the α-rule, we can proceed as in the
second subcase of (a) above. !

Proposition 12.2.11 First Invertibility Property (Takahashi [1989]) An
internal parallel reduction followed by head reductions can be inverted, in the sense
of being replaced by head reductions followed by an internal parallel reduction.
Schematically:

u =⇒i−→h v
u −→h=⇒i v.

270 D. Untyped Lambda Calculus

Proof. By induction on the number of head reductions, it is enough to restrict
attention to the case u =⇒i t −→1h v. Then

u = λy1 · · · yn. (λx. u0)u1u2 · · ·um

t = λy1 · · · yn. (λx. t0)t1t2 · · · tm
v = λy1 · · · yn. (t0[x := t1])t2 · · · tm,

where ui =⇒ ti, although not necessarily ui =⇒i ti. If we let

s = λy1 · · · yn. u0[x := u1]u2 · · ·um,

then u −→1h s =⇒ v. By 12.2.10, s =⇒ v can be factored into a head reduction
and an internal parallel reduction, i.e. there exists s1 such that s −→h s1 =⇒i v.
Then u −→h s1 =⇒i v. Schematically:

u =⇒i t −→1h v
u −→1h s =⇒ v

u −→1h s −→h s1 =⇒i v
u −→h s1 =⇒i v. !

We now prove that a β-reduction can always be factored into a sequence of
head reductions, followed by a sequence of internal reductions.

Corollary 12.2.12 Normal Form of Reductions (Mitschke [1979]) If u −→β

v, then there exists a term t such that u −→h t −→i v.

Proof. A β-reduction can be factored into a sequence of 1β-reductions, and hence
of parallel reductions. By 12.2.10, each parallel reduction can be factored into a
sequence of head reductions, and an internal parallel reduction. By the invertibility
noticed above, this can be turned into a sequence of head reductions, followed by
a sequence of internal (parallel) reductions. Schematically:

u −→β v
u −→1β · · · −→1β v

u =⇒ · · · =⇒ v
u −→h=⇒i · · · −→h=⇒i v

u −→h=⇒i · · · =⇒i v
u −→h−→i · · · −→i v

u −→h−→i v.

Notice that the next to last step from =⇒i to −→i is needed because (internal)
parallel reductions are not transitive. !

Normal Forms 271

A term is said to be in head normal form when it cannot be reduced by means
of head reductions. The previous corollary implies that if a term has a head normal
form, then the latter can be produced by a sequence of head reductions.

With a little more effort we can prove that if a term has a normal form, then
the latter can be produced by a sequence of leftmost reductions. In other words,
leftmost reduction is the normalization strategy we were looking for.

Corollary 12.2.13 Leftmost Reduction Strategy (Church and Rosser [1936])
If u −→β v and v is in normal form, then u −→l v.

Proof. We proceed by induction on u −→β v. By 12.2.12, there exists a term t
such that u −→h t −→i v. Since v is in normal form, there exist terms v1, . . . , vm

in normal form, such that

v = λy1 · · · yn. zv1 · · · vm.

Since v is obtained from t by internal reductions,

t = λy1 · · · yn. zt1 · · · tm,

with ti −→β vi. By the induction hypothesis, ti −→l vi. Then

u −→h λy1 · · · yn. zt1t2 · · · tm
−→l λy1 · · · yn. zv1t2 · · · tm
−→l λy1 · · · yn. zv1v2 · · · tm
−→l · · ·
−→l λy1 · · · yn. zv1v2 · · · vm.

Since a head reduction is a leftmost reduction, u −→l v !

Exercises 12.2.14 a) Quasi-Head Reduction Theorem. In a sequence of β-reductions
starting with a term having head normal form, there cannot be infinitely many head re-
ductions. It follows that if a term has a head normal form, then the latter can be produced
by any reduction strategy that uses head reductions unboundedly often. (Takahashi [1995])
(Hint: by 12.2.12 and invertibility, from a sequence of β-reductions containing infinitely
many head reductions we can extract arbitrarily long finite sequences of head reductions
starting with the initial term. Then such a term cannot have a head normal form.)

b) Quasi-Leftmost Reduction Theorem. In a sequence of β-reductions starting
with a term having normal form, there cannot be infinitely many leftmost reductions. It
follows that if a term has a normal form, then the latter can be produced by any re-
duction strategy that uses leftmost reductions unboundedly often. (Barendregt [1981])
(Hint: by induction on the first term u of the sequence. Suppose u has a normal form
λy1 · · · yn. zu1 · · ·um. By part a), in a sequence of β-reductions starting with u there can-
not be infinitely many head reductions. If there are infinitely many leftmost reductions,

272 D. Untyped Lambda Calculus

there must be a leftmost but not head reduction starting with a term v in the sequence.
Then v is in head normal form, and by the Church-Rosser Theorem it must be of the
form λy1 · · · yn. zv1 · · · vm, with vi −→β ui. By the induction hypothesis, there can be
only finitely many leftmost reductions in any sequence of β-reductions starting with any
vi, and hence only finitely many in any sequence starting with v.)

c) Standardization Theorem. If u −→β v, it is possible to go from u to v by a

sequence of reductions in which the contracted redexes move from left to right. In other
words, once a redex is reduced, all redexes to its left become frozen and cannot be reduced

anymore. (Curry and Feys [1958]) (Hint:byi nduction on u, using 12.2.12.)

Notice that our treatment reverses the historically order. The Leftmost Reduc-
tion Theorem was originally proved in Church and Rosser [1936] by a complicated
proof. Successive simplifications were given first by Curry and Feys [1958], us-
ing the Standardization Theorem, and then by Mitschke [1979], using the Normal
Form Theorem for Reductions. Finally, Takahashi [1989] gave the proof above,
using the Normal Form Theorem for Parallel Reductions. On their turn, parallel
reductions were first introduced by Tait and Martin-Löf to give a simplified proof
of the Church-Rosser Theorem, which again was originally proved by Church and
Rosser [1936] by a complicated proof.

12.3 Extensionality

As for the Typed Lambda Calculus, we now add a rule that identifies intensionally
different terms computing the same function, and study the extensional version
of the Untyped Lambda Calculus thus obtained. Since much of the work done in
Section 8.6 extends without changes, we concentrate on the novel aspects.

As usual, we will explicitly refer to notions, symbols and results of the previous
sections by attaching a β to them. For example, we will talk of β-normal forms,
parallel β-reductions ⇒β and β-normalizing reduction strategies.

Extensional reductions

We do not repeating the discussion of Section 8.6 on the various equivalent exten-
sionality rules, and consider only the following.

Definition 12.3.1 η-rule. Given a term u and a variable x not occurring free in
it, we can step from λx. ux (called an η-redex) to u (called an η-reduct). We
write

λx. ux −→1η u

to state that one step of the η-rule has been applied to the left hand side to produce
the right hand side.

Normal Forms 273

The following definition is the analogue of 12.1.4, 12.1.5 and 12.1.6.

Definition 12.3.2 η-Reducibility and η-Equality. The reducibility −→1η is
defined inductively, by replacing in 12.1.4 the first clause by the following:

λx. ux −→1η u,

when x is not free in u.
The reducibility −→η is the reflexive and transitive closure of −→1η.
The relation =η is the symmetric and transitive closure of −→η.

We say that a term is in η-normal form if no application of the η-rule is
possible in it. Then, given a term, any sequence of applications of η-reductions to
it will eventually produce a term in η-normal form (Strong η-Normalization),
that is independent of the chosen sequence of η-reductions (Uniqueness of η-
Normal Forms). The proofs are the same as for the Typed Lambda Calculus. In
particular, it is still true that any application of the η-rule decreases the length of
the term to which it is applied.

The next definition considers the η-rule not as a replacement of the β-rule, as
above, but as a supplement to it.

Definition 12.3.3 βη-Reducibility and βη-Equality. The reducibility −→1βη

is defined inductively, by adding to 12.1.4 the following clause:

λx. ux −→1η u,

when x is not free in u.
The reducibility −→βη is the reflexive and transitive closure of −→1βη.
The relation =βη is the symmetric and transitive closure of −→βη.

As above, we say that a term is in βη-normal form if no application of the
β-rule or η-rule is possible in it. By 12.2.1, the βη-normal form of an untyped
term does not always exist . However, if a βη-normal form exists, then it is unique
(Uniqueness of βη-normal Forms, 12.3.8) and it can be obtained by leftmost
βη-reductions (Leftmost βη-Reduction Strategy, 12.3.13).

Normal Forms

In Chapter 8 we have provided two different proofs of the Diamond Property for
−→βη, and hence of βη-normal forms. One proof (8.6.17) used a class of terms
defined by induction on types and obviously has no counterpart here. The other
proof (8.6.15) used parallel βη-reductions and goes through here with no changes,
by simply erasing the types.

We only restate the relevant definitions and results, and refer to Section 8.6 for
proofs. The next concept is not needed for the Diamond Property, but it will be
useful later on.

274 D. Untyped Lambda Calculus

Definition 12.3.4 Parallel η-Reducibility (Tait, Martin-Löf) The reducibil-
ity =⇒η is defined inductively, by replacing in 12.2.3 the first clause by the follow-
ing:

u =⇒η u1

λx. ux =⇒η u1,
(12.5)

when x is not free in u.

As a special case of equation 12.5 we have

u =⇒η u
λx. ux =⇒η u,

where the top line consists of an axiom. Thus, as usual, −→η is the transitive
closure of =⇒η.

Definition 12.3.5 Parallel βη-Reducibility (Tait, Martin-Löf) The reducibil-
ity =⇒βη is defined inductively, by adding to 12.2.3 the following clause:

u =⇒βη u1

λx. ux =⇒βη u1,
(12.6)

when x is not free in u.

Once again, as usual, −→βη is the transitive closure of =⇒βη. We can now
prove the next results as in 8.6.14, ?? and 8.6.16.

Proposition 12.3.6 (Takahashi [1995]) For any term t there is a term t∗ such
that if t =⇒βη t1, then t1 =⇒βη t∗.

Theorem 12.3.7 Diamond Property for βη-Reduction (Curry and Feys
[1958]) If t1 and t2 are terms obtained from t by −→βη, then there is a term t∗

which can be obtained from t1 and t2 by −→βη.

Corollary 12.3.8 Uniqueness of βη-Normal Forms. Every untyped λ-term
has at most one βη-normal form.

Having thus disposed of uniqueness of βη-normal forms, we now turn to the
problem of existence. We have already observed that the term ∆∆ without β-
normal form has no βη-normal form either, for the trivial reason that it has no
η-redexes. We are now going to prove that the counterexample was forced on us,
in the sense that the terms without βη-normal form are exactly the terms without
β-normal form.

The main technical tool of the proof is the next result.

Normal Forms 275

Proposition 12.3.9 Second Invertibility Property (Takahashi [1989]) A
parallel η-reduction followed by a parallel β-reduction can be inverted, in the sense of
being replaced by a parallel β-reduction followed by a parallel η-reduction. Schemat-
ically:

u =⇒η=⇒β v
u =⇒β=⇒η v.

Proof. For simplicity of notation, in the present proof we write

λ.y. (t).y

as an abbreviation for

λy1. (λy2. · · · (λyn.tyn) · · · y2)y1.

If u =⇒η t =⇒β v, we prove by induction on t =⇒β v that there is a term s
such that u =⇒β s =⇒η v.

1. u =⇒η v =⇒β v
Then u =⇒β u =⇒η v.

2. u =⇒η t1t2 =⇒β v1v2, with t1 =⇒β v1 and t2 =⇒β v2

By definition of =⇒η, u = λ.y. (u1u2).y, with u1 =⇒η t1 and u2 =⇒η t2. Then

u1 =⇒η t1 =⇒β v1

u1 =⇒β s1 =⇒η v1

u2 =⇒η t2 =⇒β v2

u2 =⇒β s2 =⇒η v2

u1u2 =⇒β s1s2 =⇒η v1v2

λ.y. (u1u2).y =⇒β λ.y. (s1s2).y =⇒η v1v2

by the induction hypothesis and definition of =⇒β and =⇒η.

3. u =⇒η λx. t1 =⇒β λx. v1, with t1 =⇒β v1

By definition of =⇒η, u = λ.y. (λx. u1).y, with u1 =⇒η t1. Then

u1 =⇒η t1 =⇒β v1

u1 =⇒β s1 =⇒η v1

λx. u1 =⇒β λx. s1 =⇒η λx. v1

λ.y. (λx. u1).y =⇒β λ.y. (λx. s1).y =⇒η λx. v1

by the induction hypothesis and definition of =⇒β and =⇒η.

4. u =⇒η (λx. t1)t2 =⇒β v1[x := v2], with t1 =⇒β v1 and t2 =⇒β v2

By definition of =⇒η,

u = λ.y. ((λ.z. (λx. u1).z)u2).y,

276 D. Untyped Lambda Calculus

with u1 =⇒η t1 and u2 =⇒η t2. By the induction hypothesis,

u1 =⇒η t1 =⇒β v1

u1 =⇒β s1 =⇒η v1
and u2 =⇒η t2 =⇒β v2

u2 =⇒β s2 =⇒η v2.

We get the desired conclusion in two steps.

(a) We first notice that

u1 =⇒β s1 u2 =⇒β s2

(λ.z. (λx. u1).z)u2 =⇒β s1[x := s2]
λ.y. ((λ.z. (λx. u1).z)u2).y =⇒β λ.y. (s1[x := s2]).y.

The second step holds by definition of =⇒β , while the first step is the
only nontrivial part of the proof. We prove it for the case when .z consists
of z1 and z2, the general case being similar:

u1 =⇒β s1 z2 =⇒β z2

(λx. u1)z2 =⇒β s1[x := z2] z1 =⇒β z1

(λz2. (λx. u1)z2)z1 =⇒β (s1[x := z2])[z2 := z1] u2 =⇒β s2

(λz1. (λz2. (λx. u1)z2)z1)u2 =⇒β ((s1[x := z2])[z2 := z1])[z1 := s2],

and the last term is simply s1[x := s2], as needed.
(b) We then notice that

s1 =⇒η v1 s2 =⇒η v2

s1[x := s2] =⇒η v1[x := s2]
λ.y. (s1[x := s2]).y =⇒η v1[x := s2].

The second step holds by definition of =⇒η, while the first step is a
Substitution Lemma for =⇒η that can be easily proved (as in 8.5.3 for
=⇒β , and 8.6.13 for =⇒βη). !

Notice that invertibility of parallel reductions holds only in the direction proved
above, and not in the opposite one. For example,

λx. (λy. yx)z =⇒β λx. zx =⇒η z,

but no η-reduction can be performed in the first term.
The next result, also called the Postponement Theorem, provides a normal

form for βη-reductions in which all η-reductions follow all β-reductions. This is
an analogue of 1.1.2, which provides a normal form for N -proofs in which all →-
introductions follow all →-eliminations.

Corollary 12.3.10 Normal Form of βη-Reductions (Curry and Feys [1958])
If u −→βη v, then there exists a term t such that u −→β t −→η v.

Normal Forms 277

Proof. A βη-reduction can be factored into steps of 1βη-reductions, and hence
into steps of parallel β-reductions and parallel η-reductions. By the invertibility
proved in 12.3.9, this can be turned into a sequence of (parallel) β-reductions, fol-
lowed by a sequence of (parallel) η-reductions. !

The next result shows that the strengthening of the Untyped Lambda Calculus
provided by the η-rule has no effect on the existence of normal forms.

Theorem 12.3.11 (Curry, Hindley and Seldin [1972]) A term has a βη-
normal form if and only if it has a β-normal form.

Proof. There are two directions to prove.

1. if a term has a β-normal form, then it also has a βη-normal form
Suppose u is the β-normal form of the given term, and u =⇒η v. We prove
that v is still in β-normal form, so that performing η-reductions on a term
in β-normal form does not produce any new β-redex. Since any η-reduction
decreases the length of the given term, in finitely many steps we can reduce
to a term which is still in β-normal form and also in η-normal form, i.e. it is
in βη-normal form.

The proof of the claim is immediate. If u is in β-normal form, then

u = λx1 · · ·xn. yu1 · · ·um,

with ui in β-normal form. If u =⇒η v, then either

u = λx1 · · ·xn. yv1 · · · vm,

with ui =⇒η vi, or

u = λx1 · · ·xn−1. yv1 · · · vm−1,

with ui =⇒η vi. By the induction hypothesis, each vi is in β-normal form
because so is ui. Then v is in β-normal form, too.

2. if a term has a βη-normal form, then it also has a β-normal form
Suppose a term has a βη-normal form. By the Postponement Theorem, the
latter can be reached by a sequence of β-reductions, followed by a sequence
of η-reductions. The end result is obviously in β-normal form, being in βη-
normal form. We prove that if u =⇒η v and v is in β-normal form, then u
has a β-normal form. Then the term separating the β-reductions from the
η-reductions still has a β-normal form, and hence so does any term reducible
to it.

278 D. Untyped Lambda Calculus

Suppose u =⇒η v and v is in β-normal form. Then

v = λx1 · · ·xn. yv1 · · · vm,

with vi in β-normal form. For simplicity of notation we restrict to the case

v = λx. yv1,

with v1 in β-normal form, the general case being similar. If u =⇒η v, then

u = λ.z3. (λx. (λ.z2. ((λ.z1. (y).z1)u1).z2)).z3,

with u1 =⇒η v1. By the induction hypothesis, u1 has a β-normal form. As
in the proof of case 4.(a) of 12.3.9, by successive substitutions we can prove
first

λ.z2. ((λ.z1. (y).z1)u1).z2 =⇒β λ.z2. (yu1).z2,

and then
u =⇒β λx. (λ.z2. (yu1).z2).

Since u1 has a β-normal form, so does u. !

Normalizing reduction strategies

12.3.10 and 12.3.11 immediately allow us to exhibit the following βη-normalizing
strategy:

1. reduce the leftmost β-redex, if there is one

2. reduce the leftmost η-redex, otherwise.

If the βη-normal form exists, then the first part produces the β-normal form and
the second part produces its η-normal form, i.e. the βη-normal form.

This is not a literal leftmost reduction strategy yet, since the leftmost β-redex
may not be the leftmost βη-redex, if there is an η-redex to its left. To make the
notion precise, we extend the definition 12.2.9 of −→lβ as follows.

Definition 12.3.12 A one-step βη-reduction u −→1βη v is called a leftmost βη-
reduction (u −→1lβη v) if it reduces the leftmost β-redex or η-redex that can be
reduced.

We define −→lβη as in 12.1.5, i.e. as the reflexive and transitive closure of
−→1lβη.

Theorem 12.3.13 Leftmost βη-Reduction Strategy (Klop [1980]) If u −→βη

v and v is in βη-normal form, the u −→lβη v.

Normal Forms 279

Proof. By 12.3.10, there is a term t such that

u −→β t −→η v.

The β-reduction can turned into a leftmost β-reduction by 12.2.13, since t is in
β-normal form by the proof of 12.3.11.2. The η-reduction can be turned into a
leftmost βη-reduction by always reducing the leftmost η-redex, since all its terms
are in β-normal form by the proof of 12.3.11.1. Thus

u −→lβ t −→lβη v.

We prove by induction on the total length that

−→lβ−→lβη = −→lβη .

Consider the leftmost β-reduction. If it is already a leftmost βη-reduction, then

−→lβ−→lβη = −→1βη (−→lβ−→lβη) = −→lβη

by the induction hypothesis applied to the reduction in parenthesis.
Otherwise, let λx. u1x be the leftmost βη-redex. There are three cases:

1. The leftmost β-redex is u1x, i.e. u1 = λy. u2. Since

. . .λx. (λy. u2)x . . . −→lβ . . .λx. u2[y := x] . . . = . . .λy. u2 . . . = . . . u1 . . . ,

we can obtain the same result by performing first the leftmost βη-reduction:

. . .λx. u1x . . . −→1lβη . . . u1 . . .

This decreases the length of the initial −→lβ .

2. The leftmost β-redex is inside u1, and u1 −→lβ u′
1. Since

. . .λx. u1x . . . −→lβ . . .λx. u′
1x . . . −→1η . . . u′

1 . . . ,

we can obtain the same result by performing first the leftmost βη-reduction:

. . .λx. u1x . . . −→1lβη . . . u1 . . . −→lβ . . . u′
1 . . .

This decreases the length of the final −→lβη.

3. The leftmost β-redex s is after λx. u1x, and s −→lβ s′. Since

. . .λx. u1x . . . s . . . −→lβ . . .λx. u1x . . . s′ . . . ,

we can obtain the same result by performing first the leftmost βη-reduction:

. . .λx. u1x . . . s . . . −→1lβη . . . u1 . . . s . . . −→lβ . . . u1 . . . s′ . . .

This decreases the length of the final −→lβη. !

æ

280 D. Untyped Lambda Calculus

Chapter 13

Semantics

We now turn to semantical interpretations of the Untyped Lambda Calculus, by
following the blueprint of Chapter 10.

The type structure allowed us to obtain models of the Typed Lambda Calculus
quite easily. When types are missing the definition of a model is simpler, although
the construction of a model is more complicated.

Definition 13.0.14 A model of the Untyped Lambda Calculus is a structure

M = 〈M, [[]]M〉

with the following properties, where ρ is an environment for M :

1. if t is a term, then [[t]]Mρ ∈ M .

2. [[]]M respects β-equality, i.e.

t1 =β t2 ⇒ (∀ρ)([[t1]]Mρ = [[t2]]Mρ),

where the equality on the right indicates identity of objects in M .

An extensional model is a model that respects βη equality, i.e.

t1 =βη t2 ⇒ (∀ρ)([[t1]]Mρ = [[t2]]Mρ).

To improve readability we can omit either of the indeces ρ or M in [[]]Mρ , when
no confusion arises.

Moreover, we will also write

M |= t1 = t2 for (∀ρ)([[t1]]Mρ = [[t2]]Mρ),

281

282 D. Untyped Lambda Calculus

so that the soundness conditions in the definition of a model can be stated more
succinctly as

t1 =β t2 ⇒ M |= t1 = t2

or
t1 =βη t2 ⇒ M |= t1 = t2.

13.1 Term Models

Since normal forms do not always exist, there is no analogue for the Untyped
Lambda Calculus of the first term model T1 of Chapter 10. The following provides
an analogue of the second term model T2.

Definition 13.1.1 The term model T is defined as follows:

1. The underlying structure consists of:

T = {equivalence classes of terms w.r.t. =β}

2. Given an environment ρ on T , i.e. a function assigning to every variable
an equivalence class, let ρ∗ be a choice function for ρ, i.e. a function that
associates to every variable x a term in the equivalence class ρ(x). Then

[[t]]Tρ = the equivalence class of t[.x := ρ∗(.x)],

where t[.x := ρ∗(.x)] indicates the result of the simultaneous substitution of the
term ρ∗(x) for any free variable x of t.

Proposition 13.1.2 The structure T is a model of the Untyped Lambda Calculus.
Actually,

t1 =β t2 ⇔ T |= t1 = t2.

Proof. If t1 =β t2, then

t1[.x := ρ∗(.x)] =β t2[.x := ρ∗(.x)],

because =β is invariant under simultaneous substitutions. But β-equal terms are
in the same equivalence class, and thus

[[t1]]ρ = [[t2]]ρ.

Conversely, suppose t1 -=β t2. Then they are in different equivalence classes.
If ρ is the environment associating every variable to its equivalence class, we can
choose as ρ∗ the identity function. Then

t1[.x := ρ∗(.x)] = t1 -=β t2 = t2[.x := ρ∗(.x)],

Functional Models 283

and hence
[[t1]]ρ -= [[t2]]ρ

because t1[.x := ρ∗(.x)] and t2[.x := ρ∗(.x)] are in different equivalence classes. !

An extensional model can be defined similarly, by considering βη-equality.
As usual, the term models provide semantical interpretations of terms too close

to the original syntactical presentation. In other words, they are well-behaved but
not very insightful. This is the reason to continue, in the next sections, the search
for other more informative models.

13.2 Functional Models

We now turn to the consideration of models in which terms λx. u are interpreted as
functions in the usual mathematical sense. We have already considered such models
for the Typed Lambda Calculus, but here there is an additional complication,
due to the fact that the same term can behave as a function or as an argument,
according to the situation. Since the domain M of the model is fixed, we need a
way of treating elements of M as functions on M , and conversely.

In practice, we define the interpretation function [[]]M in the following canonical
way, which reduces it to the definition of two functions I and J , identifying elements
of M with functions on M and conversely, and to the verification of closure under
informal abstraction.

Definition 13.2.1 Canonical Interpretation. Given M , together with a total
function

I : M → MM

and a partial function
J : MM → M,

and an environment ρ on M , we define [[]]ρ by induction on terms, as follows:

[[t]]ρ =

ρ(x) if t = x
I([[u]]ρ)([[v]]ρ) if t = uv
J(ΛX. [[u]]ρ[x:=X]) if t = λx. u,

where ΛX. [[u]]ρ[x:=X] denotes the function

a ∈ M >−→ [[u]]ρ[x:=a] ∈ M.

We should check, inductively, that [[t]]ρ is a member of M . Or, equivalently,
that [[t]]ρ is defined for every term t. In the first clause, it is so by definition of
environment. In the second clause, it is so by the induction hypothesis, since then

284 D. Untyped Lambda Calculus

I([[u]]ρ) is a function on M . In the last case, by the induction hypothesis, we obtain
a function from M to M , but not necessarily a function in the domain of J , without
further hypotheses on J . For specific structures, this will have to be verified .

Not requiring totality for J corresponds to not requiring full functional models
for the Typed Lambda Calculus. But, while there the condition was optional (see
10.3.4), here it will turn out to be necessary (see 13.2.4).

The next results is central to the later development, and its idea is simple. Since
the β-rule eliminates the application of a λ-abstraction, in a model I ◦ J should
cancel. Similarly, since the η-rule eliminates the λ-abstraction of an application,
in an extensional model J ◦ I should cancel.

Proposition 13.2.2 Sufficient Conditions for Models. The structure

M = 〈M, I, J, [[]]M〉,

where [[]]M is the canonical interpretation, is:

1. a model of the Untyped Lambda Calculus if I◦J is the identity (on the domain
of J)

2. an extensional model of the Untyped Lambda Calculus if, moreover, J ◦ I is
the identity (on M).

Proof. The proof is by induction on −→βη. We only consider the two crucial cases
of the reduction rules, the other ones being as in 10.3.4.

1. (λx. u)v −→1βη u[x := v]
Then

[[(λx. u)v]]ρ = I([[λx. u]]ρ)([[v]]ρ)
= I(J(ΛX. [[u]]ρ[x:=X]))([[v]]ρ)
= (ΛX. [[u]]ρ[x:=X])([[v]]ρ)
= [[u]]ρ[x:=[[v]]ρ]

= [[u[x := v]]]ρ.

The first two equalities hold by definition of [[]]. The third holds because
I ◦ J is the identity. The fourth holds by definition of Λ as a mathematical
function, which is computed by instantiating the variable to the argument.
The last equality holds by the fact, easily proved by induction on u, that
substitution in terms and in environments commute.

2. λx. tx −→1βη t
Then

[[λx. tx]]ρ = J(ΛX. [[tx]]ρ[x:=X])

Functional Models 285

= J(ΛX. I([[t]]ρ[x:=X])([[x]]ρ[x:=X]))
= J(ΛX. I([[t]]ρ[x:=X])(X))
= J(I([[t]]ρ))
= [[t]]ρ.

The first three equalities hold by definition of [[]]. The fourth holds by
definition of Λ. The last holds because J ◦ I is the identity. !

Notice that if I ◦ J is the identity, then J is one-one and I is onto the domain
of J . One-oneness follows from the fact that

J(x1) = J(x2) ⇒ I(J(x1)) = I(J(x2)) ⇒ x1 = x2.

Ontoness follows from the fact that J(x) is a counterimage of x in the domain of
J under I, since I(J(x)) = x.

A trivial modification of the proof of 13.2.2 shows that Condition 1, i.e. that
I ◦ J be the identity, implies the following weak form of extensionality:1

t1 =βη t2 ⇒ (∀ρ)(I([[t1]]ρ) = I([[t2]]ρ)).

The full version of extensionality, i.e.

t1 =βη t2 ⇒ (∀ρ)([[t1]]ρ = [[t2]]ρ),

follows from the weak form if I is one-one, because then

I([[t1]]ρ) = I([[t2]]ρ) ⇒ [[t1]]ρ = [[t2]]ρ.

This is precisely what Condition 2 ensures, since if I ◦ J is the identity, then I is
one-one if and only if J ◦ I is the identity. One direction follows as above. For the
other direction, suppose I is one-one. Given x ∈ M , let y = J(I(x)). Then

I(y) = I(J(I(x))) = I(x) ⇒ y = x.

Obviously, to get an extensional model we would only need I to be one-one on
the elements of M that are interpretations of terms, while Condition 2 requires I
to be one-one on all elements of M . Although stronger, this is obviously easier
to deal with, because it avoids the problem of knowing which elements of M are
interpretations of terms.

Before turning to a search for models, we notice that simple extremal solutions
would not work here, as they did instead for the Typed Lambda Calculus, where
we obtained full functional models over any set A, in particular nontrivial models
whose levels are all finite.

1The notion of a model we adopted is called a λ-algebra in the literature. A weakly extensional
model in the sense above is called a λ-model.

286 D. Untyped Lambda Calculus

Proposition 13.2.3 Impossibility of Nontrivial Finite Functional Models.
There is no finite functional model of the Untyped Lambda Calculus with at least
two elements.

Proof. Consider any finite functional model. Since there is only a fixed number
of interpretations, but for any n there are n terms of the form λx1 · · ·xn. xi, with
1 ≤ i ≤ n, there must exist n and 1 ≤ i < j ≤ n such that the interpretations of
λx1 · · ·xn. xi and λx1 · · ·xn. xj are the same.

Since the model uses the canonical interpretation of terms,

[[λx1 · · ·xn. xi]] = ΛX1 · · ·ΛXn. Xi and [[λx1 · · ·xn. xj]] = ΛX1 · · ·ΛXn. Xj .

Given any two elements a and b of the model, it is enough to choose any string
(c1, . . . , cn) of elements such that ci = a and cj = b to have

a = [[λx1 · · ·xn. xi]](c1, . . . , cn) = [[λx1 · · ·xn. xj]](c1, . . . , cn) = b.

Then the model is trivial, because all the elements coincide. !

Thus, while a nontrivial functional model of the Typed Lambda Calculus must
have at least two distinct interpretations of numerals, but it can have exactly two
(see 11.3.3), a nontrivial functional model of the Untyped Lambda Calculus must
give distinct interpretations to all numerals .

Proposition 13.2.4 Impossibility of Nontrivial Full Functional Models
(Cantor [1874]) There is no set M with at least two elements such that I ◦ J is
the identity on MM , where

I : M → MM and J : MM → M

are both total functions.

Proof. Suppose M has two distinct elements a and b, and let

d(x) =
{

a if I(x)(x) -= a
b otherwise.

be a diagonal function. If J is total, J(d) is defined and

d(J(d)) =
{

a if I(J(d))(J(d)) -= a
b otherwise.

But I ◦ J is the identity, and thus I(J(d)) = d. Then

d(J(d)) =
{

a if d(J(d)) -= a
b otherwise,

The Graph Model 287

contradiction. !

Since there is no hope of finding models with a total J , the whole point of the
work to come will be to isolate appropriate subsets of MM as domains for J . By
so doing, the verification that [[u]]ρ ∈ M will become nontrivial, since the function
ΛX. [[u]]ρ[x:=X] used in the last clause of the canonical definition of [[]]ρ will have
to be in the domain of J .

13.3 The Graph Model

13.2.4 shows that to obtain a functional model of the Untyped Lambda Calculus we
have to impose some restrictions on the kind of functions we use as interpretations of
terms. When dealing with the Typed Lambda Calculus we discovered a restriction
that worked, i.e. continuity. We thus look for a c.c.p.o. D and total2 continuous
functions

I : D → [D → D] and J : [D → D] → D

such that I ◦ J = id[D→D]. Continuity of I and J will allow us to extend the proof
of 10.4.3, and prove that the canonical interpretation 13.2.1 is well-defined, i.e. that
[[t]]ρ ∈ D for any environment ρ on D. The condition on I ◦ J will instead allow us
to apply 13.2.2, and claim that D is a (nonextensional) model.

The intuition behind the construction of the graph model is the following. A
continuous function on the reals can easily be coded by a single real, because such
a function is completely determined by its values on the rationals, and countably
many reals can be coded by a single real. This provides a suggestion for the
definition of I.

Conversely, any real can be thought of as the code of countably many reals,
and hence of the values of a function on the rationals. Unfortunately, assigning
arbitrary real values to the rationals does not in general determine a continuous
function on the reals, because their limits may not exist. We thus have an obstacle
for the definition of J .

We then step from the reals to P(ω), the set of all sets of natural numbers. A
continuous function on P(ω) can easily be coded by a single set of natural numbers,
because such a function is completely determined by its values on the finite sets,
and countably many sets of natural numbers can be coded by a single set. This
retains the suggestion for the definition of I.

Conversely, any set of natural numbers can be thought of as the code of count-
ably many sets, and hence of the values of a function on the finite sets. Fortunately,
assigning arbitrary values to the finite sets does determine a continuous function

2We argued in 13.2.4 that J cannot be total on DD . Thus the intended domain [D → D] of
J , to which the word ‘total’ refers to here, will be a proper subset of DD.

288 D. Untyped Lambda Calculus

on P(ω), because their limits are simply their unions. This provides a suggestion
for the definition of J .

It now remains to put the plan into practice.

Continuous functions on sets

Recall that P(ω) is a c.c.p.o. (actually, a c.p.o.), with set-theoretical inclusion as
the ordering, and set-theoretical union as the l.u.b. operation.

We already know from Exercise 6.3.9.c that the continuous functions on P(ω)
are exactly the functions determined by their behavior on finite sets. Since this is
the crucial property that allows us to consider P(ω) as a model of the Untyped
Lambda Calculus, we reprove it directly here.

For simplicity of notations, in the present section we use the letter u as a variable
on finite sets of natural numbers .

Proposition 13.3.1 (Uspenskii [1955], Nerode [1957]) A function f : P(ω) →
P(ω) is continuous if and only if, for every A ⊆ ω,

f(A) =
⋃

u⊆A

f(u).

Proof. If f is continuous and A is any subset of ω, then

u ⊆ A ⇒ f(u) ⊆ f(A)

by monotonicity. Thus ⋃

u⊆A

f(u) ⊆ f(A).

Conversely, let An = A ∩ {0, . . . , n}. Then A =
⋃

n∈ω An, and by continuity

f(A) = f(
⋃

n∈ω
An) =

⋃

n∈ω
f(An).

Since each An is a finite subset of A,

f(A) ⊆
⋃

u⊆A

f(u).

Putting together the two inequalities just proved, we obtain

f(A) =
⋃

u⊆A

f(u).

The Graph Model 289

Conversely, suppose
f(A) =

⋃

u⊆A

f(u)

for any A. First, f is monotone because if A ⊆ B, then every u contained in A is
also contained in B, and thus f(A) ⊆ f(B) because the latter is a bigger union.

Let now A0 ⊆ A1 ⊆ · · · be a given chain of arbitrary (not necessarily finite)
sets. Then

f(
⋃

n∈ω
An) =

⋃
{f(u) : u ⊆

⋃

n∈ω
An}

=
⋃

n∈ω

⋃
{f(u) : u ⊆ An}

=
⋃

n∈ω
f(An)

by the hypothesis on f , the fact that a finite set is contained in
⋃

n∈ω An if and only
if it is contained in some An (because the An form a chain), and the hypothesis on
f again. !

Coding of finite sets

We now know that to code a continuous function on P(ω) we only need to code its
behavior on the finite sets. This requires the following steps:

1. coding a finite set of numbers by a single number
We identify numbers and finite sets as follows:

um = {x1, . . . , xn} ⇔ m = 2x1 + · · · + 2xn .

By convention, u0 = ∅.
Note that every number different from 0 can be uniquely decomposed in the
form 2x1 + · · · + 2xn with all xi distinct, and thus the coding is actually
one-one and onto.
Intuitively, a number m codes a finite set as follows. If m in written in binary
notation, then um consists of the elements corresponding to the positions
of 1’s from right to left. For example, 77 = 1001101 codes the set u77 =
{0, 2, 3, 6}.

2. coding an ordered pair of numbers by a single number
We associate to each pair (n, m) of natural numbers the single number

〈n, m〉 = 2n(2m + 1) − 1.

290 D. Untyped Lambda Calculus

Note that every number different from 0 can be uniquely written as the
product of an even (2n) and an odd (2m + 1) number, and thus the coding
is actually one-one and onto.

3. coding a sequence of sets by a single set
We associate to every sequence An of sets a single set

⊕
n∈ω An defined as

follows: ⊕

n∈ω
An = {〈x, n〉 : x ∈ An}.

Note that every set A can be uniquely decomposed in the sequence

(A)n = {x : 〈x, n〉 ∈ A},

and thus the coding is actually one-one and onto. Moreover,

A =
⊕

n∈ω
(A)n and An = (

⊕

m∈ω
Am)n.

A nonextensional model

We are now ready for our first model.

Theorem 13.3.2 The Graph Model (Plotkin [1972], Scott [1975]) P(ω)
induces a (nonextensional) canonical model of the Untyped Lambda Calculus.

Proof. We define the functions

I : P(ω) → [P(ω) → P(ω)] and J : [P(ω) → P(ω)] → P(ω)

in the natural way, as follows.

• Given a continuous function f ∈ [P(ω) → P(ω)], we identify it with the set
coding the sequence of its values for all finite arguments:

J(f) =
⊕

n∈ω
f(un).

• Given a set A ∈ P(ω), we consider its n-th component as the value given to
the n-th finite set by the function coded by A:3

I(A) = ΛX.
⋃

un⊆X

(A)n.

3Despite the intuition just described, it is not the case that I(A)(un) = (A)n. Rather,
I(A)(un) =

⋃
{(A)m : um ⊆ un}. This is needed for the continuity of I(A), proved below.

The Graph Model 291

We have to check that I is well-defined, i.e. that I(A) is a continuous function on
P(ω), for any A. Let

X0 ⊆ X1 ⊆ · · ·

be a chain in P(ω). Then

I(A)(
⋃

m∈ω
Xm) =

⋃
{(A)n : un ⊆

⋃

m∈ω
Xm}

=
⋃

m∈ω

⋃
{(A)n : un ⊆ Xm}

=
⋃

m∈ω
I(A)(Xm)

by definition of I(A), the fact that a finite set is contained in
⋃

m∈ω Xm if and
only if it is contained in some Xm (because the Xm form a chain), and definition
of I(A) again.

Consider now the structure

〈P(ω), I, J, [[]]P(ω)〉,

where [[]]P(ω) is the canonical interpretation defined in 13.2.1. Recall that, given
any environment ρ on P(ω),

[[t]]ρ =

ρ(x) if t = x
I([[u]]ρ)([[v]]ρ) if t = uv
J(ΛX. [[u]]ρ[x:=X]) if t = λx. u,

where ΛX. [[u]]ρ[x:=X] denotes the function

A ∈ P(ω) >−→ [[u]]ρ[x:=A] ∈ P(ω).

By 13.2.2, to prove that P(ω) is a model it is enough to check that I ◦ J is the
identity on [P(ω) → P(ω)], and that [[]]ρ is well-defined, i.e. that [[t]]ρ ∈ P(ω) for
any t and ρ. We prove the former below. For the latter, the only differences with
the proof of 10.4.3 are the absence of types, and the presence of I and J in the
definition of [[]]ρ. The first presents no problem, and the second is taken care of
by the fact, proved below, that I and J are continuous, which makes the proof of
the fact that [[u]]ρ[x:=X] is a continuous function of X go through.

The following facts conclude the proof.

1. I ◦ J is the identity
Given f ∈ [P(ω) → P(ω)] and X ∈ P(ω),

I(J(f))(X) =
⋃

un⊆X

(J(f))n

292 D. Untyped Lambda Calculus

=
⋃

un⊆X

(
⊕

m∈ω
f(um))n

=
⋃

un⊆X

f(un)

= f(X)

by the definitions of I and J , properties of the coding, and 13.3.1 (which
holds because f is continuous).

2. I is continuous
If

A0 ⊆ A1 ⊆ · · ·

is a chain in P(ω), then

I(
⋃

m∈ω
Am)(X) =

⋃

un⊆X

(
⋃

m∈ω
Am)n

=
⋃

un⊆X

⋃

m∈ω
(Am)n

=
⋃

m∈ω

⋃

un⊆X

(Am)n

=
⋃

m∈ω
I(Am)(X)

= (
[P(ω)→P(ω)]⊔

m∈ω
I(Am))(X)

by the definition of I, properties of union, and the definition of
⊔[P(ω)→P(ω)]

m∈ω .

3. J is continuous
If

f0 /[P(ω)→P(ω)] f1 /[P(ω)→P(ω)] · · ·

is a chain in [P(ω) → P(ω)], then

J(
[P(ω)→P(ω)]⊔

m∈ω
fm) =

⊕

n∈ω
(
[P(ω)→P(ω)]⊔

m∈ω
fm)(un)

=
⊕

n∈ω

⋃

m∈ω
fm(un)

= {〈x, n〉 : x ∈
⋃

m∈ω
fm(un)}

The Graph Model 293

=
⋃

m∈ω
{〈x, n〉 : x ∈ fm(un)}

=
⋃

m∈ω

⊕

n∈ω
fm(un)

=
⋃

n∈ω
J(fm)

by the definitions of J ,
⊔[P(ω)→P(ω)]

m∈ω and
⊕

, properties of union, and the
definitions of

⊕
and J . !

The fact that I ◦J is the identity simply says that the function associated with
the set coding f is f itself, and holds by the proof above.

The fact that J ◦ I is the identity says that the set associated with the function
coded by a set X is X itself, and fails because the same function can be coded by
different sets. For example, the identity function is coded by both the following
sets:

A =
⊕

n∈ω
un and B =

⊕

m∈ω
u2m ,

because a set X is both the union of all finite sets contained in it, and of all
singletons contained in it (recall that u2m = {m}). But

J(I(B)) = J(ΛX.
⋃

un⊆X

(B)n)

= J(ΛX.
⋃

m∈X

{m})

= J(ΛX. X)

=
⊕

n∈ω
un

= A -= B.

In general, only J(I(A)) ⊇ A holds, for any A.
Thus P(ω) satisfies Condition 1 of 13.2.2 for a model, but not Condition 2 for an

extensional model. Actually, P(ω) is not an extensional model , because λx. x and
λyx.xy are extensionally equal but have different interpretations. More precisely,
[[λx. x]] = ΛX. X and [[λyx.xy]] = ΛY.ΛX. I(X)(Y).

At this point an extensional model could be obtained quite elegantly, using
the method of retracts of Section 13.5. The price for elegance would be a lack of
motivation, that comes from the work done in Section 13.4 for D∞. However, the
impatient reader can skip Section 13.4 and turn immediately to Section 13.5, that
can be read independently.

294 D. Untyped Lambda Calculus

Exercises 13.3.3 A coding-free version of P(ω) (Plotkin [1972], Engeler [1981])
When dealing with P(ω) we are forced to talk indirectly about the pair (x, un), consisting
of a number x and a finite set un, through the number 〈x, n〉, obtained by a double coding
(first of finite sets by numbers, and then of pairs of numbers by a single number). We
can obtain a slight simplification of the Graph Model by replacing ω by any set Ω closed
under pairs consisting of an element x and a finite set u, which allows us to talk directly
about the pair (x, u).

a) For any set B, there is a set ΩB ⊇ B closed under pairs consisting of an element
and a finite set . (Hint: let B0 = B, Bn+1 = Bn ∪ {(b, u) : b ∈ Bn ∧ u ⊆ Bn} and
ΩB =

⋃
n∈ω Bn.)

b) For any set B, P(ΩB) is a c.c.p.o.
c) For any set B, P(ΩB) is a (nonextensional) canonical model of the Untyped Lambda

Calculus. (Hint: define the functions

I : P(ΩB) → [P(ΩB) → P(ΩB)] and J : [P(ΩB) → P(ΩB)] → P(ΩB)

in the natural way, as follows:

I(A) = ΛX.
⋃

u⊆X

{x : (x, u) ∈ A} and J(f) = {(x, u) : x ∈ f(u)}.

Then proceed as in 13.3.2, by proving in particular that I ◦ J is the identity, and that I

and J are continuous.)

The Effective Graph Model !

In the Graph Model P(ω) there is a disparity between the countable number of
λ-terms to be interpreted, and the uncountable number of elements available for
the interpretation. However, it is easy to carve inside P(ω) a countable subset that
already provides a model. The idea is to restrict attention to the set E of the re-
cursively enumerable (r.e.) sets. The computability notions needed for the present
subsection can be found in Odifreddi [1989], to which we refer for background and
notation.

The next definition isolates the appropriate continuous functions needed for the
model.

Definition 13.3.4 (Friedberg and Rogers [1959]) A continuous function f on
P(ω) is effective if its graph J(f) is an r.e. set.4

Proposition 13.3.5 The effective continuous functions map E into E.

4In the literature, the effective continuous functions on P(ω) are called enumeration oper-
ators (see Odifreddi [1999], Chapter XIV). They constitute an analogue of the partial recursive
functions on ω, which are defined by the similar condition that their graph is an r.e. set.

The Graph Model 295

Proof. Let f be an effective continuous function, and A be an r.e. set. Recall that
f = I(J(f)), because I ◦ J is the identity by 13.3.2. Then

x ∈ f(A) ⇐⇒ (∃n)(〈x, n〉 ∈ J(f) ∧ un ⊆ A)

by definition of I. Since J(f) and A are r.e. by hypothesis, and the r.e. sets are
closed under existential quantification, the right-hand-side is r.e. !

The previous proposition allows us to restrict attention from arbitrary sets of
natural numbers and continuous functions, to r.e. sets and effective continuous
functions. The next result is the crucial verification needed to prove that, by so
doing, we still obtain a model of the Untyped Lambda Calculus.

Proposition 13.3.6 (Plotkin [1972], Scott [1975]) For any environment ρ on
E and any term t, [[t]]ρ ∈ E.

Proof. Recall that

[[t]]ρ =

ρ(x) if t = x
I([[u]]ρ)([[v]]ρ) if t = uv
J(ΛX. [[u]]ρ[x:=X]) if t = λx. u,

where ΛX. [[u]]ρ[x:=X] denotes the function

A ∈ E >−→ [[u]]ρ[x:=A] ∈ E .

We proceed by induction on the definition of [[t]]ρ:

1. [[x]]ρ = ρ(x) is an r.e. set by the hypothesis on ρ.

2. Since an effective continuous function maps r.e. sets to r.e. sets, to show
inductively that [[uv]]ρ = I([[u]]ρ)([[v]]ρ) is an r.e. set it is enough to prove that
I(X)(Y) is an effective continuous function of X and Y . This is immediate
by definition, since

x ∈ I(X)(Y) ⇔ (∃n)(〈x, n〉 ∈ X ∧ un ⊆ Y),

and the right-hand-side is r.e.

3. Since the graph of an effective continuous function is an r.e. set, to show
that [[λx. u]]ρ = J(ΛX. [[u]]ρ[x:=X]) is an r.e. set it is enough to prove that
ΛX. [[u]]ρ[x:=X] is an effective continuous function. This can be done induc-
tively on u:

• If u = x, then ΛX. [[u]]ρ[x:=X] is the identity function ΛX. X , which is
an effective continuous function.

296 D. Untyped Lambda Calculus

• If u = y -= x, then ΛX. [[u]]ρ[x:=X] is the constant function ΛX. ρ(y),
which is an effective continuous function.

• If u = u1u2, then ΛX. [[u]]ρ[x:=X] is ΛX. I([[u1]]ρ[x:=X])([[u2]]ρ[x:=X]), which
is an effective continuous function by the induction hypothesis, closure
under composition and the fact, proved in part 2, that I(X)(Y) is an
effective continuous function of X and Y .

• If u = λy. u1, then ΛX. [[u]]ρ[x:=X] is ΛX. J(ΛY. [[u1]]ρ[x:=X;y:=Y]), which
is an effective continuous function by the induction hypothesis, closure
under composition and the fact that if f(X, Y) is an effective continuous
function of X and Y , then J(ΛY. f(X, Y)) is an effective continuous
function of X , since

〈z, n〉 ∈ J(ΛY. f(X, Y)) ⇔ z ∈ f(X, un),

and the right-hand-side is r.e. !

Actually, for any environment ρ on P(ω) and any closed term t we have [[t]]ρ ∈ E .

Corollary 13.3.7 The Effective Graph Model (Plotkin [1972], Scott [1975])
E is a (nonextensional) countable model of the Untyped Lambda Calculus.

Proof. By the proof of 13.3.2 and the previous proposition. !

13.4 Inverse Limits

We now look for extensional models of Lambda Calculus. By Condition 2 of 13.2.2,
it would be enough to go one step beyond the work done so far, and find a c.c.p.o.
D and continuous functions

I : D → [D → D] and J : [D → D] → D

such that not only I ◦ J is the identity on [D → D], but also J ◦ I is the identity
on D. In other words, we would like to find a c.c.p.o. D isomorphic to its own
function space [D → D].

The idea to obtain such a D is quite simple. If we identify two c.c.p.o.’s when
there are continuous functions between them whose compositions are the identities,
and let

F (X) = [X → X],

then such a D is a fixed point of F , i.e. D = F (D). We now first discover a
condition ensuring the existence of fixed points, and then show that F satisfies the
condition.

Inverse Limits 297

Existence of fixed points

The following simple but powerful result exhibits a sufficient condition for a func-
tion f to have a fixed point.

Proposition 13.4.1 (Knaster [1928], Tarski [1955], Abian and Brown [1961])
If (D,/) is a c.c.p.o. and f : D → D is a continuous function, then f has a least
fixed point.

Moreover, if f is expansionary, i.e. x / f(x) for every x, then f has a fixed
point above any given x ∈ D.

Proof. We iterate f starting from ⊥, as follows:

x0 = ⊥
xn+1 = f(xn)
x∞ =

⊔
n∈ω xn.

First, we show that x∞ exists . For this it is enough to show that the set
{xn}n∈ω is actually a chain, and thus it has a l.u.b. This is proved by induction:

• x0 / x1 because x0 = ⊥

• if xn / xn+1, then

xn+1 = f(xn) / f(xn+1) = xn+2

by monotonicity of f , which is a continuous function.

Second, we show that x∞ is a fixed point of f . Indeed,

f(x∞) = f(
⊔

n∈ω
xn) =

⊔

n∈ω
f(xn) =

⊔

n∈ω
xn+1 = x∞

by definition of x∞, continuity of f , definition of xn+1, and the fact that the
chain {xn+1}n∈ω has l.u.b. x∞ (because it is obtained from the chain {xn}n∈ω by
dropping the first element, and this has no influence on the l.u.b.).

Finally, we show that x∞ is the least fixed point of f . Let a be any fixed point,
i.e. f(a) = a. By the properties of l.u.b.’s, to show that x∞ / a it is enough to
show that, for every n, xn / a. This is immediate by induction:

• x0 / a because x0 = ⊥

• if xn / a, then
xn+1 = f(xn) / f(a) = a

by definition of xn+1, monotonicity of f , and the fact that a is a fixed point.

298 D. Untyped Lambda Calculus

If f is expansionary then we can proceed as above, by starting from x0 = x for
any given x. Since f is expansionary, x0 / f(x0) = x1. Then, as above, x∞ exists
and it is a fixed point of f . And, by definition, x = x0 / x∞. !

Exercises 13.4.2 More on fixed points. (Knaster [1928], Tarski [1955], Abian and
Brown [1961])

a) A monotone function f on a complete lattice L has a least fixed point and a greatest
fixed point . (Hint: for the least fixed point, consider the set {x : f(x) $ x}, which is not
empty because 1 belongs to it. This set contains every fixed point of f , and its g.l.b. is
the least fixed point of f . Similarly, the l.u.b. of the set {x : f(x) - x} is the greatest
fixed point of f .)

b) The set of fixed points of a monotone function f on a complete lattice L is itself a
complete lattice. (Hint: since the l.u.b. in L of a set of fixed points of f is not necessarily
a fixed point, consider the least fixed point greater than it. Similarly for the g.l.b.)

c) A monotone function f on a c.c.p.o. D has a least fixed point. (Hint: the proof of
13.4.1 can be extended through the ordinals, by letting xα+1 = f(xα), and xα =

⊔
β<α

xβ
if α is a limit ordinal. Since this is a chain of elements of D, its length cannot exceed the
maximal length of such chains, and hence it reaches a fixed point.)

d) An expansionary function f on a c.c.p.o. has a fixed point . (Hint: the construc-
tion of part c) still produces a chain of elements, and hence a fixed point, although not
necessarily a least one.)

Methodologically, part a) uses a stronger hypothesis on the domain and it constructs
the least fixed point from above, by a purely algebraic proof. Part c) uses instead a
weaker hypothesis on the domain and it constructs the least fixed point from below, by a
set-theoretical proof using ordinals.

Moreover, part d) implies Zorn’s Lemma in the form: any c.c.p.o. D has a maximal
element . Otherwise (∀x ∈ D)(∃y ∈ D)(x $ y ∧ x .= y), and there is a choice function f
on D such that (∀x ∈ D)(x $ f(x)∧ x .= f(x)). Then f is expansionary and has no fixed
point.

Exercises 13.4.3 Uniform fixed point operators. A fixed point operator is a
family F = {FD}D such that, for any c.c.p.o. D and any continuous function f on D,
FD(f) is a fixed point of f .

A fixed point operator is uniform if, for any c.c.p.o. D1 and D2 and any function
f1 ∈ [D1 → D1], f2 ∈ [D2 → D2] and g : D1 → D2 such that g(⊥D1) = ⊥D2 and
g ◦ f1 = f2 ◦ g, then g(FD1(f1)) = FD2(f2).

a) The least fixed point operator Fix = {FixD}D is a uniform fixed point operator .
(Hint: notice that

g(f (n)
1 (⊥D1)) = f (n)

2 (g(⊥D1)) = f (n)
2 (⊥D2)

by the hypotheses on f1, f2 and g. Then

g(FixD1(f1)) = g(
⊔

f (n)
1 (⊥d1)) =

⊔
g(f (n)

1 (⊥D1)) =
⊔

f (n)
2 (⊥D2) = FixD2(f2)

by the construction of the least fixed point in 13.4.1, and continuity of g.)
b) The least fixed point operator Fix = {FixD}D is the only uniform fixed point

operator . (Hint: suppose F is a uniform fixed point operator. Given D and f ∈ [D → D],

Inverse Limits 299

consider the restriction D1 of D below the least fixed point of f , and the restriction f1 of
f to D1. Then f1 ∈ [D1 → D1], because

x ∈ D1 ⇒ x $ FixD(f) ⇒ f(x) $ f(FixD(f)) = FixD(f) ⇒ f(x) ∈ D1.

Moreover, the least fixed point of f is the only fixed point of f1.

If g is the identity embedding of D1 into D, then

g(FD1(f1)) = FD(f)

because F is uniform. And

g(FD1(f1)) = FD1(f1) = FixD(f)

because f1 has a unique fixed point on D1. Then FD = FixD and F = Fix.)

Plan of the proof

We now have a general condition for the existence of fixed points. The strategy to
show that F (X) = [X → X] has a fixed point is then to show that it is continuous.
But F is a function whose arguments and values are c.c.p.o.’s, and we do not
know what continuity means for F . The general plan toward our goal is thus the
following:

1. consider the collection D of all c.c.p.o.’s

2. define a ‘partial ordering’ $ on D, among c.c.p.o.’s

3. show that (D, $) is a ‘c.c.p.o.’, i.e. every chain of elements of D has a l.u.b.

4. to have fixed points, show that F is ‘continuous’ as a function on D, i.e. it
preserves l.u.b.’s of chains

5. to have fixed points above any given element, show that F is expansionary
as a function on D.

We say that $ is a ‘partial ordering’ (in quotes) because it is such not on the
elements of D directly, but only on equivalence classes of them. We say that (D, $)
is a ‘c.c.p.o.’ because D is too big to be a real c.c.p.o. (in technical terms: it is not
a set, but a class). We say that F is ‘continuous’ because we will only prove that
special chains have l.u.b.’s. Then we will not be able to appeal directly to 13.4.1
above, but a reproduction of its proof will produce the desired result.

300 D. Untyped Lambda Calculus

Partial ordering among c.c.p.o.’s

We now face our first task, of defining a partial ordering $ on the collection D of
all c.c.p.o.’s. The idea is that D $D′ means that D′ has more information than D.
Thus we should be able to identify all elements of D with corresponding elements
of D′, although not necessarily the converse.

Definition 13.4.4 Given two c.c.p.o.’s (D,/D) and (D′,/D′), we say that D !
D′ if there are two continuous functions

i : D −→ D′ and j : D′ −→ D

such that, for all x ∈ D and y ∈ D′,

j(i(x)) = x and i(j(y)) /D′ y.

The intuition is that i(x) is a copy of x in D′, while j(y) is only the best
approximation of y in D. Then the first condition tells that x is the best approxi-
mation in D of its own copy i(x) in D′, and the second condition tells that when
approximating y in D we may lose some information.

Notice that the first condition implies that i is one-one and j is onto. One-
oneness follows from the fact that

i(x1) = i(x2) ⇒ j(i(x1)) = j(i(x2)) ⇒ x1 = x2.

Ontoness follows from the fact that i(x) a counterimage of x ∈ D under j, since
j(i(x)) = x.

Moreover, i and j are adjoint in the sense of 5.1.3, i.e.

i(x) /D′ y ⇐⇒ x /D j(y).

If i(x) / y, then x = j(i(x)) / j(y) by the hypothesis on j ◦ i and monotonicity of
j. And if x / j(y), then i(x) / i(j(y)) / y by monotonicity of i and the hypothesis
on i ◦ j.

Notice also that $ is a reflexive and transitive relation:

1. D $ D via the identity function (in both directions)

2. if D1 $ D2 via i1 and j1, and D2 $ D3 via i2 and j2, then D1 $ D3 via i2 ◦ i1
and j1 ◦ j2.

This shows that $ is ‘almost’ a partial ordering. The only missing property
is antisymmetry, which does not hold because two c.c.p.o.’s may be isomorphic
without being equal. But this is easily taken care of by modifying the notion of
equality, and adapting it to our needs.

Inverse Limits 301

Definition 13.4.5 Given two c.c.p.o.’s D1 and D2, we let D1 = D2 if and only
if D1 $ D2 and D2 $ D1.

Then = is an equivalence relation, and $ induces a partial ordering on the
equivalence classes. The least c.c.p.o. w.r.t. to the partial ordering induced by $

is the trivial c.c.p.o. {⊥}, consisting of only one element.

Least upper bounds of chains of c.c.p.o.’s

We now turn to our second task, of showing that chains of c.c.p.o.’s have l.u.b.
Given c.c.p.o.’s (Dn,/n) such that

D0 $ D1 $ · · · $ Dn $ Dn+1 $ · · · ,

we want a c.c.p.o. (D∞,/∞) such that:

• D∞ is an upper bound of {Dn}n∈ω, i.e. Dn $ D∞

• D∞ is the least upper bound, i.e. given any D such that Dn $D for every n,
then D∞ $ D.

Definition 13.4.6 Given a chain

D0 $ D1 $ · · · $ Dn $ Dn+1 $ · · ·

of c.c.p.o.’s (Dn,/n), with continuous functions

in : Dn −→ Dn+1 and jn : Dn+1 −→ Dn

such that, for all xn ∈ Dn and xn+1 ∈ Dn+1,

jn(in(xn)) = xn and in(jn(xn+1)) /n+1 xn+1,

we define a c.c.p.o. (D∞, (∞) as follows:

1. D∞ is the set of all sequences x∞ = 〈xn〉n∈ω such that

(∀n)(xn ∈ Dn) and (∀n)(jn(xn+1) = xn)

2. /∞ is the order componentwise, i.e.

〈xn〉n∈ω /∞ 〈yn〉n∈ω ⇔ (∀n)(xn /n yn).

302 D. Untyped Lambda Calculus

The idea underlying the definition of D∞ is quite simple, and it mimicks one
possible construction of the real numbers. Think of Dn as the real numbers with
decimal expansion truncated at the n-th digit, and of D∞ as the reals. There are
natural choices for in and jn. Namely, in is the function that adds a 0 at the end
of any element of Dn, thus transforming it into an equivalent element of Dn+1.
And jn is the function that forgets the last digit of an element of Dn+1, thus losing
some information. Then an element of D∞ can be seen as an infinite sequence
of truncated approximations, each forgetting the last digit of the following one.
This is the reason for the condition using the jn’s, which also gives the name of
inverse limit to the construction. (Each approximation also adds a new digit
to the previous one, but not necessarily a 0, which is why we do not use the in’s
instead).

It is easy to see that (D∞,/∞) is a c.c.p.o. Precisely, if

x0
∞ /∞ x1

∞ /∞ · · ·

where xm
∞ = 〈xm

n 〉n∈ω, then
⊔

m∈ω
xm
∞ =

⊔

m∈ω
〈xm

n 〉n∈ω = 〈
⊔

m∈ω
xm

n 〉n∈ω.

The first equality holds by definition of x∞
n . The second is immediate, once we

recall that the ordering on D∞ is defined componentwise and that each Dn is a
c.c.p.o.

Notice that ⊥D∞ = 〈⊥Dn〉n∈ω .
We now have to prove that (D∞,/∞) really is the least upper bound of

{Dn}n∈ω.

Proposition 13.4.7 D∞ is an upper bound to the chain {Dn}n∈ω, i.e.

Dn $ D∞

for every n.

Proof. We need continuous functions

in,∞ : Dn −→ D∞ and jn,∞ : D∞ −→ Dn

such that, for all xn ∈ Dn and x∞ ∈ D∞,

jn,∞(in,∞(xn)) = xn and in,∞(jn,∞(x∞)) /∞ x∞.

The idea behind the definitions of in,∞ and jn,∞ is obvious. For in,∞, we
embed xn in D∞ in the natural way, by considering a sequence of approximations
whose first n elements are the approximations of xn at the previous levels, and the

Inverse Limits 303

remaining elements are successive copies of xn at the following levels. For jn,∞, we
simply project an element of D∞ at the appropriate level. Formally, we let

in,∞(xn) = 〈. . . , jn−2(jn−1(xn)), jn−1(xn), xn, in(xn), in+1(in(xn)), . . .〉

and
jn,∞(〈xn〉n∈ω) = xn.

Clearly in,∞(xn) ∈ D∞, because each component is at the appropriate level by
definition, and is obtained from the following one by the j functions. This is so
by definition for the first n levels, and by the fact that jm(im(xm)) = xm for the
remaining ones, e.g.

jn+1(in+1(in(xn))) = in(xn).

Similarly, jn,∞(x∞) ∈ Dn by definition of D∞.
Since xn is the n-th component of in,∞(xn), we have

jn,∞(in,∞(xn)) = xn. (13.1)

To show

in,∞(jn,∞(x∞)) /∞ x∞ (13.2)

we proceed componentwise, by the definition of /∞. Notice that

in,∞(jn,∞(x∞)) = 〈 . . . , jn−1(xn), xn, in(xn), . . . 〉
x∞ = 〈 , xn−1, xn, xn+1, 〉

where, for every m, xm = jm(xm+1). The first n components are thus equal. We
then proceed by induction:

• Since xn = jn(xn+1),

in(xn) = in(jn(xn+1)) /n+1 xn+1.

• From in(xn) /n+1 xn+1 = jn+1(xn+2), we obtain

in+1(in(xn)) /n+2 in+1(jn+1(xn+2)) /n+2 xn+2

by monotonicity of in+1, and so on.

We leave to the reader the verification that in,∞ and jn,∞ are continuous. !

In terms of the previous analogy with real numbers, we can think of in,∞ as
the function that adds infinitely many 0’s to any element of Dn, and of jn,∞ as
the function that truncates the infinite decimal expansion of a real number at the

304 D. Untyped Lambda Calculus

Given c.c.p.o.’s (Dn,/n) such that

D0 $ · · · $ Dn $ · · · ,

with continuous functions

in : Dn → Dn+1 and jn : Dn+1 → Dn

such that, for every n and every xn ∈ Dn,

jn(in(xn)) = xn and in(jn(xn+1)) /n+1 xn+1,

we define:

〈xn〉n∈ω ∈ D∞ ⇔ (∀n)(xn ∈ Dn ∧ xn = jn(xn+1))
〈xn〉n∈ω /∞ 〈yn〉n∈ω ⇔ (∀n)(xn /n yn)

in,∞(xn) = 〈 . . . , jn−1(xn), xn, in(xn), . . . 〉
jn,∞(〈xn〉n∈ω) = xn,

where
in,∞ : Dn → D∞ and jn,∞ : D∞ → Dn.

Then, for every x∞ = 〈xn〉n∈ω ∈ D∞,

〈xn〉n∈ω =
⊔

n∈ω in,∞(xn) and x∞ = 〈jn,∞(x∞)〉n∈ω.

Moreover,

1. jn,∞(in,∞(xn)) = xn

2. in,∞(jn,∞(x∞) /∞ x∞

3. in,∞(xn) = in+1,∞(in(xn))

4. jn,∞(x∞) = jn(jn+1,∞(x∞))

5.
⊔

n∈∞ in,∞(jn,∞(x∞)) = x∞.

Figure 13.1: Definition and properties of D∞

Inverse Limits 305

n-th digit. Thus they really are infinitary versions of the finitary in and jn, that
work one level at a time.

Notice the following interesting amalgamation properties, relating the finitary
(in and jn) and infinitary (in,∞ and jn,∞) embedding and projection functions
defined above:

in,∞(xn) = in+1,∞(in(xn)) (13.3)

and

jn,∞(〈xm〉m∈ω) = jn(jn+1,∞(〈xm〉m∈ω)). (13.4)

Intuitively, they say that we can embed an element xn of level n into D∞ either
directly, or by first embedding it one level up, and then embedding the result into
D∞. Similarly, we can project an element x∞ of D∞ at level n either directly, or
by first projecting it at level n + 1, and then projecting the result one level down.

To prove 13.3, we notice that the left-hand-side is a sequence with xn in the n-th
position, that proceeds on the right by using i’s and on the left by using j’s. The
right-hand-side is a sequence with in(xn) in the n+1-th position, that proceeds as
the previous one. The two sequences are equal, because xn = jn(in(xn)).

To prove 13.4, we notice that the left-hand-side is xn, the right-hand-side is
jn(xn+1), and they are equal as above.

We also notice that, if x∞ = 〈xn〉n∈ω ∈ D∞,

〈xn〉n∈ω =
⊔

n∈ω
in,∞(xn) and x∞ = 〈jn,∞(x∞)〉n∈ω. (13.5)

Indeed, in,∞(xn) is a sequence that coincides with x∞ in the first n places, by
definition. Then the n-th place of these sequences is eventually constant and equal
to xn, and the l.u.b. of all these sequences is 〈xn〉n∈ω (recall that the order /∞ is
defined componentwise).

Similarly, jn,∞(x∞) is xn, and thus the sequence 〈jn,∞(x∞)〉n∈ω is actually x∞
itself.

13.5 vindicates the intuition that led us to the definition of D∞, when we
thought of the elements xn as approximations of 〈xn〉n∈ω. Now this can be made
precise, in two complementary senses. First, given a sequence of approximations,
we can identify it with the l.u.b. of the set of elements obtained by embedding each
approximation into D∞. Second, given an element of D∞, we can identify it with
the sequence of its own approximations. This allows us to use, in any situation, the
most convenient of the two ways of seeing an element of D∞: either as a completed
process of approximations, hence as a single limit element , or as the process of
approximation itself, hence as an infinite sequence. The two ways are related to
two different conceptions of infinity, namely actual and potential.

Figure 13.1 collects all facts about D∞ proved so far.

306 D. Untyped Lambda Calculus

Proposition 13.4.8 D∞ is an ‘almost’ least upper bound to the chain {Dn}n∈ω.
Precisely, it is the least among the upper bounds D such that, for every n, there
are continuous functions

fn : Dn −→ D and gn : D −→ Dn

satisfying, for all xn ∈ Dn and x ∈ D, not only

1. gn(fn(xn)) = xn

2. fn(gn(x)) /D x,

as for a usual upper bound, but also

3. fn(xn) = fn+1(in(xn))

4. gn(x) = jn(gn+1(x)).

Under these conditions,
D∞ $ D.

Proof. First, notice that D∞ is such an upper bound, since we can let fn = in,∞
and gn = jn,∞. Then Conditions 1 and 2 are satisfied by the previous result, as
they are for any upper bound, and Conditions 3 and 4 were noticed in 13.3 and
13.4 just above.

Given D as stated, we now prove that D∞ $ D. We need continuous functions

f∞ : D∞ → D and g∞ : D → D∞

such that, for all x∞ ∈ D∞ and x ∈ D,

g∞(f∞(x∞)) = x∞ and f∞(g∞(x)) /D x.

Given an element x∞ = 〈xn〉n∈ω of D∞, f∞ must associate to it an element
of D. Since xn is an approximation to x∞, and fn(xn) is an element of D, it is
natural to consider the latter as an approximation of the needed element, and to
define

f∞(〈xn〉n∈ω) =
⊔

n∈ω
fn(xn).

Such an element exists if {fn(xn)}n∈ω is a chain, because D is a c.c.p.o. Notice
that

in(xn) = in(jn(xn+1)) /n+1 xn+1,

because 〈xn〉n∈ω ∈ D∞, i.e. xn = jn(xn+1), and by properties of in and jn. Then,
by monotonicity of fn+1,

fn+1(in(xn)) /D fn+1(xn+1).

Inverse Limits 307

We can then claim that fn(xn) /D fn+1(xn+1) if

fn(xn) = fn+1(in(xn)),

and this is precisely the additional Condition 3 postulated above.5
Given an element x ∈ D, g∞ must associate to it an element of D∞, hence a

sequence of elements in the various Dn. The gn provide such elements, and it is
thus natural to let

g∞(x) = 〈gn(x)〉n∈ω .

Such a sequence is in D∞, if its elements are related as follows:

gn(x) = jn(gn+1(x)),

and this is precisely the additional Condition 4 postulated above.
This shows that if we let

f∞(〈xn〉n∈ω) =
⊔

D

fn(xn) and g∞(x) = 〈gn(x)〉n∈ω ,

we obtain functions from D∞ to D and conversely. We now show that they have
the needed properties.

1. for any x ∈ D, f∞(g∞(x)) /D x
This is easily checked:

f∞(g∞(x)) = f∞(〈gn(x)〉n∈ω)
=

⊔
n∈ω fn(gn(x))

/D x

by the definitions of g∞ and f∞, and the fact that fn(gn(x)) /D x for every
n.

2. for any x∞ = 〈xn〉n∈ω ∈ D∞, g∞(f∞(x∞)) = x∞
This is the only nontrivial verification:

g∞(f∞(x∞)) = g∞(
⊔

m∈ω
fm(xm))

= 〈gn(
⊔

m∈ω
fm(xm))〉n∈ω

= 〈
⊔

m∈ω
gn(fm(xm))〉n∈ω

= 〈xn〉n∈ω
= x∞

5Notice that the weaker condition fn(xn) (D fn+1(in(xn)) would actually suffice, but we will
have no use of this added generality in the cases we are interested in.

308 D. Untyped Lambda Calculus

by the definitions of f∞ and g∞, continuity of gn, property 13.6 proved below,
and the definition of x∞.

To complete the proof of part 2 above it remains to check that, for every n,
⊔

m∈ω gn(fm(xm)) = xn. (13.6)

There are two cases:

• if m ≤ n, then gn(fm(xm)) /n xn

If m ≤ n, then fm(xm) /D fn(xn) by what proved above. Then

gn(fm(xm)) /n gn(fn(xn)) = xn

by monotonicity of gn and Condition 1.

• if m ≥ n, then gn(fm(xm)) = xn

This is proved by starting with gm(fm(xm)) = xm, and successively using
projections on both sides, together with the properties

jm(xm+1) = xm and jm(gm+1(x)) = gm(x).

For example,

gn+1(fn+1(xn+1)) = xn+1

⇒ jn(gn+1(fn+1(xn+1))) = jn(xn+1)
⇒ gn(fn+1(xn+1)) = xn.

We leave to the reader the verification that f∞ and g∞ are continuous, using
the fact that fn and gn are continuous, for all n. !

We have proved that for any given chain {Dn}n∈ω, D∞ is uniquely determined
up to equality of c.c.p.o.’s. Notice that if the following additional condition is
satisfied:

5.
⊔

n∈ω fn(gn(x)) = x,

then D is actually equal to D∞, because in part 1 of the above proof we can
conclude

f∞(g∞(x)) = x.

Since the symmetrical condition

g∞(f∞(x∞)) = x∞

always holds, it follows that f∞ and g∞ are inverse one of the other. In particular,
they are both one-one and onto, and preserve structure by continuity. We have
thus obtained a useful sufficient condition to show that D is isomorphic to D∞.

Inverse Limits 309

In the special case of D = D∞, where fn = in,∞ and gn = jn,∞, Condition 5
becomes ⊔

n∈ω
in,∞(jn,∞(x∞)) = x∞

and is obviously satisfied (see 13.5), while the functions f∞ and g∞ defined above
reduce to

i∞(〈xn〉n∈ω) =
⊔

n∈ω
in,∞(xn) and j∞(x∞) = 〈jn,∞(x∞)〉n∈ω,

which are actually both the identity function on D∞ (see 13.5).

Continuity of the function space operator

D fails being a c.c.p.o. in two different senses. First, because its domain is not
a set. Second, because 13.4.8 provides only special upper bounds for chains, not
necessarily least ones. Then we cannot directly apply 13.4.1 on the existence of
fixed points, but we can certainly redo its proof, and check that it works.

The reason why we stressed the existence of fixed point for f above any given
element, when f is expansionary, is that the least fixed point of F (X) = [X → X]
is trivial, namely the one-element c.c.p.o. D = {⊥}. Indeed, there is only one
function from D to D, and such a function is continuous. Thus [D → D] is a
one-element c.c.p.o. isomorphic to D. But we are looking for nontrivial solutions,
and they can be obtained if F has a fixed point above any given c.c.p.o. D.

For the rest of this section, F is the function on D defined by

F (X) = [X → X].

Proposition 13.4.9 F is expansionary. Precisely, for every D,

D $ [D → D].

Proof. We prove that the functions

i : D → [D → D] and j : [D → D] → D,

naturally defined by

i(x) = the constant function on D with value x

j(f) = f(⊥D),

are continuous, and

j(i(x)) = x and i(j(f)) /[D→D] f

310 D. Untyped Lambda Calculus

for all x ∈ D and f ∈ [D → D].
The first fact is trivially true, since j(i(x)) is a particular value of the constant

function i(x) with value x.
By definition of /[D→D], to prove i(j(f)) /[D→D] f we need to prove

i(j(f))(x) /D f(x)

for every x ∈ D. But

i(j(f))(x) = i(f(⊥D))(x) = f(⊥D) /D f(x)

by the definitions of j and i, and monotonicity of f (using the fact that ⊥D /D x
for any x).

We leave to the reader the verification that i and j are continuous. !

Proposition 13.4.10 F is monotone. Precisely, for every D and D′,

D $ D′ ⇒ [D → D] $ [D′ → D′].

Proof. By hypothesis, we have two continuous functions

i : D → D′ and j : D′ → D

such that, for all x ∈ D and y ∈ D′,

j(i(x)) = x and i(j(y)) /D′ y.

We prove that the functions

I : [D → D] → [D′ → D′] and J : [D′ → D′] → [D → D]

naturally defined, for all f ∈ [D → D] and g ∈ [D′ → D′], by

I(f) = i ◦ f ◦ j and J(g) = j ◦ g ◦ i

are continuous, and

J(I(f)) = f and I(J(g)) /[D′→D′] g.

Given a function f ∈ [D → D],

J(I(f)) = J(i ◦ f ◦ j)
= (j ◦ i) ◦ f ◦ (j ◦ i)
= f

Inverse Limits 311

by the definitions of I and J , and the fact that j(i(x)) = x for every x ∈ D, i.e.
j ◦ i = idD.

Given a function g ∈ [D′ → D′],

I(J(g)) = I(j ◦ g ◦ i)
= (i ◦ j) ◦ g ◦ (i ◦ j)
/[D′→D′] g

by the definitions of J , I and /[D′→D′]. Precisely, the last step holds because, for
any y ∈ D′:

i(j(y)) /D′ y
⇒ g(i(j(y))) /D′ g(y)
⇒ i(j(g(i(j(y))))) /D′ i(j(g(y))) /D′ g(y),

by i ◦ j / idD′ , the continuity of g, i and j, and i ◦ j / idD′ again.
Finally, I and J are continuous because composition preserves continuity. !

Exercise 13.4.11 For every c.c.p.o. D1, D2, D
′
1 and D′

2, if D1 " D′
1 and D2 " D′

2, then

[D1 → D2] " [D′
1 → D′

2].

The next crucial result is best stated if we introduce a special notation for D∞,
that explicitly exhibits the connection with the single elements of the chain

D0 $ · · · $ Dn $ · · ·

to which it refers. From now on, we will thus write

D∞ =
⊔

n∈ω
Dn.

Proposition 13.4.12 F is continuous, in the sense that it preserves
⊔

. Precisely,
if

D0 $ · · · $ Dn $ · · ·

is any chain, then
F (

⊔

n∈ω
Dn) =

⊔

n∈ω
F (Dn),

i.e.
[D∞ → D∞] =

⊔

n∈ω
[Dn → Dn].

Proof. First, we notice that if

D0 $ · · · $ Dn $ · · · ,

312 D. Untyped Lambda Calculus

then
[D0 → D0] $ · · · $ [Dn → Dn] $ · · ·

by monotonicity of F . To show that

[D∞ → D∞] =
⊔

n∈ω
[Dn → Dn]

we use the observation made after the proof of 13.4.8, i.e. we show that [D∞ → D∞]
is an upper bound to the chain {[Dn → Dn]}n∈ω satifying special properties.

By the hypothesis, we have continuous functions

in : Dn → Dn+1 and jn : Dn+1 → Dn

with the appropriate properties. Then, as in the previous proposition, we have
continuous functions

In : [Dn → Dn] → [Dn+1 → Dn+1]

and
Jn : [Dn+1 → Dn+1] → [Dn → Dn]

with the appropriate properties. Precisely, for any fn ∈ [Dn → Dn] and n,

In(fn) = in ◦ fn ◦ jn and Jn(fn+1) = jn ◦ fn+1 ◦ in.

We now need to define continuous functions

In,∞ : [Dn → Dn] → [D∞ → D∞]

and
Jn,∞ : [D∞ → D∞] → [Dn → Dn]

such that, for all fn ∈ [Dn → Dn] and f∞ ∈ [D∞ → D∞]:

1. Jn,∞(In,∞(fn)) = fn

2. In,∞(Jn,∞(f∞)) /[D∞→D∞] f∞

3. In,∞(fn) = In+1,∞(In(fn))

4. Jn,∞(f∞) = Jn(Jn+1,∞(f∞))

5.
⊔

n∈ω In,∞(Jn,∞(f∞)) = f∞.

Inverse Limits 313

Since the proof of 13.4.7 already provides continuous functions

in,∞ : Dn → D∞ and jn,∞ : Dn → D∞

with the appropriate properties, the natural guess is to let

In,∞(fn) = in,∞ ◦ fn ◦ jn,∞ and Jn,∞(f∞) = jn,∞ ◦ f∞ ◦ in,∞.

We now check that the required properties do hold.
Condition 1 holds because

Jn,∞(In,∞(fn)) = Jn,∞(in,∞ ◦ fn ◦ jn,∞)
= (jn,∞ ◦ in,∞) ◦ fn ◦ (jn,∞ ◦ in,∞)
= fn

by the definitions of In,∞ and Jn,∞, and the fact that (by 13.1)

jn,∞ ◦ in,∞ = idD∞ .

Condition 2 holds because

In,∞(Jn,∞(f∞)) = In,∞(jn,∞ ◦ f∞ ◦ in,∞)
= (in,∞ ◦ jn,∞) ◦ f∞ ◦ (in,∞ ◦ jn,∞)
/[D∞→D∞] f∞

by the definitions of Jn,∞ and In,∞, and the fact that (by 13.2)

in,∞ ◦ jn,∞ /[D∞→D∞] idD∞ .

Condition 3 holds because

In+1,∞(In(fn)) = In+1,∞(in ◦ fn ◦ jn)
= (in+1,∞ ◦ in) ◦ fn ◦ (jn ◦ jn+1,∞)
= in,∞ ◦ fn ◦ jn,∞

= In,∞(fn)

by the definitions of In and In+1,∞, the facts that (by 13.3)

in,∞ = in+1,∞ ◦ in,

and (by 13.4)
jn,∞ = jn ◦ jn+1,∞,

and the definition of In,∞.

314 D. Untyped Lambda Calculus

Similarly, Condition 4 holds because

Jn+1(Jn+1,∞(f∞)) = Jn+1(jn+1,∞ ◦ f∞ ◦ in+1,∞)
= (jn ◦ jn+1,∞) ◦ f∞ ◦ (in+1,∞ ◦ in)
= jn,∞ ◦ f∞ ◦ in,∞

= Jn,∞(f∞).

by the definitions of Jn+1,∞ and Jn+1, 13.3, 13.4, and the definition of Jn,∞.
Finally, Condition 5 holds because

f∞(x∞) = f∞(
⊔

p∈ω
ip,∞(jp,∞(x∞))

=
⊔

p∈ω
f∞(ip,∞(jp,∞(x∞)))

=
⊔

p∈ω
(
⊔

q∈ω
iq,∞(jq,∞(f∞(ip,∞(jp,∞(x∞))))))

=
⊔

n∈ω
in,∞(jn,∞(f∞(in,∞(jn,∞(x∞)))))

= (
⊔

n∈ω
In,∞(Jn,∞(f∞)))(x∞)

by the fact that (by 13.5)
⊔

p∈ω
ip,∞(jp,∞(x∞)) = x∞,

continuity of f∞, 13.5 again, properties of
⊔

, and the definitions of In,∞ and
Jn,∞. !

Notice that the proof simply amounts to the identification of functions f∞ on
D∞ with appropriate sequences of functions fn on Dn.

Precisely, a function f∞ induces a function fn defined by first taking an argu-
ment xn ∈ Dn, embedding it into D∞ by in,∞, applying f∞ to it, and going back
to Dn by jn,∞, i.e.

fn(xn) = jn,∞(f∞(in,∞(xn))).

By definition of Jn,∞,
fn = Jn,∞(f∞).

Similarly, a sequence of functions 〈fn〉n∈ω in
⊔

n∈ω[Dn → Dn] induces a function
f∞ defined piecewise as

f∞(〈xn〉n∈ω) = 〈fn(xn)〉n∈ω =
⊔

n∈ω in,∞(fn(xn)), (13.7)

Inverse Limits 315

where the last equality holds by 13.5. Since xn = jn,∞(x∞),

f∞(x∞) = 〈fn(jn,∞(x∞))〉n∈ω =
⊔

n∈ω
in,∞(fn(jn,∞(x∞)))

and, by definition of In,∞,
f∞ =

⊔

n∈ω
In,∞(fn).

Exactly as the functions

i∞(〈xn〉n∈ω) =
⊔

n∈ω
in,∞(xn) and j∞(x∞) = 〈jn,∞(x∞)〉n∈ω

defined an isomorphism between D∞ and
⊔

n∈ω Dn, and for x∞ = 〈xn〉n∈ω we
obtained

〈xn〉n∈ω =
⊔

n∈ω
in,∞(xn) and x∞ = 〈jn,∞(x∞)〉n∈ω ,

we now have that the functions

I∞(〈fn〉n∈ω) =
⊔

n∈ω
In,∞(fn) and J∞(f∞) = 〈Jn,∞(f∞)〉n∈ω

define an isomorphism between [D∞ → D∞] and
⊔

n∈ω[Dn → Dn], and from the
identification f∞ = 〈fn〉n∈ω we obtain

〈fn〉n∈ω =
⊔

n∈ω
In,∞(fn) and f∞ = 〈Jn,∞(f∞)〉n∈ω.

In particular, by 13.7, the application of a function in [D∞ → D∞] to an element
of D∞ acts componentwise.

Fixed points of the function space operator

We are finally in a position to prove the result we were looking for.

Theorem 13.4.13 (Scott [1969]) For any c.c.p.o. D there exists a c.c.p.o. D∞
such that

D $ D∞ and D∞ = [D∞ → D∞].

Proof. We mimick the proof of 13.4.1 for expansionary functions. Given D, we
define:

D0 = D
Dn+1 = [Dn → Dn]
D∞ =

⊔
n∈ω Dn.

First, we show that D∞ exists . For this it is enough to show that the set
{Dn}n∈ω is a chain. This is proved by induction:

316 D. Untyped Lambda Calculus

• D0 $ D1 since
D0 = D $ [D → D] = D1,

because F is expansionary (13.4.9).

• if Dn $ Dn+1, then

Dn+1 = [Dn → Dn] $ [Dn+1 → Dn+1] = Dn+2,

because F is monotone (13.4.10).

In particular, there exist canonical embedding and projection functions

in : Dn → Dn+1 and jn : Dn+1 → Dn,

defined by induction on n as follows, where xn ∈ Dn and fn : Dn → Dn for every
n:

i0(x0) = the constant function on D0 = D with value x0

j0(f0) = f0(⊥D)

(from the proof of 13.4.9), and

in+1(xn+1) = In(xn+1) = in ◦ xn+1 ◦ jn

jn+1(fn+1) = Jn(fn+1) = jn ◦ fn+1 ◦ in

(from the proof of 13.4.10). In other words, the first level is determined by the fact
that F is expansionary, and determines the following ones by monotonicity.

It remains to show that D∞ is isomorphic to [D∞ → D∞]. Recall that an
element of D∞ =

⊔
n∈ω Dn is a sequence 〈xn〉n∈ω such that, for all n,

xn ∈ Dn and xn = jn(xn+1).

We get the isomorphism between D∞ and [D∞ → D∞] in two steps:

1. identification of [D∞ → D∞] with
⊔

n∈ω Dn+1

Indeed,
[D∞ → D∞] =

⊔

n∈ω
[Dn → Dn] =

⊔

n∈ω
Dn+1

by continuity of F (13.4.12) and definition of Dn+1.

By the proof of 13.4.12, an element of [D∞ → D∞] is then identifiable with
a sequence 〈fn〉n∈ω such that, for all n,

fn ∈ [Dn → Dn] and fn = Jn(fn+1),

Inverse Limits 317

where the function

Jn : [Dn+1 → Dn+1] → [Dn → Dn]

is the canonical projection function between functions spaces defined in 13.4.10,
i.e.

Jn(fn+1) = jn ◦ fn+1 ◦ in

for every fn+1 ∈ [Dn+1 → Dn+1].

2. identification of
⊔

n∈ω Dn with
⊔

n∈ω Dn+1

We can now define, in the natural way,

I(〈xn〉n∈ω) = 〈x1, x2, . . . 〉
J(〈fn〉n∈ω) = 〈f0(⊥D), f0, f1, . . . 〉,

where xn ∈ Dn and fn ∈ [Dn+1 → Dn] = Dn+1. In other words, I forgets
about the first component, while J extends a sequence in the canonical way.
We notice that

I : (
⊔

n∈ω
Dn) → (

⊔

n

∈ Dn+1) and J : (
⊔

n∈ω
Dn+1) → (

⊔

n∈ω
Dn).

This is obvious, because the projection functions jn and Jn used in the defi-
nition of

⊔
n∈ω Dn and

⊔
n∈ω Dn+1, respectively, are related by definition in

the needed way, i.e.
Jn = jn+1.

Moreover, I and J are inverse functions:

I(J(〈fn〉n∈ω)) = I(〈f0(⊥D), f0, f1, . . . 〉) = 〈fn〉n∈ω,

and

J(I(〈xn〉n∈ω)) = J(〈x1, x2, . . . 〉) = 〈x1(⊥D), x1, . . . 〉 = 〈xn〉n∈ω,

because x0 = j0(x1) = x1(⊥D).

Since I and J are obviously continuous, they witness that D∞ and [D∞ → D∞]
are isomorphic, as we wanted to prove. !

Notice that for any c.c.p.o. D, the c.c.p.o. D∞ constructed above induces an ex-
tensional canonical model of the Typed Lambda Calculus , consisting of the c.c.p.o.’s
{Dα}α defined as follows:

318 D. Untyped Lambda Calculus

• Dα = D for α atomic

• Dα→β = [Dα → Dβ].

Indeed, Dα $ D∞ for every α:

• D $ D∞ by 13.4.13

• if Dα, Dβ $ D∞, then [Dα → Dβ] $ [D∞ → D∞] = D∞ by 13.4.11.

Thus, although the construction of D∞ only involves the types 0 (atomic) and
n + 1 = n → n, its result D∞ is actually closed under arbitrary types.

Figure 13.2 collects all facts about D∞ = [D∞ → D∞] proved so far.

Extensional models

After this long detour, we can finally go back to our original goal of finding exten-
sional models for the Untyped Lambda Calculus.

Theorem 13.4.14 The D∞ Model (Scott [1969]) Any c.c.p.o. D∞ such that
D∞ = [D∞ → D∞] induces an extensional canonical model of the Untyped Lambda
Calculus.

Proof. The condition D∞ = [D∞ → D∞] means that there are continuous func-
tions

I : D∞ → [D∞ → D∞] and J : [D∞ → D∞] → D∞

such that I ◦ J and J ◦ I are both identities.
Consider the structure

D∞ = 〈D∞, I, J, [[]]D∞〉,

where [[]]D∞ is the canonical interpretation. In particular, given any environment
ρ on D∞,

[[t]]ρ =

ρ(x) if t = x
I([[u]]ρ)([[v]]ρ) if t = uv
J(ΛX. [[u]]ρ[x:=X]) if t = λx. u,

where ΛX. [[u]]ρ[x:=X] denotes the function

a ∈ D∞ >−→ [[u]]ρ[x:=a] ∈ D∞.

By 13.2.2, to prove that D∞ is an extensional model it is enough to check that
[[]]ρ is well-defined, i.e. that [[t]]ρ ∈ D∞ for any t and ρ. The only differences with
the proof of 10.4.3 are the absence of types, and the presence of I and J in the
definition of [[]]ρ. The first presents no problem, and the second is taken care of
by the fact that I and J are continuous, which makes the proof of the fact that
[[u]]ρ[x:=X] is a continuous function of X go through. !

Inverse Limits 319

Given a c.c.p.o.’s (D,/D), we consider

D0 = D Dn+1 = [Dn → Dn] D∞ =
⊔

n∈ω
Dn,

If xn ∈ Dn and fn : Dn → Dn for every n, then D0 $ D1 via

i0(x0) = the constant function on D with value x0

j0(f0) = f0(⊥D)

and Dn+1 $ Dn+2 via

in+1(xn+1) = In(xn+1) = in ◦ xn+1 ◦ jn

jn+1(fn+1) = Jn(fn+1) = jn ◦ fn+1 ◦ in.

Since
[D∞ → D∞] =

⊔

n∈ω
Dn+1

by continuity of F (X) = [X → X],

〈xn〉n∈ω ∈ D∞ ⇔ (∀n)(xn ∈ Dn ∧ xn = jn(xn+1))
〈fn〉n∈ω ∈ [D∞ → D∞] ⇔ (∀n)(fn ∈ Dn+1 ∧ fn = Jn(fn+1)),

and D∞ and [D∞ → D∞] are isomorphic via the continuous functions
I and J defined by:

I(〈xn〉n∈ω) = 〈x1, x2, . . . 〉
J(〈fn〉n∈ω) = 〈f0(⊥D), f0, f1, . . . 〉.

Moreover,

〈fn〉n∈ω(〈xn〉n∈ω) = 〈fn(xn)〉n∈ω =
⊔

n∈ω
in,∞(fn(xn)).

Figure 13.2: Definition and properties of D∞ = [D∞ → D∞]

320 D. Untyped Lambda Calculus

13.5 Retracts

So far we have constructed two kinds of models of the Untyped Lambda Calculus:
a nonextensional one based on continuity on P(ω), and an extensional one based on
an inverse limit construction. We will now show how the inverse limit construction
can be performed inside P(ω) itself.

Recall that D∞ was obtained by iterating the function

F (X) = [X → X],

starting with any c.c.p.o. D:

D0 = D
Dn+1 = F (Dn),

and showing that the iteration process has a fixed point D∞.
The idea now is that, since [P(ω) → P(ω)] is embedded in P(ω) in a canonical

way, for any c.c.p.o. X embedded in P(ω) the c.c.p.o. F (X) = [X → X] is also
embedded in P(ω), and the construction of D∞ can then be seen as taking place
inside P(ω). In particular, we can start the iteration of F with P(ω) itself:

D0 = P(ω)
Dn+1 = F (Dn).

The limit D∞ of this iteration will then be a c.c.p.o. embedded in P(ω), and such
that D∞ = [D∞ → D∞].

Plan of the proof

Our plan is strictly similar to the one implemented for the construction of D∞. In
particular, we will deal with special c.c.p.o.’s (called retracts) that are embedded
in P(ω) in a canonical way, and proceed as follows:

1. consider the collection of all retracts

2. define a partial ordering on retracts

3. show that the class of retracts with the associated partial ordering is a c.c.p.o.

4. show that F is continuous as a function on retracts.

Notice that, unlike the case of D∞, the notions here involved (such as partial
ordering, c.c.p.o., continuity) are taken literally, and not only as guiding analogies.
The idea is that, because of its universal property, P(ω) can be seen as a real
c.c.p.o. of c.c.p.o.’s, and the method of retracts is the real fixed point construction
that we could only mimic (in categorical terms) in the construction of D∞.

Retracts 321

Retracts of c.c.p.o.’s

Recall that, by definition 13.4.4, if (D,/D) and (R,/R) are two c.c.p.o’s, then
R $ D if and only if there are two continuous functions

i : R −→ D and j : D −→ R

such that, for all x ∈ R and y ∈ D,

j(i(x)) = x and i(j(y)) /D y.

A particularly nice case is obtained when R ⊆ D, i is the identity function, i.e.
i(x) = x for all x ∈ R, and /R is the restriction of /D to R. In this case we
can drop the subscript of /R and /D, since the two coincide when they are both
defined. Moreover, the following property holds:

• j is idempotent, i.e. j(j(y)) = j(y) for all y ∈ D
Since j ◦ i is the identity, j is onto R. Let x ∈ R. Since i(x) = x, then
j(i(x)) = j(x). Since j(i(x)) = x, then j(x) = x. Thus j is the identity on its
range. But a typical element of the range of j has the form j(y) for y ∈ D,
and thus j(j(y)) = j(y).

The next definition expresses the conditions above in terms of D and j alone.

Definition 13.5.1 Given a c.c.p.o. (D,/) and a continuous function

j : D −→ D,

we say that j is a retraction of D if j is idempotent, and then its range Rj is
called a retract of D.

If a retraction j satisfies the additional condition j(y) / y, it is called a pro-
jection. If it satisfies the dual condition y / j(y), it is called a closure. The
particular retraction used in the proof of 13.5.12 will be a closure.

The next observation characterizes retracts in terms of retractions.

Proposition 13.5.2 If j is a retraction of D, the associated retract Rj is the set
of fixed points of j.

Proof. If y ∈ D is a fixed point of j, then j(y) = y. Thus y belongs to the range
of j.

Conversely, if y is in the range of j, then y = j(x) for some x ∈ D, and

j(y) = j(j(x)) = j(x) = y

because j is idempotent. Thus y is a fixed point of j. !

Each retract can be seen as a c.c.p.o. in a canonical way.

322 D. Untyped Lambda Calculus

Corollary 13.5.3 A retract Rj of D is a c.c.p.o. w.r.t. the partial ordering induced
by /D.

Proof. If x0 / x1 / · · · is a chain of elements of Rj , it is enough to show that⊔
n∈ω xn, which is in D, already belongs to Rj . By the previous proposition, it is

enough to show that it is a fixed point of j. And

j(
⊔

n∈ω
xn) =

⊔

n∈ω
j(xn) =

⊔

n∈ω
xn

because j is continuous, and j(xn) = xn (since xn ∈ Rj by hypothesis, and hence
it is a fixed point of j). !

Notice that the least elements of D and Rj are not necessarily the same. Ac-
tually, ⊥Rj is the least fixed point of j.

The last two results, showing that every retraction can be seen as a c.c.p.o. in
a canonical way, throught its range, allow us to restrict attention to retractions.

Definition 13.5.4 RD is the set of all retractions of D.

The next result shows that the collection RD is itself a c.c.p.o. The restriction
to RD will then allow us to avoid the technical work involved in 13.4.7 and 13.4.8,
that was needed to show that the collection of all c.c.p.o.’s was a ‘c.c.p.o.’ itself.

Proposition 13.5.5 RD is a c.c.p.o. w.r.t. the partial ordering induced by /[D→D].

Proof. Since j is a retraction if and only if it is idempotent, i.e. j◦j = j, retractions
are exactly the fixed points of the selfcomposition function

S : [D → D] → [D → D]

defined by
S(f) = f ◦ f.

S is obviously continuous (for a similar proof, see 13.5.7). As in the previous propo-
sition, the set of fixed points of a continuous function is still a c.c.p.o. w.r.t. the
induced partial ordering. Then RD is a c.c.p.o. w.r.t. the pointwise partial ordering
of [D → D]. !

In particular, by 13.4.1, any continuous function on RD has a least fixed point,
and every expansionary continuous function on RD has a fixed point above any of
its elements.

Retracts 323

Function spaces of retracts

The next result is a version of 13.4.10 for retracts, and shows by a similar proof
that if Rj is a retract of D, then the function space [Rj → Rj] is a retract of
[D → D] in a natural way. As usual, we work with retractions.

Proposition 13.5.6 If j is a retraction of D, then the function j → j defined by

(j → j)(f) = j ◦ f ◦ j

for every f ∈ [D → D], is a retraction of [D → D], and Rj→j = [Rj → Rj].

Proof. For simplicity of notations, in this proof we write J for j → j and RJ for
Rj→j .

J is obviously continuous, and it is a retraction of [D → D]. Indeed, for every
f ∈ [D → D],

J(J(f)) = j ◦ (j ◦ f ◦ j) ◦ j = (j ◦ j) ◦ f ◦ (j ◦ j) = j ◦ f ◦ j = J(f)

because j is a retraction of D, and hence idempotent.
There are natural maps

F : RJ → [Rj → Rj] and G : [Rj → Rj] → RJ ,

defined as follows.

• By definition, a typical element J(f) of RJ is a function from D to Rj , and
it is defined on all x ∈ D. J(f) can be naturally seen as a function from
Rj to Rj , by restricting it to Rj . Since j(x) = x if x ∈ Rj (by 13.5.2), this
corresponds to considering the function defined as follows, for every x ∈ Rj :

F (J(f)) = j ◦ f.

• Conversely, a function g ∈ [Rj → Rj] can be turned into an element of RJ by
extending it into a function from D to D by using j first, and then applying
J to it:

G(g) = J(g ◦ j).

The two functions F and G are obviously continuous, and they are the inverse one
of the other:

• if f ∈ [D → D], then

G(F (J(f))) = G(j ◦ f) = J(j ◦ f ◦ j) = J(J(f)) = J(f)

because J is a retraction;

324 D. Untyped Lambda Calculus

• if g ∈ [Rj → Rj], then

F (G(g)) = F (J(g ◦ j)) = j ◦ g ◦ j.

This coincides with g on Rj , since for x ∈ Rj ,

j(g(j(x)) = j(g(x)) = g(x)

because j is the identity on Rj , and both x and g(x) are in Rj . !

The next result is a version of 13.4.12.

Proposition 13.5.7 For any c.c.p.o. D, the function

F : RD → R[D→D]

defined, in the notation of the previous proposition, by

F (j) = j → j,

is continuous.

Proof. Recall that, by 13.5.5, the partial order of RD is induced by the pointwise
ordering of [D → D]. We need to prove the following:

1. F is monotone
Let j1 /[D→D] j2 and f ∈ [D → D]. Then, for every x ∈ D,

j1(x) /D j2(x)
=⇒ f(j1(x)) /D f(j2(x))
=⇒ j1(f(j1(x))) /D j2(f(j2(x)))
=⇒ (j1 → j1)(f)(x) /D (j2 → j2)(f)(x)

by the hypothesis on j1 and j2, and monotonicity of f and j1. Then, for
every f ∈ [D → D],

(j1 → j1)(f) /[D→D] (j2 → j2)(f),

i.e.
F (j1) = (j1 → j1) /[[D→D]→[D→D]] (j2 → j2) = F (j2).

2. F preserves l.u.b.’s of chains
Let

j0 /[D→D] j1 /[D→D] · · ·

be a chain of retracts in RD. By definition,

F (j)(f) = (j → j)(f) = j ◦ f ◦ j.

Retracts 325

Then, for every f ∈ [D → D] and x ∈ D,

F (
[D→D]⊔

n∈ω
jn)(f)(x) = ((

[D→D]⊔

n∈ω
jn) ◦ f ◦ (

[D→D]⊔

n∈ω
jn))(x)

= (
[D→D]⊔

n∈ω
jn)(f((

[D→D]⊔

n∈ω
jn)(x)))

= (
[D→D]⊔

n∈ω
jn)(f(

[D→D]⊔

q∈ω
jq(x)))

= (
[D→D]⊔

n∈ω
jn)(

[D→D]⊔

q∈ω
f(jq(x)))

=
[D→D]⊔

p∈ω
(
[D→D]⊔

q∈ω
jp(f(jq(x))))

=
[D→D]⊔

n∈ω
jn(f(jn(x)))

=
[D→D]⊔

n∈ω
F (jn)(f)(x)

by the definitions of F , ◦ and
⊔[D→D]

n∈ω , continuity of f , definition of
⊔[D→D]

n∈ω ,
continuity of jp, monotonicity of jq, f and jp (which implies

jp(f(jq(x))) /D jn(f(jn(x)))

for any n ≥ p, q), and definition of F . !

Exercises 13.5.8 a) If j1 and j2 are retractions of D1 and D2, then the function j1 → j2
defined by (j1 → j2)(f) = j2◦f◦j1, for every f ∈ [D1 → D2], is a retraction of [D1 → D2],
and Rj1→j2 = [Rj1 → Rj2].

b) If j1 $ j′1 and j2 → j′2, then j1 → j2 $ j′1 → j′2.

Retracts of reflexive c.c.p.o.’s

The next observation will allow us to connect retracts of D and [D → D].

Proposition 13.5.9 For any c.c.p.o. D, the retract of a retract of D is still a
retract of D. In other words, RD is closed under retracts.

326 D. Untyped Lambda Calculus

Proof. Let j1 : D → D be a retract of D, with R1 = j1(D), and j2 : R1 → R1 be
a retract of R1, with R2 = j2(R1). Then R2 = j2(j1(D)), and j2 ◦ j1 : D → D is a
continuous function, being the composition of two continuous functions.

It is thus enough to show that j2 ◦ j1 is still a retraction, since R2 is the image
of D under it. Indeed,

((j2 ◦ j1) ◦ (j2 ◦ j1))(x) = (j2(j1(j2(j1(x)))))
= (j2(j2(j1(x))))
= j2(j1(x))
= (j2 ◦ j1)(x)

because j1 is the identity on R1, and hence on j2(j1(x)), and j2 is idempotent. !

Since we have seen that function spaces of retracts of D are retracts of [D → D],
and that retracts of retracts of D are retracts of D, RD is closed under function
spaces, whenever [D → D] is itself a retract of D.

Definition 13.5.10 A c.c.p.o. D is reflexive if [D → D] is a retract of D.

The next result provides a weak analogue of 13.4.13, but sufficient for our
purposes.

Proposition 13.5.11 For any reflexive c.c.p.o. D, if j is a retraction such that
j /[D→D] (j → j), then there exists a retraction J such that

j /[D→D] J and RJ = [RJ → RJ].

Proof. By 13.5.7, the function

F (j) = j → j

is continuous as a function from RD to R[D→D]. Since D is reflexive, F can
actually be seen as a continuous function from RD to itself, since j → j (a retract
of [D → D], hence of a retract of D) can be seen as a retract of D. We can then
apply directly (the proof of) 13.4.1. !

Retracts of the Graph Model

It now remains to apply the general result just proved, by finding a reflexive c.c.p.o.
D and a retraction j /[D→D] (j → j) on it such that the fixed point J of F above
j is not trivial.

Proposition 13.5.12 P(ω) is a reflexive c.c.p.o.

Retracts 327

Proof. To show that [P(ω) → P(ω)] is a retract of P(ω), consider the functions

I : P(ω) → [P(ω) → P(ω)] and J : [P(ω) → P(ω)] → P(ω)

defined in 13.3.2 as follows:

J(f) =
⊕

n∈ω
f(un) and I(A) = ΛX.

⋃

un⊆X

(A)n.

We let
j(A) = J(I(A)),

i.e. we associate with every set A the graph of the continuous function coded by
A (recall that in general we only have J(I(A)) ⊇ A). Then j is continuous, being
the composition of two continuous functions, and idempotent. Indeed,

j(j(A)) = J(I(J(I(A)))) = J(I(A)) = j(A)

because, as proved in 13.3.2, I ◦ J is the identity. !

Exercise 13.5.13 E is a reflexive c.c.p.o. (Hint: associate with every r.e. set A the
graph of the effective continuous function coded by A.)

We have thus identified [P(ω) → P(ω)] with the subset of P(ω) consisting of
all graphs of continuous functions, i.e. all sets A such that A = J(I(A)). Notice
the following properties:

1. the orders of [P(ω) → P(ω)] as a function space and as a retract coincide
Recall that the order of [P(ω) → P(ω)] as a function space is pointwise
inclusion of the values, while its order as a retract is the inclusion induced
from P(ω). Let A and B be graphs of continuous functions, i.e.

A = J(I(A)) =
⊕

n∈ω
I(A)(un) and B = J(I(B)) =

⊕

n∈ω
I(B)(un).

Then

A ⊆ B ⇒ (∀m)((A)m ⊆ (B)m)
⇒ (∀n)(I(A)(un) ⊆ I(B)(un))
⇒ (∀X)(I(A)(X) ⊆ I(B)(X))

by definition of I. Conversely,

(∀X)(I(A)(X) ⊆ I(B)(X)) ⇒ (∀n)(I(A)(un) ⊆ I(B)(un))

⇒
⊕

n∈ω
I(A)(un) ⊆

⊕

n∈ω
I(B)(un)

⇒ J(I(A)) ⊆ J(I(B))
⇒ A ⊆ B

328 D. Untyped Lambda Calculus

by definition of J .

2. a retract of [P(ω) → P(ω)] can be identified with a retract of P(ω)
Since [P(ω) → P(ω)] is a retract of P(ω), we can compose the retractions
and identify a set of continuous functions with the set of their graphs.

3. a retract of P(ω) can be identified with an element of P(ω)
We can code a retract by the retraction defining it, as a continuous function
on P(ω).

4. P(ω) is smaller than [P(ω) → P(ω)] in the order of retractions
P(ω) is defined by the identity function ΛX.X , and [P(ω) → P(ω)] by the
function ΛX.J(I(X)). Now J(I(X)) ⊇ X for every X , and thus ΛX. X
is smaller than ΛX. J(I(X)) in the pointwise ordering of functions, which
induces the ordering of retractions.

We can now prove a weak analogue of 13.4.13.

Theorem 13.5.14 There is a nontrivial retract R of P(ω) such that R = [R → R].

Proof. It is enough to find a nontrivial fixed point of F (j) = j → j, i.e. a nontrivial
retraction J such that J = J → J . Then, by 13.5.6,

RJ = RJ→J = [RJ → RJ].

As a first trial, we can start from the retraction

j = ΛX.⊥P(ω) = ΛX. ∅,

whose associated retract is {∅}. This is the least element of RP(ω), and thus its
bottom. As usual in similar situations, the least fixed point of F above the bottom
is the bottom itself, and we thus get a trivial fixed point.

As a second trial, we can consider the retraction

j = ΛX. X,

whose associated retract is P(ω). Since, as we noted above, P(ω) is smaller than
[P(ω) → P(ω)] as a retract, we have

j /[P(ω)→P(ω)] j → j,

and 13.5.11 ensures that there is a fixed point J of F above j.
To argue that such a fixed point J is nontrivial we have to look more closely at

the construction that produces it, as the l.u.b. in the pointwise order of retracts of
the chain

j0 = j and jn+1 = F (jn) = jn → jn.

Retracts 329

It is enough to show that the associated retract has at least two elements. For
example, ∅ and ω are such elements, since

J(I(∅)) = ∅ and J(I(ω)) = ω.

They are the graphs of the functions ΛX.⊥ and ΛX.B at every level of the con-
struction. !

Intuitively, the construction starts with P(ω), and at each level it considers
only the graphs of continuous functions on the previous level. In particular, the
first level gives the graphs of the continuous functions on P(ω), the second level the
graphs of the continuous functions that map graphs to graphs (at the first level),
and so on.

From the general result 13.4.14 we can now deduce that the retract R induces
an extensional canonical model of the Untyped Lambda Calculus .

Moreover, R also induces an extensional canonical model of the Typed Lambda
Calculus , consisting of the retracts {Rα}α of P(ω) defined as follows:

• Rα = P(ω) for α atomic

• Rα→β = [Rα → Rβ].

Notice that Rα is smaller than R in the order of retractions, for every α. Indeed:

• P(ω) is smaller than R by the proof of 13.5.14

• if Rα, Rβ are smaller than R, then [Rα → Rβ] is smaller than [R → R] = R
by 13.5.8.b.

Sierpinski Spaces !

The crucial results 13.3.2 and 13.5.12 are based on the fact that [P(ω) → P(ω)]
is naturally embedded in P(ω). This can also be obtained as a special case of a
classical topological result, which we now sketch.

Consider the two-element space 2 = {0, 1} with the Sierpinski topology, whose
open sets are ∅, {1} and {0, 1}. This obviously defines a T0 space (see 5.3.9),
because {1} is an open set containing 1 but not 0. Notice that the space is not T2

(see 18.3.5), because 0 and 1 cannot be separated by disjoint open sets.
The Sierpinski space 2ω is the product of the Sierpinski topology on 2. The

result is homeomorphic to P(ω) with the Scott topology, whose basic open sets are
the sets {X : X ⊇ u}, where u is a finite set (see 6.3.9.c). Again, this obviously
defines a T0 space, because if two sets A and B are distinct, then they differ on
some element x, and the basic open set {X : x ∈ X} contains one of A and B,

330 D. Untyped Lambda Calculus

but not the other. Again, the space is not T2, because the sets ∅ and ω cannot be
separated by disjoint open sets.6

The next result shows that P(ω) is not only a T0 space, but a universal one.

Proposition 13.5.15 Every T0 space with a countable basis of open sets is home-
omorphic to a subspace of P(ω).

Proof. If T has a countable basis, it is possible to enumerate the basic open sets
by using natural numbers as indices. Then the function

J(x) = {n : x belongs to the n-th basic open set}

maps elements of T to a set of natural numbers, i.e. to an element of P(ω). And
if T is T0, then J is one-one.

Given the basic open set U = {X : X ⊇ u} of P(ω), then J−1(U) is the
intersection of the finitely many basic open sets whose indices are in u. Since a
topology is closed under finite intersections, J−1(U) is an open set of T . Thus J
is continuous.

Given the n-th basic open set N of T , then

J(N) = {X : n ∈ X} = {X : X ⊇ {n}},

which is an open set of P(ω). Thus J−1 is continuous, and T is homeomorphic to
its image in P(ω). !

More generally, the same proof shows that every T0 space is homeomorphic to
a subspace of the Sierpinski space 2α, where α is the cardinality of the basis of the
given space.

Proposition 13.5.16 [P(ω) → P(ω)] is a T0 space with a countable basis of open
sets.

Proof. By 6.3.9.c, the basic open sets of [P(ω) → P(ω)] are the sets {f : x ∈ f(u)},
where x is a natural number and u is a finite set.

The space is obviously T0, because if two continuous functions g and h are
distinct, then they differ on some finite set u, i.e. there is some x which is in one
of g(u) and h(u), but not in the other. Then the basic open set {f : x ∈ f(u)}
contains one of g and h, but not the other.

The space has a countable basis, because the basic open sets {f : x ∈ f(un)}
can be enumerated by the numbers 〈x, n〉. !

6The Sierpinski space 2ω should not be confused with the Cantor space 2ω , which is the product
of the discrete topology on 2 = {0, 1}, whose open sets are ∅, {0}, {1} and {0, 1}. The Cantor
space is T2, because if two functions g and h are distinct, then they differ on some argument x,
and the basic open sets {f : f(x) = 0} and {f : f(x) = 1} separate g and h.

The Least Fixed Point Operator ! 331

If follows from 13.5.15 that [P(ω) → P(ω)] is homeomorphic to a subspace of
P(ω). Moreover, the homeomorphism provided by the proof above is nothing else
than the function J used in 13.3.2, as its name implies.

Exercises 13.5.17 A universal algebraic lattice. The notion of an algebraic lattice
is defined in 18.5.1. P(ω) is obviously algebraic, with the finite sets as the compact
elements. The next results show that P(ω) is a universal algebraic lattice.

a) Every algebraic lattice with a countable basis of compact elements is isomorphic to
a sublattice of P(ω). (Hint: enumerate the compact elements by using natural numbers
as indices, and define

J(x) = {n : x is above the n-th compact element}.)

b) [P(ω) → P(ω)] is an algebraic lattice with a countable basis of compact elements.
(Hint: the compact elements are the continuous functions that take finite values for finitely

many arguments, and value ∅ for the remaining ones.)

13.6 The Least Fixed Point Operator !

We now compute the interpretation of the fixed-point combinator

Y = λy. (λx. y(xx))(λx. y(xx)).

Since Y begins with a λ, intuitively its interpretation defines a function. We then
actually compute I([[Y]]), thus characterizing the behavior of [[Y]] as a function on
P(ω) and on D∞.

The Graph Model

Recall that, in the notations of 12.2.2,

Y = λy.∆∆y,

where ∆ = λx. xx and ∆y = λx. y(xx). We first notice that, by repeated applica-
tions of the definition of [[]],

[[∆]] = [[λx.xx]] = J(ΛX. I(X)(X))

and
[[∆y]] = [[λx. y(xx)]] = J(ΛX. I(Y)(I(X)(X))).

Then, using twice the fact that I ◦ J is the identity,

I([[Y]]) = (ΛY. (ΛX. I(X)(X))(J(ΛX. I(Y)(I(X)(X)))).

332 D. Untyped Lambda Calculus

Finally, for any f ∈ [P(ω) → P(ω)],

I([[Y]])(J(f)) = (ΛX. I(X)(X))(J(ΛX. I(J(f))(I(X)(X)))
= (ΛX. I(X)(X))(J(ΛX. f(I(X)(X)))
= G(J(F)),

where
G = ΛX. I(X)(X) and F = ΛX. f(I(X)(X)).

We are now ready to characterize I([[Y]]). Notice that [P(ω) → P(ω)] is a
c.c.p.o., and thus the Fixed Point Theorem 13.4.1 holds for it. In other words,
every function f on P(ω) has a least fixed point. Then there is a function

FixP(ω) : [P(ω) → P(ω)] → P(ω)

defined by:
FixP(ω)(f) = the least fixed point of f.

We now prove that I([[Y]]) = FixP(ω), thus showing in particular that FixP(ω) is
a continuous function, a fact that could also be easily proved directly.

Proposition 13.6.1 (Scott [1975]) In P(ω), I([[Y]]) is the least fixed point op-
erator FixP(ω).

Proof. We first prove that I([[Y]]) is a fixed point operator , i.e. I([[Y]])(J(f)) is a
fixed point of f . Since

I([[Y]])(J(f)) = G(J(F)),

it is enough to show that

G(J(F)) = f(G(J(F))).

But
G(J(F)) = I(J(F))(J(F)) = F (J(F))

by definition of G and the fact that I ◦ J is the identity. Thus it is enough to show
that

F (J(F)) = f(F (J(F))).

And indeed,
F (J(F)) = f(I(J(F))J(F)) = f(F (J(F)))

by definition of F and the fact that I ◦ J is the identity. In one word, I([[Y]]) is
a fixed point operator because P(ω) is a model of the Untyped Lambda Calculus,
and Y is a fixed point combinator.

The Least Fixed Point Operator ! 333

We now prove that I([[Y]]) is the least fixed point operator. The idea is to show
that, for any f ∈ [P(ω) → P(ω)],

f(A) = A ⇒ I([[Y]])(J(f)) ⊆ A,

i.e. that I([[Y]])(J(f)) is contained in every fixed point of f . Equivalently, we can
show that

f(A) = A ⇒ G(J(F)) ⊆ A.

Let x ∈ G(J(F)). Since G(X) = I(X)(X) and G is continuous, there is a finite set
u ⊆ J(F) such that x ∈ I(u)(u). It is then enough to show, by induction on the
code of u, that

u ⊆ J(F) ⇒ I(u)(u) ⊆ A,

since then x ∈ A. By definition of I,

I(u)(u) =
⋃

un⊆u

(u)n.

Since x ∈ I(u)(u), there is an n such that un ⊆ u and x ∈ (u)n, i.e. 〈x, n〉 ∈ u.
Then n is smaller than the code of u, and by the induction hypothesis

un ⊆ u ⊆ A ⇒ I(un)(un) ⊆ A.

But 〈x, n〉 ∈ u ⊆ J(F), i.e.

〈x, n〉 ∈ J(F) =
⊕

m∈ω
F (um)

by definition of J . Then

x ∈ F (un) = f(I(un)(un)) ⊆ f(A) = A,

by definition of F , monotonicity of f , and the fact that I(un)(un) ⊆ A. !

Corollary 13.6.2 In P(ω), [[∆∆]] = ∅.

Proof. Since ∆∆ is the result of applying Y to the identity function, [[∆∆]] must
be the least fixed point of the identity. But every point is a fixed point of the
identity, and thus the least fixed point is the least element. !

Exercises 13.6.3 a) The least fixed point of an effective continuous function is r.e.
(Rogers [1959]) (Hint: the proof of 13.4.1 is effective.)

b) In E , I([[Y]]) is the least fixed point operator (Scott [1975]). (Hint: by 13.6.1 and

part a).)

The previous results crucially depend on the choice of the coding function 〈 〉,
and may fail with a different choice.

334 D. Untyped Lambda Calculus

Proposition 13.6.4 (Baeten and Boerboom [1979]) By changing the coding
function 〈 〉 we can get a model in which [[∆∆]] -= ∅, and thus I([[Y]]) is not the
least fixed point operator.

Proof. The main observation is that

{〈x, n〉} = un ⇒ x ∈ [[∆∆]].

Indeed,

〈x, n〉 ∈ un ⇒ x ∈ (un)n ⇒ x ∈
⋃

um⊆un

(un)m ⇒ x ∈ I(un)(un)

by definition of ()n, the fact that un ⊆ un, and definition of I. Then

〈x, n〉 ∈
⊕

m∈ω
I(um)(um) = J(ΛX. I(X)(X)) = [[∆]].

It follows that un = {〈x, n〉} ⊆ [[∆]] and, from x ∈ (un)n,

x ∈
⋃

un⊆[[∆]]

([[∆]])n = I([[∆]])([[∆]]) = [[∆∆]].

The observation just made does not make use of any particular property of the
coding function 〈 〉, except for the fact that it is one-one, and it thus works for any
coding function 〈 〉∗. Since u2n = {n}, we can then ensure [[∆∆]] ⊇ ω, and hence
[[∆∆]] = ω, by finding a coding function 〈 〉∗ such that

∀x∃n(〈x, 2n〉∗ = n).

Then for every x there is n such that {〈x, 2n〉∗} = u2n , and x ∈ [[∆∆]].
The coding function 〈 〉∗ is obtained by inductively modifying the standard

coding function 〈 〉 in two points for each x ∈ ω, as follows. For x = 0 we can let

〈0, 20〉∗ = 〈0, 1〉∗ = 0.

We have now assigned the code 0 to the pair (0, 1). Originally, 0 was instead
assigned to (0, 0). To avoid destroying one-onenness we simply assign to (0, 0) the
code 2, that was originally assigned to (0, 1). Thus

〈0, 0〉∗ = 2.

Having modified 〈 〉 to take care of the condition above for all numbers smaller
than x, we can choose an n so large that letting

〈x, 2n〉∗ = n and 〈(n)1, (n)2〉∗ = 〈x, 2n〉

would not modify the work done for the previous values 0, . . . , x − 1. !

The Least Fixed Point Operator ! 335

Exercise 13.6.5 For any set A there is a coding function that produces [[∆∆]] = A.
(Baeten and Boerboom [1979]) (Hint: if A .= ∅, ensure ∃n(〈x, 2n〉∗ = n) exactly for
x ∈ A.)

Actually, Baeten and Boerboom [1979] have proved that for any closed term t there

is a coding function that produces [[∆∆]] = [[t]]. It is not enough to simply let A = [[t]] in
the previous exercise, because modifying the coding may make [[∆∆]] = A but change [[t]]

at the same time. The proof requires instead a forcing argument.

The D∞ Model

Notice that, by repeated applications of the definition of [[]],

[[λx. y(xx)]] = J(ΛX. I(Y)(I(X)(X))).

Similarly, using the fact that I ◦ J is the identity,

I([[Y]]) = (ΛY. (ΛX. I(Y)(I(X)(X)))(J(ΛX. I(Y)(I(X)(X)))).

Finally, for any f∞ ∈ [D∞ → D∞],

I([[Y]])(J(f∞)) = (ΛX. I(J(f∞))(I(X)(X)))(J(ΛX. I(J(f∞))(I(X)(X)))
= (ΛX. f∞(I(X)(X)))(J(ΛX. f∞(I(X)(X)))
= F∞(J(F∞)),

where
F∞ = ΛX. f∞(I(X)(X)).

Recalling that application on D∞ acts componentwise, we finally reduce to

I([[Y]])(J(f∞)) =
⊔

n∈ω
in,∞(Fn(Fn−1)), (13.8)

where
Fn = Jn,∞(F∞) = jn,∞ ◦ F∞ ◦ in,∞.

Moreover, for all n ≥ −1,
Fn = jn+1(Fn+1).

Notice that this takes care also of the case n = −1, corresponding to the first
component of J(F∞). By definition, the latter is obtained by projecting F0 by j0.
Or, equivalently, by computing F0 on ⊥D.

Before proceeding further we notice that, for any xn ∈ Dn,

Fn(xn) = jn,∞(F∞(in,∞(xn)))
= jn,∞(f∞(I(in,∞(xn))(in,∞(xn))))
= fn(in(xn)(xn)).

336 D. Untyped Lambda Calculus

The first equality holds by definition of Fn. The second holds by definition of F∞.
The last holds by using twice the fact that application on D∞ acts componentwise.
Notice that, by definition of in,∞, the n-th and n+1-th components of in,∞(xn) are
xn and in(xn), respectively. Since I shifts all components down by one position,
in(xn) is the n-th component of I(in,∞(xn)).

The preceeding lines are simply applications of general facts proved in the pre-
vious subsections. The new observation is that all components Fn(Fn−1) in 13.8
are determined, inductively, by F0(F−1). Indeed:

Fn+1(Fn) = fn+1(in+1(Fn)(Fn))
= fn+1(in(Fn(jn(Fn))))
= fn+1(in(Fn(Fn−1)))

by the property of Fn+1 just proved above, the definition of in+1 = In on D∞, and
the fact that Fn−1 = Jn−1(Fn) = jn(Fn). Then, by induction,

Fn+1(Fn) = fn+1(in(· · · (f1(i0(F0(F−1)))) · · ·)).

We are now ready to characterize I([[Y]]). Notice that [D∞ → D∞] is a c.c.p.o.,
and thus the Fixed Point Theorem 13.4.1 holds for it. In other words, every function
f∞ on D∞ has a least fixed point. Then there is a function

FixD∞ : [D∞ → D∞] → D∞

defined by:
FixD∞(f∞) = the least fixed point of f∞.

We now prove that I([[Y]]) = FixD∞ , thus showing in particular that FixD∞ is a
continuous function, a fact that could also be easily proved directly.

Proposition 13.6.6 (Park [1970]) In D∞, I([[Y]]) is the least fixed point operator
FixD∞ .

Proof. We first prove that I([[Y]]) is a fixed point operator , i.e. I([[Y]])(J(f∞)) is a
fixed point of f∞. Since

I([[Y]])(J(f∞)) = F∞(J(F∞)),

it is enough to show that

F∞(J(F∞)) = f∞(F∞(J(F∞))).

And, indeed,

F∞(J(F∞)) = f∞(I(J(F∞))(J(F∞)))
= f∞(F∞(J(F∞)))

The Least Fixed Point Operator ! 337

by definition of F∞, i.e.
F∞ = ΛX. f∞(I(X)(X)),

and the fact that I ◦J is the identity. In one word, I([[Y]]) is a fixed point operator
because D∞ is a model of Lambda Calculus, and Y is a fixed point combinator.

We now prove that I([[Y]]) is the least fixed point operator. The idea is to show
that

I([[Y]])(J(f∞)) /
⊔

n∈ω
f (n)
∞ (⊥D∞).

By the proof of 13.4.1, the right-hand-side is the least fixed point of f∞. By the
first part of the present proof, the left-hand-side is a fixed point of f∞. If the
previous inequality holds, then the left-hand-side is the least fixed point of f∞.

Recall that, as noted above,

F−1 = F0(⊥D) and F0(x0) = f0(i0(x0)(x0)).

Moreover, i0 associates to every element of D0 = D the constant function with
that element as value. Thus

F0(x0) = f0(i0(x0)(x0)) = f0(x0)

and
F0(F−1) = F0(F0(⊥D)) = f0(f0(⊥D)) = f (2)

0 (⊥D).

Then, at the next level,

F1(F0) = f1(i0(F0(F−1))) = f1(i0(f0(f0(⊥D)))).

Notice that, for any x0 ∈ D0,

i0(f0(x0)) = i0(j1(f1(x0)))
= i0(j0(f1(i0(x0))))
/D1 f1(i0(x0))

by f0 = J0(f1) = j1(f1), definition of j1, and the fact that i0 ◦ j0 is less than the
identity. In particular, for x0 = f0(⊥D0) we get

i0(f0(f0(⊥D0))) /D1 f1(f1(i0(⊥D0))) = f (2)
1 (⊥D1),

because i0 is continuous, and hence it preserves ⊥’s. Finally,

F1(F0) /D1 f (3)
1 (⊥D1)

by monotonicity of f1.

338 D. Untyped Lambda Calculus

In a similar way we get, in general,

Fn(Fn−1) /Dn f (n+2)
n (⊥Dn)

and thus
in,∞(Fn(Fn−1)) /D∞ in,∞(f (n+2)

n (⊥Dn))
= in,∞(jn,∞(f (n+2)

∞ (⊥D∞)))
/D∞ f (n+2)

∞ (⊥D∞))

by monotonicity of in,∞, the facts that application on D∞ acts componentwise and
⊥D∞ = 〈⊥Dn〉n∈ω, and the fact that in,∞ ◦ jn,∞ is less than the identity. Then

I([[Y]])(J(f∞)) =
⊔

n∈ω
in,∞(Fn(Fn−1))

is smaller than or equal to
⊔

n∈ω f (n+2)
∞ (⊥D∞), which is equal to the least fixed

point of f∞. !

Corollary 13.6.7 In D∞, [[∆∆]] = ⊥D∞.

Proof. Since ∆∆ is the result of applying Y to the identity function, [[∆∆]] must
be the least fixed point of the identity. But every point is a fixed point of the
identity, and thus the least fixed point is the least element. !

The previous results crucially depend on the choice of the embedding and pro-
jection functions i0 and j0, and may fail with a different choice.

Proposition 13.6.8 (Park [1970]) By changing the embedding and projection
functions

i0 : D0 → [D0 → D0] and j0 : [D0 → D0] → D0

we can get a model in which [[∆∆]] -= ⊥D∞, and thus I([[Y]]) is not the least fixed
point operator.

Proof. Notice that
[[∆∆]] = I([[Y]])(J(f∞)),

where f∞ is the identity function on D∞. In this case, each fn is the identity on
D0. Moreover, if

I([[Y]])(J(f∞)) = F∞(J(F∞)) = 〈Fn(Fn−1)〉n∈ω

is ⊥D∞ , then each component Fn(Fn−1) must be ⊥Dn . To have

[[∆∆]] -= ⊥D∞ ,

The Least Fixed Point Operator ! 339

it is thus enough to define i0 and j0 in such a way that F0(F−1) -= ⊥D0 .
Let D0 be a finite nontrivial c.c.p.o.’s, choose d -= ⊥D0 , and define

i0(x0) = the function z0 >−→
{

x0 if d /D z0

⊥D otherwise
j0(f0) = f0(d).

Thus i0(x0) is piecewise constant, with value x0 above d, and value ⊥D0 otherwise.
Both i0 and j0 are continuous, because they are monotone and D0 is finite.

Moreover,
j0(i0(x0)) = x0

because the left-hand-side is the value of i0 at d. And

i0(j0(f0)) /D1 f0

because the left-hand-side is piecewise constant, with value f0(d) above d, and
value ⊥D0 otherwise.

We now compute F0(F−1), where f0 is the identity function on D0. First we
notice that

F−1 = F0(d) = f0(i0(d)(d)) = f0(d) = d

by definition of F−1, properties of F0, the fact that i0(d) has value d on d, and the
fact that f0 is the identity D0. Then

F0(F−1) = F0(d) = d -= ⊥D0 ,

as wanted. ! æ

340 D. Untyped Lambda Calculus

Chapter 14

Cartesian Closed Monoids

æ

341

342 D. Untyped Lambda Calculus

Chapter 15

Computability

In Chapter 11 we have seen that in the Typed Lambda Calculus we can represent
exactly the piecewise polynomials. Since this is quite limited from a computational
point of view, a number of stronger type systems have been introduced. However,
all typed systems share the fundamental limitation of not being able to represent all
the effectively computable functions. It is only in the Untyped Lambda Calculus
that we reach the fullest possible computational power, which brings with it an
explosion of the computational complexity.

We will provide background on the recursive functions, and refer to Odifreddi
[1989] for a detailed treatment.

15.1 Representability

We have already introduced the natural numbers in the Typed Lambda Calculus,
by means of numerals representing iterations. We keep the same representation in
the Untyped Lambda Calculus, with the appropriate modifications allowed by the
lack of types.

Definition 15.1.1 (Peano [1891], Wittgenstein [1922], Church [1933]) The
numeral n is the λ-term that produces n iterations of its first argument on the
second, i.e.

n = λfx. f (n)x,

where
f (n)x = f(· · · (f︸ ︷︷ ︸

n times

x) · · ·).

Notice that we now have only one numeral n for every number n, while in the
Typed Lambda Calculus we had infinitely many nNα , one for each type α.

343

344 D. Untyped Lambda Calculus

Since numerals are terms in normal form, by the Church-Rosser Theorem they
are β-different if they are syntactically different. Thus

n -= m ⇒ n -=β m.

We also keep the same notion of representable function introduced in the Typed
Lambda Calculus, again with the appropriate simplifications allowed by the lack
of types.

Definition 15.1.2 A n-ary function f is representable in the Untyped Lambda
Calculus if there is a closed term F such that, for every x1, . . . , xn and y,

f(x1, . . . , xn) = y ⇔ Fx1 · · ·xn =β y.

Examples

A simple observation immediately takes us beyond the functions representable in
the Typed Lambda Calculus.

Proposition 15.1.3 (Church [1933]) The constant functions, as well as sum,
product, exponential and superexponential, are representable in the Untyped Lambda
Calculus.

Proof. By erasing the types in the proofs of Section 11.2. For example, the
exponential function is representable by the term n m, because

f (mn)(x) = f

n times︷ ︸︸ ︷
m · · ·m(x) ⇒ mnfx =β (n m)fx.

Notice that the difficulties related to the fact that in the Typed Lambda Calculus
the terms n and m cannot not have the same type, obviously disappear when there
are no types. !

The previous examples straightforwardly exploited the power of iteration em-
bedded in the very definition of a numeral. The next example is subtler, and
it originally constituted a stumbling block whose solution opened the way to the
representability of all recursive functions.

Proposition 15.1.4 (Kleene [1935]) The predecessor function is representable
in the Untyped Lambda Calculus.

Proof. The predecessor of n is the second component of the n-th iteration of the
function t defined as follows:

t(〈x, y〉) = 〈x + 1, x〉,

Representability 345

with the iteration started on the pair 〈0, 0〉. Since iteration is given for free by the
definition of numerals, and the representable functions contain the successor and
are closed under composition, it is enough to show how to represent coding and
decoding functions of pairs.

A coding function is obtained by analogy with the representation of numbers,
as follows:

〈n, m〉 = λfgx. f (n)g(m)x.

Thus the coding function is represented by

λyzfgx. yf(zgx).

Decoding is then immediate. If I = λx. x, then

λfx. 〈n, m〉fIx =β λfx. f (n)x = n

and
λgx. 〈n, m〉Igx =β λgx. g(m)x = m.

Thus the decoding functions are represented by

λyfx.yfIx and λygx.yIgx. !

Corollary 15.1.5 Subtraction, as well as the characteristic functions of the or-
dering and equality, are representable in the Untyped Lambda Calculus.

Proof. We have proved in 11.3.2 that:

• if the predecessor is representable, then so is subtraction

• if subtraction is representable, then so is the ordering

• if the ordering is representable, then so is equality.

In the Typed Lambda Calculus, the nonrepresentability of equality successively
implied the nonrepresentability of the ordering, subtraction and predecessor. In the
Untyped Lambda Calculus, the representability of predecessor successively implies
the representability of subtraction, the ordering and equality. !

Recursive functions

The next definition introduces the class of recursive functions in a particularly
convenient way, equivalent to the usual ones in the literature (see Odifreddi [1989],
II.2.15).

Definition 15.1.6 The class of recursive functions is the smallest class:

346 D. Untyped Lambda Calculus

• containing the constant and projection functions, as well as successor and
predecessor

• closed under composition, definition by cases and fixed point definitions.

By a projection function we mean any function In
i of n variables that takes the

i-th one as a value. Such functions are useful in variable manipulations, such as
interchange, identification and introduction.

Proposition 15.1.7 (Church [1933], Rosser [1935], Kleene [1935], [1936])
All recursive functions are representable in the Untyped Lambda Calculus.

Proof. Representability of the constant functions, successor and predecessor fol-
lows from the examples above.

Representability of the projections, as well as closure under composition and
definition by cases, follows from the proof of 11.2.6.

Closure under fixed point definitions follows from 12.2.2, which provides a fixed
point operator. !

The Characterization Theorem

The previous result makes it very difficult to produce natural examples of non-
representable functions, since they would have to be nonrecursive, and hence not
effectively computable by Church’s Thesis (see Odifreddi [1989], Section I.8 for a
discussion of it). We content ourselves with proving the converse of 15.1.7, thus
characterizing the class of functions representable in the Untyped Lambda Calcu-
lus.

Proposition 15.1.8 (Church [1936], Kleene [1936]) If a function is repre-
sentable in the Untyped Lambda Calculus, then it is recursive.

Proof. Suppose f is representable by F , i.e.

f(x1, . . . , xn) = y ⇔ Fx1 · · ·xn =β y

for every x1, . . . , xn and y. To compute f(x1, . . . , xn) we generate all possible β-
equalities in a systematic fashion, using the rules 12.1.4, 12.1.5 and 12.1.6, until
we find a numeral y such that Fx1 · · ·xn =β y. By the hypothesis on F , the
numeral y exists and is unique. Moreover, y = f(x1, . . . , xn). Then f is effectively
computable, and hence recursive by Church’s Thesis. !

Corollary 15.1.9 Characterization of the Representable Functions. The
functions representable in the Untyped Lambda Calculus are exactly the recursive
functions.

Representability 347

Notice that the characterization just proved confines itself to total functions.
However, a similar result holds for partial functions as well. In particular, the fact
that β-equality is a recursively enumerable relation implies that a partial function
representable in the Untyped Lambda Calculus has a recursively enumerable graph,
which is a property equivalent to being partial recursive.

Logical operators

Exactly as we mirrored numbers in the Lambda Calculus by terms, we can mirror
truth-values as well. The particular choice of representatives is made with the
purpose of making the proof of 15.1.12 trivial.

Definition 15.1.10 The truth-values T and F are represented by the terms

T = λxy. x and F = λxy. y.

Since T and F are in normal form and syntactically different, they are β-
different by the Church-Rosser Theorem.

Having represented truth-values, we can now look for representations of truth-
valued functions.

Definition 15.1.11 An n-ary truth-valued function f is representable in the
Untyped Lambda Calculus if there is a closed term F such that, for all possible
truth-values x1, . . . , xn and y,

f(x1, . . . , xn) = y ⇔ F x1 · · ·xn =β y.

Proposition 15.1.12 The classical connectives are representable in the Untyped
Lambda Calculus.

Proof. We first consider the “if then else” operator δ defined (as in 11.2.4) as
follows:

δ(x, y, z) =
{

y if x = T
z if x = F .

By definition, Tyz =β y and Fyz =β z. Then δ is represented by λxyz. xyz.
By specializing the “if then else” operator we can then easily represent all the

connectives, as follows:

• negation
Since

¬x =
{

F if x = T
T if x = F ,

negation is represented by λx. x F T .

348 D. Untyped Lambda Calculus

• conjunction
Since

x ∧ y =
{

y if x = T
F if x = F ,

conjunction is represented by λxy. xyF .

• disjunction
Since

x ∨ y =
{

T if x = T
y if x = F ,

disjunction is represented by λxy. xTy.

• implication
Since

x → y =
{

y if x = T
T if x = F ,

implication is represented by λxy. xyT . !

Corollary 15.1.13 All truth-valued functions are representable in the Untyped
Lambda Calculus

Proof. By ??, any truth-valued function is reducible to a combination of classical
connectives. !

Having obtained representations for all the truth-valued functions, the next step
is to investigate how faithful these representations are. Some of the usual properties
of the connectives continue to hold for their representations: for example, that if
u =β T or u =β F , then u ∧ ¬u =β F and u ∨ ¬u =β T .

The next result shows, however, that it is impossible to represent implication
in a way faithful to all of its classical properties.

Proposition 15.1.14 Curry’s Paradox (Curry [1942]) It is impossible to rep-
resent implication in the Untyped Lambda Calculus in such a way that it satisfies
both Modus Ponens, i.e.

u =β T (u → v) =β T

v =β T

and any of the two following properties:

1. if u =β (u → v), then u =β T

2. [u → (u → v)] → (u → v) =β T .

Representability 349

Proof. Given any term v, by the Fixed Point Theorem 12.2.2 there is a term u
such that u =β (u → v). If 1 holds, then both terms u and u → v are equal to T .
And if Modus Ponens holds, then v is equal to T . But since v is any term, this
means that all terms are β-equal, which they are not.

Similarly, given any term v, by the Fixed Point Theorem there is a term u such
that u =β u → (u → v). Then

[u → (u → v)] → (u → v) =β u → (u → v) =β u.

If 2 holds, then all these three terms are equal to T . And if Modus Ponens holds,
then

u =β T

u =β T u → (u → v) =β T

u → v =β T

v =β T ,

and again all terms are β-equal. !

Notice that both 1 and 2 are actually true of classical implication. To prove
1, suppose %N α ↔ (α → β). If we assume α, we have α → β by hypothesis,
and hence β by Modus Ponens or →-Elimination. This proves α %N β, and hence
%N α → β by the Deduction Theorem or →-Introduction, and %N α by hypothesis
again.

This informal reasoning is formalized by 2, which can easily be proved in either
the Natural Deduction or the Sequent Systems:

[α](1)
[α](1) [α → (α → β)](2)

α → β
β

α(1) → β
[α → (α → β)](2) → (α → β)

α %S β,α
α %S β,α β,α %S β

α → β,α %S β
α → (α → β),α %S β

α → (α → β) %S α → β
%S [α → (α → β)] → (α → β).

Notice also that the proof of 15.1.14 does not use any particular representation
of the truth-values, and it is thus a very general negative result regarding the pos-
sibility of a faithful representation of Classical Propositional Logic in the Untyped
Lambda Calculus.

Exercise 15.1.15 Russell’s Paradox à la Curry. In any logical system including
→-Introduction and →-Elimination, as well as set-theoretical Full Comprehension, every
formula is provable. (Hint: given any formula β, by Full Comprehension there is a set
Rβ = {x : x ∈ x → β}. If we assume Rβ ∈ Rβ , we also have Rβ ∈ Rβ → β by definition
of Rβ , and hence β by →-Elimination. This proves Rβ ∈ Rβ → β by →-Introduction,
and hence Rβ ∈ Rβ by definition of Rβ. Then β follows by →-Elimination again.)

Thus negation is not necessary for Russell’s Paradox, and implication is sufficient.

350 D. Untyped Lambda Calculus

15.2 Undecidability

The positive fact of the representability of all recursive functions brings with it
the negative by-product of the undecidability of all nontrivial problems on the
Untyped Lambda Calculus. We first concentrate on some particularly interesting
examples, and then prove a general result. The proof technique always consists of
first translating the given problem into an appropriate function, and then proving
that the translation is not recursive, by a standard application of the diagonal
method (see Odifreddi [1989], Section II.2 for discussion of it).

Since the problems on the Lambda Calculus refer to terms, while the recursive
functions are defined on numbers, to make the translation possible it is convenient
to code terms by numbers in some canonical effective way. We do not specify any
such coding, since the results we prove are independ of the details. We just refer
to a generic effective enumeration {tx}x∈ω of all untyped λ-terms.

Examples

The proofs of the next results all mirror the standard proof of the existence of a
recursively enumerable nonrecursive set.

Theorem 15.2.1 (Church [1936]) β-equality is undecidable, in the sense that
the set of pairs of β-equal λ-terms is not recursive.

Proof. Consider the following function:

f(x) =
{

1 if txx =β 0
0 otherwise.

If β-equality were decidable, f would be recursive. By the Representation Theorem
15.1.7, there would then be a term F such that

Fx =β

{
1 if txx =β 0
0 otherwise.

Then
Fx =β 0 ⇐⇒ txx -=β 0.

If F = tn, i.e. if n is the code number of F , then

tnx =β 0 ⇐⇒ txx -=β 0,

and hence
tnn =β 0 ⇐⇒ tnn -=β 0,

which is a contradiction. !

Undecidability 351

Since β-equality is finitely axiomatizable by 12.1.4, 12.1.5 and 12.1.6, by trans-
lating the conjunction of its axioms into the language of Classical Predicate Logic
we obtain a formula with two free variables which represents β-equality, in the
sense of being provable for two terms if and only if they are β-equal. From the
undecidability of β-equality it thus follows that Classical Predicate Logic is unde-
cidable, a result showing the unsolvability of the Entscheidungsproblem proposed
by Hilbert. The proof just sketched is the original one given by Church [1936a].

An independent and simultaneous proof of the same result was given by Turing
[1936] in terms of Turing machines, which were introduced by him for this purpose
and later became the standard model of computability. The main result on which
Turing based his proof was the unsolvability of the Halting Problem, which was a
version of the next result.

Theorem 15.2.2 (Church [1936]) Normalization is undecidable, in the sense
that the set of λ-terms having a normal form is not recursive.

Proof. Consider the following function:

f(x) =
{

1 if txx has a normal form
0 otherwise.

If normalization were decidable, then f would be recursive. By the Representation
Theorem 15.1.7, there would be a term F such that

Fx =β

{
1 if txx has a normal form
0 otherwise.

By definability of definition by cases, based on test on zero, there would be a term
G such that

Gx =β

{
∆∆ if txx has a normal form
0 otherwise.

Then

Gx has a normal form ⇐⇒ txx does not have a normal form.

If G = tn, i.e. if n is the code number of G, then

tnx has a normal form ⇐⇒ txx does not have a normal form,

and hence

tnn has a normal form ⇐⇒ tnn does not have a normal form,

which is a contradiction. !

352 D. Untyped Lambda Calculus

Corollary 15.2.3 The complexity of normalization is not recursive, in the sense
that there is no recursive function bounding the number of steps needed to get a
normal form of any λ-term having one, as a function of the length of the given
term.

Proof. Otherwise, to know whether a term has a normal form it would be enough
to systematically produce all possible reductions of the given term up to the recur-
sive bound, and see if a term in normal form is produced in the process. !

A different proof of the corollary can be obtained as in 11.4.1, based on the fact
that every recursive function is representable.

The Scott-Curry Theorem

Rice’s Theorem (see Odifreddi [1989], II.2.9) summarizes the undecidability results
of Recursion Theory by showing that the only decidable sets of programs closed
under functional equality (i.e. containing either none or all programs of the same
function) are the trivial ones, namely the empty set and the set of all programs.
The next result provides an analogue for the Untyped Lambda Calculus, with the
role of programs played by the terms.

Theorem 15.2.4 (Scott [1963], Curry [1969]) The only decidable sets of terms
closed under β-equality (i.e. containing either none or all terms β-equal to any given
term) are the trivial ones, namely the empty set and the set of all terms.

Proof. Given a set of terms A, consider the following function:

f(x) =
{

1 if txx ∈ A
0 otherwise.

If A were decidable, then f would be recursive. By the Representation Theorem
15.1.7, there would be a term F such that

Fx =β

{
1 if txx ∈ A
0 otherwise.

If A is neither empty nor the set of all terms, there exist u ∈ A and v -∈ A. By
definability of definition by cases, based on test on zero, there would be a term G
such that

Gx =β

{
v if txx ∈ A
u otherwise.

If A is closed under β-equality,

Gx ∈ A ⇐⇒ txx -∈ A.

Undecidability 353

If G = tn, i.e. if n is the code number of G, then

tnx ∈ A ⇐⇒ txx -∈ A,

and hence
tnn ∈ A ⇐⇒ tnn -∈ A,

which is a contradiction. !

The Scott-Curry Theorem has an obvious generalization from sets of terms to
n-ary relations, saying that the only decidable n-ary relations of terms closed under
β-equality are the trivial ones, namely the empty set and the set of all n-tuples of
terms.

It follows that any nontrivial property of terms invariant under β-equality is
undecidable. Undecidability proofs are thus reduced to nontriviality proofs, which
are usually quite immediate. For example, the previous examples of undecidability
follow from the facts that some but not all pairs of terms are β-equal (15.2.1), and
some but not all terms have a normal form (15.2.2). Similarly, being β-equal to a
given fixed term is undecidable, because some but not all terms are β-equal to it.

The next corollary gives a different application.

Corollary 15.2.5 (Grzegorzczyk) The theory of β-equality is essentially unde-
cidable, in the sense that it has no consistent decidable extension.

Proof. Consider a consistent extension T of the theory of β-equality. Then the
set of pairs of terms identified by T is a nontrivial set closed under β-equality, and
hence is not decidable. !

æ

354 D. Untyped Lambda Calculus

Chapter 16

Type Assignments

16.1 Simple Types

Definition 16.1.1 A term t is simply typable if there is a context Γ and a type
α such that Γ %→ α.

16.2 Intersection Types

Definition 16.2.1 A term t is intersection typable if there is a context Γ and
a type α such that Γ %→∩ α.

Intersection types

Using simple types we can type exactly those untyped λ-terms that are well formed
as typed λ-terms. Using intersection types, instead, we can type more untyped λ-
terms, although not all.

A typical example of a λ-term which is intersection typable, but not simply
typable, is xx. Indeed, it is enough to give x both types α → β and α, to be able
to give type β to xx:

{x : (α → β) ∩ α} % xx : β.

A typical example of a λ-term which instead is not intersection typable is
(λx. xx)(λx. xx). Otherwise, there would be two equal types α → β and α, which
is impossible for intersection types as it was for simple types.

355

356 D. Untyped Lambda Calculus

A characterization of strongly normalizable terms

The interest of intersection types comes from the fact that they provide a charac-
terization of the strongly normalizable λ-terms of the Untyped Lambda Calculus.

Proposition 16.2.2 Strong Normalization (Pottinger [1980]) Every inter-
section typable term is strongly normalizable.

Proof. The proof of the Strong Normalization Theorem ?? goes through. !

As a warm-up we prove the following weaker result.

Proposition 16.2.3 (Coppo and Dezani [1980]) Every term in normal form
is intersection typable.

Proof. We prove that if t is a term in normal form, it can be given some type.
And if t does not begin by a λ, it can actually be given any type (this is needed in
the induction step).

We proceed by induction on the following inductive definition of the terms in
normal form:

1. variables are in normal form

2. if u is in normal form, then so is λx. u

3. if t does not begin by a λ, and t and u are in normal form, then so is tu.

Obviously, variables can be given any type.
If u can be given a type β, there are two cases. If x occurs in u, then λx. u has

type α1 ∩ · · · ∩ αn → β, where α1, . . . ,αn are the types already assigned to x. If
instead x does not occur in u, then u can be given any type α, and λx. u can be
given type α → β, for any α.

If u is in normal form, by induction hypothesis it can be given some type α.
If t is in normal form and does not begin by a λ, by induction hypothesis it can
be given any type, in particular α → β. Then tu can be given type β, for any β. !

We now turn to the proof of the main result.

Theorem 16.2.4 Intersection Typability (Pottinger [1980]) Every strongly
normalizable term is intersection typable.

Proof. We proceed by induction on the height of the reduction tree of a strongly
normalizable term t.

As it can easily be checked by induction on the definition of terms, t (as any
other term) can only be of one of two kinds, which we consider separately:

16. Type Assignments 357

1. t = λx1 · · ·λxn. xt1 · · · tm
Since t is strongly normalizable, so are t1, . . . , tm, with reduction trees of
smaller height than t. Then, by induction hypothesis, they can all be typed,
with typing assignments Γi % ti : Ti. By collecting all the assignments to-
gether, and giving x its old types plus the new one

T1 → (T2 → · · · (Tm → X),

for some X , we have for some Γ:

Γ % xt1 · · · tm : X.

By assigning types to x1, . . . , xn, if they do not have them already, we can
thus type t as well.

2. t = λx1 · · ·λxn. (λx. u)vt1 · · · tm
This term reduces in one step to λx1 · · ·λxn. u[x =: v]t1 · · · tm. Since t is
strongly normalizable, so are u[x =: v]t1 · · · tm and v, with reduction trees
of smaller height. Thus they can be typed from some assignment Γ, by the
induction hypothesis. It remains to prove a Lifting Lemma showing that from
Γ we can type (λx. u)vt1 · · · tm, and hence t. !

As announced, to finish the proof we need to prove the Lifting Lemma, and we
start by the following special case.

Proposition 16.2.5 Lifting Lemma (special case) If Γ % v : α and Γ % u[x :=
v] : β, then there is γ such that Γ % v : γ and Γ ∪ {x : γ} % u : β. Hence
Γ % (λx. u) : γ → β and Γ % (λx. u)v : β.

Proof. We proceed by induction on u.

1. u is a variable

If u = x, then Γ ∪ {x : β} % u : β. Moreover u[x := v] = v, and Γ % v : β by
hypothesis. Thus we can let γ = β.
If u = y -= x, then u[x := v] = u, and Γ % u : β by hypothesis. A fortiori,
Γ ∪ {x : α} % u : β. Since Γ % v : α by hypothesis, we can let γ = α.

2. u = λy. t

Since u[x := v] = λy. t[x := v], by hypothesis Γ % λy. t[x := v] : β. We
will prove a Decomposition Lemma, according to which β = β1 → β2 and
Γ ∪ {y : β1} % t[x := v] : β2, for some β1 and β2. Then, by induction
hypothesis, there is γ such that Γ ∪ {y : β1} % v : γ and

Γ ∪ {y : β1} ∪ {x : γ} % t : β2,

358 D. Untyped Lambda Calculus

so that
Γ ∪ {y : β1} ∪ {x : γ} % λy. t : β1 → β2,

i.e.
Γ ∪ {y : β1} ∪ {x : γ} % u : β.

3. u = t1t2

Since u[x := v] = (t1[x := v])(t2[x := v]), by hypothesis Γ % (t1[x :=
v])(t2[x := v]) : β. We will prove a Decomposition Lemma, according to
which Γ % t1[x := v] : δ → β and Γ % t2[x := v] : δ, for some δ. Then, by
induction hypothesis, there is γ such that Γ % v : γ and

Γ ∪ {x : γ} % t1 : δ → β and Γ ∪ {x : γ} % t2 : δ,

so that
Γ ∪ {x : γ} % t1t2 : β,

i.e.
Γ ∪ {x : γ} % t : β. !

To conclude the proof of the Lifting Lemma, and hence of the Intersection
Typability Theorem, we still need to prove the following result.

Proposition 16.2.6 Decomposition Lemma. If Γ % t : β, and β is not an
intersection type, then:

1. if t is a variable, then Γ contains x : β

2. if t = λx. t1, then β = β1 → β2 and Γ ∪ {x : β1} % t1 : β2

3. if t = t1t2, then Γ % t2 : δ and Γ % t1 : δ → · · · ∩ β ∩ · · ·

Proof. The result is immediate by induction on the type assignment rules, since
the corresponding system in cut-free. !

We can now turn to the general case of the Lifting Lemma.

Proposition 16.2.7 Lifting Lemma (general case) If Γ % v : α and Γ % u[x :=
v]t1 · · · tm : β, then Γ % (λx. u)vt1 · · · tm : β.

Proof. By induction on n and β.
If β = β = β1 ∩ β2 is an intersection type, and Γ % u[x := v] : β1 ∩ β2,

then Γ % u[x := v] : β1 and Γ % u[x := v] : β2. By induction hypothesis on β,
Γ ∩ {x : γ} % u : β1 and Γ ∩ {x : γ} % u : β2, so that Γ ∩ {x : γ} % u : β1 ∩ β2.

If β is not an intersection type, then we proceed by induction on n. We already
proved the special case n = 0 above. Suppose now Γ % u[x := v]t1 · · · tntn+1 : β.

16. Type Assignments 359

By the Decomposition Lemma, there is δ such that Γ % u[x := v]t1 · · · tn : δ →
· · · ∩ β ∩ · · · and Γ % tn+1 : δ. Then

Γ % (λx. u)vt1 · · · tn : δ → · · · ∩ β ∩ · · ·

by the induction hypothesis, hence

Γ % (λx. u)vt1 · · · tntn+1 : · · · ∩ β ∩ · · ·

and in particular
Γ % (λx. u)vt1 · · · tntn+1 : β. !

16.3 ω-Intersection Types

In the simple typing system the same term may be given different types, by different
assignments of types to its variables. For example, the identity λx. x can be given
infinitely many types, namely α → α for any type α, because {x : α} % λx. x : α →
α.

If we identify terms which are α-convertible, then the same term may actually
have different types , since e.g. from the assignment x : α → α and y : α we get
(λx. x) : (α → α) → (α → α) and (λy. y) : α → α. In particular, the term
I = λx. x =α λy. y has the two types α → α and α, and hence II : α → α. Thus
II is typable. But xx is not, because the same variable can only be assigned one
type at a time.

In particular, the simple typing system is not closed under β-reductions, i.e. it
is not true in general that if both u[x := v] and v are typable, then so is (λx. u)v.
For example, (λx.xx)I is not, although I and II are. What fails is that u[x :=]
may contain occurrences of the same term v (modulo α-equivalence) with different
types. But with intersection types we can assign x all those types, and then (λx.u)v
becomes typable. The remaining case, i.e. that x does not occur free in u, is trivial,
since it is enough to assign x the type of v, which exists by hypothesis.

But even with conjunction types we do not have that if t →β t1, and t1 is
typable, then so is t. For example, (λxy. y)(∆∆)I β-reduces to I, which is typable,
but ∆∆ is not typable. To avoid this, and get a typing system closed under β-
reduction, we introduce a universal type ω.

Definition 16.3.1 (Sallé [1978], Coppo, Dezani and Venneri [1981]) Every
term t has type ω in any context, i.e.

Γ % t : ω

Definition 16.3.2 A term t is ω-intersection typable if there is a context Γ
and a type α -= ω such that Γ %→∩ω t : α.

360 D. Untyped Lambda Calculus

A characterization of normalizable terms

Theorem 16.3.3 ω-Intersection Typability (Coppo, Dezani and Venneri
[1981]) Every normalizable term is ω-intersection typable.

Proof. Since terms in normal form are intersection typable by 16.2.3, it is enough
to show that ω-interesection types are inherited upwards by β-reduction, i.e. that
if t →β t1 and t1 has ω-intersection type α, then so does t.

Most of the work has already been done in the proof of the special case 16.2.5
of the Lifting Lemma, which says that if v is typable and u[x := v] has type β, then
so does (λx. u)v. Notice that the hypothesis that v is typable is always satisfied
with ω-intersection types, since v always has type ω. The rest follows by induction
on t and α, as follows.

If α = α1 ∩ α2, the result is trivial. And if α -= ω is not an intersection type,
then we proceed by induction on t:

• t is a variable

Then no β-reduction is possible inside it.

• t = λx. u

Then t1 = λx. u1, so α = α1 → α2. By the Decomposition Lemma, Γ ∪ {x :
α1} % u1 : α2, and by induction hypothesis Γ ∪ {x : α1} % u : α2. Then
Γ % (λx. u) : α.

• t = uv

If t1 = u1v or t1 = uv1, then we can use again the Decomposition Lemma
and the induction hypothesis. If instead u begins by a λ and t1 is a reduct,
we can use the special case of the Lifting Lemma already proved. !

Theorem 16.3.4 Normalization (Coppo, Dezani and Venneri [1981]) Ev-
ery ω-intersection typable term is normalizable.

Proof. The proof is a variation of the proof of the Strong Normalization Theorem
??. We define a class |calC =

⋃
α Cα by induction on α, as follows:

• if α is atomic or α = ω, then

t ∈ Cα ⇔ t is normalizable (by leftmost reductions)

• t ∈ Cα→β if and only if (∀u ∈ Cα)(tu ∈ Cβ)

• t ∈ Cα∩β if and only if t ∈ Cα and t ∈ Cβ, i.e. Cα∩β = Cα ∩ Cβ .

Then, in a way similar to (but simpler than) the proof of the Strong Normal-
ization Theorem for the Typed Lambda Calculus, we have:

16. Type Assignments 361

1. C contains only terms which are normalizable (by leftmost reductions)

As usual, we prove by simultaneous induction that:

• if u1, . . . , un are normalizable (by leftmost reductions), then xu1 · · ·un ∈
C

• if t ∈ C, then t is normalizable (by leftmost reductions).

The only non trivial case is the type α → β. But if t ∈ Cα→β , it is enough
to choose x ∈ Cα not occurring in t. Then tx ∈ C and is normalizable (by
leftmost reductions).
If t does not begin by a λ, then reductions are possible only within t, and
hence t is normalizable (by leftmost reductions).
If t = λy. t1, then the normalization (by leftmost reductions) of tx produces
a normalization of t1[y := x] (which is obtained by the leftmost reduction),
and hence of t1 itself (since y has only changed name) and of t.

2. C contains every ω-intersection typable term

As usual, we prove that if v1, . . . , vn ∈ C, then t[x1 := v1, . . . , xn := vn] ∈ C.
The only interesting case is t = λx. u. But then

(λx. u)[x1 := v1, . . . , xn := vn] = λx. (u[x1 := v1, . . . , xn := vn]),

which is in C if and only if so is

λx. (u[x1 := v1, . . . , xn := vn])v,

for every v ∈ C. But the previous term reduces to

u[x1 := v1, . . . , xn := vn, x := v].

We thus need to prove that

if a[x := v] ∈ C and v ∈ C, then (λx. a)v ∈ C.

By going to atomic types or ω, by a sequence of appropriate applications, we
have to show this term is normalizable (by leftmost reductions). But this is
trivial, since (λx. a)v reduces (by leftmost reductions) to a[x := v]. !

16.4 Filter Models

Terms as collections of types

[[t]] = {α : t can be assigned type α}: model of Untyped Lambda Calculus
relationships with D∞

362 D. Untyped Lambda Calculus

Types as collections of terms

[[α]] = {t : t can be assigned type α}: model of intuitionistic logic?

Part E

Intuitionistic
Propositional Calculus

363

Chapter 17

Intuitionistic
Propositional Calculus

Until now we have only looked at the two connectives of implication and conjunc-
tion, in various ways. We now turn to a fuller presentation of the Intuitionistic
Propositional Calculus, and consider other connectives.

Section 1 deals with disjunction, which is symmetric to conjunction from an
algebraic point of view. The only significant failure of symmetry, i.e. the existence
of a greatest, but not of a least element in the ‘term model’ of formulas modulo
provable equivalence, is remedied in Section 2 by the introduction of a constant for
falsity, which can then be used to define negation.

17.1 Disjunction

Implicational Calculus with Disjunction

We extend Implicational Calculus as follows:

1. the language has an added connective ∨ (disjunction)

2. the definition of formulas has an added inductive clause, i.e.

• if α and β are formulas, so is (α ∨ β).

To increase readability, some parentheses can be omitted according to the prece-
dence rule: disjunction over implication. When also conjunction is present, there
is no precedence rule between ∧ and ∨.

365

366 E. Intuitionistic Propositional Calculus

The goal of this section is to determine which of the formulas of the Implica-
tional Calculus with Disjunction can be considered ‘true’, when the connective ∨
is intuitively taken as representing ‘disjunction’.

Following the blueprint of Chapters 1–5, we introduce different but equivalent
analyses. We continue to use the same symbols %N , %H, %S , %T , |=i and |=a, but
they now refer to the extended system with implication, conjunction and disjunc-
tion.

Natural Deduction

To justify the rules for ∨ we go back to the original motivation of Natural Deduc-
tion, as a system whose rules allow us to continue a given proof from assumptions.

Since ∨ is going to be interpreted as a disjunction, to prove α ∨ β we have to
prove α or β. This suggests the rules

α
α ∨ β

and β
α ∨ β.

The way to use disjunctions is suggested by a venerable principle already known
to the Greeks, the socalled proof by cases : since a proof of α ∨ β actually codes
a proof of either α or β, a proof of γ from α ∨ β can be completed by any proof
of either α or β. But when proving γ from α ∨ β we do not yet know whether
the proof will be completed by a proof of α or β, and we must be ready for both
possibilities. A proof from α∨β will then actually code two proofs, one (Dα

γ) from
α and one (Dβ

γ) from β.
As in the case of implication, α and β may appear in packets of occurrences

as hypotheses in Dα
γ and Dβ

γ , respectively. But after merging the two proofs into
a single one from α ∨ β we do not need to consider them as hypotheses anymore,
since the information that a proof of α or β would complete a proof of γ is already
contained in the fact that α ∨ β now appears as an hypothesis: the packets of
occurrences of α and β may thus be discharged in their respective proofs.

With the usual notations for discharge, we can thus picture the ∨-elimination
rule as the step

from
Γ,α
Dα
γ

γ
and

Γ,β
Dβ
γ

γ
to

α ∨ β

Γ, [α](1)
Dα
γ

γ

Γ, [β](1)
Dβ
γ

γ
γ(1).

Definition 17.1.1 (Gentzen [1935]) The relation %N defined in 1.1.1 and 4.1.1
is extended to disjunction as follows:

Disjunction 367

6. ∨-Introduction. If any of α and β is deducible from Γ, then so is α ∨ β:

Γ %N α
Γ %N α ∨ β

and Γ %N β
Γ %N α ∨ β.

7. ∨-Elimination. If γ is deducible from Γ and both α and β separately, then
it is also deducible from Γ and α ∨ β:

Γ %N α ∨ β Γ,α %N γ Γ,β %N γ
Γ %N γ.

In an application of the ∨-elimination rule, α ∨ β is called the major premise
and γ the minor premise.

The ∨-elimination rule defines a proof of γ from α ∨ β as a pair of incomplete
proofs of γ, one from a packet of assumptions α and another one from a packet
of assumptions β, waiting for a completion. The ∨-introduction rule allows the
completion of such a proof, whenever we have a proof of α or β. Taken together,
the two rules combine in producing a proof of γ, for example as follows:

Γ
Dα

α
α ∨ β

Γ, [α]
Dα
γ

γ

Γ, [β]
Dβ
γ

γ
γ.

The occurrence of α ∨ β in such a proof is called a maximum (relative to ∨).
A more direct way of getting to a proof of γ is obviously to forget about Dβ

γ ,
and the step from the above to the following:

Γ,

Γ
Dα

α
Dα
γ

γ

is called a maximum elimination. A symmetric maximum elimination can be
obtained by working on β.

We would like to say, as in Chapters 1 and 4, that a proof is in normal form
if it has no maxima relative to →, ∧ or ∨, but this notion is not strong enough.
Indeed, one nice feature of normal proofs is the Subformula Property, and with the
proposed notion of normal proof this would fail. Consider e.g. the following proof,
which is normal in the sense just given:

α ∨ α
[α] [α]
α ∧ α

[α] [α]
α ∧ α

α ∧ α
α.

368 E. Intuitionistic Propositional Calculus

Here α is proved from the only assumption α ∨ α, but the proof uses the formula
α ∧ α, which is not a subformula of either the assumption α ∨ α or the conclusion
α. We can say that α ∧ α is a delayed maximum, in the sense that it is first
introduced in the subproof

α α
α ∧ α

and then eliminated in the subproof

α ∧ α
α,

with a procrastination due to the fact that the formula α ∧ α is dragged along in
a whole segment of occurrences, without any direct action on it.

The main point of the following development is that the properties of N are
preserved by the extension to ∨, provided we substitute the notion of ‘occurrence’
of a formula with that of ‘segment of occurrences’.

In particular, we can extend the notion of normal proof as follows: a proof is
normal if there is no delayed maximum, i.e. no segment of occurrences of a given
formula, starting with the consequence of an introduction rule, and ending with
the (major) premise of an elimination rule (of the same connective).1 Maxima in
the old sense are special cases of the new ones, when the segments have length 1.

We can also extend the notion of descending path of a proof (p. 11) by looking
at sequences of segments, as opposed to sequences of formulas. The intention is
that in a normal proof, except for the repetitions of formulas in any given segment,
a path should first go through eliminations and then through introductions. We can
then define a descending path as any maximal sequence of consecutive formulas
that:

1. does not go through minor premises of →-eliminations

2. when (descending in Dα∨β) it reaches a major premise α∨β of a ∨-elimination

Γ
Dα∨β
α ∨ β

Γ, [α]
Dα
γ

γ

Γ, [β]
Dβ
γ

γ
γ,

1An even stronger notion of normal proof (for which the results proved below would still hold)
requires also no redundant application of a ∨-elimination rule, i.e. one

Γ
Dα∨β
α ∨ β

Γ, [α]
Dα
γ
γ

Γ, [β]

Dβ
γ

γ
γ

in which either α is not discharged in Dα
γ , or β is not discharged in Dβ

γ .

Disjunction 369

then (if it continues) it jumps to a discharged occurrence of α in Dα
γ or of β

in Dβ
γ .

The reasons for the novel clause is that we only want to consider full segments,
and γ might be part of a segment that starts above it (in Dα

γ or Dβ
γ): if we went

from α∨β to γ we would lose a part of that segment. Similarly for the maximality
condition.

With the new notions of normal proof and of descending path we can prove, as
usual, the following result.

Proposition 17.1.2 Structure of Normal Proofs (Prawitz [1965]) For a
normal proof of N the following hold:

1. Elimination-Introduction Separation. Disregarding repetitions of for-
mulas, any descending path consists of two (possibly empty) parts: a first
(upper) one going only through elimination rules, and a second (lower) one
going only through introduction rules.

2. Subformula Property. Any formula occurring in the proof is a subformula
of either an undischarged assumption or the conclusion.

Proof. Each descending path is a sequence S1, . . . , Sn of segments, and each
segment Si consists of a sequence of occurrences of a same formula. By definition
of path, the last occurrence of Si is the premise of a rule Ri, and the first occurrence
of Si+1 is either the consequence of the same rule Ri, or it comes from a jump as
in clause 2 of the definition of path (in which case Ri must be a ∨-elimination).

Suppose Ri is an introduction rule (in particular, not a ∨-elimination), and
Ri+1 is an elimination rule. Then the first occurrence of Si+1 is the consequence
of an introduction rule, while the last occurrence is a premise of an elimination
rule. Moreover, the latter occurrence must be the major premise of such a rule,
since the only possible cases are: →-elimination (and a path does not go through
a minor premise of →-eliminations), ∧-elimination (for which there are no minor
premises), or ∨- elimination (and a minor premise of a ∨-elimination cannot be the
last occurrence of a segment). Then the same connective must be introduced by
the rule of which the first occurrence of Si+1 is the consequence, and eliminated
by the rule of which the last occurrence of Si+1 is the major premise. This means
that the formula occurring in Si+1 is a delayed maximum, which is impossible if
the proof is normal. Thus Ri and Ri+1 cannot be, respectively, an introduction
and an elimination rule. This proves the first part.

The second part is proved as in 1.1.2, by noting that: if Ri and Ri+1 are both
elimination rules (or i = 1), then the formula occurring in Si+1 is a subformula of
the one occurring in Si; and if Ri and Ri+1 are both introduction rules (or i = n),
then the formula occurring in Si is a subformula of the one occurring in Si+1. !

370 E. Intuitionistic Propositional Calculus

Also the Weak Normalization Theorem continues to hold.

Theorem 17.1.3 Weak Normalization (Prawitz [1965]) Every proof can be
transformed into a normal proof, by means of an appropriate sequence of maxima
eliminations.

Proof. As in the case of maxima relative to →, the elimination of a maximum

Γ
Dα

α
α ∨ β

Γ, [α]
Dα
γ

γ

Γ, [β]
Dβ
γ

γ
γ.

into Γ,

Γ
Dα

α
Dα
γ

γ

in a proof D can have the following two bad effects:

• it can increase the total number of maxima, since it reproduces Dα (and
hence all maxima occurring in it) above every occurrence of α in the package
of assumptions used in Dα

γ , and there may be many such occurrences

• it can introduce a new maximum, if Dα ends with an introduction of a con-
nective, by turning into a maximum every occurrence of α below which Dα

γ

continues with an elimination of the same connective.2

As in 1.1.3, we only need to extend the notion of complexity to take care of the
case of disjunction as well, by adding to the definition of degree of a formula the
following clause:

• the degree of α ∧ β is 1 plus the greatest of the degrees of α and β.

The obvious attack is now to mimic the proof of 1.1.3: we eliminate, at every
step, a maximum of greatest degree, and such that no occurrence of a maximum
of greatest degree occurs above it . This works fine, as usual, if the maximum that
is eliminated is not delayed. But we now also have to take care of (segments of)
delayed maxima: in this case, as we could guess from the interlocutory steps in the
proof of the Cut Elimination Theorem for S, we have to reduce the length of the
relative segments, by modifying the original proof.

Consider a segment of length > 1 corresponding to a maximum γ of greatest
degree: the next to last occurrence of γ in it must be a minor premise of a ∨-
elimination rule (since this is the only rule that drags formulas along, and can thus
produce delayed maxima), and the last occurrence of γ must be the major premise

2Notice that, unlike in the case of maxima w.r.t. →, nothing bad can occur relatively to γ: if
Dα
γ ends with an introduction of a connective and D continues below γ with an elimination of

the same connective, then γ is a delayed maximum already in D, and actually the length of the
relative segment decreases by one.

Disjunction 371

of an elimination rule (since γ is a delayed maximum, and thus it is introduced at
the step preceeding its first occurrence in the segment, and eliminated at the step
following its last occurrence). Thus the proof D continues after the last occurrence
of γ with an application of one of the elimination rules. We only consider the case
of →-elimination, since the other cases are similar.

If γ is the major premise of a →-introduction, then γ = γ1 → γ2 and the proof
looks like:

D4

γ1

D1

α ∨ β
D2

γ1 → γ2

D3

γ1 → γ2

γ1 → γ2

γ2

D5.

We transform it into the following:

D1

α ∨ β

D4

γ1

D2

γ1 → γ2

γ2

D4

γ1

D3

γ1 → γ2

γ2

γ2

D5.

This transformation produces a new copy of D4 (and hence of all maxima occurring
in it), and it could thus increase the total number of occurrences of maxima of great-
est degree. To avoid this, as well as a similar problem in the case of ∨-elimination,
we reformulate the condition for the normalization procedure as follows.

At any step, choose an occurrence of a maximum which:

1. has greatest degree

2. if it belongs to a segment of length 1, then no maximum of greatest degree
occurs above it

3. if it belongs to a segment of length greater than 1, then it is the last occurrence
of the segment, and no maximum of greatest degree occurs above the minor
premise(s) of the elimination rule of which the given occurrence is the major
one.

Then the elimination of the chosen occurrence decreases by one the total number
of occurrences of maxima of greatest degree. !

Formally, the proof of the Weak Normalization Theorem is still by ω2-induction,
on the pair

(greatest degree, number of occurrences of maxima with greatest degree.)

372 E. Intuitionistic Propositional Calculus

Similarly, we could do induction not on the number of occurrences of maxima
of greatest degree, but on the sum of the lengths of segments of maxima with
greatest degree, since each step of the proof either decreases the length of one of
these segments with length greater than 1, or it eliminates one of the segments
with length 1.

The Normalization Theorem and the last part of the Subformula Property show
that no new formulas of the Implicational Calculus with Conjunction can be proved
in the extended system with disjunction: if ∨ does not occur in the premises or
in the conclusion of a normal proof, then it does not occur at all in the proof.
In technical terms, the system with implication, conjunction and disjunction is a
conservative extension of the system with implication and conjunction alone.

Hilbert systems

As in the case of conjunction, we add axioms relative to the new connective ∨
mimicking ∨-introduction and ∨-elimination, and keep Modus Ponens as the only
rule. The definition of %H is thus unchanged, and the Deduction Theorem is still
valid as usual.

Theorem 17.1.4 Equivalence of Hilbert Systems and Natural Deduction
(Gentzen [1935]) If H is any Hilbert system whose theorems include 1–6 of 1.2.3
and 4.1.4 and, for any α, β and γ, the following:

7. α → α ∨ β

8. β → α ∨ β

9. (α → γ) → [(β → γ) → (α ∨ β → γ)],3

then for any Γ and β:
Γ %H β ⇔ Γ %N β.

Proof. The right-to-left direction is obtained by induction on the definition of %N .
The only cases not dealt with in 1.2.2 and 4.1.4 are the ones relative to ∨, which
we now treat.

Suppose Γ %H α. Then we get Γ %H α ∨ β by inserting the given proof of α
from Γ above its occurrence in the following partial proof (from assumption 7):

α α → α ∨ β
α ∨ β.

3Equivalently, and a bit more legibly, we could take

[(α → γ) ∧ (β → γ)] → (α ∨ β → γ).

The advantage of the form above is that it does not use ∧, and thus it can be used for an
axiomatization of the fragment of propositional logic with → and ∨ alone.

Disjunction 373

Similarly from Γ %H β, using 8.
Suppose

Γ %H α ∨ β Γ,α %H γ Γ,β %H γ.

By the Deduction Theorem we have Γ %H α → γ and Γ %H β → γ. Then we get
Γ %H γ by inserting the given proofs of α ∨ β, α → γ and β → γ from Γ above
their occurrences in the following partial proof (from assumption 9):

α ∨ β
β → γ

α → γ (α → γ) → [(β → γ) → (α ∨ β → γ)]
(β → γ) → (α ∨ β → γ)
α ∨ β → γ
γ.

For the left-to-right direction, we only need to show that 7, 8 and 9 are provable
in Natural Deduction. 9 is proved by

[α ∨ β](2)
[α](1) [α → γ](4)

γ
[β](1) [β → γ](3)

γ
γ(1)

(α ∨ β)(2) → γ
(β → γ)(3) → [α ∨ β → γ]

(α → γ)(4) → [(β → γ) → (α ∨ β → γ)].

7 is proved by
[α](1)

α ∨ β
α(1) → α ∨ β.

8 is proved similarly. !

Sequents

As already for conjunction, the extension of the Sequent System to disjunction is
unproblematic.

Definition 17.1.5 (Gentzen [1935]) The relation %S defined in 1.3.1 and 4.1.5
is extended to disjunction as follows:

6. ∨-Introduction on the right. If α or β are deducible from Γ, then so is
α ∨ β:

Γ %S α
Γ %S α ∨ β

and Γ %S β
Γ %S α ∨ β.

374 E. Intuitionistic Propositional Calculus

7. ∨-Introduction on the left. If γ is deducible from Γ and both α and β
separately, then it is deducible from Γ and α ∨ β:

Γ,α %S γ Γ,β %S γ
Γ,α ∨ β %S γ.

Unlike the case of conjunction, we cannot rephrase the two rules of∨-introduction
on the right as a single rule

Γ %S α,β
Γ %S α ∨ β,

because the antecedent would have two consequences as opposed to one. In Chapter
?? we will see how Classical Logic can be defined by a sequent system that differs
from the one considered here precisely in this aspect, of allowing more than a single
consequence. But this will require a reinterpretation of %S incompatible with the
present approach.

As usual, the rules of S are backward deterministic, and the Subformula Prop-
erty continues to hold.

The systems N and S are obviously equivalent in presence of the Cut Rule. In
particular, the translation from N to S requires proving the rules of N as derived
rules of S: as usual, ∨-introduction of N corresponds to ∨-introduction on the
right, and ∨-elimination can be dealt with by ∨- introduction on the left and Cut,
as follows:

Γ %S α ∨ β
Γ,α %S γ Γ,β %S γ

Γ,α ∨ β %S γ
Γ %S+Cut γ.

Also the translation from S to N poses no problem: ∨-introduction on the right
corresponds to ∨-introduction of N , and ∨-introduction on the left can be dealt
with as follows: given Γ,α %N γ and Γ,β %N γ, we can use them in an application
of ∨-elimination from α∨β by discharging, respectively, α and β, and this produces
a proof of γ from the assumptions Γ and α ∨ β.

To get the full equivalence between the two systems, we need to extend 1.3.3
and 4.1.6.

Theorem 17.1.6 Cut Elimination (Gentzen [1935]) For any Γ and β:

Γ %S+Cut β ⇒ Γ %S β.

Proof. The Cut Elimination procedure of p. 22 (to which we refer in the following)
can be extended to take care of the new connective ∨.

A cut was called inductive when the formula which is cut has just been intro-
duced on both sides, for example:

Γ %S α
Γ %S α ∨ β

Γ,α %S γ Γ,β %S γ
Γ,α ∨ β %S γ

Γ %S+Cut γ.

Disjunction 375

Such a cut can be eliminated as follows, by substituting it with one cut on the
formula α (of lower degree):

Γ %S α Γ,α %S γ
Γ %S+Cut γ.

A cut was called interlocutory when the formula which is cut has been intro-
duced at steps preceeding the last ones (on the appropriate sides). In this case we
simply move the cut upwards, until it can be eliminated as above. For example, a
cut like

Γ %S α
Γ,α, γ %S β Γ,α, δ %S β

Γ,α, γ ∨ δ %S β
Γ, γ ∨ δ %S+Cut β

can be replaced by two as

Γ %S α Γ,α, γ %S β
Γ, γ %S+Cut β

Γ %S α Γ,α, δ %S β
Γ, δ %S+Cut β

Γ, γ ∨ δ %S β.

The remaining cases are similar. !

The Cut Elimination Theorem fills the remaining gap in the proof of the fol-
lowing result.

Corollary 17.1.7 Equivalence of the Sequent System and Natural De-
duction (Gentzen [1935]) For any Γ and β:

Γ %S β ⇔ Γ %N β.

A different proof of Cut Elimination comes from the following extension of 1.3.6
and 4.1.8.

Proposition 17.1.8 (Prawitz [1965]) There are canonical translations of cut-
free proofs in S to normal proofs in N , and conversely.

Proof. The translation from S to N given as half of the proof of the equivalence
of the two systems already shows that (cut-free) proofs in S correspond to normal
proofs in N .

For the converse, we only have to supplement 1.3.6 and 4.1.8. The case of
the introduction rules of N can be dealt with by induction and the corresponding
introduction rules on the right. For example, if Γ %N α ∨ β has been obtained
by ∨-introduction from a normal proof Γ %N α, then Γ %S α by the induction
hypothesis, and thus Γ %S α ∨ β by ∨-introduction on the right.

376 E. Intuitionistic Propositional Calculus

The case of the elimination rules of N is the crucial one, and requires more
ingenuity (since the natural translation uses the Cut Rule). The general schema has
been shown in 1.3.6: if Γ %N β has been obtained by an elimination rule, the latter
is either a →-elimination, a ∧-elimination, or a ∨-elimination. The three cases are
treated similarly, by climbing up in the given proof until an assumption is reached
that is eliminated in the first step of the given proof below it: this is possible
because the given proof is normal, and β has been obtained by an elimination rule.
Such an assumption must be of one of the following three forms: γ → δ, γ ∧ δ, and
γ ∨ δ. The first two cases have already been dealt with in 1.3.6 and 4.1.8, and we
consider now the last one. The given proof is then, for example, of the form:

Γ,
γ ∨ δ

Γ, [γ]
Dγ
α

α

Γ, [δ]
Dδ
α

α
α
Dβ

β.

(17.1)

We can then apply the induction hypothesis to the normal proofs

Γ,

Γ, γ
Dγ
α

α
Dβ

β

and Γ,

Γ, δ
Dδ
α

α
Dβ

β

(17.2)

and get cut-free proofs Γ, γ %S β and Γ, δ %S β. By ∨-introduction on the left,

Γ, γ %S β Γ, δ %S β
Γ, γ ∨ δ %S β.

But γ ∨ δ (being an assumption) is already in Γ, and thus the conclusion is equiv-
alent to Γ %S β. !

Notice that it was crucial to consider the extended notion of normal proofs,
defined as absence of delayed maxima. Otherwise, if one of Dγ

α and Dδ
α ends

with an introduction and Dβ starts with an elimination, α might become a simple
maximum in one of 17.2, without being a simple maximum in 17.1. Of course, this
cannot happen if α is not a delayed maximum, i.e. if the original proof is normal
in the strong sense.

As usual, the translation from S to N is not one-one.

Disjunction 377

Kripke models

The notions of intuitionistic possible world and intuitionistic logical consequence
do not refer to connectives, and can thus be retained in their original forms 2.2.1
and 2.2.4. What needs to be supplemented is the definition of forcing 2.2.2 and
4.2.1. This is where the notions of Beth and Kripke forcing, that coincided for the
fragment consisting only of → and ∧, diverge. We first deal with the latter.

Definition 17.1.9 Kripke Forcing (Cohen [1963], Kripke [1963]) For a
given possible world A, the relation %A defined in 2.2.2 and 4.2.1 is extended
to disjunction as follows:

σ %A α ∨ β ⇔ σ %A α or σ %A β.

The next result shows that the extension of forcing to ∨ captures the intended
meaning of disjunction.

Theorem 17.1.10 Kripke Soundness and Completeness (Kripke [1963])
For any Γ and α:

Γ %N α ⇔ Γ |=i α.

Proof. For the Soundness direction, we supplement the proof of 2.2.5 by the cases
dealing with disjunction.

• If Γ %N α ∨ β is obtained from, say, Γ %N α by ∨-introduction, then Γ |=i α
by the induction hypothesis. Let σ be any state that forces all formulas of
Γ in some world A: then σ forces α, and hence it forces α ∨ β by definition
of forcing. Since σ and A are arbitrary, Γ |=i α ∨ β. Similarly for the other
∨-introduction rule.

• If Γ %N γ is obtained from

Γ %N α ∨ β Γ,α %N γ Γ,β %N γ

by ∨-elimination, then

Γ |=i α ∨ β Γ,α |=i γ Γ,β |=i γ

by the induction hypothesis. Let σ be any state that forces all formulas of Γ
in some world A. By the first induction hypothesis σ forces α∨β, and hence
it forces α or β by definition of forcing. Then σ forces γ by the second or
third induction hypothesis, respectively. Since σ and A are arbitrary, Γ |=i γ.

For the Completeness direction, we supplement the proof of 2.2.6 (to which we
refer) by the case of disjunction. We have to prove that

Θ %A γ ∨ δ ⇔ γ ∨ δ ∈ Θ,

where Θ is a set of formulas closed under %N .

378 E. Intuitionistic Propositional Calculus

• Suppose Θ %A γ ∨ δ. Then Θ %A γ or Θ %A δ, and by the induction
hypothesis γ ∈ Θ or δ ∈ Θ. We want γ ∨ δ ∈ Θ. Suppose γ ∨ δ -∈ Θ. By
closure under %N , Θ -%N γ ∨ δ. By ∨-introduction, Θ -%N γ and Θ -%N δ,
contradiction (because Θ contains one of γ and δ).

• Suppose γ ∨ δ ∈ Θ. We want Θ %A γ ∨ δ, i.e. Θ %A γ or Θ %A δ or, by the
induction hypothesis, γ ∈ Θ or δ ∈ Θ. Thus we need to show that if γ ∨ δ is
in Θ, then so is one of γ and δ: this is not quite implied by ∨-elimination, but
can easily be obtained by restricting attention to saturated sets of formulas,
defined precisely by the condition that, for every γ and δ,

γ ∨ δ ∈ Θ ⇒ γ ∈ Θ or δ ∈ Θ.

It follows that, if A is the world defined as follows:

A = 〈F ,⊆, {AΘ}Θ∈F〉,

where:

1. F is the set of all saturated sets of formulas Θ closed under %N

2. ⊆ is the usual inclusion relation

3. AΘ is the set of formulas in Θ consisting only of a propositional letter,

then, for any formula α,
Θ %A α ⇔ α ∈ Θ.

It remains to finish the proof as usual. We only need to show that if Γ -%N α,
then there is a saturated set Θ closed under %N such that Θ ⊇ Γ and α -∈ Θ (since
then Θ forces every formula in Γ but not α). This fact, that would be trivial if
saturation were not required, as in 2.2.6 and 4.2.2 (because then Θ can simply be
taken as the closure of Γ under %N), requires now a proof. We provide two different
ones, based on different principles.

For simplicity, we let

clN (Θ) = the closure of Θ under %N .

1. saturation
Let {γn ∨ δn}n∈ω be a list of all disjunctions, in which each one occurs with
infinitely many repetitions. We define Θ by approximations, as follows:

Θ0 = clN (Γ)

Θn+1 =

Θn if Θn -%N γn ∨ δn

clN (Θn ∪ {γn}) if Θn %N γn ∨ δn and Θn, γn -%N α
clN (Θn ∪ {δn}) otherwise

Θ =
⋃

n∈ωΘn.

Disjunction 379

Θ is closed under %N because if Θ %N β then, since a deduction can only
use finitely many premises, Θn+1 %N β for some n, and each Θn+1 is closed
under %N by definition.

Θ is saturated because if Θ %N γ ∨ δ then, as above, Θm %N γ ∨ δ for some
m. Since each disjunction appears infinitely often in the given list, there is
n ≥ m such that γ ∨ δ = γn ∨ δn, and thus Θn %N γn ∨ δn because Θn ⊇ Θm.
By construction, one of γ = γn and δ = δn will then go into Θn+1, and hence
in Θ.

Θ -%N α since, by induction on n, Θn -%N α. For n = 0 this is simply the
hypothesis on Γ. And for n + 1 this is so by construction, since: either
Θn -%N γn ∨ δn (and then there is nothing to prove, because Θn+1 = Θn); or
Θn %N γn ∨ δn, and then it cannot be both

Θn, γn %N α and Θn, δn %N α

otherwise, by ∨-elimination (that we had not used yet!),

Θn, γn ∨ δn %N α

and thus Θn %N α (since Θn %N γn∨δn), contradicting the induction hypoth-
esis on n. By definition, then Θn+1 is chosen in such a way that Θn+1 -%N α
either.

Finally, Θ ⊇ Γ by definition of Θ0.

2. maximality
Look at the collection of sets of formulas closed under %N , including Γ, and
not containing α. Let Θ be any set maximal (under inclusion) in this collec-
tion.

We show that Θ is saturated, as follows. If Θ %N γ ∨ δ, suppose

Θ -%N γ and Θ -%N δ.

Then
Θ, γ %N α and Θ, δ %N α

by maximality,
Θ, γ ∨ δ %N α

by ∨-elimination, and
Θ %N α

because γ ∨ δ ∈ Θ (from Θ %N γ ∨ δ, by closure under %N), contradiction.

380 E. Intuitionistic Propositional Calculus

It remains to argue that such a maximal set Θ exists. We can either appeal to
Zorn’s Lemma, or build Θ directly as follows. Let {βn}n∈ω be an enumeration
of all formulas. Let

Θ0 = clNΓ

Θn+1 =
{

clN (Θn ∪ {βn}) if Θn,βn -%N α
Θn otherwise

Θ =
⋃

n∈ω Θn.

Θ is closed under %N because if Θ %N β then, since a deduction can only
use finitely many premises, Θn+1 %N β for some n, and each Θn+1 is closed
under %N by definition.
Θ is maximal because if β -∈ Θ and Θ∪{β} -%N α, there is n such that β = βn.
Then Θn ∪ {βn} -%N α (since Θn ⊆ Θ), and by construction β = βn ∈ Θn+1,
i.e. β ∈ Θ, contradiction.
Θ -%N α since, by induction on n, Θn -%N α. For n = 0 this is simply the
hypothesis on Γ. And for n+1 this is so by construction, since if Θn,βn -%N α
then α is not in the closure of Θn ∪ {βn}, i.e. in Θn+1; and if Θn,βn %N α
then Θn+1 = Θn, and by the induction hypothesis Θn -%N α. !

In particular, we get a semantical proof of the Cut Elimination Theorem, as in
2.2.7.

Exercise 17.1.11 a) The Countable Model Property continues to hold . (Hint: see 2.2.9.
Now not only closure under N has to be ensured, but also saturation.)

b) The Finite Model Property continues to hold . (Hint: see 2.2.11.)

Beth models

There is no problem in extending the proof of the Countable Model Property
(2.2.9) to the case of disjunction, and we left this as an exercise above: basically,
we consider as nodes all finitely generated, saturated extensions of Γ closed under
%N .

Toward an extension of the Constructive Model Property (2.2.10), there is also
no problem in avoiding the consideration of closure under %N . It remains to deal
with the problem of avoiding the saturation condition, which is by itself an infini-
tary condition.

We were able to avoid closure under %N simply by forgetting about it, since
closure was used only to collapse deducibility and membership (in other words, for
reasons of elegance). Saturation has instead a more substantial use in dealing with
disjunction, and it cannot simply be forgotten about. What we can do, however,
is to ensure saturation only in the limit, i.e. for branches of the tree, as opposed to
in the present, i.e. for nodes .

Disjunction 381

This can be achieved by mixing the usual construction with the saturation
procedure of 17.1.10. Basically, we will make sure that whenever a disjunction
γ ∨ δ is deducible from a node Tσ, then one of γ and δ will eventually be in every
branch extending Tσ (not necessarily the same one for every branch).

This obviously saturates the branches of the model but not the nodes, and thus
we cannot hope to prove

Γσ %A α ⇔ Γσ %N α

in the case of disjunctions. After all, if a node forces γ∨δ, then it forces one of γ or
δ, while we only ensure that if Tσ deduces γ ∨ δ, then every branch going through
Tσ will eventually deduce one of γ or δ. Since we have no room for substantial
improvements in the construction (we are trying to replace an infinitary step by
finitary ones, and this can be achieved only in the limit), we have to play somewhere
else.

We do this by modifying the notion of forcing, and adapting it to what the
construction achieves. Precisely, we require that a node forces γ ∨ δ precisely
when one of γ or δ will eventually be forced in the future of that node, for every
possible future: in other words, when any branch going through the node eventually
reaches a point in which one of γ or δ is forced. As we might expect, since forcing
eventually relies on atomic statements, a similar modification will be needed for
forcing of propositional letters.

Technically, we can express the notion of a future of a node σ by considering any
bar Bσ, i.e. any collection of states extending σ such that any (maximal) branch
going through σ intersects Bσ, in the sense of going through one of its elements.

Definition 17.1.12 Beth Forcing (Beth [1956]) For a given possible world A,
the relation %A defined in 17.1.9 is modified as follows:

σ %A p ⇔ (∃Bσ)(∀τ ∈ Bσ)(p ∈ Aτ)
σ %A α ∨ β ⇔ (∃Bσ)(∀τ ∈ Bσ)(τ %A α or τ %A β).

The notion of Kripke forcing is recovered as a special case, when Bσ = {σ} for
every σ.

We will consider only intuitionistic worlds whose underlying partial order is a
binary tree, since they are the ones used in the previous proofs of the Constructive
Model Property. The restriction will have certain advantages, in particular the fact
that we will be able to restrict attention to bars of finite height (this is needed in
the proof of 17.1.14).4

4By adopting this restricted notion of intuitionistic world, we can prove the properties of bars
needed in the following proofs. Alternately, we could leave the notion of intuitionistic world
unchanged, and take the needed properties of bars as part of the definition of a bar. As shown
by the proof of 17.1.14, these properties are the following:

1. {σ} is a bar for σ

382 E. Intuitionistic Propositional Calculus

Notice that Beth forcing is monotone: the atomic case holds by monotonicity
of knowledge (which still holds by definition); for disjunction, if σ %A α ∨ β then
there is a bar Bσ such that every state in it forces either α or β, and if τ 3 σ then
a bar for τ can be obtained by taking all states in Bσ that extend τ ; the other
cases are as for Kripke forcing.

We talk of Beth models or Kripke models according to the notion of forcing
we use, on top of the associated notion of intuitionistic world. In particular, there
are now two notions of intuitionistic logical consequence (and, as a limit case, of
intuitionistic validity):

• Γ |=i α means that α is Kripke forced in every world, at every state in which
all formulas of Γ are Kripke forced

• Γ |=ib α means that α is Beth forced in every world, at every state in which
all formulas of Γ are Beth forced.

The next result spells out the connections between the two kinds of forcing.

Proposition 17.1.13 For every Kripke model A there exists a Beth model B such
that the same formulas are (globally) forced on A and B, but the converse does not
hold.

Proof. Given a Kripke model

A = 〈PA,/A, {Aσ}σ∈PA〉,

we define a Beth model
B = 〈PB,/B, {Bσ}σ∈PB〉

as follows:

• the elements of PB are the finite sequences 〈σ0, . . . ,σn〉 of elements of PA,
such that σ0 /A · · · /A σn

• /B is the order of sequences by initial segments

• B〈σ0,...,σn〉 = Aσn .

We now show that

〈σ0, . . . ,σn〉 %B α ⇐⇒ σn %A α

by induction on α, the only interesting cases being the left-to-right directions when
α is atomic or a disjunction.

2. if Bσ is a bar for σ and, for every τ ∈ Bσ , Bτ is a bar for τ , then
⋃

τ∈Bσ
Bτ is still a bar

for σ (the bar of a bar is a bar)

3. if Bσ is a bar for σ and τ - σ, then the intersection of Bσ with the set of all extensions of
τ is a bar for τ .

Incidentally, these axioms define the socalled Grothendieck topology .

Disjunction 383

• propositional letters
If 〈σ0, . . . ,σn〉 %B p then, by definition of Beth forcing, every branch through
〈σ0, . . . ,σn〉 will eventually reach a point τ such that p ∈ Bτ . Consider the
branch 〈σ0, . . . ,σn,σn,σn, . . .〉. Then, for the right number of repetions,

p ∈ B〈σ0,...,σn,...,σn〉 = Aσn ,

so that σn %A p by definition of Kripke forcing.

• disjunction
If 〈σ0, . . . ,σn〉 %B p then, by definition of Beth forcing, every branch through
〈σ0, . . . ,σn〉 will eventually reach a point τ such that τ %B α or τ %B β.
Consider the branch 〈σ0, . . . ,σn,σn,σn, . . .〉. Then, for the right number of
repetions,

〈σ0, . . . ,σn, . . . ,σn〉 %B α or 〈σ0, . . . ,σn, . . . ,σn〉 %B β.

By induction hypothesis σn %A α or σn %A β, and hence σn %A α ∨ β by
definition of Kripke forcing.

For the counterexample to the opposite implication, consider the Beth model
consisting of the nodes ∅, 〈0〉 and 〈1〉, and such that B = ∅, B〈0〉 = {p} and
B〈1〉 = {q}. By definition of Beth forcing, p ∨ q is forced in B, although neither p
nor q are. But by definition of Kripke forcing, this cannot happen in any Kripke
model. !

Notice that a finite Kripke model becomes an infinite Beth model in the above
translation, as every node is repeated any finite number of times. This is necessary,
because the Finite Model Property holds for Kripke models but not for Beth mod-
els, since any finite Beth model forces α ∨ ¬α. Indeed, for each terminal node σ of
a model, either σ forces α or no extension of it does, and hence σ forces ¬α. And
for Beth models, although not for Kripke models, this is enough to force α ∨ ¬α
globally.

We now prove soundness with respect to Beth models, which in view of the
previous translation is stronger than that with respect to Kripke models.

Theorem 17.1.14 Beth Soundness (Beth [1956]) For any Γ and α:

Γ %N α ⇒ Γ |=ib α.

Proof. We only have to deal with disjunction, since the other connectives are dealt
with as in Kripke forcing.

• If Γ %N α∨ β is obtained from, say, Γ %N α by ∨-introduction, then Γ |=ib α
by the induction hypothesis. Let σ be any state that Beth forces all formulas

384 E. Intuitionistic Propositional Calculus

of Γ in some world A: then σ Beth forces α, and hence it forces α ∨ β by
definition of Beth forcing (taking Bσ = {σ}, which is obviously a bar for
σ5). Since σ and A are arbitrary, Γ |=ib α ∨ β. Similarly for the other ∨-
introduction rule.

• If Γ %N γ is obtained from

Γ %N α ∨ β Γ,α %N γ Γ,β %N γ

by ∨-elimination, then

Γ |=ib α ∨ β Γ,α |=ib γ Γ,β |=ib γ

by the induction hypothesis. Let σ be any state that Beth forces all formulas
of Γ in some world A. By the first induction hypothesis, σ Beth forces α∨β,
and hence there is Bσ such that

(∀τ ∈ Bσ)(τ %A α or τ %A β).

By the second and third induction hypotheses,

(∀τ ∈ Bσ)(τ %A γ).

It is then enough to prove that if a formula is Beth forced at every node of a
bar of σ, then it is Beth forced at σ itself.

To conclude the proof, it thus remains to show that

(∀τ ∈ Bσ)(τ %A γ) ⇒ (σ %A γ).

We proceed by induction on γ.

1. propositional letters
If γ = p and τ %A p then, by definition of Beth forcing, there is a bar Bτ

such that
(∀ν ∈ Bτ)(ν %A p).

If we let
B∗
σ =

⋃

τ∈Bσ

Bτ

then B∗
σ is still a bar for σ6 because every branch through σ goes through

some τ ∈ Bσ, every branch through τ goes through some ν ∈ Bτ , and hence
every branch through σ goes some through some ν ∈ B∗

σ. Moreover,

(∀ν ∈ B∗
σ)(ν %A p),

and hence σ %A p by definition of Beth forcing.
5Cf. axiom 1 in note 4.
6Cf. axiom 2 of note 4.

Disjunction 385

2. implication
If γ = γ1 → γ2, then

(∀τ ∈ Bσ)(τ %A γ1 → γ2)
by hypothesis, and

(∀τ ∈ Bσ)(∀ν 3 τ)(ν %A γ1 ⇒ ν %A γ2)

by definition of forcing. We want to show that σ %A γ1 → γ2, i.e.

(∀τ 3 σ)(τ %A γ1 ⇒ τ %A γ2).

Given any τ 3 σ, consider the set Bτ of all states ν in Bσ that are extensions
of τ : by definition of a bar, this is still a bar for τ .7 If τ %A γ1, then ν %A γ1

for all ν ∈ Bτ by monotonicity of forcing, and thus ν %A γ2 by hypothesis
(since ν 3 ν ∈ Bτ). Thus

(∀ν ∈ Bτ)(ν %A γ2),

and then τ %A γ2 by the induction hypothesis.

3. conjunction
If γ = γ1 ∧ γ2, then

(∀τ ∈ Bσ)(τ %A γ1 ∧ γ2)
⇔ (∀τ ∈ Bσ)(τ %A γ1 and τ %A γ2)
⇔ (∀τ ∈ Bσ)(τ %A γ1) and (∀τ ∈ Bσ)(τ %A γ2)
⇔ (σ %A γ1) and (σ %A γ2)
⇔ σ %A γ1 ∧ γ2

by definition of forcing and induction hypothesis.

4. disjunction
If γ = γ1 ∨ γ2 and τ %A γ1 ∨ γ2 then, by definition of Beth forcing, there is
a bar Bτ such that

(∀ν ∈ Bτ)(ν %A γ1 or ν %A γ2).

If we let
B∗
σ =

⋃

τ∈Bσ

Bτ

then, as in case 1, B∗
σ is still a bar for σ.8 Moreover,

(∀ν ∈ B∗
σ)(ν %A γ1 or ν %A γ2),

and hence σ %A γ1 ∨ γ2 by definition of Beth forcing. !

7Cf. axiom 3 of note 4.
8Cf. axiom 2 of note 4.

386 E. Intuitionistic Propositional Calculus

Because of the previous translation, completeness with respect to Beth models
is weaker than that with respect to Kripke models. The next result is thus a
consequence of 17.1.10, but the direct proof given below produces the corollary
which constitutes the original motivation for the introduction of Beth models.

Theorem 17.1.15 Beth Completeness (Beth [1956]) For any Γ and α:

Γ |=ib α ⇒ Γ %N α.

Proof. We alternate steps to get all finitely generated extensions of Γ, to steps
to get saturation in the limit. Precisely, let {αn}n∈ω be an enumeration of all
formulas (in the language →, ∧, and ∨), and {γn ∨ δn}n∈ω be an enumeration of
all disjunctions (in the same language), both with infinitely many repetitions. We
start with

Γ∅ = Γ.

If |σ| = 2n, then

Γσ∗〈0〉 = Γσ and Γσ∗〈1〉 = Γσ ∪ {αn}.

If |σ| = 2n + 1, then: if Γσ -%N γn ∨ δn,

Γσ∗〈0〉 = Γσ∗〈1〉 = Γσ;

and if Γσ %N γn ∨ δn,

Γσ∗〈0〉 = Γσ ∪ {γn} and Γσ∗〈1〉 = Γσ ∪ {δn}.

The world A is defined as follows:

A = 〈{Γσ}σ∈S ,⊆, {AΓσ}σ∈S〉,

where:

1. S is the set of all sequences of 0’s and 1’s

2. ⊆ is the usual set-theoretical inclusion relation

3. AΓσ is the set of propositional letters deducible from Γσ, i.e.

AΓσ = {p : Γσ %N p}.

For simplicity of notations, we identify bars for Γσ with bars for σ that generate
them, and we write Bσ for BΓσ .

As usual, we want to prove that, for any formula α and string σ,

Γσ %A α ⇔ Γσ %N α.

We proceed by induction on α

Disjunction 387

1. propositional letters
If Γσ %N p, then p ∈ AΓσ by definition. If we let Bσ = {σ}, then

(∀τ ∈ Bσ)(p ∈ AΓτ),

i.e. Γσ %A p.

Conversely, if Γσ %A α then, by definition of Beth forcing,

(∃Bσ)(∀τ ∈ Bσ)(p ∈ AΓτ).

By definition of AΓτ ,

(∃Bσ)(∀τ ∈ Bσ)(Γτ %N p).

It is thus enough to show that if a formula is provable at Γτ for every τ in a
bar of σ, then it is provable at Γσ itself. This we will do at the end.

2. conjunction
As in 4.2.3.b for Kripke forcing.

3. disjunction
If α = α1 ∨ α2 and Γσ %N α1 ∨ α2, then consider an n so that

γn ∨ δn = α1 ∨ α2 and 2n + 1 ≥ |σ|,

which exists because α1 ∨α2 appears in the list {γn ∨ δn}n∈ω infinitely often.
Then, for any τ 3 σ of length 2n + 1, Tτ %N γn ∨ δn (because Tτ extends Tσ,
and Tσ %N α1 ∨ α2). By construction,

Tτ∗〈0〉 = Tτ ∪ {α1} and Tτ∗〈1〉 = Tτ ∪ {α2}.

In particular,
Tτ∗〈0〉 %N α1 and Tτ∗〈1〉 %N α2.

By the induction hypothesis,

Tτ∗〈0〉 %A α1 and Tτ∗〈1〉 %A α2.

If we let Bσ be the bar of σ consisting of all strings ν extending σ and of
length 2n + 2 (i.e. ν = τ ∗ 〈0〉 or ν = τ ∗ 〈1〉 for τ as above), we then have

(∀ν ∈ Bσ)(Γν %A α1 or Γν %A α2),

and thus
Γσ %A α1 ∨ α2

388 E. Intuitionistic Propositional Calculus

by definition of Beth forcing.
Conversely, if Γσ %A α1 ∨ α2 then, by definition of Beth forcing,

(∃Bσ)(∀τ ∈ Bσ)(Γτ %A α1 or Γτ %A α2).

By ∨-introduction,

(∃Bσ)(∀τ ∈ Bσ)(Γτ %A α1 ∨ α2).

As in part 1, it is thus enough to show that if a formula is provable at Γτ for
every τ in a bar of σ, then it is provable at Γσ itself. This we do below.

4. implication
As in 2.2.10 for Kripke forcing, with a little modification due to the fact that,
given Γσ, γ -% δ, in general we do not have τ 3 σ such that Γτ = Γσ ∪ {γ},
but only Γτ ⊇ Γσ ∪ {γ}, because at odd stages we might add disjunts when
needed. But we do this only when their disjunction is already provable, so it
is enough to note that

if Γ,α ∨ β -% δ then Γ,α ∨ β,α -% δ or Γ,α ∨ β,β -% δ.

Otherwise Γ,α ∨ β % α → δ and Γ,α ∨ β % β → δ, and so Γ,α ∨ β % δ by
∨-elimination. So we can choose a branch such that τ 3 σ and Γτ ⊇ Γσ∪{γ}
and Γτ -% δ. Then we can continue as in 2.2.10.

To conclude the proof, it remains to show that

(∀τ ∈ Bσ)(Γτ %N γ) ⇒ (Γσ %N γ).

Notice that this property is the exact analogue for provability of the property
proved at the end of 17.1.14 for forcing.

We first notice that, by monotonicity of forcing and the use of binary trees as
intuitionistic worlds, it is enough to consider horizontal bars , i.e. bars of the form

Bn
σ = {τ : τ 3 σ ∧ |τ | = |σ| + n}.

We can then proceed by induction on the level of the horizontal bar, i.e. on n ≥ 1.
The inductive step is trivial, and we thus concentrate on n = 1, where B1

σ =
{σ ∗ 〈0〉,σ ∗ 〈1〉}.

If |σ| = 2n, or |σ| = 2n + 1 and Γσ -%N γn ∨ δn, there is nothing to prove: at
least one of Γσ∗〈0〉 and Γσ∗〈1〉 is equal to Γσ. Thus, if γ is deducible from both of
the former, it is also deducible from the latter.

If |σ| = 2n + 1 and Γσ %N γn ∨ δn, then

Γσ∗〈0〉 = Γσ ∪ {γn} and Γσ∗〈1〉 = Γσ ∪ {δn}.

If γ is deducible from both of them, then it is also deducible from Γσ ∪ {γn ∨ δn}
by ∨-elimination, and hence from Γσ alone because Γσ %N γn ∨ δn. !

Disjunction 389

Corollary 17.1.16 Constructive Model Property. For any Γ there is a con-
structively presented world AΓ in which all formulas of Γ are Beth forced and such
that, for every α, if Γ %N α fails, then α is not Beth forced in AΓ.

Proof. An examination of the proof just given shows that it is constructive. The
main point to notice is that the steps to ensure saturation in the limit involve
checking whether Γσ %N γn ∨ δn, for |σ| = 2n + 1: this can be done effectively,
since the relation %N is decidable. !

Actually, the appeal to decidability of the %N relation in the proof of the
corollary can be avoided by noticing that we don’t really have to check whether
Γσ %N γn ∨ δn. It is enough that we check whether it does in |σ| steps and, if
not, that we continue to check also at later stages, i.e. for more and more steps. If
Γσ %N γn ∨ δn, eventually we will discover it and be able to put γn on one branch
and δn on the other.

Intuitionistic tableaux

The notion of provability by intuitionistic tableaux does not refer to connectives,
and can thus be retained in the original form 2.3.2. What needs to be supplemented
is the definition of tableaux 2.3.1 and 4.2.4.

Definition 17.1.17 An intuitionistic tableau is a tree with nodes consisting of
signed forcing assertions of the form Tσ % α or Fσ % α, and consistent with the
formation rules of 2.3.1 and 4.2.4, as well as with the following:

5. If a node Tσ % α∨β is on the tree, then we can split any branch going through
it by adding Tσ % α in one direction and Tσ % β in the other. Graphically,

Tσ % α ∨ β

Tσ % α Tσ % β,

where the double line shows that the bottom nodes do not have to immediately
follow the top one.

6. If a node Fσ % α ∨ β is on the tree, then we can extend any branch going
through it by adding Fσ % α and Fσ % β. Graphically,

Fσ % α ∨ β

Fσ % α
Fσ % β.

The next result shows that the extension of the tableaux rules to ∨ captures
the intended meaning of validity.

390 E. Intuitionistic Propositional Calculus

Theorem 17.1.18 Soundness and Completeness for Tableaux (Nerode
[1990]) For any Γ and α:

Γ %T α ⇔ Γ |=i α.

Proof. The proofs of 2.3.4 and 2.3.5 are easily supplemented by the cases dealing
with disjunction, since the rules for the construction of tableaux were chosen to
mirror the definition of Kripke forcing. !

Heyting "!-algebras

We extend the algebraic approach to the case of ∨, following the treatment of
Chapter 5. Basically, we only have to add an operation "A intended to model ∨.
As usual, we will drop the subscript A when no confusion arises.

Definition 17.1.19 Canonical Interpretation. Given a structure

A = 〈A,/,!,",⇒〉

and an environment ρ on it, the canonical interpretation [[]]ρ defined in 5.1.1 is
extended to disjunction as follows:

[[α]]ρ = [[β]]ρ " [[γ]]ρ if α = β ∨ γ.

The definition of an algebraic model refers only to / and !, and it is unchanged.
We already know that the structure of N induces a structure of Heyting !-algebra
on the equivalence classes of formulas under provable equivalence. We now consider
the additional conditions imposed by the rules for ∨, by resuming the discussion
started on p. 66, and continuing its enumeration.

5. ∨ induces a least upper bound operation on the equivalence classes
The ∨-introduction rules show that ∨ induces an upper bound :

Γ %N α
Γ %N α ∨ β

says that anything less than α must be less than α ∨ β. Similarly for β.

The ∨-elimination rule shows that the following is a derived rule, and hence
that ∨ induces the least upper bound:

Γ,α %N γ Γ,β %N γ
Γ,α ∨ β %N γ

says that anything above α and β must also be above α ∨ β.

Disjunction 391

We leave to the reader the trivial check that the operation induced by ∨ is
well-defined on equivalence classes, in the sense that

Γ %N α ↔ α′ Γ %N β ↔ β′

Γ %N (α ∨ β) ↔ (α′ ∨ β′).

6. %N admits no least element
There is no formula α such that α %N β for every formula β. Suppose
otherwise, and choose a letter p. Then α %N p, and by the Normalization
Theorem there is a normal proof of p from α. But since p has no logical
symbol, the only possibility is α = p, and this should hold for every letter p,
contradiction.

We can now extend the notion of a Heyting !-algebra.

Definition 17.1.20 (Ogasawara [1939], Birkhoff [1940], McKinsey and
Tarski [1946]) A Heyting ,$-algebra is a Heyting !-algebra with a l.u.b. op-
eration ".

As ! produced a lowersemilattice, " produces now an uppersemilattice, i.e. a
partially ordered structure in which every pair of elements has a l.u.b. This implies
that every non empty finite subset has a l.u.b., but leaves open the degenerate
case of the empty set (since the l.u.b. for ∅ would be the least element). The lack
of symmetry between the treatment of ∧ and ∨ expressed by the existence of a
greatest element, but not of a least one, is the reason underlying the introduction
of ⊥ in the next section.

In the following result we continue the enumeration of equations used in 5.1.7
and 5.1.8.

Proposition 17.1.21 Equational Presentation of Uppersemilattices (Hunt-
ington [1904]) In a structure

A = 〈A,/, =,"〉

/ is a partial ordering with = as associated equality and " as associated l.u.b. if
and only if

x / y ⇔ (x " y) = y,

and the following hold:

9. x " x = x (idempotency)

10. x " (y " z) = (x " y) " z (associativity)

11. x " y = y " x (commutativity).

392 E. Intuitionistic Propositional Calculus

The additional condition for 0 being the least element, when it exists, is:

12. x " 0 = x.

Proof. As in 5.1.7. !

We now have equational representations of both g.l.b.’s and l.u.b.’s. But we
still have to ensure that the two orderings defined by using ! and " coincide. The
appropriate algebraic notion here is the following.

Definition 17.1.22 A partially ordered set is a lattice if it is both a lowersemi-
lattice and an uppersemilattice.

Proposition 17.1.23 Equational Presentation of Lattices (Huntington [1904])
In a structure

A = 〈A,/, =,!,"〉

/ is a partial ordering with = as associated equality, ! as associated g.l.b. and "
as associated l.u.b. if and only if

x / y ⇔ (x ! y) = x ⇔ (x " y) = y,

and the following hold, together with 1–3 of 5.1.7 and 9–11 of 17.1.21:

13. (x ! y) " y = y

14. (x " y) ! x = x.

Proof. We only have to deal with the added conditions, since the remaining ones
have already been dealt with in 5.1.7 and 17.1.21. They are obviously necessary.
Conversely, suppose they hold. We show that

(x ! y) = x ⇔ (x " y) = y.

If (x ! y) = x, then, by 13,

x " y = (x ! y) " y = y.

If (x " y) = y, then, by 14 and commutativity (condition 3 of 5.1.7),

x ! y = x ! (x " y) = x.

Thus the two definitions of order coincide. !

Before we proceed further, we notice that Heyting "!-algebras are lattices of a
special kind.

Disjunction 393

Proposition 17.1.24 A Heyting "!-algebra is a distributive lattice, i.e. for every
x, y and z,

x ! (y " z) = (x ! y) " (x ! z)

and
x " (y ! z) = (x " y) ! (x " z).

Proof. Since ! has a right adjoint it must preserve any l.u.b. by 5.3.6, and thus
the first property holds. The second one holds symmetrically (by interchanging !
and " in the proof, since their axioms are symmetrical). !

Exercises 17.1.25 a) Not every distributive lattice is a Heyting 0+-algebra. (Hint: take
any infinite set A and consider the lattice A* consisting of A and all its finite subsets, with
the usual set theoretical operations. If X is finite, then X ⇒ ∅ does not exist, otherwise
it would have to be equal to A − X, which is infinite.)

b)Given a 0+-Heyting algebra A and a filter F on it, the quotient A/F defined in
5.1.13 is a 0+-Heyting algebra. (Hint: to prove that 0 induces an upper bound , prove the
following covariance property :

if a $ b, then (c ⇒ a) $ (c ⇒ b).

And to prove that 0 induces the least upper bound, prove that

(x ⇒ z) + (y ⇒ z) = (x 0 y ⇒ z),

both times using distributivity.)

We now proceed to apply the notion of a Heyting "!-algebra in the usual
way. Definition 5.2.1 of an algebraic consequence refers only to / and !, and it is
unchanged.

Theorem 17.1.26 Algebraic Soundness and Completeness (Jaskowski [1936],
Stone [1937], Tarski [1938], McKinsey and Tarski [1948], Rasiowa [1951])
For any Γ and α,

Γ %N α ⇔ Γ |=a α.

Proof. The proof of Soundness is as in 5.2.2, with the additional following cases
for disjunction.

If Γ %N α ∨ β is obtained from Γ %N α by ∨-introduction, then

[[Γ]]ρ / [[α]]ρ / ([[α]]ρ " [[β]]ρ) = [[α ∨ β]]ρ

by the induction hypothesis, because " is a lower bound w.r.t. /, and by definition
of [[]]ρ. Similarly for β.

If Γ %N γ is obtained from Γ %N α ∨ β, Γ,α %N γ and Γ,β %N γ by ∨-
elimination, then

[[Γ]]ρ / [[α ∨ β]]ρ = [[α]]ρ " [[β]]ρ

394 E. Intuitionistic Propositional Calculus

by the first induction hypothesis and definition of [[]]ρ, and

([[Γ]]ρ ! [[α]]ρ) / [[γ]]ρ and ([[Γ]]ρ ! [[β]]ρ) / [[γ]]ρ

by the remaining induction hypotheses. Then

[[Γ]]ρ = [[Γ]]ρ ! ([[α]]ρ " [[β]]ρ)
= ([[Γ]]ρ ! [[α]]ρ) " ([[Γ]]ρ ! [[β]]ρ)
/ [[γ]]ρ

by the first induction hypothesis, distributivity (17.1.24), and the remaining induc-
tion hypotheses.

The proof of Completeness is as in 5.2.3. !

All examples of Heyting !-algebras given in Chapter 4 can be extended to deal
with l.u.b.’s in a natural way. For linear orderings , the l.u.b. of two elements is
their greatest one. For power sets and topological spaces, it is set-theoretical union.
For lattices , it is the usual l.u.b. Moreover, Kripke models still can be seen as
topological Heyting "!-algebras as in 5.3.10.

Exercise 17.1.27 Beth models can be seen as topological 0+-Heyting algebras. (Beth
[1956]) (Hint: given A = 〈P,$, {Aσ}〉, we cannot consider the order topology on P ,
because by 5.3.10 it would agree not with Beth but with Kripke forcing on disjunctions.
Rather, we consider the topology on the branches f of P generated by the basic open sets
{f : f ⊇ σ}, with σ ∈ P . If ρ is the environment defined by

ρ(p) = {f : (∃σ ∈ P)(f ⊇ σ ∧ σ "A p)},

then
[[α]]ρ = {f : (∃σ ∈ P)(f ⊇ σ ∧ σ "A α)},

by induction on α.)

It is also a routine matter to extend the Stone Representation Theorem 5.4.2
from lowersemilattices to lattices, along the lines of the proof of Kripke Complete-
ness Theorem 17.1.10.

Proposition 17.1.28 Stone Representation Theorem for Heyting ,$-Algebras
(Stone [1937]) Any Heyting "!-algebra is isomorphic to a subalgebra of a topo-
logical Heyting "!-algebra.

Proof. We refer to the proof of 5.4.2. Instead of considering filters, we consider
saturated filters, i.e. filters F such that, for any x and y in A,

x " y ∈ F =⇒ x ∈ F ∨ y ∈ F,

Disjunction 395

and define a function f from A to the set F of all saturated filters on A as follows:

f(x) = the set of all saturated filters containing x.

Then the first four cases of the proof of 5.4.2 still hold, the fifth requires a supple-
ment of proof, and a new case is needed for ".

5. f is one-one
We only have to prove that in a distributive lattice, any filter not containing
a can be extended to a saturated filter not containing a. Then, as in 5.4.2,
if x -= y, either x -/ y or y -/ x. If x -/ y, then the upward closure of x is
obviously a filter containing x but not y, and by distributivity (17.1.24) there
is a saturated filter containing x but not y, i.e. f(x) -= f(y). Similarly when
y -/ x. Thus

x -= y =⇒ f(x) -= f(y).

To prove the claim above, let F be a filter not containing a, and G be a
maximal filter w.r.t. ⊆ including F and not containing a. G exists by Zorn’s
Lemma, since the union of every chain of filters including F and not contain-
ing a is still such. As in 17.1.10, we prove that G is saturated.
Suppose x"y ∈ G, but x -∈ G and y -∈ G. By maximality, the filter generated
by G and x contains a, and thus there is some b1 ∈ G such that b1 " x / a.
Similarly, there is b2 ∈ G such that b2 " y / a. By letting b = b1 " b2,

b ! x / a and b ! y / a

and, by distributivity,

b ! (x " y) = (b ! x) " (b ! y) / a.

But both b and x " y are in G, and thus so are b ! (x " y) (by closure under
!) and a (by upward closure), contradiction.

6. f preserves "
Given x, y and a saturated filter F , if F contains x or y, then it also contains
x"y (by upward closure, since x / x"y and y / x"y), and so f(x)∪f(y) ⊆
f(x " y).
Conversely, if F contains x"y, then it contains one of x and y by saturation,
and so f(x " y) ⊆ f(x) ∪ f(y). Thus

f(x " y) = f(x) ∪ f(y). !

By simply forgetting about topologies, the proof just given shows that any
distributive lattice is isomorphic to a sublattice of a power set, i.e. to a lattice of
sets (Birkhoff [1933]).

396 E. Intuitionistic Propositional Calculus

Exercises 17.1.29 Prime and maximal filters. A filter in a lattice is prime if it
contains x or y, whenever it contains x 0 y. And it is maximal if it is nontrivial, and
there is no nontrivial filter properly extending it.

a) In a distributive lattice a maximal filter is prime. (Hint: suppose F is maximal,
x 0 y ∈ F and x .∈ F . By maximality, the filter generated by F ∪ {x} is trivial, and y
belongs to it. By distributivity, there is a ∈ F such that a 0 x $ y, and

y = (a 0 x) 0 y = (a 0 y) + (a 0 y).

But x 0 y ∈ F by hypothesis, and a 0 y ∈ F because a ∈ F . Then y ∈ F .)
b) In a non distributive lattice, a maximal filter is not necessarily prime. (Hint:

consider the lattice "
" " "

"!!
#

#

#
#

!
!

0

1

a b c

and the filter {a, 1}. Then b 0 c = 1 is in it, but neither b nor c are.)
c) Even in a 0+-Heyting algebra, a prime filter is not necessarily maximal . (Hint:

consider the lattice "
" "

"
" "

"

!
!

#
#

#
#

#
#

!
!

!
!

!
!

#
#

1

a b

a + b = x 0 y

x y

0
and the filter {a, 1}.)

Cartesian closed categories with coproducts

The Disjunction Property

The next result exposes a crucial property of ∨, typical of intuitionistic logic but
not of classical logic.

Theorem 17.1.30 Disjunction Property (Gödel [1933], Gentzen [1935])
For any α and β,

%N α ∨ β ⇒ %N α or %N β.

Proofs. We give a proof for each of the three main systems considered so far.

Disjunction 397

1. Natural Deduction
Consider a normal proof of α ∨ β without assumptions, which exists by the
Weak Normalization Theorem and the hypothesis %N α ∨ β. We proceed
by induction on the height of the proof. Since there is no assumption, every
formula occurring in the proof must be a subformula of α∨β. Let us consider
the last rule used in the proof.

If it is an introduction, then it must be a ∨-introduction, i.e. one of

α
α ∨ β

or β
α ∨ β.

Then the proof minus the last step is a proof of either α or β.

It is now enough to show that the last step of the proof cannot be an elim-
ination. Clearly it cannot be a → or ∧ elimination, since they all involve
formulas more complicated than their conclusion (while the proof does not,
being normal). And it cannot be a ∨-elimination either, for suppose it were:

D
γ ∨ δ

[γ]
D1

α ∨ β

[δ]
D2

α ∨ β
α ∨ β.

On the one hand, any descending path going through γ ∨ δ must consist
only of eliminations (since the proof is normal, and γ ∨ δ is eliminated in the
last step), and hence no hypothesis of D can hence be discharged. On the
other hand, the given proof proves α ∨ β without assumptions, and hence all
hypotheses of D must be discharged. Thus this case cannot happen. !

2. Sequent System
If %S α ∨ β then the last step of any proof must be a ∨-introduction on the
right, and thus the proof minus the last step must be a proof of either %S α
or %S β.

3. Kripke Models
Suppose -|=i α and -|=i β. Then there is a Kripke model Aα with least node
0Aα that does not force α. Similarly, there is a Kripke model Aβ with least
node 0Aβ that does not force β. We can define a new Kripke model A with
least node 0A by making a disjoint union of Aα and Aβ , in such a way that
0Aα and 0Aβ are the only immediate (and incomparable) extensions of 0A.
Then α∨ β is not forced at 0A. If it were, then (by definition of forcing) one
of α and β would be forced at 0A and, by monotonicity, at both 0Aα and
0Aβ , contradiction. !

398 E. Intuitionistic Propositional Calculus

Of course the result fails, in general, when relativized to sets of premises Γ. For
example, p∨ q %N p∨ q but p∨ q -%N p and p∨ q -%N q, since the last two sequents
are not even classically valid.

We now look for sufficient conditions on Γ that would still allow the result to
hold, and the proof of the next result will justify the following definition.

Definition 17.1.31 (Harrop [1960]) The set of Harrop formulas is defined
inductively as follows:

1. a propositional letter is a Harrop formula

2. if both α and β are Harrop formulas, so is α ∧ β

3. if β is a Harrop formula then so is α → β, for any (not necessarily Harrop)
formula α.

Theorem 17.1.32 Extended Disjunction Property (Harrop [1960]) If Γ is
a set of Harrop formulas, then for every α and β:

Γ %N α ∨ β ⇒ Γ %N α or %N β.

Proof. We consider the simplest among the proofs of the unrelativized result (for
Γ = ∅) given above, namely the one using sequents, and proceed by induction on
the height of a given proof of Γ %S α ∨ β.

If the last step is an introduction on the right (which, incidentally, must be
the case if Γ consists only of propositional letters, i.e. the simplest case of Harrop
formulas), then it must be a ∨-introduction, and the proof minus the last step must
be either a proof of Γ %S α or Γ %S β.

If the last step is an introduction on the left, there are three possible cases:

1. conjunction
Then Γ = Γ0 ∪ {γ ∧ δ}, and e.g.

Γ0, δ %S α ∨ β
Γ0, γ ∧ δ %S α ∨ β.

We can apply the induction hypothesis because the proof of Γ0, δ %S α ∨ β
has smaller height than the proof of Γ0, γ∧δ %S α∨β, and if γ∧δ is a Harrop
formula, then so must be δ. Thus, e.g., Γ0, δ %S α and hence

Γ0, δ %S α
Γ0, γ ∧ δ %S α.

Falsity and Negation 399

2. implication
Then Γ = Γ0 ∪ {γ → δ}, and

Γ0 %S γ Γ0, δ %S α ∨ β
Γ0, γ → δ %S α ∨ β.

We can apply the induction hypothesis because the proof of Γ0, δ %S α ∨ β
has smaller height than the proof of Γ0, γ → δ %S α ∨ β, and if γ → δ is a
Harrop formula, then so must be δ. Thus, e.g., Γ0, δ %S α and hence

Γ0 %S γ Γ0, δ %S α
Γ0, γ → δ %S α.

3. disjunction
Then Γ = Γ0 ∪ {γ ∨ δ}, and

Γ0, γ %S α ∨ β Γ0, δ %S α ∨ β
Γ0, γ ∨ δ %S α ∨ β.

The proofs of Γ0, γ %S α ∨ β and Γ0, δ %S α ∨ β both have smaller height
than the proof of Γ0, γ∨δ %S α∨β. But even if we could apply the induction
hypothesis, then we would only know that one of α and β is deducible in
each case, but not necessarily the same one. For example, we could have
Γ0, γ %S α and Γ0, δ %S β, from which we could deduce neither Γ, γ ∨ δ %S α
nor Γ, γ ∨ δ %S β. Thus the case of disjunction must be excluded.

The three cases justify the definition of Harrop formulas: the first two show the
need of inductively considering components of conjunctions and consequents of
implications; the last one, as well as the counterexample given before the theorem,
show the need of excluding disjunctions. !

17.2 Falsity and Negation

The various connectives of propositional logic have been introduced for different
reasons. Implication is the basic object of study, because of its connections with
arrow types and hence with functions. Conjunction was needed to reduce finite
sets of premises to a single one, which allowed a neat description of the properties
of → through an adjointness condition. Disjunction was mainly introduced for
symmetry, as a connective dual to conjunction. We now have to dispose of one
final lack of symmetry, which is exposed by the algebraic framework.

400 E. Intuitionistic Propositional Calculus

Syntax

Recall that provable equivalence defines an equivalence relation on formulas, on
whose equivalence classes %N , ∧ and ∨ respectively induce a partial ordering, as
well as the greatest lower bound and least upper bound operations. But while there
is a greatest element, corresponding to provable formulas, we argued on p. 383 that
there could not be a least element.

This is repaired as follows:

1. the language has an added constant ⊥ (falsity or contradiction)

2. the definition of formulas has an added atomic clause, i.e.

• ⊥ is a formula.

As usual, each of the systems we have been considering can be extended to deal
with the constant ⊥, with the intended meaning that ⊥ is the dual of a provable
formula.

Definition 17.2.1 The relation %N defined in 1.1.1, 4.1.1 and 17.1.1 is extended
to ⊥ as follows:

8. ⊥-elimination. If ⊥ is deducible from Γ, then any formula α is:

Γ %N ⊥
Γ %N α.

In terms of rules to extend proofs, this corresponds to the step

⊥
α.

The intuition is that we should be able to derive a contradiction only when
something went wrong. Thus falsity has no introduction rule, unlike all the other
connectives introduced so far. Moreover, the elimination rule for falsity tells us
that if we derived a contradiction from Γ, then we could derive anything from it.

Since there is no ⊥-introduction rule, ⊥ cannot be a maximum itself. But each
instance of the ⊥-elimination rule can be thought of as a new case of an introduction
rule for α, and thus there is now the possibility of having new maxima (when the
proof continues with an elimination of the principal connective of α). For example:

⊥
α ∧ β
α.

Falsity and Negation 401

Such maxima are easily eliminated in one step, by going directly from ⊥ to the
conclusion of the elimination rule. For example,

from
⊥

α ∧ β
α

to ⊥
α.

The following results continue to hold, with minor adjustements in the proofs.

Proposition 17.2.2 Structure of Normal Proofs (Prawitz [1965]) For a
normal proof of N the following hold:

1. Elimination-Introduction Separation. Disregarding repetitions of for-
mulas, any descending path consists of two (possibly empty) parts: a first
(upper) one going only through elimination rules, and a second (lower) one
going only through introduction rules.

2. Subformula Property. Any formula occurring in the proof is a subformula
of either an undischarged assumption or the conclusion.

In particular, because of the dual nature of the ⊥-elimination rule, which can
also be seen as an introduction rule, applications of such a rule in a normal proof
can occur only at the end of the upper part of any path. Or, equivalently, at the
beginning of the lower part.

Theorem 17.2.3 Weak Normalization (Prawitz [1965]) Every proof can be
transformed into a normal proof, by means of an appropriate sequence of maxima
eliminations.

Clearly, the appropriate notion of segment is now that of a sequence of occur-
rences of a formula α that starts with the conclusion of an introduction of α (either
through a usual introduction rule, or through a ⊥-elimination), and ends with the
major premise of an elimination rule.

There is no problem in adding the appropriate axiom to Hilbert systems, to
take care of ⊥. The additions required to prove the following result are trivial.

Theorem 17.2.4 Equivalence of Hilbert Systems and Natural Deduction
(Gentzen [1935]) If H is any Hilbert system whose theorems include 1–9 of 1.2.3,
4.1.4 and 17.1.4 and, for any α, the following:

10. ⊥ → α,

then, for any Γ and β:
Γ %H β ⇔ Γ %N β.

402 E. Intuitionistic Propositional Calculus

Finally, the additions to the Sequent System are also trivial.

Definition 17.2.5 (Gentzen [1935]) The relation %S defined in 1.3.1, 4.1.5 and
17.1.5 is extended to ⊥ as follows:

8. ⊥-Rule. For every Γ and α,

Γ %S ⊥
Γ %S α.

Since the new rule for ⊥ is the same for both N and S, the two extensions
remain equivalent, i.e.

Γ %N β ⇔ Γ %S β.

Negation !

In intuitionistic logic, negation can be defined using ⊥.

Definition 17.2.6 The negation ¬α of a formula α is defined as α → ⊥, i.e. as
the assertion that α leads to a contradiction.

Being a defined symbol, negation does not require rules of its own, but it is
sometimes convenient to explicitly state such rules. For example, in the case of
natural deduction the following are derived rules, in the usual form of introduction
and elimination:

Γ, [α]
D
⊥
¬α

and α ¬α
⊥.

On the other hand, we could choose the opposite approach and take negation
as primitive, with ⊥ defined as α ∧ ¬α for any α. Rules for ¬, independent of the
rules for ⊥, can be introduced as follows, again in the form of introduction and
elimination:

Γ, [α]
D1

β

Γ, [α]
D2

¬β
¬α

and α ¬α
β.

In the usual format for N , these rules would be expressed as:

• ¬-Introduction. If both β and ¬β are deducible from Γ and α, then ¬α is
deducible from Γ:

Γ,α %N β Γ,α %N ¬β
Γ %N ¬α.

Falsity and Negation 403

• ¬-Elimination. If both α and ¬α are deducible from Γ, then so is any β:

Γ %N α Γ %N ¬α
Γ %N β.

The introduction rule is a restatement of the fact that if α derives a contradiction,
then ¬α holds. Similarly, the elimination rule is a restatement of the fact that from
a contradiction anything can be derived. This approach is thus not very different
from the one above. Moreover, the advantage of having both an introduction and
an elimination rule, in the usual spirit of Natural Deduction, is only apparent:
the new introduction rule is not completely satisfactory, since the symbol ¬ to be
introduced already appears in the premises necessary for its introduction.

Axioms for negation for a Hilbert system simply translate the previous rules:

• (α → β) → [(α → ¬β) → ¬α)

• α → (¬α → β).

Rules for negation are quite natural in the context of Sequent Systems. In this
case ⊥ can be replaced by the empty set, so that the ⊥-elimination rule becomes
a case of a Thinning Rule on the right:

Γ %S
Γ %S α.

We can then formulate the rules for negation quite elegantly and symmetrically, as
follows:

• ¬-Introduction on the right. If Γ and α are contradictory, then Γ derives
¬α:

Γ,α %S
Γ %S ¬α.

• ¬-Introduction on the left. If Γ derives α, then Γ and ¬α are contradic-
tory:

Γ %S α
Γ,¬α %S .

The advantage of this formulation is that it really introduces ¬ independently
of ⊥. Moreover, ⊥ is identified with the empty conclusion, thus exposing the
symmetric roles of empty premises and empty conclusion, which give respectively
rise to theorems and contradiction. This approach is particularly neat when used
for a presentation of the Classical Propositional Calculus, as we will see in Chapter
??.

404 E. Intuitionistic Propositional Calculus

Kripke and Beth models

Kripke and Beth forcing can be extended naturally to the case(s) of ⊥ (and ¬).

Definition 17.2.7 Forcing (Cohen [1963], Kripke [1963]) For a given possi-
ble world A, the relation %A defined in 17.1.9 and 17.1.12 is extended to falsity as
follows:

not (σ %A ⊥).

In other words, no state forces ⊥. By the definition of negation, we then have:

σ %A ¬α ⇔ σ %A (α → ⊥)
⇔ (∀τ 3A σ)(τ %A α ⇒ τ %A ⊥)
⇔ (∀τ 3A σ) not (τ %A α).

The next result shows that the extension of forcing to ⊥ captures the intended
meaning of contradiction.

Theorem 17.2.8 Kripke Soundness and Completeness (Kripke [1963])
For any Γ and α:

Γ %N α ⇔ Γ |=i α.

Proof. For the Soundness direction, we supplement the proof of 2.2.5 by the case
dealing with ⊥. If Γ %N α is obtained from Γ %N ⊥ by ⊥- elimination, then
Γ |=i ⊥ by the induction hypothesis. If σ were any state that forces all formulas
of Γ in some world A, then σ would force ⊥, which is impossible by definition of
forcing. Then no σ forces all formulas of Γ, and hence Γ |=i α holds trivially.

For the Completeness direction, we supplement the proofs of 2.2.6 and 17.1.10
(to which we refer) by the case of ⊥. We have to prove that

Θ %A ⊥ ⇔ ⊥ ∈ Θ,

where Θ is a saturated set of formulas closed under %N . Since the left-hand-side
is always false by definition of forcing, we also need the right-hand-side to be
always false, and hence we need ⊥ -∈ Θ. This condition can easily be obtained by
restricting attention to nontrivial or consistent sets of formulas, defined precisely
by the condition that

⊥ -∈ Θ.

What we have just proved is then that, if A is the world defined as follows:

A = 〈F ,⊆, {AΘ}Θ∈F〉,

where:

Falsity and Negation 405

1. F is the set of all consistent saturated sets of formulas Θ closed under %N

2. ⊆ is the usual inclusion relation

3. AΘ is the set of formulas in Θ consisting only of a propositional letter,

then, for any formula α,
Θ %A α ⇔ α ∈ Θ.

It remains to finish the proof as usual. We only need to show that if Γ -%N α,
then there is a consistent saturated set Θ closed under %N such that Θ ⊇ Γ and
α -∈ Θ (since then Θ forces every formula in Γ but not α). In 17.1.10 we proved
the condition without the consistency part. But α -∈ Θ automatically ensures
consistency, and thus that proof suffices. Indeed, if Θ were inconsistent, i.e. ⊥ ∈ Θ,
then Θ %N ⊥, and Θ %N α by the ⊥-elimination rule. Then α ∈ Θ by closure
under %N , contradiction. !

Theorem 17.2.9 Beth Soundness (Beth [1956]) For any Γ and α:

Γ %N α ⇔ Γ |=ib α.

Proof. For the Soundness direction, we can repeat what has been said above for
Kripke forcing.

For the Completeness direction, we supplement the construction of 17.1.14 by
the case of ⊥. There we proved

Γσ %A α ⇔ Γσ %N α

by induction on α, and we now have to consider the additional case

Γσ %A ⊥ ⇔ Γσ %N ⊥.

Since the left-hand-side is always false by definition of forcing, we need to have
Γσ -%N ⊥.

This can be ensured by modifying the construction as follows: for any σ, Γσ∗〈0〉
is defined as in 17.1.14 if ⊥ is not deducible from it, and as Γσ otherwise. Similarly
for Γσ∗〈1〉. This takes care of all cases, except for Γ∅. If Γ itself is consistent, we
can let Γ∅ = Γ. And if Γ is not consistent, then we know that. On the one hand,
Γ %N α holds for every α by ⊥-elimination. On the other hand, Γ |=ib α by the
Soundness part proved above. Thus the two sides are still equivalent, and always
true. !

The Constructive Model Property can be proved as in 17.1.16, but this time
there seems to be no way of avoiding the appeal to decidability of %N : we simply
do not want nodes that force ⊥, and have to know whether they do right away.
This causes a problem when one tries to extend the Constructive Model Property
to predicate logic, where %N is not decidable, unless one is willing to relax the
definition of Beth models and accept fallible nodes that do force ⊥.

406 E. Intuitionistic Propositional Calculus

Intuitionistic tableaux

There is no problem in extending the notion of intuitionistic tableau to the case(s)
of ⊥ (and ¬).

Definition 17.2.10 An intuitionistic tableau is a tree with nodes consisting of
signed forcing assertions of the form Tσ % α or Fσ % α, and consistent with the
formation rules of 2.3.1, 4.2.4, and 17.1.17, as well as with the following:

7. We can extend any branch by adding Fσ % ⊥. Graphically,

Fσ % ⊥,

where the double line and the lack of a top node show that the bottom node
can follow any node.

Since the new rule for ⊥ mirrors the rule for forcing, the two extensions remain
equivalent, i.e.

Γ %T α ⇔ Γ |=i α.

From the tableaux rules for ⊥ and → (or, directly, from the forcing rule for ¬)
we derive the following rules for ¬:

• If a node Tσ % ¬α is on the tree, then we can extend any branch going
through it by adding F τ % α, where τ is any extension of σ that has already
been introduced. Graphically,

Tσ % ¬α
F τ % α.

• If a node Fσ % ¬α is on the tree, then we can extend any branch going through
it by adding T τ % α, where τ is a new extension of σ (incomparable with all
other extensions of σ already introduced on the same branch). Graphically,

Fσ % ¬α
T τ % α.

As usual, the double line shows that the bottom nodes do not have to immediately
follow the top one.

Heyting algebras

The addition of ⊥ requires an algebraic interpretation in terms of a constant.

Falsity and Negation 407

Definition 17.2.11 Canonical Interpretation. Given a structure

A = 〈A,/, =,!,",⇒, 0, 1〉

and an environment ρ on it, the canonical interpretation [[]]ρ defined in 5.1.1
and 17.1.19 is extended to falsity as follows:

[[⊥]]ρ = 0.

The definition of an algebraic model refers only to / and !, and it is unchanged.
We already know that the structure of N induces a structure of a Heyting "!-
algebra on the equivalence classes of formulas under provable equivalence. We now
consider the additional conditions imposed by the rule for ⊥, by resuming the
discussion of pp. 66 and 382, and continuing its enumeration.

7. %N admits a least element
The ⊥-elimination rule

Γ %N ⊥
Γ %N α

says that what is less than ⊥ must be less than everything.

This prompts the following extension of the notion of a Heyting "!-algebra.

Definition 17.2.12 (Ogasawara [1939], Birkhoff [1940], McKinsey and
Tarski [1946]) A Heyting algebra is a Heyting "!-algebra with a least element
0.

It is a routine matter to extend the proof of the following result.

Theorem 17.2.13 Algebraic Soundness and Completeness (Jaskowski [1936],
Tarski [1937]) For any Γ and α,

Γ %N α ⇔ Γ |=a α.

Proof. The proof of Soundness is as in 5.2.2, with the additional following case
for ⊥. If Γ %N α is obtained from Γ %N ⊥ by ⊥-elimination, then

[[Γ]]ρ / [[⊥]]ρ = 0 / [[α]]ρ

by the induction hypothesis, definition of [[]]ρ, and because 0 is the least element
w.r.t. /.

The proof of Completeness is as in 5.2.3. !

All examples of Heyting !-algebras given in Chapter 4 can be extended to
deal with the least element in a natural way. For linear orderings and lattices , its
existence must be postulated. For power sets and topological spaces is the emptyset,
which belongs to any topology by definition. Moreover, Kripke models still can be
seen as topological Heyting algebras.

408 E. Intuitionistic Propositional Calculus

Exercise 17.2.14 A Heyting algebra is a linear ordering if and only if, for every pair of
elements a and b, (a ⇒ b) 0 (b ⇒ (b ⇒ a)) = 1.

It is also a routine matter to extend the Stone Representation Theorem 5.4.2
and 17.1.28, along the lines of the proof of Kripke Completeness Theorem 17.2.8.

Proposition 17.2.15 Stone Representation Theorem for Heyting Alge-
bras (Stone [1937]) Any Heyting algebra is isomorphic to a subalgebra of a topo-
logical Heyting algebra.

Proof. We refer to the proof of 17.1.28. Instead of considering saturated filters,
we consider nontrivial saturated filters, i.e. saturated filters F such that 0 -∈ F ,
and define a function f from A to the set F of all nontrivial saturated filters on A
as follows:

f(x) = the set of all nontrivial saturated filters containing x.

Then the six cases of the proofs of 5.4.2 and 17.1.28 still hold. In particular, when
proving that in a distributive lattice any filter not containing a can be extended
to a saturated filter not containing a, we get nontriviality for free (since if a filter
contains 0, then it contains every element by upward closure).

It thus only remains to prove the additional case needed for ⊥.

7. f preserves 0
Since 0 is in no nontrivial filter,

f(0) = ∅. !

Exercise 17.2.16 Pseudocomplements and Ultrafilters. In a Heyting algebra, the
pseudocomplement of a is the greatest element x such that a + x = 0. And an ultra-
filter is a nontrivial filter which contains, for any a, either a or its pseudocomplement.

a) The pseudocomplement of a is a ⇒ 0. (Hint: prove that a + (a ⇒ 0) = 0, and that
if a + x = 0 then x $ (a ⇒ 0).)

b) A non trivial filter is an ultrafilter if and only if it is maximal . (Hint: if F is a
maximal filter and a ⇒ 0 .∈ F , then the filter generated by F and a must be nontrivial,
otherwise 0 would belong to it and a + x = 0 for some x ∈ F , in which case x $ (a ⇒ 0)
and a ⇒ 0 ∈ F . By maximality, the filter generated by F and a is equal to F , i.e. a ∈ F .

If F is an ultrafilter and a .∈ F , then the filter generated by F and a must be trivial
because a ⇒ 0 ∈ F . Then F is maximal, because no element can be added to it without
collapsing it.)

By part b), the consistent and complete sets of formulas in a Lindenbaum algebra are
actually ultrafilters.

A Global Look 409

Bi-cartesian closed categories

The Disjunction Property

There is no problem in extending the notion of a Harrop formula defined in 17.1.31,
and using it to extend the Disjunction Property 17.1.32.

Definition 17.2.17 (Harrop [1960]) The set of Harrop formulas is defined
inductively as follows:

1. propositional letters and ⊥ are Harrop formulas

2. if both α and β are Harrop formulas, so is α ∧ β

3. if β is a Harrop formula then so is α → β, for any (not necessarily Harrop)
formula α.

Notice that the introduction of ⊥ as a Harrop formula produces, together with
the clause for → and the definition of ¬, the following derived clause:

4. if α is a Harrop formula, so is ¬α.

Theorem 17.2.18 Extended Disjunction Property (Harrop [1960]) If Γ is
a set of Harrop formulas, then for every α and β:

Γ %N α ∨ β ⇒ Γ %N α or %N β.

Proof. We only have to supplement the proof of 17.1.32 by the case in which the
last step of the proof of Γ %S α ∨ β is an instance of the ⊥-rule, i.e.

Γ %S ⊥
Γ %S α ∨ β.

In this case we can obviously derive both Γ %S α and Γ %S β, again by applying
the ⊥-rule to the premise Γ %S ⊥. !

In other words, no restriction is needed in the proof because of the presence of
⊥, and this justifies taking ⊥ as a Harrop formula.

17.3 A Global Look

We can now take a global look at the full system with all the connectives introduced
so far.

410 E. Intuitionistic Propositional Calculus

Intuitionistic Propositional Calculus

The language consists of:

• propositional letters p, q, r, . . .

• a constant ⊥ (falsity)

• parentheses ‘(’ and ‘)’

• the connectives → (implication), ∧ (conjunction), ∨ (disjunction).

Formulas are defined inductively as follows:

• propositional letters are formulas

• ⊥ is a formula

• if α and β are formulas, so are (α → β), (α ∧ β), (α ∨ β).

Natural Deduction

Definition 17.3.1 Natural Deduction (Gentzen [1935]) The relation %N has
been inductively defined in 1.1.1, 4.1.1, 17.1.1 and 17.2.1 as follows:

• assumptions

1. Γ,β %N β.

• implication

2. Γ,α %N β
Γ %N α → β.

3. Γ %N α Γ %N α → β
Γ %N β.

• conjunction

4. Γ %N α Γ %N β
Γ %N α ∧ β.

5. Γ %N α ∧ β
Γ %N α

and Γ %N α ∧ β
Γ %N β.

• disjunction

6. Γ %N α
Γ %N α ∨ β

and Γ %N β
Γ %N α ∨ β.

A Global Look 411

7. Γ %N α ∨ β Γ,α %N γ Γ,β %N γ
Γ %N γ.

• falsity

8. Γ %N ⊥
Γ %N α.

Hilbert systems

Recall that, according to definition 1.2.1, %H is completely determined by the
axioms.

Definition 17.3.2 Hilbert System (Herbrand [1928], Tarski [1930], Gentzen
[1935]) The axioms for %H have been defined in 1.2.3, 4.1.4, 17.1.4 and 17.2.4 as
follows, for any α, β, γ and δ:

• implication

1. α → α

2. γ → (α → γ)

3. [(α → (γ → δ)] → [(α → γ) → (α → δ)]

• conjunction

4. α → (β → α ∧ β)

5. α ∧ β → α

6. α ∧ β → β

• disjunction

7. α → α ∨ β

8. β → α ∨ β

9. (α → γ) → [(β → γ) → (α ∨ β → γ)]

• falsity

10. ⊥ → α.

412 E. Intuitionistic Propositional Calculus

Sequents

Definition 17.3.3 Sequent System (Gentzen [1935]) The relation %S has
been inductively defined in 1.3.1, 4.1.5, 17.1.5 and 17.2.5 as follows:

• assumptions

1. Γ,β %S β.

• implication

2. Γ,α %S β
Γ %S α → β.

3. Γ %S α Γ,β %S γ
Γ,α → β %S γ.

• conjunction

4. Γ %S α Γ %S β
Γ %S α ∧ β.

5. Γ,α %S γ
Γ,α ∧ β %S γ

and Γ,β %S γ
Γ,α ∧ β %S γ.

• disjunction

6. Γ %S α
Γ %S α ∨ β

and Γ %S β
Γ %S α ∨ β.

7. Γ,α %S γ Γ,β %S γ
Γ,α ∨ β %S γ.

• falsity

8. Γ %S ⊥
Γ %S α.

Kripke models

Recall that, according to definition 2.2.4, |=i is completely determined by the notion
of Kripke forcing.

Definition 17.3.4 Kripke Forcing (Cohen [1963], Kripke [1963]) For a
given possible world A, the relation of Kripke forcing %A has been inductively
defined in 2.2.2, 4.2.1, 17.1.9 and 17.2.7 as follows:

σ %A p ⇔ p ∈ Aσ

σ %A α → β ⇔ (∀τ 3A σ)(τ %A α ⇒ τ %A β)
σ %A α ∧ β ⇔ σ %A α and σ %A β
σ %A α ∨ β ⇔ σ %A α or σ %A β.

A Global Look 413

Moreover,
not (σ %A ⊥).

Beth models

Similarly, |=ib is completely determined by Beth forcing.

Definition 17.3.5 Beth Forcing (Beth [1956]) For a given possible world A,
the relation of Beth forcing %A has been inductively defined in 2.2.2, 4.2.1, 17.1.12
and 17.2.7 as follows:

σ %A p ⇔ (∃Bσ)(∀τ ∈ Bσ)(p ∈ Aτ)
σ %A α → β ⇔ (∀τ 3A σ)(τ %A α ⇒ τ %A β)
σ %A α ∧ β ⇔ σ %A α and σ %A β
σ %A α ∨ β ⇔ (∃Bσ)(∀τ ∈ Bσ)(τ %A α or τ %A β),

where Bσ is a bar for σ. Moreover,

not (σ %A ⊥).

Intuitionistic tableaux

Similarly, %T is completely determined by the notion of an intuitionistic tableau,
which is itself modelled on Kripke forcing.

Definition 17.3.6 Intuitionistic Tableaux (Hughes and Cresswell [1968],
Fitting [1983], Nerode [1990]) An intuitionistic tableau has been defined in
2.3.1, 4.2.4, 17.1.17 and 17.2.10 as a tree with nodes consisting of signed forcing
assertions of the form Tσ % α or Fσ % α, and consistent with the following
formation rules:

• implication
Tσ % α → β

F τ % α T τ % β.

Fσ % α → β

T τ % α
F τ % β.

• conjunction
Tσ % α ∧ β

Tσ % α
Tσ % β.

Fσ % α ∧ β

Fσ % α Fσ % β.

• disjunction
Tσ % α ∨ β

Tσ % α Tσ % β.

Fσ % α ∨ β

Fσ % α
Fσ % β.

414 E. Intuitionistic Propositional Calculus

• falsity

Fσ % ⊥.

The double line shows that the bottom nodes do not have to immediately follow the
top one.

Heyting Algebras

Recall that |=a is completely determined by the notion of a Heyting algebra.

Definition 17.3.7 (Ogasawara [1939], Birkhoff [1940], McKinsey and Tarski
[1946]) A Heyting algebra has been defined in 5.1.6, 17.1.20 and 17.2.12 as a
structure

A = 〈A,/, =,!,",⇒, 0, 1〉

such that

1. / is a partial ordering with = as associated equality

2. ! is the g.l.b. operation associated with /

3. " is the l.u.b. operation associated with /.

4. ⇒ is the right adjoint of ! w.r.t. /

5. 0 is the least element of A w.r.t. /

6. 1 is the greatest element of A w.r.t. /.

An alternative characterization of Heyting algebras is obtained from 5.1.7, 5.1.8,
17.1.21 and 17.1.23.

Proposition 17.3.8 Equational Presentation of Heyting Algebras (Hunt-
ington [1904], Monteiro [1955], Rasiowa and Sikorski [1963]) In a structure

A = 〈A,/, =,⇒,!,", 0, 1〉

/ is a partial ordering with = as associated equality, 0 and 1 as least and greatest
element, ! and " as associated l.u.b. and g.l.b., and ⇒ as the right adjoint of "
w.r.t. /, if and only if

x / y ⇔ (x ! y) = x,

and the following hold:

• l.u.b. and greatest element

A Global Look 415

1. x ! x = x

2. x ! (y ! z) = (x ! y) ! z

3. x ! y = y ! x

4. x ! 1 = x

• adjointness

5. (x ⇒ x) = 1
6. x ⇒ (y ! z) = (x ⇒ y) ! (x ⇒ z)
7. x ! (x ⇒ y) = x ! y

8. y ! (x ⇒ y) = y

• g.l.b. and least element

9. x " x = x

10. x " (y " z) = (x " y) " z

11. x " y = y " x

12. x " 0 = x

• coherence of l.u.b. and g.l.b.

13. (x ! y) " y = y

14. (x " y) ! x = x.

Bicartesian Closed Categories

with equational representation, too

Soundness and Completeness Theorems

We can now state the fundamental result summarizing the various Soundness and
Completeness Theorems proved throughout the book.

Theorem 17.3.9 The Eightfold Way of Intuitionistic Propositional Cal-
culus. The following are equivalent, for any Γ and α:

1. Γ %N α (natural deduction)

2. Γ %H α (Hilbert system)

3. Γ %S α (sequent system)

4. Γ %T α (intuitionistic tableaux)

416 E. Intuitionistic Propositional Calculus

5. Γ |=i α (Kripke semantics)

6. Γ |=ib α (Beth semantics)

7. Γ |=a α (Heyting algebras)

8. Γ |=c α (bicartesian closed categories).

Notice how we have four syntactical notions of consequence, indicated by the
symbol %, and four semantical ones, indicated by the symbol |=. The rule of thumb
to distinguish between the two categories is that the first class is existential, requir-
ing a proof of a certain kind, while the second class is universal, requiring truth
in all structures of a given kind. The boundary is obviously somewhat blurred,
as implied by the fact that %T is a syntactical version of a semantical notion. In
any case, the illusion of the apparent outer multeplicity of the various incarnations
of the syntactical and semantical approaches is dispelled by the teaching of the
Eightfold Way, which reveals their real inner unity and exposes their equivalence
and interchangeability.

æ

Chapter 18

Heyting Algebras and
Topologies

The goal of this chapter is to take a closer look at Heyting algebras. In Sections
1–6 we introduce a linear spectrum of increasingly comprehensive classes, each of
which is characterized in a topological way. As a by-product we obtain algebraic
characterizations of the most common topological spaces, according to the following
table:

Heyting algebras topologies typical examples
finite finite

enough strong co-points closed under intersection P(ω)
algebraic generated by compact opens 2ω (Cantor space)

continuous locally quasi-compact IR (Euclidean space)
enough points arbitrary ωω (Baire space)

arbitrary P∗(ω)

In Section 7 we return to the Algebraic Completeness Theorem from the point of
view of special Heyting algebras.

The main themes of the chapter are the notions of a point and a co-point, as
well as of a Stone space and a Stone topology. We will barely scratch the surface
of the subject, and refer to Gierz, Hofmann, Keimel, Lawson, Mislove and Scott
[1980], Johnstone [1982], and Vickers [1989] for detailed treatments.

18.1 Finite Heyting Algebras

We start by considering the finite Heyting algebras, which we can easily be char-
acterized algebraically.

417

418 E. Intuitionistic Propositional Calculus

Theorem 18.1.1 Algebraic Characterization of Finite Heyting Algebras.
The finite Heyting algebras are exactly the finite distributive lattices.

Proof. By 5.3.6, a Heyting algebra is !
⊔

-distributive, and hence !"-distributive.
Conversely, a finite !"-distributive lattice is !

⊔
-distributive, because on a fi-

nite lattice the infinitary l.u.b.’s coincide with the finitary ones, and thus it is a
Heyting algebra by 5.3.5. !

For the topological characterization of finite Heyting algebras, it is convenient
to introduce the notion of a co-point. On the one hand, this is a generalization
of the notion of an atom for Boolean algebras (i.e. of an element different from
0 and with no elements between it and 0, see 20.3.4), which does not play any
significant role for Heyting algebras.1 On the other hand, this is a paradigm for
further generalizations that will play a fundamental role in this present section (see
18.2.1 and 18.3.1).

Definition 18.1.2 An element a -= 0 of a lattice is a co-point if, for every x and
y,

a / x " y =⇒ (a / x) ∨ (a / y).

A lattice A has enough co-points if, for every x and y in A,

x -= y =⇒ cp(x) -= cp(y),

where
cp(x) = {a : a co-point ∧ a / x}.

In other words, if x -= y, then there is a co-point below one of x and y but not
below the other.

The set of co-points of a lattice A is indicated by Cpt(A).

Exercises 18.1.3 a) In a linear ordering, every element .= 0 is a co-point .
b) In a finite lattice, an element .= 0 is a co-point if and only if it has only one

immediate predecessor .
c) In a distributive lattice, an element .= 0 is a co-point if and only if it is 0-irreducible,

i.e.
a = x 0 y =⇒ (a = x) ∨ (a = y).

(Hint: suppose a is 0-irreducible, and a $ x 0 y. Then

a = a + (x 0 y) = (a + x) 0 (a + y)

1A Heyting algebra can be atomic, in the sense that all elements different from 0 bound an
atom, in a trivial way. For example, in a linear ordering there can be at most one atom, and when
there is, all elements different from 0 bound the same atom: thus the atoms below the elements
do not distinguish them.

Finite Heyting Algebras 419

by distributivity, so either a = a + x or a = a + y by irreducibility, and hence a $ x or
a $ y.)

d) In a power set, an element is a co-point if and only if it is a singleton, i.e. of the
form {x}.

e) A lattice has enough co-points if and only if every element is the l.u.b. of the co-
points below it . (Hint: given x .= 0, if x is not the l.u.b. of the co-points below it, then
there is y ! x above all such co-points. If A has enough co-points, then there is a co-point
below one of x and y but not below the other, contradiction.)

f) Every finite distributive lattice has enough co-points. (Hint: by part c), the co-
points of a finite distributive lattice are exactly the 0-irreducible elements. Every element
is either 0-irreducible or the l.u.b. of the elements below it and hence, inductively, of the
0-irreducible elements below it.)

g) Every linear ordering has enough co-points. (Hint: by part a).)

h) Every power set has enough co-points. (Hint: by part d), since every set is the
union of the singletons contained in it.)

We are not directly interested in complete lattices with enough co-points, since
they are not automatically Heyting algebras (by the dual of 18.3.4 below, they are,
up to isomorphism, exactly the algebras of closed sets of topologies).

Finite topologies

Co-points however are a useful tool in the next proof, which provides a paradigm
for the proofs of some crucial later results (18.2.4 and 18.3.4). On its turn, the
proof is an extension of an analogous proof for Boolean algebras (20.3.7), which
could be usefully read at this point as a warm-up.

Theorem 18.1.4 Topological Characterization of Finite Heyting Alge-
bras. The finite Heyting algebras are, up to isomorphism, exactly the algebras of
open sets of finite topologies, i.e. of topologies with finitely many open sets.

Proof. To show sufficiency, it is enough to note that the algebra of open sets of a
topology is a Heyting algebra (5.3.4).

To show necessity, let A be any finite Heyting algebra, and consider the function
cp from A to P(Cpt(A)) defined as follows:

cp(x) = {a : a co-point ∧ a / x}.

Also, as in the proof of 5.4.2, consider the topology generated by cp(A) on Cpt(A).
Then cp is automatically a isomorphism of Heyting algebras, for the following
reasons:

• cp(0) = ∅
By definition, for any co-point a we have a -= 0, and so a -/ 0.

420 E. Intuitionistic Propositional Calculus

• cp(1) = Cpt(A)
By definition, for any element a we have a / 1.

• if x / y, then cp(x) ⊆ cp(y)
If x / y and a / x, then a / y, i.e. cp(x) ⊆ cp(y).

• cp(x ! y) = cp(x) ∩ cp(y)
For any element a,

a / (x ! y) ⇐⇒ (a / x) ∧ (a / y)

by definition of !.

• cp(x " y) = cp(x) ∪ cp(y)
For any co-point a,

a / (x " y) ⇐⇒ (a / x) ∨ (a / y).

The right to left implication holds by definition of ", for any element a. For
the left to right implication, let a be a co-point and a / x " y. Then a / x
or a / y by definition of co-point.

• cp(x ⇒ y) = (cp(x) ⇒ cp(y))
As in the proof of 5.4.2, this follows from the fact that right adjointness can
be presented equationally in terms of / and !, which are preserved by cp, and
the fact that the topology on the power set of co-points of A is the topology
generated by cp(A).

• if A has enough co-points, then cp is one-one
This is just a restatement of the definition of having enough co-points.
Notice that, by 18.1.3.f, the hypothesis that A has enough co-points is indeed
satisfied if A is finite.

• if A is finite, then cp is onto
The proofs given above actually show that cp preserves finite g.l.b.’s and
l.u.b.’s. Thus cp(A) is always closed under finite intersections and unions,
since

cp(x1) ∩ · · · ∩ cp(xn) = cp(x1 ! · · · ! xn)

and
cp(x1) ∪ · · · ∪ cp(xn) = cp(x1 " · · · " xn),

and finite g.l.b.’s and l.u.b.’s exist in a Heyting algebra. Since A is finite,
so is cp(A), and thus cp(A) is actually closed under arbitrary intersections
and unions. Thus the topology generated by cp(A) on the power set of the
co-points of A coincides with cp(A), and cp is obviously onto it. !

Finite Heyting Algebras 421

If A is a Heyting algebra with enough co-points, the set Cpt(A) of co-points of
A and its topology generated by cp(A) are respectively called the Stone space of
A and the Stone topology associated with it.

The Heyting Prime Filter Theorem

The main property of co-points, namely:

• if a / x " y, then a / x or a / y,

says that the principal filter generated by a is prime.
If we replace the function

cp(x) = {a : a co-point ∧ a / x}

by the function

f(x) = {F : F is a prime filter containing x}

in the proof of 18.1.4, we still get a homomorphism of Heyting algebras. Moreover,
the proof of the condition

if A has enough co-points, then cp is one-one

shows that
if A has enough prime filters, then f is one-one.

That any Heyting algebra has enough prime filters is the content of the so-called
Heyting Prime Filter Theorem, saying that if x -/ y on a Heyting algebra, then
there is a prime filter containing x but not y. By verifying it, as we did in 17.1.28,2
we get the proof of 5.4.2, thus showing that the latter is a generalization of the
one-one embedding part of 18.1.4 to arbitrary Heyting algebras (not necessarily
having enough co-points). More precisely, the role of co-points is taken by prime
filters, and the condition that there are enough co-points becomes the condition
that there are enough prime filters, which is always satisfied by the Heyting Prime
Filter Theorem.

Thus we extend the notions of Stone space and Stone topology to arbitrary
Heyting algebras (not necessarily with enough co-points), by considering the set
Fp

A of prime filters of A and its topology generated by f(A).

2The usual proof (17.1.28) of the Heyting Prime Filter Theorem deduces it from the Heyting
Maximal Filter Theorem, saying that if x "(y on a Heyting algebra, then there is a maximal
filter containing x but not y.

The strength of the Heyting Prime or Maximal Filter Theorems is discussed, in a dual context,
in note 6 on p. 422.

422 E. Intuitionistic Propositional Calculus

18.2 Complete Heyting Algebras with Enough Strong
Co-points !

The proof of 18.1.4 shows that the collection cp(A) of subsets of Cpt(A) is closed
under finite unions and intersections. All cp(A) lacks to be a topology, is closure
under arbitrary unions. When A is finite this closure is automatic, since there are
only finitely many subsets of Cpt(A) anyway. When A is infinite things are more
complicated, but cp(A) would still be closed under arbitrary unions, by the same
proof, if arbitrary

⊔
existed and were preserved by cp.

The first condition is easy to achieve, by requiring A to be complete. For the
second condition, we look at the proof that cp preserves finite ", and notice that
it used the notion of co-point, i.e. "-irreducibility. To achieve the second condition
we thus consider an infinitary version of the notion of co-point, already used in
6.3.28 under the name of strong finiteness.

Definition 18.2.1 An element a -= 0 of a lattice is a strong co-point if, for
every subset X,

a /
⊔

X =⇒ (∃x ∈ X)(a / x).

A lattice A has enough strong co-points if, for every x and y in A,

x -= y =⇒ scp(x) -= scp(y),

where
scp(x) = {a : a strong co-point ∧ a / x}.

In other words, if x -= y, then there is a strong co-point below one of x and y but
not below the other.

The set of strong co-points of a lattice A is indicated by Scpt(A).

Exercises 18.2.2 The next exercises are similar to the ones in 18.1.3, to which one can
turn for hints.

a) In a linear ordering, an element .= 0 is a strong co-point if and only if it has an
immediate predecessor . (Hint: if a has an immediate predecessor b, and X contains only
elements ! a, then

⊔
X $ b, i.e.

⊔
X ! a. Conversely, if a has no immediate predecessor,

let X be the set of elements ! a: then
⊔

X = a, but X has no element - a.)
b) In a finite lattice, an element .= 0 is a strong co-point if and only if it has only one

immediate predecessor .
c) In a +

⊔
-distributive lattice, an element .= 0 is a strong co-point if and only if it is⊔

-irreducible, i.e.

a =
⊔

X =⇒ (∃x ∈ X)(a = x).

d) In a power set, an element is a strong co-point if and only if it is a singleton, i.e.
of the form {x}.

Complete Heyting Algebras with Enough Strong Co-points 423

e) A lattice has enough strong co-points if and only if every element is the l.u.b. of the
strong co-points below it.

f) Every finite distributive lattice has enough strong co-points.
g) In a dense linear ordering there are no strong co-points.

h) Every power set has enough strong co-points.

The next result relates the two classes of Heyting algebras introduced in the
present and the previous sections, and it is just a restatement of some of the
previous exercises.

Proposition 18.2.3 Every finite Heyting algebra has enough strong co-points, but
there are complete Heyting algebras with enough strong co-points that are not finite.

Proof. To prove the first part, we want to show that every non-zero element of
a finite Heyting algebra is the l.u.b. of the strong co-points below it. In a finite
lattice

⊔
and " coincide, and hence so do strong co-points and co-points. If in

addition the lattice is distributive, then they both coincide with the "-irreducible
elements. And in a finite lattice every non-zero element is obviously the l.u.b. of
the "-irreducible elements below it.

To prove the second part, we want to exhibit an infinite, complete Heyting
algebra with enough strong co-points. The algebra of all sets of natural numbers
P(ω) provides an example, since every singleton is a strong co-point, and every set
is the union of the singletons contained in it. !

Topologies closed under arbitrary intersections

The next result provides a topological characterization of complete Heyting alge-
bras with enough strong co-points.

Theorem 18.2.4 Topological Characterization of Complete Heyting Al-
gebras with Enough Strong Co-points (Büchi [1952], Raney [1952]) The
complete Heyting algebras with enough strong co-points are, up to isomorphism,
exactly the algebras of open sets of topologies closed under arbitrary intersections.

Proof. To show sufficiency, first note that the open sets of a topology Ω(X) on a set
X are always closed under arbitrary unions. If they are also closed under arbitrary
intersections, then they form a complete Heyting algebra w.r.t. the set-theoretic
operations

⋃
and

⋂
. It remains to prove the following two facts:

• a topology closed under arbitrary intersections always has strong co-points
For any element x ∈ X , consider

({x})◦ = smallest open set containing x,

424 E. Intuitionistic Propositional Calculus

which exists because the open sets are closed under arbitrary intersections
(it is enough to take the intersection of all open sets containing x). Suppose
({x})◦ ⊆

⋃
i∈I Ai, with Ai open. Since x ∈ ({x})◦, at least one of the Ai’s

must contain x. Since Ai is an open set containing x, then by definition
({x})◦ ⊆ Ai, because ({x})◦ is the smallest open set containing x.

• a topology closed under arbitrary intersections always has enough strong co-
points
Suppose A and B are distinct open sets. There must be an element x in one
of them but not in the other, e.g. x ∈ B − A. Then ({x})◦ -⊆ A because
x -∈ A, and ({x})◦ ⊆ B because x ∈ B and B is open. So ({x})◦ is a strong
co-point below one of A and B but not below the other.

To show necessity, let A be any complete Heyting algebra with enough strong
co-points, and consider the function scp from A to P(Scpt(A)) defined as follows:

scp(x) = {a : a strong co-point ∧ a / x}.

Consider also the topology generated by scp(A) on Scpt(A). As in the proof of
18.1.4, scp is automatically a homomorphism of Heyting algebras. Moreover:

• if A has enough strong co-points, then scp is one-one
This is just a restatement of the definition of having enough strong co-points.

• if A is complete, then scp is onto
The proof of 18.1.4 shows that scp preserves arbitrary g.l.b.’s and finite
l.u.b.’s. Since we are using the notion of strong co-point instead of the
notion of co-point, scp also preserves arbitrary l.u.b.’s. If A is complete,
then arbitrary g.l.b.’s and l.u.b.’s exist, and thus scp(A) is closed under ar-
bitrary unions and intersections. Thus the topology generated by scp(A) on
the power set of the strong co-points of A is scp(A) itself, it is closed under
arbitrary intersections, and scp is obviously onto it. !

Notice that the proof shows in particular that a complete lattice with enough
strong co-points is a Heyting algebra, since no use of ⇒ is made in the proof of the
isomorphism.

18.3 Complete Heyting Algebras with Enough Points

The next notion is dual to 18.1.2.

Definition 18.3.1 An element a -= 1 of a lattice is a point if, for every x and y,

a 3 (x ! y) =⇒ (a 3 x) ∨ (a 3 y).

Complete Heyting Algebras with Enough Points 425

A lattice A has enough points if, for every x and y in A,

x -= y =⇒ p(x) -= p(y),

where
p(x) = {a : a point ∧ a -3 x}.

In other words, if x -= y, then there is a point above one of x and y but not above
the other.

The set of points of a lattice A is indicated by Pt(A).

Exercises 18.3.2 The next exercises are dual to the ones in 18.1.3, to which one can
turn for hints.

a) In a linear ordering, every element .= 1 is a point .
b) In a finite lattice, an element .= 1 is a point if and only if it has only one immediate

successor .
c) In a distributive lattice, an element .= 1 is a point if and only if it is +-irreducible,

i.e.
a = (x + y) =⇒ (a = x) ∨ (a = y).

d) In a power set, an element is a point if and only if it is the complement of a
singleton, i.e. of the form {x}.

e) A lattice has enough points if and only if every element is the g.l.b. of the points
above it .

f) Every finite distributive lattice has enough points.
g) Every linear ordering has enough points.

h) Every power set has enough points.

The next result relates the two classes of Heyting algebras introduced in the
present and the previous sections.

Proposition 18.3.3 Papert [1959]) Every complete Heyting algebra with enough
strong co-points has enough points, but there are complete Heyting algebras with
enough points that have no (strong) co-point.

Proof. To prove the first part, let x -/ y. Since the strong co-points below x have
l.u.b. x, there is a strong co-point a such that a / x and a -/ y. We consider the
set

F = {z : a / z},

and notice the following properties:

• F is a filter. In particular, F is closed under upward and under !.

• F contains only elements above a. In particular y -∈ F .

426 E. Intuitionistic Propositional Calculus

• No element of F is above x. This follows from the fact that F is upward
closed and x ∈ F .

• Every maximal element in F is !-irreducible, and hence a point (by 18.3.2.c).
This follows from the fact that F is closed under !.

• If X is contained in F , then
⊔

X is also in F . Otherwise a /
⊔

X , and since
a is a strong co-point there is x ∈ X such that a / x, i.e. X ∩ F -= ∅.

Let now C be any maximal chain in F containing y, which exists by Zorn’s
Lemma. Then

⊔
C is also in F . Since C is maximal,

⊔
C is a maximal element of

F , and hence a point above y (by the choice of C), but not above x (because it is
in F).

To prove the second part, we want to exhibit a complete Heyting algebra with
enough points and no co-point. The algebra of open sets of the euclidean space IR
provides an example. First, it has enough points because so does every topology
(by the first part of the proof of 18.3.4 below). Second, it has no co-point because
every open interval is the union of two different open intervals. !

Arbitrary topologies

By the Stone Representation Theorem (5.4.2, 17.1.28 and 17.2.15), every Heyting
algebra is isomorphic to a subalgebra of a topological algebra. This leaves open
the question, answered in the next result, of which Heyting algebras are actually
isomorphic to the full topological algebra.

From a complementary perspective, every topological algebra is a Heyting al-
gebra. This leaves open the question, also answered in the next result, of which
algebraic properties of Heyting algebras are characteristic of the topological alge-
bras.

The proof of the next result is dual to those of 18.1.4 and 18.2.4.

Theorem 18.3.4 Algebraic Characterization of Topologies (Papert [1959])
The complete Heyting algebras with enough points are, up to isomorphism, exactly
the algebras of open sets of topologies.

Proof. To show sufficiency, first note that the open sets of a topology Ω(X) on a
set X are closed under arbitrary unions, and hence they form a complete Heyting
algebra.3 It remains to prove the following two facts:

3Notice that, while the open sets of a topology are closed under arbitrary unions and finite
intersections, and hence infinitary l.u.b.’s and finitary g.l.b.’s are the usual set-theoretical unions
and intersections, they are not in general closed under arbitrary intersections, and thus an infini-
tary g.l.b. is only the largest open set contained in the set-theoretical intersection, i.e. the latter’s
interior.

Complete Heyting Algebras with Enough Points 427

• a topology always has points
For any element x ∈ X , consider

(
{x}

)◦
= interior of {x} = greatest open set not containing x,

which exists because the open sets are closed under arbitrary unions (it
is enough to take the union of all open sets not containing x). Suppose(
{x}

)◦
⊇ A ∩ B, with A and B open. At least one of A and B must not

contain x, otherwise x would be in the intersection too. Suppose e.g. x -∈ A.
Then A ⊆

(
{x}

)◦
by definition, since

(
{x}

)◦
is the greatest open set not

containing x.

• a topology always has enough points
Suppose A and B are distinct open sets. There must be an element x in one
of them but not in the other, e.g. x ∈ B − A. Then

(
{x}

)◦
⊇ A because

x -∈ A and A is open, and
(
{x}

)◦
-⊇ B because x ∈ B. So

(
{x}

)◦
is a point

above one of A and B but not above the other.

To show necessity, let A be any complete Heyting algebra with enough points,
and consider the function p from A to P(Pt(A)) defined as follows:

p(x) = {a : a point ∧ a -3 x}.

Consider also the topology generated by p(A) on Pt(A). As in the proof of 5.4.2,
p is automatically a isomorphism of Heyting algebras, for the following reasons:

• p(0) = ∅
By definition, for any element a we have a 3 0.

• p(1) = Pt(A)
By definition, for any point a we have a -= 1, and so a -3 1.

• if x / y, then p(x) ⊆ p(y)
If x / y and a -3 x, then a -3 y, i.e. p(x) ⊆ p(y).

• p(x ! y) = p(x) ∩ p(y)
For any point a,

a 3 (x ! y) ⇐⇒ (a 3 x) ∨ (a 3 y).

The right to left implication holds by definition of !, for any element a. For
the left to right implication, let a be a point and a 3 x ! y. Then a 3 x or
a 3 y by definition of point.

428 E. Intuitionistic Propositional Calculus

By taking negations,

a -3 (x ! y) ⇐⇒ (a -3 x) ∧ (a -3 y).

• p(x " y) = p(x) ∪ p(y)
For any element a,

a 3 (x " y) ⇐⇒ (a 3 x) ∧ (a 3 y)

by definition of ". By taking negations,

a -3 (x " y) ⇐⇒ (a -3 x) ∨ (a -3 y).

• p(x ⇒ y) = (p(x) ⇒ p(y))
As in the proof of 5.4.2, this follows from the fact that right adjointness can
be presented equationally in terms of / and !, which are preserved by p, and
the fact that the topology on the power set of points of A is the topology
generated by p(A).

• if A has enough points, then p is one-one
This is just a restatement of the definition of having enough points.

• if A is complete, then p is onto
The proofs given above actually show that p preserves finite g.l.b.’s and ar-
bitrary l.u.b.’s. Thus p(A) is always closed under finite intersections, since

p(x1) ∩ · · · ∩ p(xn) = p(x1 ! · · · ! xn),

and finite g.l.b.’s exist in a Heyting algebra. Similarly, p(A) is closed under
arbitrary unions when arbitrary l.u.b.’s exist on A, i.e. when A is a complete
Heyting algebra. Thus, if A is complete, the topology generated by p(A) on
the power set of the points of A is p(A) itself, and p is obviously onto it. !

Notice that the proof shows in particular that a complete lattice with enough
points is a Heyting algebra, since no use of ⇒ is made in the proof of the isomor-
phism.

If A is a Heyting algebra with enough points, the set Pt(A) of points of A and
its topology generated by p(A) are respectively called the dual Stone space of A
and the dual Stone topology4 associated with it.

Exercises 18.3.5 Sober spaces. (Stone [1937], Grothendieck and Dieudonné [1960])
A topological space is called sober if:

1. the open sets
(
{x}

)◦
are the only points

4Some authors call the dual Stone topology the hull-kernel topology.

Complete Heyting Algebras with Enough Points 429

2. if x .= y, then
(
{x}

)◦
.=

(
{y}

)◦
.

A topological space is called T2 or Hausdorff if every two distinct points can be
separated by disjoint open sets, i.e. if x .= y, then there are disjoint open sets A and B
such that x ∈ A and y ∈ B.

a) The two conditions in the definition of a sober space are independent. (Hint: if X
has at least two elements, and ∅ and X are the only open sets, then 1 holds but 2 fails.
If X is infinite and its cofinite subsets are the only nonempty open sets, then 2 holds but
1 fails.)

b) A sober space is T0, but there are T0 not sober spaces. (Hint: 2 is equivalent to the
T0 axiom. For a T0 not sober space, see the second example in part a).)

c) A T2 space is sober, but there are sober not T2 spaces. (Hint: in a T2 space the
points are exactly the complements of singletons, i.e. the ones of the form {x}, because if
A is an open set not containing two elements y .= z, then there are disjoint open sets B
and C such that y ∈ B and z ∈ C. Then A = (A ∪ B) ∩ (A ∪ C), and A is not a point.

For a sober not T2 space, consider the order topology of a finite linear ordering.)
d) A topology is homeomorphic to the dual Stone topology of a complete Heyting algebra

with enough points if and only if it is sober . (Hint: consider a complete Heyting algebra
A with enough points, and its dual Stone topology Ω(Pt(A)) on the set of points Pt(A),
defined in the proof of 18.3.4. Notice that if X is an open set, then X = p(a) for one and
only one a, because p is onto and one-one. Notice that:

• An open set X is a point of the topology if and only if X = p(a) for some point a
of A.

• If a is a point of A, then p(a) =
(
{a}

)◦
.

Indeed, if a is a point and p(x) does not contain a, then a - x by definition of p. So
p(a) ⊇ p(x), because p preserves -, and p(a) is the greatest open set not containing
a.

From this 1 follows immediately, and 2 follows because p is one-one, i.e. Ω(Pt(A)) is sober.

Conversely, let X be a space with a sober topology Ω(X). Then the map

x >−→
(
{x}

)◦
from X to Pt(Ω(X))

is onto and one-one by 1 and 2, i.e. an isomorphism. And it is automatically a home-
omorphism because, being Ω(X) a complete Heyting algebra with enough points, the
map

B >−→ {
(
{x}

)◦
:
(
{x}

)◦
.⊇ B} from Ω(X) to Ω(Pt(Ω(X)))

is an isomorphism.)

The Heyting Prime Ideal Theorem

The reason for the word ‘dual’ used for the space and topology introduced in the
proof of 18.3.4 comes from the fact that we have there switched from the filters

430 E. Intuitionistic Propositional Calculus

used in the previous versions of the Stone Representation Theorem (5.4.2, 17.1.28
and 17.2.15), to ideals.5 Indeed, the main property of points, namely:

• if a 3 x ! y, then a 3 x or a 3 y,

says that the principal ideal generated by a is prime.
If we replace the function

p(x) = {a : a point ∧ a -3 x}

by the function

i(x) = {I : I is a prime ideal not containing x}

in the proof of 18.3.4, we still get a homomorphism of Heyting algebras. Moreover,
the proof of the condition

if A has enough points, then p is one-one

shows that
if A has enough prime ideals, then i is one-one.

That any Heyting Algebra has enough prime ideals is the content of the so-called
Heyting Prime Ideal Theorem saying that if x -/ y on a Heyting algebra, then
there is a prime ideal containing y but not x.6 By verifying it, with a proof dual
to that of 17.1.28, we get a dual proof of 5.4.2.

Thus we extend the notions of dual Stone space and dual Stone topology
to arbitrary Heyting algebras (not necessarily with enough points), by considering
the set Ip

A of prime ideals of A and its topology generated by i(A).
5This also accounts for the slight backwardness of the definition of p, since a subset of a lattice

is a prime filter if and only if its complement is a prime ideal (see also note 7 on p. 426), and thus
prime filters containing x correspond to prime ideals not containing x.

Indeed, if we defined
p(x) = {a : a point ∧ a - x},

then we would have

p(x . y) = p(x) ∪ p(y) and p(x 0 y) = p(x) ∩ p(y),

and thus p would preserve neither of . and 0.
6The usual proof of the Heyting Prime Ideal Theorem deduces it from the Heyting Maximal

Ideal Theorem saying that if x "(y on a Heyting algebra, then there is a maximal ideal
containing y but not x (see 17.1.28).

The Heyting Prime Ideal Theorem is not provable in ZF (Tarski [1954], $Loš and Ryll-
Nardzewski [1954]), it implies a weak form of the Axiom of Choice (namely, the existence of
a choice function for any family of nonempty finite sets), but it does not imply the full Axiom of
Choice (Halpern [1964]).

The Heyting Maximal Ideal Theorem is equivalent to the Axiom of Choice (Scott [1954], Mrowka
[1956], and Klimovsky [1958]), and hence it is strictly stronger than the Heyting Prime Ideal
Theorem.

Arbitrary Heyting Algebras 431

While for the sake of the Stone Representation Theorem both filters and ideals
eventually produce the same result, we should notice that filters are more natural
from the point of view of logic, since they correspond to sets of formulas closed
under %N and ∧ (equivalently, by 5.1.11, closed under →), while ideals are more
natural from the point of view of topology, since a topology may have no co-point
at all (see the proof of 18.3.3), while it always has enough points (see 18.3.4).

Exercises 18.3.6 Points in Heyting algebras of ideals. Given a lattice A, let IA

be the set of its ideals.
a) If A is a distributive lattice, then IA is a complete Heyting algebra with enough

points. (Hint: the g.l.b. of a finite family of ideals is their set-theoretical intersection ∩,
and the l.u.b.

⊔
of an arbitrary family is the smallest ideal containing the set-theoretical

union. Thus IA is a complete lattice. IA is a Heyting algebra by 5.3.5, since the +
⊔

-
distributive law holds: if a ∈ I ∩ (

⊔
x∈X

Jx), then a ∈ I and a ∈
⊔

x∈X
Jx, i.e. a $

a1 0 · · · 0 an for some ai ∈ Jxi ; thus a ∈
⊔

x∈X(I ∩ Jx).)
We now prove that the points of IA are exactly the prime ideals. Suppose I is a point

of IA, and it contains a+ b: then it contains the principal ideal generated by a+ b, which
is the intersection of the principal ideals generated by a and b; since I is a point, it must
contain one of these principal ideals, and hence one of a and b. Conversely, if I is a prime
ideal, suppose I ⊇ I1 ∩ I2, but I .⊇ I1, i.e. x ∈ I1 − I for some x: if y ∈ I2, then x + y is
in I , and y ∈ I because I is prime and x .∈ I ; thus I2 ⊆ I .

That IA has enough points now follows from the fact that it has enough prime ideals.
More precisely, if I .⊆ J , then there is an a ∈ I − J , and there is a prime ideal containing
I but not a, and hence not J . Notice that the existence of a maximal filter containing I
but not a is immediate by Zorn’s Lemma, and distributivity is needed to deduce that a
maximal ideal is prime, see 17.1.28.)

b) If A is a Heyting algebra, then the dual Stone topologies of A (as an arbitrary
Heyting algebra) and IA (as a Heyting algebra with enough points) coincide. (Hint: the
dual Stone topology of A is generated by

i1(x) = {I : I is a prime ideal ∧ x .∈ I},

while the dual Stone topology of IA is generated by

i2(J) = {I : I is a prime ideal ∧ I .⊇ J}.

But I .⊇ J means that x ∈ J − I for some x, and hence i(J) =
⋃

x∈J
i(x), i.e. a basic open

set of the dual Stone topology of IA is an open set of the dual Stone topology of A.)

18.4 Arbitrary Heyting Algebras

In the previous section we focused on topologies, and characterized them from the
point of view of Heyting algebras. In the present section we focus on arbitrary
Heyting algebras, and characterize them from the point of view of topology.

The next result shows that there is indeed a need to look for classes of Heyting
algebras more general than those considered so far.

432 E. Intuitionistic Propositional Calculus

Proposition 18.4.1 There are complete Heyting algebras without points, as well
as Heyting algebras that are not complete.

Proof. For an example of a complete Heyting algebra without points, consider
the sets of natural numbers modulo cofinite sets P∗(ω), i.e. the quotient Heyting
algebra obtained from P(ω) w.r.t. the filter of cofinite sets. There is no point
because each equivalence class except the greatest one contains coinfinite sets. And
if A is coinfinite, then it is the intersection of two coinfinite sets A1 and A2 differing
coinfinitely from A (e.g. Ai = A ∪ Bi, where B1 and B2 are infinite disjoint sets
such that B1 ∪ B2 = A).

For an example of a Heyting algebra that is not complete, consider the set of
rational numbers between 0 and 1 , as a linearly ordered set. It is a Heyting algebra
by 5.3.1, but is obviously not complete. !

Lindenbaum algebras

In 5.2.2, 5.2.3, 17.1.26 and ?? we have proved the following result.

Theorem 18.4.2 Algebraic Soundness and Completeness (Jaskowski [1936],
Tarski [1937]) For any Γ and α,

Γ %N α ⇐⇒ Γ %a α.

The Algebraic Completeness Theorem provides us with a canonical Heyting
algebra A∅, consisting of the equivalence classes of formulas under the equivalence
relation induced by intuitionistic provable equivalence.

The Algebraic Soundness Theorem shows that any function from the proposi-
tional letters to a Heyting algebra A, i.e. any environment on A, can be extended
to a homomorphism of Heyting algebras from A∅ to A, i.e. to the canonical inter-
pretation associated with the environment. This property is concisely expressed
by saying that A∅ is the free Heyting algebra on countably many generators . More
precisely, the generators are the equivalence classes of propositional letters, which
are countably many because distinct letters cannot be provably equivalent.

Exercise 18.4.3 a) A∅ is not a topological Heyting algebra. (Hint: it is enough to show

that A∅ has no point. If α corresponds to a point, then [[α]] .= 1 and α is unprovable.
Choose any letter p not occurring in it. Then [[p]]+ [[¬p]] = 0 $ [[α]], but neither [[p]] $ [[α]]

nor [[¬p]] $ [[α]], otherwise p → α or ¬p → α would be provable, which is impossible.)

From the Algebraic Soundness Theorem we obtain as usual the following result,
which provides a first characterization of Heyting algebras.

Theorem 18.4.4 First Representation for Heyting Algebras (Tarski [1935])
Any Heyting algebra is isomorphic to a Lindenbaum algebra for the Intuitionistic
Propositional Calculus.

Arbitrary Heyting Algebras 433

Proof. As in 5.4.1. !

Compact open sets of Stone topologies

The Stone Theorem provides a second characterization of Heyting algebras.

Theorem 18.4.5 Second Representation for Heyting Algebras (Stone [1937],
McKinsey and Tarski [1946]) Any Heyting algebra is isomorphic to a subalgebra
of the algebra of open sets of its Stone space.

Proof. See 5.4.2, 17.1.28 and 17.2.15. !

Our next goal is to characterize in a topological way the relevant subalgebras
of Stone spaces. The following turns out to be the crucial notion.

Definition 18.4.6 A subset X of a topological space is compact if, whenever it
is covered by an union of open sets, it is already covered by a finite subunion.

To prove the next result we show that the Stone topologies are actually gener-
ated by their compact open sets.

Theorem 18.4.7 Third Representation for Heyting Algebras (Stone [1937a])
Any Heyting algebra is isomorphic to the algebra of compact open sets of its Stone
topology.

Proof. The proof of 17.1.28 shows that if Fp
A is the set of all prime filters on A,

then the function f : A → P(Fp
A) defined as follows:

f(x) = the set of all prime filters containing x

is a one-one homomorphism of Heyting algebras.
It thus only remains to characterize f(A) as the set of compact open sets.

• every compact open set is in f(A)
Let X be a compact open set. Since X is open and f(A) generates the Stone
topology, there is a subset B of A such that

X =
⋃

x∈B

f(x).

Since X is compact, there is a finite subset {x1, . . . , xn} of B such that

X = f(x1) ∪ · · · ∪ f(xn).

Then
X = f(x1 " · · · " xn)

because f preserves ", and thus X ∈ f(A).

434 E. Intuitionistic Propositional Calculus

• every element of f(A) is compact open
We first prove by contradiction that f(1), i.e. the whole space Fp

A, is compact.
Suppose

f(1) =
⋃

x∈B

f(x)

but, for every finite subset {x1, . . . , xn} of B,

f(1) -= f(x1) ∪ · · · ∪ f(xn).

Then
f(1) -= f(x1 " · · · " xn)

because f preserves ", and

1 -= x1 " · · · " xn

by one-onenness of f .

We want to find a prime filter F containing no x ∈ B, contradicting the fact
that

Fp
A = f(1) =

⋃

x∈B

f(x),

i.e. that every prime filter contains some x for x ∈ B.

To find F it is enough to find a prime ideal I containing every x ∈ B, and
then let F be its complement (since, on any lattice, I is a prime ideal if and
only if its complement is a prime filter7). Consider then the ideal generated
by B, which (as in 5.1.12.b) consists of the downward closure of the set of all
finite joins of elements of B. Such an ideal is proper because, as noted above,
all finite joins of elements of B are -= 1.

Then the set of all proper ideals containing B is non empty and partially
ordered by inclusion, and every nonempty chain has a l.u.b. (which is just the
union of the chain). By Zorn’s Lemma, there is a maximal ideal I containing
B, and such an ideal is prime as in the (dual) proof of 17.1.28.

7We show, for example, that if I is a prime ideal, then I is a filter (which is what is needed
above):

– if x ∈ I and x (y, then y ∈ I
Suppose y ∈ I. By downward closure of I, x ∈ I.

– if x, y ∈ I, then x . y ∈ I
Suppose x . y ∈ I. By primality of I, x ∈ I or y ∈ I.

– if x 0 y ∈ I, then x ∈ I or y ∈ I
Suppose x, y ∈ I. By closure under 0 of I, x 0 y ∈ I.

Algebraic Heyting Algebras ! 435

The proof that f(a) is compact is a variation of the one just given for f(1).
Indeed, suppose

f(a) ⊆
⋃

x∈B

f(x)

but, for every finite subset {x1, . . . , xn} of B,

f(a) -⊆ f(x1) ∪ · · · ∪ f(xn).

Then
f(a) -⊆ f(x1 " · · · " xn)

because f preserves ", and

a -/ x1 " · · · " xn

because f preserves /, in particular

1 -= x1 " · · · " xn.

As above, there is a prime filter F containing a but no element of B (since
the ideal generated by B does not contain a), contradiction. !

Corollary 18.4.8 (Stone [1937]) Given an arbitrary Heyting algebra, its (dual)
Stone space is compact, and its (dual) Stone topology is generated by the compact
open sets.

Proof. The proof of 18.4.7 proves the assertion for the Stone space Fp
A = f(1) of

a Heyting algebra A. A dual proof works for the dual Stone space. !

18.5 Algebraic Heyting Algebras !

In the present section we introduce an abstract version of the notion of compactness,
as well as of the property of (dual) Stone topologies of being generated by a Heyting
algebra of compact open sets.

Definition 18.5.1 (Birkhoff and Frink [1948], Nachbin [1949]) Given a
complete lattice A, an element a is called compact if, whenever a /

⊔
X, there

is a finite subset u of X such that a /
⊔

u.
A lattice A is called algebraic if it is complete, and every element is the l.u.b.

of the compact elements below it.

436 E. Intuitionistic Propositional Calculus

The set of compact elements of a complete lattice A is indicated by K(A).
As usual, we can say that a complete lattice A has enough compact elements

if, for every x and y in A,

x -= y =⇒ k(x) -= k(y),

where
k(x) = {a : a compact ∧ a / x}.

In other words, if x -= y, then there is a compact element below one of x and y
but not below the other. Then a complete lattice is algebraic if and only if it has
enough compact elements . However, since the proof of 18.5.4 does not make any
use of the function k, it is simpler to confine to the definition above.

Exercises 18.5.2 a) If the +
⊔

-distributive law holds, then a is compact if and only if,
whenever a =

⊔
X, there is a finite subset u of X such that a =

⊔
u. (Hint: suppose

a $
⊔

X. Then

a = a + (
⊔

X) =
⊔

{a + x : x ∈ X},

and there is a finite subset u of X such that

a =
⊔

{a + x : x ∈ u} = a + (
⊔

u),

i.e. a $
⊔

u.)
b) An element of a complete lattice is a strong co-point if and only if it is a compact

co-point . (Hint: let a $
⊔

X. If a is compact, then a $
⊔

u for some finite u ⊆ X. And
if a is a co-point, then a $ x for some x ∈ u.)

c) Every finite lattice is algebraic. (Hint: in a finite lattice every element is compact.)
d) A complete linear ordering is algebraic if and only if any two distinct elements are

separated by a gap, i.e. by two elements with nothing in between. (Hint: first notice that
in a linear ordering an element is compact if and only if it is 0 or it has an immediate
predecessor. Indeed, if x has an immediate predecessor y, then any ideal of elements ! x
has l.u.b. $ y ! x. If x has no immediate predecessor, then the set I of all y ! x is an
ideal with l.u.b. x, to which x does not belong.

If the ordering is algebraic and x ! y, then y .$ x, and there is a compact element
k $ y such that k .$ x. Then x ! k, and hence k and its predecessor are between x and
y. Conversely, if the distinct elements are separated by a gap and x .= 0, then x is the
l.u.b. of elements with an immediate predecessor.)

e) Every power set is algebraic. (Hint: in a power set an element is compact if and
only if it is finite, because every set is the union of its finite subsets.)

f) Every algebraic c.p.o. (see 6.3.28) is an algebraic Heyting algebra. (Hint: an alge-
braic c.p.o. is a complete lattice with enough strong co-points.)

It follows from 18.5.2.c that not every algebraic lattice is distributive, and in
particular not every algebraic lattice is a Heyting algebra. On the other hand, lack
of distributivity is the only obstruction, since a distributive algebraic lattice is a

Algebraic Heyting Algebras ! 437

Heyting algebra (by 18.6.4 below, an algebraic lattice is continuous; and as noticed
after 18.6.3, a distributive continuous lattice is a Heyting algebra).

The next result, together with 18.6.4 and 18.6.5, locates the class of algebraic
Heyting algebras in the spectrum of Heyting algebras dealt with in the present
section.

Proposition 18.5.3 Every complete Heyting algebra with enough strong co-points
is algebraic, but there are algebraic Heyting algebras without (strong) co-points.

Proof. A complete Heyting algebra with enough strong co-points is algebraic
because, by 18.5.2.b, a strong co-point is compact. Then, if every element is the
l.u.b. of the strong co-points below it, it is also the l.u.b. of the compact elements
below it.

An example of an algebraic Heyting algebra without (strong) co-points is the
algebra of open sets of the Cantor space 2ω, i.e. the set of all 0,1-valued functions
on ω, with the topology generated by the sets {f : f ⊇ σ} of functions having a
common fixed initial segment σ. The Cantor space is algebraic because such sets
are compact, by König’s Lemma, and generate the topology by definition. And
there is no co-point because each such set is the union of different open sets, since
each function having σ as an initial segment must have either 0 or 1 as its next
value:

{f : f ⊇ σ} = {f : f ⊇ σ ∗ 0} ∪ {f :⊇ σ ∗ 1}. !

Topologies generated by their compact open sets

The next result provides a topological characterization of algebraic Heyting alge-
bras.

Theorem 18.5.4 Topological Characterization of Algebraic Heyting Al-
gebras (Hofmann and Keimel [1972]) The algebraic Heyting algebras are, up
to isomorphism, exactly the algebras of open sets of topologies generated by their
compact open sets.

Proof. Sufficiency is immediate by Definition 18.5.1, since the algebraic notion of
compactness is patterned on the topological one.

To show necessity, we prove in 18.6.4 and 18.6.5 below that an algebraic Heyting
algebra A has enough points. By 18.3.4, such an algebra is isomorphic to the algebra
of open sets of the form

p(x) = {a : a point ∧ a -3 x}.

It is thus enough to notice that such a topology is generated by the compact open
sets. Since the topology is generated by p(A), it is enough to show that every

438 E. Intuitionistic Propositional Calculus

element of p(A) is the union of the compact open sets contained in it. Since every
element of A is the l.u.b. of the compact elements below it, and p preserves arbitrary
l.u.b.’s, it is enough to prove that the image of a compact element is compact.

Let thus a be compact on A, and p(a) ⊆
⋃

x∈X p(x). Then p(a) ⊆ p(
⊔

X) be-
cause p preserves arbitrary l.u.b.’s, and then a /

⊔
X because p is an isomorphism.

But a is compact, so a /
⊔

u for some finite u ⊆ X . Then

p(a) ⊆ p(
⊔

u) =
⋃

x∈u

p(x),

i.e. p(a) is compact. !

Exercises 18.5.5 Arithmetic Heyting algebras. A Heyting algebra A is called
arithmetic if it is algebraic, and the compact elements are a subalgebra of A, i.e. they
are closed under the Heyting algebra operations +, 0 and ⇒, and contain 0 and 1.

a) The set of compact elements of a complete lattice A contains 0 and is closed under
0. (Hint: if a and b are compact, suppose (a 0 b) $

⊔
X. Then there are finite subsets

ua and ub of X such that a $
⊔

ua and b $
⊔

ub, i.e. (a 0 b) $
⊔

(ua ∪ ub).)
b) Every finite Heyting algebra is arithmetic. (Hint: in a finite lattice every element

is compact.)
c) An algebraic linear ordering is arithmetic if and only if 1 has an immediate prede-

cessor . (Hint: since in a linear ordering x+y = x and x ⇒ y is either y or 1, the compact
elements are automatically a subalgebra if 1 is compact.)

d) The only arithmetic power sets are the finite ones. (Hint: closure under ⇒ implies
that if a is finite then so is a = a ⇒ 0, i.e. a must be cofinite too.)

e) Every arithmetic Heyting algebra is algebraic, but there are algebraic Heyting alge-
bras that are not arithmetic. (Hint: by 18.5.2.e and part d).)

f) The arithmetic Heyting algebras are, up to isomorphism, exactly the algebras of

open sets of compact topologies such that the compact open sets generate the topology and
form a subalgebra. (Hint: by 18.5.4 and part a).)

Exercises 18.5.6 Compact elements in Heyting algebras of ideals. Given a lattice
A, let IA be the set of its ideals.

a) If A is a Heyting algebra, then IA is an arithmetic Heyting algebra. (Hint: we first
prove that the compact elements of IA are exactly the principal ideals ↓ a generated by
elements a ∈ A. Suppose I is a compact element of IA. Since I is the l.u.b. of the principal
ideals ↓ a for a ∈ I , it is also the l.u.b. of a finite set of principal ideals ↓ a1, . . . , ↓ an,
and hence it is the principal ideal ↓(a1 0 · · ·0 an). Conversely, suppose (↓a) ⊆

⊔
x∈X

Jx:

then a ∈
⊔

x∈X
Jx, i.e. a $ a1 0 · · · 0 an for some ai ∈ Jxi ; thus a ∈ Jx1 0 · · · 0 Jxn , i.e.

(↓a) ⊆ Jx1 0 · · · 0 Jxn , and ↓a is compact.
That IA is arithmetic now follows from the facts that every ideal is the l.u.b. of the

principal ideals generated by its elements, and that the principal ideals form a subalgebra
of IA, i.e. (↓ a) ∩ (↓ b) = ↓ (a + b), (↓ a) ⇒ (↓ b) = ↓ (a ⇒ b), and (↓ 1) = A, since
preservation of 0 and 0 is automatic by 18.5.5.a.

Continuous Heyting Algebras ! 439

For example, (↓ a) ⇒ (↓ b) is the smallest ideal containing all ideals I such that
I ∩ (↓a) ⊆ (↓b). If x belongs to it, then x $ x1 0 · · ·0xn, with xi +a $ b. Thus x+a $ b,
i.e. x $ (a ⇒ b), and x ∈ ↓ (a ⇒ b). Conversely, ↓ (a ⇒ b) is an ideal of elements x such
that x + (a ⇒ b), i.e. x + a $ b, and thus an ideal contained in (↓a) ⇒ (↓b).)

b) Any arithmetic Heyting algebra is isomorphic to IA, for some Heyting algebra A.
(Hint: given an arithmetic Heyting algebra B, let K(B) be the set of its compact elements.
Since B is arithmetic, K(B) is a subalgebra of A, and hence a Heyting algebra. It is thus
enough to show that B 8 IK(B), via the function

k(a) = {c : c is compact ∧ c $ a}.

Indeed, k(a) is an ideal of compact elements of B because it is trivially closed downward,
and the compact elements are closed under +. Moreover, k is onto because each ideal of

compact elements is the image of the l.u.b. of its elements. And k is one-one because the

compact elements generate B, i.e. every element of B is the l.u.b. of the compact elements
below it, and if two elements are distinct there must be a compact element below one but

not the other.)

Exercise 18.5.7 Coherent spaces. (Stone [1937], Serre [1955]) A topological space is
called coherent if:

1. as a topology, it is sober (see 18.3.5)

2. as a Heyting algebra, it is arithmetic (see 18.5.1).

A topology is homeomorphic to the dual Stone topology of a Heyting algebra if and only
if it is coherent . (Hint: given a Heyting algebra A, by 18.3.6.b the dual Stone topologies
of A and of IA are the same. By 18.3.6.a, IA is a complete Heyting algebra with enough
points. By 18.3.5, its dual Stone topology is thus sober, and it satisfies 1. A proof dual
to that of 18.4.7 shows that it also satisfies 2.

Conversely, let Ω(X) be a coherent space, and KΩ(X) be the set of its compact open
sets. By 1 and 18.3.5.d,

Ω(X) 8 Ω(Pt(Ω(X))),

By 2 and 18.5.6.b,
Ω(X) 8 IKΩ(X),

i.e.
Ω(Pt(Ω(X))) 8 Ω(Pt(IKΩ(X))).

Thus Ω(X) is homeomorphic to the dual Stone topology of the Heyting algebra IKΩ(X)

(as a Heyting algebra with enough points), and by 18.3.6.b also to the dual Stone topology

of the Heyting algebra KΩ(X) (as an arbitrary Heyting algebra).)

18.6 Continuous Heyting Algebras !

Strong co-points and compact elements can be considered as approximations to
elements, generating the lattice when there are enough of them. We now relativize
the notion of compactness and introduce a further notion of approximation, which
turns out to be the most appropriate for applications.

440 E. Intuitionistic Propositional Calculus

Definition 18.6.1 (Scott [1972]) An element a of a lattice is way below an-
other element x (a . x) if a is in any ideal I such that x /

⊔
I.

A lattice is continuous if it is complete and, for all x,

x =
⊔

{a : a F x}.

If we let
i(x) =

⋂
{I : I ideal ∧ x /

⊔
I}

and
d(x) =

⋂
{D : D downward closed ∧ x /

⊔
D},

then
d(x) ⊆ i(x) = {a : a F x} ⊆ {a : a / x},

where the first inclusion follows from the fact that every ideal is downward closed,
and the second from the fact that {a : a / x} is an ideal with l.u.b. x. In particular,
F is stronger than /, i.e.

a F x =⇒ a / x.

Proposition 18.6.2 F is transitive and dense.

Proof. Transitivity is immediate. Suppose a F b F c and c /
⊔

I. Then b ∈ I,
because b F c. And a ∈ I, because I is an ideal and a / b (since a F b).

To prove density, suppose a F b and consider the set

I = {x : (∃y)(x F y F b)}.

It is enough to show that I is an ideal such that b /
⊔

I. Then a ∈ I, because
a F b. And a F y F b for some y, by definition of I.

• I is downward closed
Suppose z / x and x ∈ I. Then x F y F b for some y, by definition of I.
And z F y because z / x F y, by definition of F. Thus z F y F b, and
z ∈ I.

• I is closed under "
Suppose x1 F y1 F b and x2 F y2 F b. Since {z : z F b} is an ideal, being
an intersection of ideals, y1 " y2 F b. Since {z : z F y1 " y2} is an ideal,
x1 " x2 F y1 " y2. Thus x1 " x2 F y1 " y2 F b, and x1 " x2 ∈ I.

• b /
⊔

I
Since I is an ideal of elements F b,

⊔
I / b. Suppose

⊔
I " b. Since the

elements way below b have l.u.b. b, there is y F b such that y -/
⊔

I. Since
the elements way below y have l.u.b. y, there is x F y such that x -/

⊔
I.

Thus x F y F b, i.e. x ∈ I, and x -/
⊔

I, contradiction. !

Continuous Heyting Algebras ! 441

Exercises 18.6.3 a) An element a of a complete lattice is compact if and only if a @ a.
(Hint: one direction follows from the fact that ideals are closed under l.u.b.’s of finite sets.
The other direction follows by considering the ideal generated by X, i.e. the downward
closure of the set of l.u.b.’s of finite subsets of X.)

b) In a linear ordering, a @ x if and only if a ! x or a = x @ x. And x @ x if and
only if x = 0 or x has an immediate predecessor . (Hint: see 18.5.2.d.)

c) In a finite lattice, a @ x if and only if a $ x. And x @ x for every x.(Hint: in a
finite lattice

⊔
I ∈ I . So, if x $

⊔
I , then x ∈ I . And if a $ x, then a ∈ I too.)

d) In a +
⊔

-distributive lattice, a @ x if and only if a is in any ideal I such that
x =

⊔
I . (Hint: suppose x $

⊔
I . By +

⊔
-distributivity

x = x +
⊔

I =
⊔

{x + i : i ∈ I},

and the right-hand-side is the l.u.b. of an ideal. So a $ x + i for some i, and a ∈ I .)
e) In a power set, a @ x if and only if a is a finite subset of x. And x @ x if and

only if x is finite. (Hint: let I be the the ideal of finite subsets of x, so that x =
⋃

I . If
a @ x, then a ∈ I .)

f) Every finite lattice is continuous. (Hint: by part c).)
g) Every complete linear ordering is continuous. (Hint: by part b).)

h) Every power set is continuous. (Hint: by part e).)

It follows from 18.6.3.f that not every continuous lattice is distributive, and in
particular not every continuous lattice is a Heyting algebra. On the other hand,
lack of distributivity is the only obstruction, since a distributive continuous lattice
is a Heyting algebra (as noticed after the proof of 18.6.5 below, a distributive
continuous lattice has enough points; and as noticed after the proof of 18.3.4, a
complete lattice with enough points is a Heyting algebra).

The next two results locate the class of continuous Heyting algebras in the
spectrum of Heyting algebras dealt with in the present chapter.

Proposition 18.6.4 Every algebraic lattice is continuous, but there are continuous
Heyting algebras that are not algebraic.

Proof. To prove the first part, it is enough to notice that, by 18.6.3.a, if a is a
compact element such that a / x, then a F a / x, and hence a F x. Then,
if every element is the l.u.b. of the compact elements below it (i.e. if the lattice
is algebraic), it is also the l.u.b. of the elements way below it (i.e. the lattice is
continuous).

To prove the second part, we want to exhibit a continuous Heyting algebra that
is not algebraic. The algebra of open sets of the euclidean space IR provides an
example.

First, such a Heyting algebra is not algebraic because the only compact open
set is ∅.

442 E. Intuitionistic Propositional Calculus

Second, we prove that if V is an open set and U is an open interval whose
closure cl(U) is contained in V , then U F V . Continuity then follows from the
fact that the open intervals generate the topology (more specifically, that every
open set is a union of open intervals).

Suppose V ⊆
⋃

i∈I Ai, where I = {Ai}i∈I is an ideal of open sets. Then

U ⊆ cl(U) ⊆ V ⊆
⋃

i∈I

Ai.

Since cl(U) is a closed interval, it is compact. Then there are i1, . . . , in such that

U ⊆ cl(U) ⊆ Ai1 ∪ · · · ∪ Ain .

But Ai1 ∪ · · · ∪ Ain ∈ I by closure under finite ∪, and then U ∈ I by downward
closure of I. !

Proposition 18.6.5 (Papert [1959]) Every continuous Heyting algebra has enough
points, but there are complete Heyting algebras with enough points that are not con-
tinuous.

Proof. To prove the first part, we refer to the proof of 18.3.3. To be able to extend
its last part, given x -/ y we need to find a filter F with the properties used there.

Since the elements way below x have l.u.b. x, there is a F x such that a -/ y.
By density of F (18.6.2), there is an infinite descending chain

a F · · · F x2 F x1 F x.

We consider the set
F = {z : (∃n)(xn / z)},

and notice the following properties:

• F is a filter, being the union of the principal filters generated by the xn’s. In
particular, F is closed upward and under !.

• F contains only elements above a. In particular y -∈ F .

• No element of F is above x. This follows from the fact that x ∈ F (because
x1 F x, and hence x1 / x), since F is upward closed.

• Every maximal element in F is !-irreducible, and hence a point (by 18.3.2.c).
This follows from the fact that F is closed under !.

• If I is an ideal contained in F , then
⊔

I is also in F .8 Otherwise
⊔

I is in
F , and there is some n such that xn /

⊔
I. Since xn+1 F xn, xn+1 must

be below some element of I, which is impossible because I is contained in F ,
and F is upward closed.

8This property of F (of being inaccessible by l.u.b.’s of ideals in F) is characteristic of open
sets in the Scott topology, see 18.6.14.

Continuous Heyting Algebras ! 443

Let now C be any maximal chain in F containing y, which exists by Zorn’s
Lemma. The downward closure of C is an ideal I contained in F , and thus

⊔
I is

also in F . Since C is maximal,
⊔

I is a maximal element of F , and hence a point
above y (by the choice of C), but not above in x (because it is in F).

To prove the second part, we want to exhibit a complete Heyting algebra with
enough points that is not continuous. An example is provided by the algebra of
open sets of the Baire space ωω, i.e. the set of all functions on ω, with the topology
generated by the sets {f : f ⊇ σ} of functions having a common fixed initial
segment σ.

First, we prove that such an algebra has enough points. Indeed, for any function
f , the set {f} is a point: it is open because it is the union of the basic open sets
defined by initial segments σ differing from f on at least one point; and it is a point
because if {f} ⊇ A ∩ B, then at least one of A and B does not contain f , and it
is thus contained in {f}. Moreover, there are enough points because if A and B
are distinct open sets, then there is a function f in one but not in the other, say
f ∈ A − B. Then the point {f} contains B, but not A.

Second, to prove that such an algebra is not continuous it is enough to show
that if A and B are open sets such that A F B, then A = ∅. Suppose A -= ∅: it is
enough to show that it is possible to decompose the whole space ωω into infinitely
many disjoint open sets, each containing at least an element of A. If I is the ideal
generated by such open sets, then B ⊆

⋃
I: since A F B, A should be in I, and

hence be contained in a finite union of such open sets, contradiction.

If A -= ∅, then A contains a basic open set, defined by an initial segment σ.
On the one hand, the complement of such an open set is open, being the union of
the basic open sets defined by initial segments incompatible with σ. On the other
hand, such an open set is the disjoint union of infinitely many basic open sets, i.e.
the ones defined by one element extensions of σ. The needed decomposition of the
whole space is easily obtained from these open sets. !

Notice that the first part of the proof shows in particular that a distributive con-
tinuous lattice has enough points, since no use of ⇒ was made in it. Distributivity,
which was used when claiming that a !-irreducibile element is a point, is essential
because the previous proof can be combined with that of 18.3.4 to show that a dis-
tributive continuous lattice is a Heyting algebra, while not every continuous lattice
is such (by 18.6.3.f).

As for the second part of the proof, it will be put into a broader perspective by
18.6.11.c. In particular, the fact that the algebra of open sets of the Baire space is
not continuous follows from the fact that the topology is T2 but not locally compact
(more precisely, the interior of any compact set is empty).

444 E. Intuitionistic Propositional Calculus

Locally quasi-compact topologies

We now look for a topological characterization of the class of continuous Heyting
algebras.

By 18.4.8 the (dual) Stone topology of an arbitrary Heyting algebra is generated
by compact open sets, since each f(x) is compact. We now look at the dual Stone
topology of a continuous Heyting algebra (as an algebra with enough points), and
show that it is generated by the interiors of compact open sets, in the following
sense.

Definition 18.6.6 A topological space is called locally quasi-compact if, for
any element x and any open set V such that x ∈ V , there are a compact set Cx

and an open set Ox such that

x ∈ Ox ⊆ Cx ⊆ V.

A topological space is called locally compact if it is locally quasi-compact and T2.

A typical example of a locally (quasi-)compact, but not compact space is given
by IR with the usual topology. The next proof generalizes the fact, proved in 18.6.4,
that the algebra of open sets of IR is continuous.

Proposition 18.6.7 (Day and Kelly [1970]) Every algebra of open sets of a
locally quasi-compact topology is a continuous Heyting algebra.

Proof. Given an open set V , for any x ∈ V we consider the compact set Cx

and the open set Ox provided by the definition of local quasi-compactness. Since
V =

⋃
x∈V Ox, to prove that the algebra of open sets is continuous it is enough to

show that Ox F V . Then each open set is the l.u.b. of open sets way below it.
Suppose V ⊆

⋃
i∈I Ai, where I = {Ai}i∈I is an ideal of open sets. Then

Ox ⊆ Cx ⊆ V ⊆
⋃

i∈I

Ai.

By definition, from any family of open sets whose union covers a compact set, we
can extract a finite subfamily with the same property. Then, by compactness of
Cx,

Ox ⊆ Cx ⊆ Ai1 ∪ · · · ∪ Ain

for some i1, . . . , in. But Ai1 ∪ · · · ∪ Ain ∈ I by closure under finite ∪, and then
Ox ∈ I by downward closure of I. !

The next exercise clarifies in which sense F can be considered as a notion of
relative compactness.

Continuous Heyting Algebras ! 445

Exercise 18.6.8 In the algebra of open sets of a locally quasi-compact topology, U @ V
if and only if U is an open set contained in a compact set contained in V . (Hofmann and
Lawson [1978]) (Hint: one direction has just been proved. Conversely, suppose U @ V .
As above, V =

⋃
x∈V

Ox. Since U @ V , there are x1, . . . , xn such that

U ⊆ Ox1 ∪ · · · ∪ Oxn ⊆ Cx1 ∪ · · · ∪ Cxn ⊆ V,

and Cx1 ∪ · · · ∪ Cxn is compact.)

We turn now to the converse of the previous result.

Proposition 18.6.9 (Hofmann and Lawson [1978]) A continuous Heyting al-
gebra is isomorphic to the algebra of open sets of a locally quasi-compact topology.

Proof. By 18.6.5 a continuous Heyting algebra has enough points, and by 18.3.4
it is isomorphic to the algebra of open sets of the form

p(x) = {a : a point ∧ a -3 x}.

It is thus enough to show that such a topology is locally quasi-compact, i.e. that
for any element y and any open set p(x) such that y ∈ p(x), there is a compact set
Cy and an open set Oy such that

y ∈ Oy ⊆ Cy ⊆ p(x).

Since y ∈ p(x), y is a point such that x -/ y. As in the proof of 18.6.5, there is
a F x such that a -/ y, and we can find a filter F with the following properties:

• F contains only elements 3 a.

• No element of F is above x.

• If I is an ideal contained in F , then
⊔

I is also in F .

Since y is a point and y -3 a, y ∈ p(a). But p(a) is open, so we can let Oy = p(a).
Moreover, p(a) is a set of points not above a, and hence in F and not above x. If
we let Cy be the set of points in F , we then automatically have

y ∈ Oy ⊆ Cy ⊆ p(x).

It only remains to show that Cy is compact, and we prove this by contrapositive.
First we notice that the downward closure of Cy coincides with F . Indeed, if

an element is below a point in F , then it cannot be in F , because F is upward
closed (being a filter), and hence its complement is downward closed. Conversely,
any element of F is bounded by a point in F , by the proof of 18.6.5.

446 E. Intuitionistic Propositional Calculus

Given now a subset B of A we suppose that, for any finite subset {x1, . . . , xn}
of B,

Cy -⊆ p(x1) ∪ · · · ∪ p(xn).

Since p preserves ",
Cy -⊆ p(x1 " · · · " xn).

This means that there is a point in F above x1 " · · ·"xn. Since F is the downward
closure of Cy, this means that the ideal I generated by B is contained in F . By
the properties of F , then

⊔
I is in F , and hence so is

⊔
B. Again because F is the

downward closure of Cy, this means that
⊔

B is bounded by an element in Cy, i.e.
by a point in F . Then

Cy -⊆ p(
⊔

B).

Since p preserves
⊔

,
Cy -⊆

⋃

x∈B

p(x). !

We can now put the two halves together.

Theorem 18.6.10 Topological Characterization of Continuous Heyting
Algebras (Day and Kelly [1970], Hofmann and Lawson [1978]) The con-
tinuous Heyting algebras are, up to isomorphism, exactly the algebras of open sets
of locally quasi-compact topologies.

Proof. By 18.6.7 and 18.6.9. !

By describing topologies with reference only to their open sets, and not to the
points of their underlying spaces, 18.3.4 allows us to see the theory of Heyting alge-
bras as a kind of pointless topology, in which topological properties can be described
in a purely algebraic way. 18.6.10 provides a paradigm in this direction, captur-
ing the topological property of local quasi-compactness in terms of the algebraic
property of continuity.

Exercises 18.6.11 a) A topology is homeomorphic to the dual Stone topology of a con-
tinuous Heyting algebra if and only if it is sober and locally quasi-compact . (Hint: by
18.3.5.d and 18.6.10.)

b) A sober space is locally quasi-compact if and only if its algebra of open sets is
continuous. (Hint: the proof of 18.6.9 shows only that if the algebra of open sets of a
topology is continuous, then the dual Stone space of the algebra is locally quasi-compact,
and not that the given space is. But if the given space is sober, the dual Stone topology
of its algebra of open sets is homeomorphic to it by 18.3.5.d.)

c) A T2 space is locally compact if and only if its algebra of open sets is continuous.

(Hint: by part b), since by 18.3.5.c a T2 topology is sober.)

Continuous Heyting Algebras ! 447

The next exercises introduce and discuss yet another interesting class of Heyting
algebras.

Exercises 18.6.12 Completely distributive Heyting algebras. A lattice is
∧ ⊔

-
distributive if, for any family {Xi}i∈I of subsets of A,

∧
{
⊔

Xi : i ∈ I} =
⊔

{
∧

{f(i) : i ∈ I} : f(i) ∈ Xi},

where on the right-hand-side we consider all possible choice functions f for the family
{Xi}i∈I .

A lattice is
⊔ ∧

-distributive if it satisfies the dual condition.
A lattice is completely distributive if it is complete and both

∧⊔
-distributive and⊔∧

-distributive.
a) A completely distributive lattice is a Heyting algebra. (Hint: by 5.3.5.)
b) A complete lattice is

∧⊔
-distributive if and only if it is

⊔∧
-distributive. (Raney

[1952]) (Hint: it is enough to prove that
∧⊔

-distributivity implies
⊔∧

-distributivity,
the converse implication being symmetric. It is also enough to prove

∧
{
⊔

{f(i) : i ∈ I} : f(i) ∈ Xi} $
⊔

{
∧

Xi : i ∈ I},

the converse inequality being automatic. We rewrite the left-hand-side in a form suitable
for an application of

∧⊔
-distributivity, i.e. as

∧
{
⊔

Yf : f ∈ F}, where

F = {f : (∀i)(f(i) ∈ Xi)} and Yf = {f(i) : i ∈ I}.

Then ∧
{
⊔

Yf : f ∈ F} =
⊔

{
∧

{g(f) : f ∈ F} : g(f) ∈ Yf},

by
∧⊔

-distributivity.
It is now enough to show (∀g)(∃i ∈ I)(Xi ⊆ {g(f) : f ∈ F}). Suppose, for the

sake of contradiction, that (∃g)(∀i ∈ I)(Xi .⊆ {g(f) : f ∈ F}). Then, for such a g,
(∀i ∈ I)(∃xi ∈ Xi − {g(f) : f ∈ F}). By letting f(i) = xi for all i ∈ I , we get an f ∈ F .
Since g is a choice function for F , it should be g(f) ∈ Yf , i.e. g(f) = f(i) = xi for some
i ∈ I . But xi .∈ {g(f) : f ∈ F}, contradiction.)

c) Any finite distributive lattice is completely distributive . (Hint: on a finite lattice
∧

and
⊔

reduce to + and 0, and thus
∧⊔

-distributivity reduces to the usual distributivity.)
d) Any complete linear ordering is completely distributive. (Hint: to show a $ b, where

a =
∧
{
⊔

Xi : i ∈ I} and b =
⊔
{
∧
{f(i) : i ∈ I} : f(i) ∈ Xi}, suppose b ! a, and define

a choice function f for {Xi}i∈I , as follows: let f(i) be an element of Xi strictly greater
than b, which exists because by hypothesis a $

⊔
Xi. This produces a contradiction both

if there is no element between a and b (using the fact that then f(i) - a), and if there is
(by choosing f(i) above it, and proceeding as in the first case).)

e) Any power set is completely distributive. (Hint: to show a ⊆ b, where a =
⋂
{
⋃

Xi :
i ∈ I} and b =

⋃
{
⋂
{f(i) : i ∈ I} : f(i) ∈ Xi}, let x ∈ a, and define a choice function

f for {Xi}i∈I , as follows. Let f(i) be an element of Xi to which x belongs, which exists
because by hypothesis x ∈

⋃
Xi for every i ∈ I . Then x ∈

⋂
{f(i) : i ∈ I}, and so x ∈ b.)9

9The statement of part e) is equivalent to the Axiom of Choice (Collins [1954], Linton and
Mikkelsen [1981]). Thus the use of the Axiom of Choice made in its proof, when defining f , is
not avoidable.

448 E. Intuitionistic Propositional Calculus

f) Every complete Heyting algebra with enough strong co-points is completely dis-
tributive, but there are completely distributive Heyting algebras without strong co-points.
(Büchi [1952], Raney [1952]) (Hint: to show a $ b, where a =

∧
{
⊔

Xi : i ∈ I} and
b =

⊔
{
∧
{f(i) : i ∈ I} : f(i) ∈ Xi}, let x be a strong co-point such that x $ a, and define

a choice function f for {Xi}i∈I , as follows: let f(i) be an element of Xi greater than or
equal to x, which exists because by hypothesis x $

⊔
Xi for every i ∈ I , and x is a strong

co-point. Then x $
∧
{f(i) : i ∈ I}, and so x $ b.

A complete dense linear ordering, e.g. any closed interval of the reals, is completely
distributive by part d), but has no strong co-points by 18.2.2.g.)

g) Every completely distributive Heyting algebra is continuous, but there are continuous
Heyting algebras that are not completely distributive. (Papert [1959]) (Hint: to prove the
first part, it is enough to show that if A is completely distributive, then x $

⊔
d(x), where

d(x) =
⋂

{D : D downward closed ∧ x $
⊔

D}.

Consider the family {Xi}i∈I of all downward closed sets Xi such that x $
⊔

Xi. Then,
by complete distributivity, x $

∧
{
⊔

Xi : i ∈ I} =
⊔
{
∧
{f(i) : i ∈ I} : f(i) ∈ Xi}. But

(
∧
{f(i) : i ∈ I}) ∈

⋂
i∈I Xi for any f , because f(i) ∈ Xi, and Xi is downward closed.

Then (
∧
{f(i) : i ∈ I}) ∈ d(x) by definition of d(x) and the choice of the Xi’s, and thus

⊔
{
∧

{f(i) : i ∈ I} : f(i) ∈ Xi} $
⊔

d(x).

To prove the second part, it is enough to notice that the algebra of open sets of the
euclidean space IR is continuous, but

⊔∧
-distributivity fails for the family {Xi}i∈ZZ ,

where Xi is the set of all open intervals containing the closed interval [i, i + 1].)

h) There are completely distributive Heyting algebras that are not algebraic, as well as

algebraic Heyting algebras that are not completely distributive. (Hint: for the first part,
use the example in part f) and 18.5.2.d. For the second part, use the example in 18.5.3

and 18.6.13.a.)

Exercises 18.6.13 Continuous Heyting algebras with enough co-points.

a) A completely distributive Heyting algebra has enough co-points. (Papert [1959])
(Hint: only

∧⊔
-distributivity was used in 18.6.12.g to show that completely distributive

lattices are continuous. By the same argument, using the fact that
⊔∧

-distributivity also
holds by 18.6.12.a, the lattice with reverse order is continuous, and hence it has enough
points, i.e. the original lattice has enough co-points.)

b) A continuous Heyting algebra with enough co-points is completely distributive. (Ka-
mara [1978]) (Hint: as in 18.6.12.f we want to show that a $ b, where a =

∧
{
⊔

Xi : i ∈ I}
and b =

⊔
{
∧
{f(i) : i ∈ I} : f(i) ∈ Xi}. Let x be a co-point such that x @ a, and let

f(i) be an element of Xi greater than or equal to x, which exists because by hypothesis
x @ a $

⊔
Xi for every i ∈ I . Then x $

∧
{f(i) : i ∈ I}, and so x $ b.)

c) The continuous Heyting algebras with enough co-points are exactly the completely

distributive Heyting algebras. (Hint: from parts a) and b).)

Continuous Heyting Algebras ! 449

Digression: Scott topologies !

In the proofs of 18.6.5 and 18.6.9 a crucial role was played by filters F such that:

• if I is an ideal contained in F , then
⊔

I is also in F .

The notion is sufficiently interesting to deserve special consideration.

Definition 18.6.14 (Day and Kelly [1970], Scott [1972]) In a complete lattice
A, an upward closed set U is called Scott open if it is inaccessible by joins of
ideals, i.e.

• if I is an ideal contained in U , then
⊔

I is also in U .

Symmetrically, a downward closed set D is called Scott closed if it is closed under
joins of ideals, i.e.

• if I is an ideal contained in D, then
⊔

I is also in D.

The names used in the previous definition are justified by the following obser-
vation.

Proposition 18.6.15 The Scott open sets on a complete lattice form a topology,
called the Scott topology.

Proof. Obviously, both ∅ and A are Scott open. It is thus enough to verify closure
under finite intersections and arbitrary unions.

Given two Scott open sets U1 and U2, U1 ∩ U2 is obviously still upward closed.
To show that it is inaccessible by joins of ideals, suppose I is an ideal such that⊔

I ∈ U1∩U2. For i = 1, 2,
⊔

I ∈ Ui, and by inaccessibility of Ui, I -⊆ Ui, i.e. there
is xi ∈ I ∩ Ui. Now x1 " x2 ∈ I because I is an ideal, and x1 " x2 ∈ Ui because it
is above xi, and Ui is closed upward. Then I ∩ U1 ∩ U2 -= ∅, i.e. I -⊆ U1 ∩ U2.

Given a family {Ui}i∈J of Scott open sets,
⋃

i∈J Ui is obviously still upward
closed.10 To show it is inaccessible by joins of ideals, suppose I is an ideal contained
in

⋃
i∈J Ui =

⋂
i∈J Ui. Then I ⊆ Ui for every i ∈ J , and by inaccessibility of Ui,⊔

I ∈ Ui, i.e.
⊔

I ∈
⋂

i∈J Ui =
⋃

i∈J Ui. !

Exercises 18.6.16 a) The complement of a principal ideal, i.e. a set of the form {x :
x .$ a}, is Scott open. (Hint: a principal ideal is downward closed and closed under joins
of ideals, i.e. it is Scott closed.)

b) In a linear ordering, a non trivial subset is Scott open if and only if it is the
complement of a principal ideal, i.e. a left-open upward interval . (Hint: a Scott closed set
must be closed under joins of arbitrary chains, and thus it must have a greatest element.)

10Notice that the union of filters is not necessarily a filter: this is one of the reasons why Scott
open sets are defined in general for upward closed sets, and not only for filters.

450 E. Intuitionistic Propositional Calculus

c) In a finite lattice, a subset is Scott open if and only if it is upward closed . (Hint:
ideals are closed under finite joins, and in a finite lattice they are closed under arbitrary
joins.)

d) In a power set, a subset is Scott open if and only if it is a union of principal filters

generated by finite sets. (Hint: one direction follows from the fact that every set is the
join of the ideal of its finite subsets. For the other direction, suppose

⋃
I ∈ U , where I

is an ideal, and U a union of principal filters generated by finite sets u. Then
⋃

I is in
some of these principal filters, i.e. there is a finite set u ⊆ U such that u ⊆

⋃
I . Then u

must be contained in a finite subset of I , and hence be in I by the closure properties of

ideals.)

Note that from part a) of the previous exercises it follows that a Scott topology
is T0, since if x -/ y, then {z : z -/ y} is a Scott open set containing x but not y.

Moreover, from a Scott topology we can recover the order of its underlying space,
as follows:

x / y ⇐⇒ (∀U Scott open)(x ∈ U =⇒ y ∈ U).

Indeed, if x / y and x ∈ U , then y ∈ U by upward closure of U . And if x -/ y,
then {z : z -/ y} is a Scott open set containing x but not y.

It follows that a Scott topology is not T2, unless the lattice has only one element.
Indeed, if x -= y in a T2 topology, then there are disjoint open sets separating x
and y, and so x -/ y and y -/ x.

Having defined a topology, the next step is to look at the notion of continuity
induced by it. Recall that, given two topological spaces A and B, a function
f : A → B is continuous if, for every open subset X of B, f−1(X) is an open
subset of A. The next result relates this notion of continuity to one more familiar
to us.

Proposition 18.6.17 (Scott [1972]) The following are equivalent, for functions
on complete lattices:

1. f is Scott continuous, i.e. continuous w.r.t. the Scott topology

2. f preserves l.u.b.’s of ideals, i.e. for every ideal I

f(
⊔

I) =
⊔

{f(i) : i ∈ I} =
⊔

f(I).

Proof. To prove that 1 implies 2, we first show:

• a Scott continuous function is monotone

By 18.6.16.a, X = {z : z -/ f(y)} is a Scott open subset of B, and so f−1(X)
is a Scott open subset of A, hence closed upward. Suppose f(x) -/ f(y).
Then f(x) ∈ X , i.e. x ∈ f−1(X). If x / y, then y ∈ f−1(X) by upward
closure of f−1(X), i.e. f(y) ∈ X , contradiction. Then x -/ y.

Continuous Heyting Algebras ! 451

Let now I be an ideal of A. By monotonicity of f ,
⊔

f(I) / f(
⊔

I).

For the converse, consider the subset of B

X = {z : z -/
⊔

f(I)},

which is Scott open by 18.6.16.a. Then f−1(X) is a Scott open subset of A,
hence inaccessible by joins of ideals. Notice that I ⊆ f−1(X), because if i ∈ I,
then f(i) /

⊔
f(I), i.e. f(i) -∈ X , and i -∈ f−1(X). Then

⊔
I ∈ f−1(X), i.e.

f(
⊔

I) -∈ X , and so f(
⊔

I) / f(I).
To prove that 2 implies 1, we first show:

• a function preserving l.u.b.’s of ideals is monotone

Indeed, {x : x / y} is an ideal with l.u.b. y, and thus

f(y) = f(
⊔

{x : x / y}) =
⊔

{f(x) : x / y}.

It follows that if x / y, then f(x) / f(y).

Suppose now f : A → B preserves l.u.b.’s of ideals, and X is a Scott open subset
of B. We prove that f−1(X) is a Scott open subset of A, so that f is continuous.

• upward closure

If x / y, then f(x) / f(y) by monotonicity of f . If x ∈ f−1(X), then
f(x) ∈ X , and so f(y) ∈ X by upward closure of X . Thus y ∈ f−1(X).

• inaccessibility by joins of ideals

Let I be an ideal contained in f−1(X). Then the downward closure J of f(I)
is an ideal contained in X. Indeed, if x and y are in J , then by definition of J
there are x0 and y0 in I such that x / f(x0) and y / f(y0). By monotonicity
of f ,

x " y / f(x0) " f(y0) / f(x0 " y0),

so that x " y ∈ J , and J is closed under ".

Then, since f preserves l.u.b.’s of ideals and f(I) ⊆ J ,

f(
⊔

I) =
⊔

f(I) /
⊔

J.

But X is inaccessible by joins of ideals, so
⊔

J ∈ X. Then f(
⊔

I) ∈ X , and⊔
I ∈ f−1(X). !

452 E. Intuitionistic Propositional Calculus

The proof above shows, in particular, that a Scott continuous function on com-
plete lattices is monotone.

In the proofs of 18.6.5 and 18.6.9 use was made of the way below relation F
to obtain Scott open filters. This is typical of continuous lattices, due to the next
result.

Proposition 18.6.18 Scott Topology of Continuous Lattices (Scott [1972])
On continuous lattices:

1. A subset X is Scott open if and only if

X =
⋃

a∈X

{x : a F x}.

2. A function f is Scott continuous if and only if, for every x,

f(x) =
⊔

{f(a) : a F x}.

Proof. Part 1 is proved by the following:

• {x : a F x} is Scott open

It is upward closed because if a F x and x / y, then a F y.
It is inaccessible by joins of ideals because if I is an ideal such that a F

⊔
I,

then a ∈ I by definition of F.

• if X is Scott open, then X =
⋃

a∈X{x : a F x}
The ⊇ part follows from the fact that if a F x, then a / x. Indeed, if a ∈ X
and a F x, then x ∈ X because X is upward closed.
To show the ⊆ part, given x ∈ X , it is enough to find a ∈ X such that a F x.
Suppose no such a exists. Then {a : a F x} is an ideal I (by definition of
F) contained in X (by assumption) and such that x =

⊔
I (by continuity).

But x ∈ X , so
⊔

I ∈ X , and X is accessible by joins of ideals, contradiction.

To prove part 2, first suppose f is Scott continuous. Then it preserves l.u.b.’s
of ideals by 18.6.17, and since {a : a F x} is an ideal with l.u.b. x,

f(x) = f(
⊔

{a : a F x}) =
⊔

{f(a) : a F x}.

For the opposite direction, we first show:

• f is monotone

Suppose x / y. Then {a : a F x} ⊆ {a : a F y}, and

f(x) =
⊔

{f(a) : a F x} /
⊔

{f(a) : a F y} = f(y).

Continuous Heyting Algebras ! 453

If I is an ideal, then
⊔

f(I) / f(
⊔

I) follows from monotonicity. Conversely,
by definition of F we have that if a F

⊔
I, then a ∈ I. Hence

f(
⊔

I) =
⊔

{f(a) : a F
⊔

I} / {f(a) : a ∈ I} =
⊔

f(I). !

The main tool of the proofs of 18.6.5 and 18.6.9 can now be rephrased as saying
that if x -/ y in a continuous lattice, then there is a Scott open filter containing x
but not y.

Exercises 18.6.19 Scott topology of algebraic lattices. (Scott [1972]) Algebraic
lattices were defined in 18.5.1.

a) On algebraic lattices, a subset X is Scott open if and only if

X =
⋃

a∈X

{x : a compact ∧ a $ x}.

(Hint: by 18.6.3.a, if a is compact, then a @ a, and thus {x : a $ x} = {x : a @ x}
is Scott open. Conversely, if X is Scott open and x ∈ X, suppose there is no compact
element a ∈ X such that a $ x. Then the downward closure of {a : a compact ∧ a $ x} is
an ideal contained in X and with l.u.b. x, by 18.5.5.a and because the lattice is algebraic.)

b) On algebraic lattices, a function f is Scott continuous if and only if

f(x) =
⊔

{f(a) : a compact ∧ a $ x}.

(Hint: on algebraic lattices, a @ x if and only if there is a compact element k such that

a $ k $ x.)

We have introduced the Scott topology of a complete lattice, and showed how
the notion particularizes to continuous (and algebraic) lattices. It is also possible
to go in the opposite direction, and generalize the notion to partial orderings that
are not necessarily lattices.

Since the definition of an ideal requires only the existence of / and ", there is
no trouble in extending the theory to uppersemilattices in which every ideal has a
l.u.b.’s.

For partial orderings that are not necessarily uppersemilattices, we first have
to rephrase the notion of ideal. This is achieved by the following trick.

Definition 18.6.20 A subset D of a partial ordering is directed if, for every x
and y in D, there is z in D such that x, y / z. In other words, every finite subset
of D is bounded in D.

The idea is now to replace ideals by downward closed, directed sets. Actually,
downward closure plays no role as far as l.u.b.’s are concerned, and thus we can
restrict attention to the following notion, already introduced in 6.3.22.

454 E. Intuitionistic Propositional Calculus

Definition 18.6.21 A partially ordered set is a directed complete partial or-
dering (d.c.p.o.) if every directed subset of it has a l.u.b. in it.

We can now extend Definition 18.6.14 as follows.

Definition 18.6.22 In a d.c.p.o., an upward closed set U is called Scott open
if it is inaccessible by joins of directed sets, i.e.

• if D is a directed set contained in U , then
⊔

D is also in U .

To get an analogue of continuous lattices, some additional work is still needed.
First we extend the definition 18.6.1 of F as follows.

Definition 18.6.23 An element a of a partial ordering is way below another
element x (a . x) if a is in the downward closure of any directed set D such that
x /

⊔
D.

While the intersection of ideals is still an ideal, the intersection of directed sets
is not necessarily directed, even if they are downward closed. The reason is that if
D1 and D2 are downward closed directed sets, and x!y ∈ D1∩D2, then for i = 1, 2
there is zi ∈ Di such that x, y / zi, but nothing ensures that there is z ∈ D1 ∩ D2

such that x, y / z.
To state the notion of continuity we thus have first to ensure that the appro-

priate sets are directed, so that their l.u.b.’s exist in a d.c.p.o.

Definition 18.6.24 (Markowsky [1976], [1981]) A partial ordering is contin-
uous if it is a d.c.p.o. and, for all x:

1. {a : a F x} is directed

2. x =
⊔
{a : a F x}.

Exercise 18.6.25 A d.c.p.o. is continuous if and only if the operation
⊔

on downward
closed, directed sets has a left adjoint, i.e. there is f such that

f(a) ⊆ D ⇐⇒ a $
⊔

D.

(Hint: if f exists, then f(a) = {x : x @ a} because it is contained in every downward
closed, directed set D such that a $

⊔
D. Thus {x : x @ a} is directed, and if D = f(a),

then a is the l.u.b. of D. Conversely, if the d.c.p.o. is continuous it is enough to let

f(a) = {x : x @ a}.)

At this point the reader can easily check that the theory developed in this
subsection for complete lattices extends to d.c.p.o.’s. More precisely:

• The Scott open sets on a d.c.p.o. form a topology.

Refinements of the Completeness Theorem 455

• A function on d.c.p.o’s is Scott continuous if and only if it preserves l.u.b.’s
of directed sets.

• On continuous p.o.’s, a subset X is Scott open if and only

X =
⋃

a∈X

{x : a F x},

and a function f is Scott continuous if and only if, for every x,

f(x) =
⊔

{f(a) : a F x}.

Chains of elements are special directed sets, and a further generalization from
d.c.p.o.’s to c.c.p.o.’s produces the theory developed in Chapter 6, in particular the
notion of continuity introduced in 6.3.7, whose connections with Scott topology
were already discussed in 6.3.9.

Exercises 18.6.26 Topological Characterization of Completely Distributive Heyt-
ing Algebras. (Lawson [1979], Hofmann [1981])

a) Every algebra of open sets of the Scott topology of a continuous lattice is a completely
distributive Heyting algebra. (Hint: by 18.6.13.b, it is enough to show that the algebra
of open sets of the Scott topology of a continuous lattice is continuous and with enough
co-points.)

b) There are completely distributive Heyting algebras that are not isomorphic to Scott
topologies of continuous lattices. (Hint: suppose that the Boolean algebra with four
elements is the algebra of open sets of a topological space X. In particular, 0 = ∅ and
1 = X. If the topology is the Scott topology of a lattice, from it we can recover the
ordering. Then X can have at most three elements, two of which incomparable and the
third their g.l.b.)

c) Every completely distributive Heyting algebra is isomorphic to the algebra of open
sets of the Scott topology of a continuous p.o. (Hint: by 18.6.5 and 18.3.3, a completely
distributive Heyting algebra A has enough points. By the proof of 18.3.4, it is then
isomorphic to the algebra of open sets of the form p(x) = {a : a point ∧ a .- x}. The
crucial observation is that, by 18.6.16.a and the fact that Pt(A) ⊆ A, each p(x) is Scott
open on the p.o. (Pt(A),-) (notice the reverse ordering). It is then enough to check that
the dual Stone topology of (A,$) coincides with the Scott topology of (Pt(A),-), i.e.
that (Pt(A),-) is a continuous p.o. and every open set X of its Scott topology is a union
of p(x)’s.)

d) The completely distributive Heyting algebras are, up to isomorphism, exactly the

algebras of open sets of Scott topologies of continuous p.o.’s. (Hint: by part a) extended

to continuous p.o.’s, and part c).)

18.7 Refinements of the Completeness Theorem

The Algebraic Completeness Theorem tells us that the class of all Heyting algebras
is complete for the Intuitionistic Propositional Calculus, in the sense that if a

456 E. Intuitionistic Propositional Calculus

formula is not provable, then there is a Heyting algebra in which it fails. Having
introduced a whole spectrum of Heyting algebras, we now look for improvements.

Finite Heyting algebras

The next result shows that the class of finite Heyting algebras is enough for the
Algebraic Completeness Theorem, as we already stated in 5.2.4.

Proposition 18.7.1 Finite Model Property (Jaskowski [1936], McKinsey
and Tarski [1946]) If Γ |=a α fails, then there is a finite Heyting algebra A and
an environment ρ on it such that all formulas of Γ are evaluated to 1 under it, but
α is not.

Proof. If Γ |=a α fails, then by the Algebraic Completeness Theorem there is a
Heyting algebra B and an environment η on it such that all all formulas of Γ are
evaluated to 1 under it, but α is not. We have to find a finite Heyting algebra B
with the same properties.

The first idea would be to consider all subformulas of Γ and α, and the Heyting
subalgebra of B generated by their interpretations, i.e. by

{[[β]]Bη : β is a subformula of Γ ∪ {α}}.

The problem with this is that a Heyting algebra generated by a finite set of gen-
erators is not necessarily finite, since there is in general no way to collapse terms
built with ⇒.

To salvage at least part of the idea, we can certainly consider the sublattice A
of B generated by the interpretations of subformulas of Γ ∪ {α} (plus 0 and 1). A
is finite because B is distributive, and the idempotency, associative, commutative
and distributive laws allow us to collapse all but finitely many terms built with !
and " from a finite number of elements (more precisely, from n elements we can at
most obtain 2n distinct subsets, and hence 2n distinct meets, and then 22n

distinct
joins of them).

A is a distributive lattice, being a sublattice of the distributive lattice B. Then
A is a finite distributive lattice, and hence a Heyting algebra, with its own right
adjoint function ⇒A.

Consider any environment ρ on A coinciding with η on the letters of Γ ∪ {α}.
To show that A and ρ have the needed properties, i.e. that all formulas of Γ are
evaluated to 1 under ρ, but α is not, it is enough to show that, for any subformula
β of Γ ∪ {α},

[[β]]Aρ = [[β]]Bη .

This is almost immediate by induction on β, since ρ, !A, "A (and /A) coincide
with η, !B, "B (and /B) when needed.

Refinements of the Completeness Theorem 457

The proviso ‘almost’ refers to the fact that we still have to show that ⇒A and
⇒B also coincide when needed. This is the only non trivial point, since A is not
necessarily closed under ⇒B. We thus prove that, for elements a, b ∈ A,

(a ⇒A b) = (a ⇒B b).

By definition of right adjoint:

1. For any x ∈ A, (x ! a) / b ⇐⇒ x / (a ⇒A b).

2. For any x ∈ B, (x ! a) / b ⇐⇒ x / (a ⇒B b).

We should have used !A and /A in 1, and !B and /B in 2, but they pairwise
coincide on elements of A because the latter is a sublattice of B, and thus no
confusion arises.

Since (a ⇒A b) ∈ A, we can let x = (a ⇒A b) in 1. Then the right-hand-side
automatically holds, and hence so does the left-hand-side, i.e. [(a ⇒A b) ! a] / b.
By 2, (a ⇒A b) / (a ⇒B b).

Since (a ⇒B b) ∈ B, we can let x = (a ⇒B b) in 2. Then the right-hand-side
automatically holds, and hence so does the left-hand-side, i.e. [(a ⇒B b) ! a] / b.
By 1, (a ⇒B b) / (a ⇒A b). !

Although the whole class of finite Heyting algebras suffices for the Algebraic
Completeness Theorem, no single finite Heyting algebra does. This stands in con-
trast with the case of the Classical Propositional Calculus (see 20.2.5).

Proposition 18.7.2 Failure of the Strong Algebraic Completeness The-
orem (Gödel [1932]) There is no single finite Heyting algebra A such that, if
|=a α fails, then there is an environment ρ on A such that α is not evaluated to 1
under it.

Proof. We first consider the case of a Heyting algebra with two elements, i.e. the
Boolean algebra {0, 1}. We could easily dispense with this case by just noticing that
if α is any classically true but intuitionistically unprovable formula (e.g. Peirce’s
Law), then |=a α fails, but α is evaluated to 1 under any assignment on {0, 1}. The
fact is that this proof does not generalize to algebras with more than two elements,
and we thus consider an alternative one.

The idea is that, since {0, 1} only has two elements, given any three distinct
letters, at least two of them will have to agree under any assignment (obviously,
not necessarily the same ones under different assignments). Let us thus consider
the formula

(p ↔ q) ∨ (p ↔ r) ∨ (q ↔ r).

By definition of canonical interpretation, if ρ is an environment on {0, 1}, then
[[α]]ρ = 1. Indeed, at least two letters must get the same value under ρ, so at least
one disjunct is evaluated to 1, and then so is the whole formula.

458 E. Intuitionistic Propositional Calculus

It only remains to note that α is not intuitionistically provable. Suppose it
is. By the Disjunction Property, so would be one of its disjuncts, e.g. p ↔ q.
But this is impossible, because such a disjunct is not even classically provable, not
being a tautology (more precisely, being false when the two letters have different
truth-values).

It is now clear how to generalize the proof to the case of Heyting algebras with
n elements. It is enough to consider n + 1 different letters p1, . . . , pn+1, and the
formula ∨

i3=j

(pi ↔ pj).

As above, such a formula is not intuitionistically provable, but is evaluated to 1
under any environment on a Heyting algebra with n elements. !

Topological Heyting algebras

Although no single finite Heyting algebra suffices for the Algebraic Completeness
Theorem, some infinite ones do. The first example is artificially constructed, but
is the best possible in the spectrum of Heyting algebras introduced in the previous
section.

Proposition 18.7.3 (Kripke [1963]) There is a single complete Heyting algebra
with enough strong co-points A such that, if |=a α fails, then there is an environ-
ment ρ on A such that α is not evaluated to 1 under it.

Proof. By 2.2.9 there is a Kripke model in which every formula α that is not
intuitionistically provable is not forced. By 5.3.10, associated with such a Kripke
model there is a topological Heyting algebra and an environment on it that pro-
duces a canonical interpretation coinciding with forcing. By 5.3.9 such a topology,
being associated with a partial ordering, is closed under arbitrary intersections. By
18.2.4, such a topological Heyting algebra is thus complete and with enough strong
co-points. !

The next example shows that the most common topological spaces are already
complete, and provides nontrivial examples in the next classes of the spectrum of
Heyting algebras.

Proposition 18.7.4 (Tarski [1938]) Let A be the algebra of open sets of a metric
space without isolated points. If Γ |=a α fails, then there is an environment ρ on
A such that all formulas of Γ are evaluated to 1 under it, but α is not.

Proof.
!

Examples of metric spaces without isolated points are:

Refinements of the Completeness Theorem 459

• the Baire space ωω, which is complete with enough points but not continuous
(see 18.6.5)

• the euclidean space IR, which is continuous but not algebraic (see 18.6.4)

• the Cantor space 2ω, which is algebraic without strong co-points (see 18.5.3).

æ

460 E. Intuitionistic Propositional Calculus

Part F

Classical Propositional
Calculus

461

Chapter 19

Classical
Propositional Calculus

The main reason to restrict attention to intuitionistic systems of propositional
calculus is the nice correspondence with systems of typed λ-calculus, through the
Curry-Howard isomorphism.

However, the intuitionistic (or, more generally, the constructive) approach to
logic is not currently regarded as the standard one, and classical logic is most
commonly used in mathematical practice. We thus take a detour to deal with it,
that will also shed light on the relationships beween the two approaches.

19.1 Classical Implication

Having seen that any of the systems N , H and S captures the notion of intuitionistic
validity, we are left with a question: which modifications are needed to capture the
notion of classical validity? This turns out to be quite easy to answer.

We start with a modification of the sequent system, from which the Classical
Completeness Theorem is obtained naturally, and we then discover which addional
axioms are needed to prove the equivalence with Natural Deduction and Hilbert
systems.

The nocounterexample interpretation

The basic idea is to look at the notion of logical validity in the contrapositive, by
means of the socalled nocounterexample interpretation: since Γ |= α means
that α is true in all worlds in which all formulas in Γ are, a proof of Γ |= α can
be seen as the record of an unsuccessful attempt to describe a counterexample, i.e.

463

464 F. Classical Propositional Calculus

a world in which this fails. Thus we start with the assertion that all formulas in Γ
are true and α is false, and analyze the possible consequences of it.

The problem is that analyzing a truth assertion for a single formula may produce
two truth assertions about its components: α → β is true if α is false or β is true;
but it is false if α is true and β is false. Inductively, an attempt to describe a
counterexample may in general contain assertions about finitely many formulas
being true and finitely many being false.

The general notion to deal with is thus the symmetric Γ |= ∆, in which finite
sets of formulas can appear both on the left and on the right, with the following
intended interpretation: there is no world in which all formulas of Γ are true
and all formulas of ∆ are false. To get a Completeness Theorem we set up a
formal system with rules that, when used backwards on Γ |= ∆, allow us to replace
a truth or falsity assertion about a given formula in Γ or ∆ by truth or falsity
assertions about its components. We can then systematically apply the rules, until
all formulas on both sides are reduced to letters and cannot be further analyzed.
We are thus left with the description of a number of possible worlds that would
provide a counterexample to Γ |= ∆. If any of such descriptions is consistent, i.e.
no letter is required to be true and false at the same time, then we have the wanted
counterexample. Otherwise, we have proved that no such counterexample exists.
Inconsistent descriptions of worlds can thus be taken as axioms in this system,
and a proof of Γ |= ∆ consists of a tree starting from such axioms, proceeding by
forward application of the rules, and ending with Γ |= ∆.

The interesting point is that, when writing down the rules for Γ |= ∆ in the
way just described, we obtain rules similar to those of S, the only difference being
that we now consider sequents with possibly more than one formula on the right.
In other words, we discover that this extension of sequents makes the associated
system SC compatible with a semantical interpretation, radically different from
the computational interpretation used in Section 1.3: Γ %S ∆ can now be taken to
mean that there is no world in which all formulas of Γ are true and all formulas of
∆ are false.

Definition 19.1.1 (Gentzen [1935]) The relation %SC is inductively defined as
follows:

1. Assumptions. Assumptions are sequents in which one formula appears on
both sides of %SC:

Γ,β %SC β,∆.

2. →-Introduction on the right. If β is deducible from Γ and α, then α → β
is deducible from Γ:

Γ,α %SC β,∆
Γ %SC α → β,∆.

Classical Implication 465

3. →-Introduction on the left. If α is deducible from Γ and γ is deducible
from Γ and β, then γ is deducible from Γ:

Γ %SC α,∆ Γ,β %SC ∆
Γ,α → β %SC ∆.

Notice that the rules just introduced are still backward deterministic, and thus
the Subformula Property still holds: in a proof of a sequent Γ %SC ∆, only
subformulas of formulas in Γ or ∆ can occur .

The classical system with cut is defined by the natural modification of the Cut
Rule.

Definition 19.1.2 Cut Rule. The system SC +Cut is defined as the system SC,
with the additional rule:

Γ %SC+Cut γ,∆ Γ, γ %SC+Cut ∆
Γ %SC+Cut ∆.

The Cut Elimination procedure of Section 1.3 can be easily adapted to prove
the following result.

Theorem 19.1.3 Cut Elimination (Gentzen [1935]) For any Γ and β:

Γ %SC+Cut β ⇒ Γ %SC β.

A version of the semantical proof of Cut Elimination is also possible, using the
Soundness and Completeness Theorem proved below, with a much simpler proof
than in the intuitionistic case.

We now formally prove that the system SC really captures classical validity.
This is not surprising, since the rules of the system were designed to make this result
work (actually, the proof has already been sketched before 19.1.1). The surprise
is rather that the simple change from one to finitely many formulas on the right
makes the notion of a sequent compatible with a radically different interpretation,
that accomodates classical reasoning.

Theorem 19.1.4 Classical Soundness and Completeness (Post [1921]) For
any Γ and ∆:

Γ %SC ∆ ⇔ Γ |= ∆.

Proof. The left to right, soundness direction is done inductively on 19.1.1, and is
like the proof of the Classical Soundness Theorem 2.1.3.

The right to left, completeness direction is done by contrapositive, by proving
that if Γ %SC ∆, then there is a world A such that all formulas of Γ are true in A,
and all formulas of ∆ are false in A.

466 F. Classical Propositional Calculus

We first build any potential proof of Γ %SC ∆ by: starting from the latter as
root; working upwards by using the rules of →-introduction on the right or on the
left, in any order; stopping at one node when only propositional letters remain on
each side of the sequent. The procedure obviously halts, because at every step the
complexity of one formula, either on the right or on the left, decreases. If every leaf
is an assumption, i.e. if a same letter occurs on both sides of %SC , then we reached
a proof because each such sequent is an assumption.

Otherwise, consider any leaf whose associated sequent is not an assumption.
Let A be the set of letters appearing on the left: such a world agrees with the
sequent, in the sense that it makes true the formulas (in this case: letters) on the
left by definition, and false the ones on the right by the classical definition of truth
2.1.1, since no letter appears on both sides. We now show, by induction on 19.1.1,
that it also agrees with every sequent on the path from it to the root. In particular,
it agrees with the root, and hence it makes all formulas of Γ true and all of ∆ false,
so that Γ -|= ∆.

For →-introduction on the right, suppose A agrees with Γ,α %SC β,∆. Then it
makes all formulas of Γ and α true, and all formulas of ∆ and β false. In particular,
it makes α → β false, and thus it agrees with Γ %SC α → β,∆.

For →-introduction on the left, we have two cases. First, suppose that A agrees
with Γ,β %SC ∆. Then it makes β true, and hence α → β true. Thus A agrees
with Γ,α → β %SC ∆.

Second, suppose that A agrees with Γ %SC α,∆. Then it makes α false, and
hence α → β true. Thus A agrees with Γ,α → β %SC ∆.1 !

Classical tableaux

The sequent system for the Intuitionistic Implicational Calculus is more efficient
than the tableaux method: basically, sound restrictions (producing only finite
proofs) of the two methods are much easier to state for the former (see 3.1.2)
than for the latter (see Nerode [1990]).

In the classical case tableaux are just reformulations of sequent proofs, and thus
the two methods are in this case practically the same. A slight advantage of the
former is that we do not have to drag hypotheses along, since they are recorded on
the branches of the tableaux, and thus proofs can be written in a less cumbersome
way.

Definition 19.1.5 A classical tableau is a tree with nodes consisting of signed
forcing assertions of the form Tα or Fα, and consistent with the following forma-
tion rules:

1Notice that this is the case that fails in the intuitionistic system S, where ∆ is empty in the
hypothesis but not in the conclusion: if we only know that A agrees with Γ 2S α, then we do not
know that it also agrees with Γ,α → β 2S γ, because we do not know anything about γ.

Classical Implication 467

1. If a node Tα → β is on the tree, then we can split any branch going through
it by adding Fα in one direction and Tβ in the other. Graphically,

Tα → β

Fα Tβ,

where the double line shows that the bottom nodes do not have to immediately
follow the top one.

2. If a node Fα → β is on the tree, then we can extend any branch going through
it by adding Tα and Fβ. Graphically,

Fα → β

Tα
Fβ.

Notice the asymmetric treatment: in the first case we split branches, in the
second case we linearly extend them. Classical tableaux are simply a reformulation
of SC, since the two rules above correspond, repsectively, to →-introduction on the
left and on the right.

Definition 19.1.6 ∆ is provable by classical tableaux from Γ (written Γ "T C
∆) if there is a classical tableau starting from Tγ for all γ ∈ Γ and F δ for all δ ∈ ∆,
such that all its branch are contradictory, in the sense that on every branch there is
a pair of nodes of the form Tβ and Fβ (the same β for any given branch, although
possibly different β’s for different branches).

The next definition captures the idea of systematic search.

Definition 19.1.7 A complete systematic tableau is a tableau in which the
rules have been used exaustively, in the sense that:

1. For any node Tα → β on the tree and any branch going through it, there is
a node on the branch that splits into two nodes Fα and Tβ.

2. For any node Fα → β on the tree and any branch going through it, there is
a node on the branch followed by two nodes Tα and Fβ.

In an actual construction of a complete systematic tableau, it is enough to apply
the rules relative to any given node to any branch going through it, and to mark off
the relative node. Since the rules replace nodes relative to a given formula by nodes
relative to subformulas of it, after finitely many steps the only unmarked nodes
will be those relative to atomic formulas. In particular, a complete systematic
tableau is finite.

468 F. Classical Propositional Calculus

Obviously, whenever in the construction of a complete systematic tableau we
hit a contradiction along a branch, we can seal that branch off and stop developing
it, since every extension of it will remain contradictory.

As an example of the method, we prove Pierce’s Law:

F [(p → q) → p] → p
T (p → q) → p

Fp
Fp → q

Tp
Fq

Tp.

Notice that this tableau is a finitary version of the intuitionistic tableau for Pierce’s
Law considered on p. 44: in the latter the three final nodes on the left branch were
repeated infinitely often, each time w.r.t. to a new extension.

The proof of the next result shows that, as already announced, %T C is simply
a reformulation of %SC . Basically, a tableau is a sequent tree upside down, and the
(unmarked nodes of the) branches of the former correspond to the (formulas of the
sequents on the) leaves of the latter .

Proposition 19.1.8 There are canonical translations of classical sequent proofs
to classical tableaux proofs, and conversely.

Proof. Given a classical tableau, we proceed by induction on its construction and
build a sequent tree as follows. If the tableau starts from Tγ for γ ∈ Γ and F δ for
δ ∈ ∆, we let Γ %SC ∆ be the root node of the sequent tree. At any stage, if rule

Tα → β

Fα Tβ

is applied at a given node, then we extend the tree above the corresponding node
according to the rule

Γ1 %SC α,∆1 Γ1,β %SC ∆1

Γ1,α → β %SC ∆1.

Similarly, if rule
Fα → β

Tα
Fβ

is applied at a given node, we extend the tree above the corresponding node ac-
cording to the rule

Γ1,α %SC β,∆1

Γ1 %SC α → β,∆1.

Classical Propositional Calculus 469

By induction, each node Γ1 %SC ∆1 on the tree thus built records the unmarked
nodes Tα and Fβ (for α ∈ Γ1 and β ∈ ∆1) of the part of the corresponding
branch of the tableau considered so far. If the tableau is a proof, then any branch
is contradictory and there is a formula β such that Tβ and Fβ are on it. The
corresponding sequent is then an axiom of SC, since the same formula appears on
both sides of %SC , and thus the sequent tree is a sequent proof.

Conversely, given a sequent tree we proceed in a symmetrical way by induction
on the definition of %SC and build a tableau such that, at any given stage, a sequent
Γ1 %SC ∆1 records the unmarked nodes Tα and Fβ (for α ∈ Γ1 and β ∈ ∆1) of the
corresponding branch of the tableau built thus far. If the tree is a sequent proof,
then every leaf is an axiom and there is a formula β appearing on both sides %SC .
The corresponding branch of the tableau is thus contradictory, and the tableau is
a proof. !

Corollary 19.1.9 Equivalence of Classical Sequents and Tableaux (Beth
[1955], Hintikka [1955]) For any Γ and ∆,

Γ %T C ∆ ⇔ Γ %SC ∆.

It follows from the Classical Soundness and Completeness Theorem that

Γ %T C ∆ ⇔ Γ |= ∆.

A direct proof of this result can be copied down from the proof of 19.1.4, using the
translation described in 19.1.8. In particular, from any noncontradictory branch
of any complete systematic tableau starting from Tγ for all γ ∈ Γ, and F δ for all
δ ∈ ∆, we can read off a classical world A in which all γ ∈ Γ are true and all δ ∈ ∆
are false. Precisely, A is the set of all letters p such that Tp is on the branch.

19.2 Classical Propositional Calculus

Sequents and tableaux

difference with the intuitionistic case: sets of formulas in the consequence.

Functional completeness and definability

Disjunctive normal form.
¬ and ∧ or →.
→ and ∧ (and ∨?) are not adequate (by induction, formulas built from them

and p are either equivalent to p or always true. Every formula is satisfiable (by the
assignment that makes all letters true).

470 F. Classical Propositional Calculus

19.3 Complexity

Decidability

The decision procedure for SC is a consequence of the Subformula Property, as in
the intuitionistic case 3.1.2. The classical case is even easier, in two respects. On
the one hand, a sequent can have only finitely many cut-free proofs . On the other
hand, every possible analysis of →-introduction produces a proof .

Proposition 19.3.1 The relation %SC is decidable.

Proof. By the proof of 19.1.4, to decide whether Γ %SC ∆ it is enough to build
any potential proof by: starting from the latter as root; working upwards by using
the rules of →-introduction on the right or on the left, in any order; stopping at
one node when only propositional letters remain on each side of the sequent. The
procedure halts by the Subformula Property and, by the proof of 19.1.4, Γ %SC ∆
holds if and only if the potential proof is an actual proof. !

The decision procedure for T C is similar, and slightly more efficient. The rea-
son is that tableaux are easier to write down, since they do not require dragging
hypotheses along.

Proposition 19.3.2 The relation %T C is decidable.

Proof. To decide whether Γ %SC ∆ it is enough to build any complete systematic
tableau starting from Tγ for γ ∈ Γ, and F δ for δ ∈ ∆. Then, by the proofs of
19.1.4 and 19.1.9, Γ %SC ∆ holds if and only if the tableau is contradictory. !

The decision procedure for |= is a consequence of the fact, easily proved by
induction, that classical worlds agreeing on the letters occurring in a given formula
also agree on the formula itself.

Proposition 19.3.3 The relation |= is decidable.

Proof. By definition, Γ |= α holds if and only if α is true in every classical world
A in which all formulas of Γ are true. This apparently requires the consideration
of all possible classical worlds A, and there are infinitely many of them. But the
definition of truth is inductive, and thus only the finitely many letters p1, . . . , pn

occurring in α or in some formulas of Γ matter. Then it is enough to consider
every possible combination of membership values for p1, . . . , pn in A (there are 2n

possible ones), and check that whenever one such combination makes all formulas
of Γ true, it also makes α true. !

Complexity 471

A standard and simple way of carrying out the previous decision procedure is
by building a truth-table with m + n + 1 columns (respectively corresponding to
the letters p1, . . . , pn of α, the formulas γ1, . . . , γm of Γ, and α itself) and 2n rows
(corresponding to the restrictions to p1, . . . , pn of all possible worlds). Letters T
and F are taken to mean ‘true’ and ‘false’, respectively, and are placed under the
letters p1, . . . , pn in all of their 2n possible combinations. Then a T or an F is
eventually placed under (the main implication of) γi’s and α, by inductively using
the rule stated by the following truth-table (defining implication):

β γ β → γ
T T T
T F F
F T T
F F T

Then Γ |= α holds if there is a T under α in any row in which there is a T under
every γi. In particular, |= α holds if the column under the main implication sign
of α consists only of T ’s.

For example, the following truth-table proves the validity of an instance of
Axiom 2 of H:

p q p → (q → p)
T T T T
T F T T
F T T F
F F T T

Among the decision procedures proposed above, the most efficient is the one
based on tableaux. In particular, the truth-table method is always exponential in
the number of letters occurring in a given formula.

Complexity

As alredy noted, classical decidability is apparently less complicated than intu-
itionistic decidability. This is made precise by the next result, that measures the
complexity of the latter.

!!! State the following for the full propositional calculus, and then deduce it for
the implicational calculus !!!

Theorem 19.3.4 (Cook [1972]) The complexity of |= is co-NP -complete.

Proof. !

æ

472 F. Classical Propositional Calculus

Chapter 20

Boolean Algebras

In this chapter we look at Boolean algebras and their connections with the Classical
Propositional Calculus. Sections 1–3 follow the blueprint of Chapter 5 for Heyting
algebras. Section 4 and 5 look at Boolean algebras from the points of view of
Heyting algebras and cartesian closed categories.

Since the theory of Boolean algebras is highly developed, we will only touch
here on aspects directly related to our main interest. For a general view of the
subject the reader can turn to Monk and Bonnet [1989].

20.1 Boolean Algebras

Complements

Since α ∨ ¬α is a tautology and α ∧ ¬α is a contradiction, the behaviour of the
canonical interpretation of classical negation is captured by the following notion.

Definition 20.1.1 An element a of a Heyting algebra is complemented if there is
an element b such that

a " b = 1 and a ! b = 0.

b is called the complement of a, and is indicated by a.

The following proposition shows that it makes sense to talk of the complement
of an element in Heyting algebras (which, we recall, are distributive by 17.1.24).

Proposition 20.1.2 In a distributive lattice complements are unique, when they
exist.

473

474 F. Classical Propositional Calculus

Proof. Suppose both b1 and b2 are complements of a. Then

b1 = b1 ! 1
= b1 ! (a " b2)
= (b1 ! a) " (b1 ! b2)
= 0 " (b1 ! b2)
= b1 ! b2

because b2 is a complement, by distributivity, and because b1 is a complement.
Then b1 / b2. Symmetrically, b2 / b1, and thus b1 = b2. !

The next result shows that behaves in a Heyting algebra as ¬ does in classic
logic.

Proposition 20.1.3 The following laws hold in any Heyting algebra, for comple-
mented elements:

1. Excluded Middle. a " a = 1

2. Double Negation. a = a.

3. De Morgan. a " b = a ! b and a ! b = a " b

4. Contrapositive. a / b if and only if b / a

Proof. 1 is an obvious consequence of the definition of .
2 follows from the fact that if a" b = 1 and a! b = 0, then b is the complement

of a and a is the complement of b, i.e. b = a and a = b = a.
To prove 3, notice that

(a " b) ! (a ! b) = [(a " b) ! a] ! b

= [(a ! a) " (b ! a)] ! b

= [0 " (b ! a)] ! b

= b ! a ! b

= 0

by associativity, distributivity, and the facts that a ! a = 0 and b ! b = 0. Sym-
metrically,

(a " b) " (a ! b) = 1.

Thus a ! b is the complement of a " b. Similarly, a " b is the complement of a ! b.

Boolean Algebras 475

To prove 4, it is enough to prove the left to right direction, since the right to
left follows from it (applied to b / a), by the Double Negation Law. Suppose that
a / b. Then a " b = b, and by the De Morgan Laws

a ! b = a " b = b,

i.e. b / a. !

Boolean algebras

Definition 20.1.4 A Boolean algebra is a complemented Heyting algebra, i.e.
a Heyting algebra in which every element is complemented.

The next result provides an alternative and self-contained approach to Boolean
algebras, which avoids any reference to Heyting algebras and the adjointness con-
dition defining ⇒.

Proposition 20.1.5 The Boolean algebras are exactly the complemented distribu-
tive lattices.

Proof. Any Boolean algebra is a distributive lattice, because so is any Heyting
algebra.

Conversely, it is enough to show that any complemented distributive lattice can
be turned into a Heyting algebra, by letting

(a ⇒ b) = (a " b).

By definition of adjointness, we need to show

x ! a / b ⇐⇒ x / a " b.

If x ! a / b, then

x / a " x = (a " x) ! (a " a) = a " (x ! a) / a " b

because a " a = 1, and by distributivity.
If x / a " b, then

x ! a / (a " b) ! a = (a ! a) " (b ! a) = b ! a / b

by distributivity, and because a ! a = 0. !

Notice that the two conditions of being complemented and distributive serve
dual purposes in a lattice: the first ensures the existence of complements, the
second their uniqueness.

476 F. Classical Propositional Calculus

Exercises 20.1.6 Boolean rings (Stone [1935]). A Boolean ring is a ring with iden-
tity 〈A, +, · , 0, 1〉 such that a2 = a for every a, i.e. every element is idempotent.

a) Any Boolean algebra is a Boolean ring . (Hint: let

a + b = (a + b) 0 (a + b) and a · b = a + b.)

b) Any Boolean ring is a Boolean algebra. (Hint: let

a 0 b = a + b + a · b, a + b = a · b and a = 1 + a.)

c) The correspondence between Boolean algebras and Boolean rings given by parts a)
and b) is a bijection.

d) Boolean rings are commutative. (Hint:

a + b = (a + b)2 = a2 + a · b + b · a + b2 = a + a · b + b · a + b,

so a · b + b · a = 0 and a · b = −b · a. By letting a = b we get a2 = −a2, i.e. a = −a for any
a. Then a · b = b · a.)

Examples

We follow the blueprint of Section 5.3, where we gave examples of Heyting algebras.
On the negative side, we have the following result.

Proposition 20.1.7 The only linear orderings that are Boolean algebras are the
trivial ones, i.e. {0} and {0, 1}.

Proof. If x / y, then x " y = y and x ! y = x. Thus the only complemented
elements of a linear ordering are 0 and 1, when they exist. !

In particular, any non trivial linear ordering with 0 and 1 is an example of a
Heyting algebra which is not a Boolean algebra.

On the positive side, we provide two classes of examples trivially satisfying the
conditions of being complemented distributive lattices, but crucial for the repre-
sentation theorems of Section 20.3

The first class is purely set-theoretical.

Proposition 20.1.8 Any field of sets, i.e. a field whose elements are sets and
whose sum and product are the set-theoretical intersection and union, is a Boolean
algebra.

In particular, any power set ordered under set-theoretical inclusion is a Boolean
algebra.

The second class is topological, and requires the following definitions (in addi-
tion to the ones of topology and open set given on p. 85):

Soundness and Completeness Theorem 477

• a closed set in a topology is a set whose set-theoretical complement is open

• a clopen set is a set which is both closed and open or, equivalently, a set
which is open together with its set-theoretical complement.

Proposition 20.1.9 The clopen sets of a topology ordered under set-theoretical
inclusion form a Boolean algebra.

20.2 Soundness and Completeness Theorem

Definition 20.2.1 A formula α is a classical algebraic consequence of Γ =
{γ1, . . . , γn} (written Γ |=ac α) if for every Boolean algebra A and every environ-
ment ρ on it,

([[γ1]]Aρ !A · · · !A [[γn]]Aρ) /A [[α]]Aρ .

In the limit case of Γ empty, we get the notion of classical algebraic validity: α
is classically algebraically valid (written |=ac α) if α evaluates to 1A in every
Boolean algebra, under every environment.

Lindenbaum algebras

Theorem 20.2.2 Algebraic Soundness and Completeness (Boole [1854],
Post [1921], Tarski [1935a]) For any Γ and α,

Γ %NC α ⇐⇒ Γ |=ac α.

Proof. As in 5.2.3 and 17.1.26, we consider the structure

AΓ = 〈AΓ,/, =,!,",⇒, , 0, 1〉

in which:

1. AΓ is the set of equivalence classes

[[β]] = {γ : Γ %NC β ↔ γ}

2. / is induced by %NC relatively to Γ, i.e.

[[β]] / [[γ]] ⇐⇒ Γ,β %NC γ

3. = is induced by provable equivalence relatively to Γ, i.e.

[[β]] = [[γ]] ⇐⇒ Γ %NC (β ↔ γ)

478 F. Classical Propositional Calculus

4. ! is induced by ∧, i.e.
[[β]] ! [[γ]] = [[β ∧ γ]]

5. ⇒ is induced by →, i.e.

[[β]] ⇒ [[γ]] = [[β → γ]]

6. is induced by ¬, i.e.
[[β]] = [[¬β]]

7. 0 is the equivalence class of the formulas refutable from Γ, i.e.

0 = {β : Γ %NC ¬β}

8. 1 is the equivalence class of the formulas provable from Γ, i.e.

1 = {β : Γ %NC β}.

We already know from 17.1.26 that AΓ is a Heyting algebra, and to prove that
it is a Boolean algebra it is enough to show that it is complemented. Since is
induced by ¬, this follows from

%NC α ∨ ¬α and %NC ¬(α ∧ ¬α),

which translate into

[[α]] " [[α]] = 1 and [[α]] ! [[α]] = 0.

This proves
Γ |=ac α =⇒ Γ %NC α.

Conversely, to prove
Γ %NC α =⇒ Γ |=ac α,

we have to show that if all formulas in Γ are true in a Boolean algebra, then so is
α. But since

Γ %NC α ⇐⇒ Γ, Excluded Middle %N α,

it is enough to notice that a Boolean algebra in which all formulas in Γ are true, is
a Heyting algebra in which the Excluded Middle and all formulas of Γ are true (see
20.4.15 for details). By the Intuitionistic Algebraic Soundness Theorem 17.1.26, it
then follows that α is true, too. !

The Algebraic Completeness Theorem provides us with a canonical Boolean
algebra A∅, consisting of the equivalence classes of formulas under the equivalence
relation induced by classical provable equivalence.

Soundness and Completeness Theorem 479

The Algebraic Soundness Theorem shows that any function from the proposi-
tional letters to a Boolean algebra A, i.e. any environment on A, can be extended
to a homomorphism of Boolean algebras from A∅ to A, i.e. to the canonical inter-
pretation associated with the environment. This property is concisely expressed
by saying that A∅ is the free Boolean algebra on countably many generators . More
precisely, the generators are the equivalence classes of propositional letters, which
are countably many because distinct letters cannot be provably equivalent.

Exercise 20.2.3 A∅ is isomorphic to the Boolean algebra of the clopen sets of the Cantor
space. (Rasiowa and Sikorski [1963]) (Hint: recall that the Cantor space is the set P(ω)

of all subsets of ω, with the topology generated by the basic open sets {X : X ⊇ u}, with
u finite. Since all free Boolean algebras on the same number of generators are isomorphic,

it is enough to show that the clopen sets of the Cantor space are a free Boolean algebra

on countably many generators. The generators are the basic open sets {X : x ∈ X} with
x ∈ ω, i.e. the ones corresponding to singletons. Since each Boolean algebra is isomorphic

to a field of sets by 20.3.2, it is enough to note that any function from the generators to

a field of sets can be extended to a homomorphism of Boolean algebras by the natural
set-theoretical operations.)

The two-element Boolean algebra

A version of the Finite Model Property 18.7.1 is easier to obtain for Boolean alge-
bras than it was for Heyting algebras.

Exercise 20.2.4 Finite Model Property. If Γ |=ac α fails, then there is a finite

Boolean algebra A and an environment ρ on it such that all formulas of Γ are evaluated
to 1 under it, but α is not . (Hint: as in the first part of the proof of 18.7.1, since the

Laws of Idempotency, Associativity, Commutativity, Distributivity and the De Morgan’s

Law imply that a finitely generated Boolean algebra is finite.)

The reason to confine the Finite Model Property to the exercises is that a much
stronger result actually holds here. More precisely, while for Heyting algebras the
Finite Model Property could not be improved by finding a single finite model that
worked in all cases, for Boolean algebras not only this is possible: the Boolean
algebra with only two elements is enough. This provides a strong form of algebraic
completeness.

Theorem 20.2.5 Strong Algebraic Completeness (Rasiowa and Sikorski
[1950], %Loš [1951]) If Γ |=ac α fails, then there is an environment ρ on the
Boolean algebra {0, 1} such that all formulas of Γ are evaluated to 1 under it, but
α is not.

Proof. If Γ |=ac α fails, by the Algebraic Completeness Theorem there is a Boolean
algebra A and an environment ρ on it such that all formulas of Γ are evaluated

480 F. Classical Propositional Calculus

to 1 under it, but α is not. Given a maximal filter F on A not containing [[α]]ρ,
consider the quotient Boolean algebra A/F , and the environment ρ/F induced by
ρ on it. Since F is maximal, A/F = {0, 1}, and it has the needed properties. !

The next result shows that the Strong Algebraic Completeness Theorem is just
a different formulation of the implication

Γ |= α =⇒ Γ |=ac α,

and that the truth-table method is just a special case of an algebraic interpretation
on the Boolean algebra {0, 1}.

Proposition 20.2.6 Canonical Algebraic Interpretation Induced by Clas-
sical Worlds. Given a classical world A, i.e. a set of propositional letters, the
environment

ρ(p) =
{

1 if p ∈ A
0 otherwise

on the Boolean algebra {0, 1} produces a canonical interpretation that coincides
with truth in A, in the sense that for every formula α

[[α]]ρ =
{

1 if A |= α
0 otherwise.

Proof. We prove that
[[α]]ρ = 1 ⇐⇒ A |= α

by induction on α.
If α = p, then this holds by definition of ρ.
If α = ¬β, then

[[¬β]]ρ = 1 ⇐⇒ [[β]]ρ = 1
⇐⇒ [[β]]ρ = 0
⇐⇒ A -|= β

⇐⇒ A |= ¬β

by definition of [[]], the fact that 0 is the complement of 1, induction hypothesis,
and definition of |=.

If α = β ∧ γ, then

[[β ∧ γ]]ρ = 1 ⇐⇒ [[β]]ρ ! [[γ]]ρ = 1
⇐⇒ [[β]]ρ = 1 ∧ [[γ]]ρ = 1
⇐⇒ A |= β ∧ A |= γ

⇐⇒ A |= β ∧ γ

Soundness and Completeness Theorem 481

by definition of [[]], the fact that 1 is the greatest element, induction hypothesis,
and definition of |=.

The remaining cases are similar. !

Generic environments !

20.2.5 and 20.2.6 say that the notion of classical validity is a special case of algebraic
validity, since

|=ac α ⇐⇒ (∀ Boolean algebra A)(∀ρ on A)([[α]]Aρ = 1)

and
|= α ⇐⇒ (∀ρ on the fixed Boolean algebra {0, 1})([[α]]Aρ = 1).

So, as usual, the Algebraic Soundness Theorem provides a wider class of models
than the ones considered in the original notion of validity.

We now want to go in the opposite direction, and restrict the notion of classical
validity by considering a smaller class of environments on {0, 1} that still provide
completeness. This is obtained through Kripke forcing and the double negation
interpretation, which we will prove in 21.1.3, as follows. Given any Kripke model

A = 〈PA,/A, {Aσ}σ∈PA〉,

any branch σ0 / σ1 / · · · determines the unique environment:

ρ(p) =
{

1 if p ∈
⋃
Aσn

0 otherwise.

Alternatively, we can think of
⋃
Aσn as providing a classical world that is a limit

of intuitionistic ones, i.e. the set of propositional letters that eventually appear in
the partial worlds associated to the given branch.

Definition 20.2.7 A generic branch σ0 / σ1 / · · · of a Kripke model is a
branch such that for every propositional formula α, there is an n such that σn % α
or σn % ¬α.

ρ is a generic environment if it arises from a generic branch of a Kripke
model.

Alternatively, one could define
⋃
Aσn to be a generic (classical) world.

Proposition 20.2.8 For every Kripke model A and every σ on it, there is a
generic branch extending σ.

Proof. Let {αn}n∈ω be an enumeration of the propositional formulas. Define
σ0 = σ, and at stage n + 1 let σn be given. There are two possible cases:

482 F. Classical Propositional Calculus

• If (∃σ 3 σn)(σ % αn), choose one such σ and let σn+1 = σ, so that σn+1 % αn.

• Otherwise, let σn+1 = σn. Then σn+1 % ¬αn by definition of forcing for
negation, since

σn % ¬αn ⇐⇒ (∀σ 3 σn)(σ - % αn). !

In particular, generic environments exist.

Definition 20.2.9 A formula α is a generic consequence of Γ (written Γ |=g

α) if, for every generic environment ρ on the Boolean algebra {0, 1}, α is evaluated
to 1 whenever all formulas of Γ are.

Alternatively, one could define Γ |=g α by saying that α is true in every generic
world

⋃
Aσn in which every γ ∈ Γ is true.

The connection between (intuitionistic) forcing and (classical) truth is given by
the next result.

Proposition 20.2.10 If {σn}n∈ω is a generic branch of a Kripke model, and ρ is
the generic environment associated to it, then for any formula α

[[α]]ρ = 1 ⇐⇒ (∃n)(σn % α).

Proof. By induction on α. Genericity will take care of ¬, and ∧ and ∨ are trivial
because forcing for them is defined as classical truth. So the only non trivial case
will be →, because of the nonstandard definition of forcing for it.

If α = p, then
[[p]]ρ = 1 ⇐⇒ ρ(p) = 1

⇐⇒ p ∈
⋃
Aσn

⇐⇒ (∃n)(p ∈ Aσn)
⇐⇒ (∃n)(σn % p)

by definition of [[]], of canonical interpretation, of union and of forcing for atomic
formulas.

If α = ¬β, then

[[¬β]]ρ = 1 ⇐⇒ [[β]]ρ = 0
⇐⇒ (∀n)(σn - % β)
⇐⇒ (∃n)(σn % ¬β)

by definition of [[]], induction hypothesis and genericity.
If α = β ∧ γ, then

[[β ∧ γ]]ρ = 1 ⇐⇒ [[β]]ρ = 1 and [[γ]]ρ = 1
⇐⇒ (∃n)(σn % β) and (∃m)(σm % γ)
⇐⇒ (∃p)(σp % β and σp % γ)
⇐⇒ (∃p)(σp % β ∧ γ)

Soundness and Completeness Theorem 483

by definition of [[]], induction hypothesis, monotonicity (take p = max{m, n}) and
definition of forcing.

If α = β ∨ γ, then

[[β ∨ γ]]ρ = 1 ⇐⇒ [[β]]ρ = 1 or [[γ]]ρ = 1
⇐⇒ (∃n)(σn % β) or (∃n)(σn % γ)
⇐⇒ (∃n)(σn % β or σn % γ)
⇐⇒ (∃n)(σn % β ∨ γ)

by definition of [[]], induction hypothesis, properties of ∃ and definition of forcing.
If α = β → γ, then

[[β → γ]]ρ = 1 =⇒ [[β]]ρ = 0 or [[γ]]ρ = 1
=⇒ (∀n)(σn - % β) or (∃n)(σn % γ)
=⇒ (∃n)(σn % ¬β) or (∃n)(σn % γ)
=⇒ (∃n)(σn % ¬β or σn % γ)
=⇒ (∃n)[(∀τ 3 σn)(τ - % β) or (∀τ 3 σn)(τ % γ)]
=⇒ (∃n)(∀τ 3 σn)(τ - % β or τ % γ)
=⇒ (∃n)(∀τ 3 σn)(τ % β ⇒ τ % γ)
=⇒ (∃n)(σn % β → γ)

by definition of [[]], induction hypothesis, genericity, properties of ∃, definition of
forcing and monotonicity, properties of ∀, definition of ⇒ and definition of forcing.
And

[[β → γ]]ρ = 0 =⇒ [[β]]ρ = 1 and [[γ]]ρ = 0
=⇒ (∃n)(σn % β) and (∀n)(σn - % γ)
=⇒ (∃n)(σn % β) and (∃m)(σm % ¬γ)
=⇒ (∃p)(σp % β and σp % ¬γ)
=⇒ (∃p)[(∀τ 3 σp)(τ % β) and (∀τ 3 σp)(τ - % γ)]
=⇒ (∃p)(∀τ 3 σp)(τ % β and τ - % γ)
=⇒ (∃p)(∀τ 3 σp)(τ - % β → γ)
=⇒ (∀n)(σn - % β → γ)

by definition of [[]], induction hypothesis, genericity, monotonicity (take p =
max{m, n}), monotonicity and definition of forcing, properties of ∀, definition of
forcing and monotonicity. !

Theorem 20.2.11 Generic Completeness. If Γ |= α fails, then there is a
generic environment ρ on the Boolean algebra {0, 1} such that all formulas of Γ
are evaluated to 1 under it, but α is not.

Proof. If Γ |= α fails, then so does ¬¬Γ %N ¬¬α by the Double Negation interpre-
tation 21.1.3. So there is a Kripke model on which all ¬¬γ with γ ∈ Γ are forced,

484 F. Classical Propositional Calculus

but ¬¬α is not. By definition of forcing a double negation, this means that

(∀σ)(∃τ 3 σ)(τ % α)

fails, i.e.
(∃σ)(∀τ 3 σ)(τ - % α).

Choose such a σ, and build a generic branch extending it as in 20.2.8. On such
a branch:

• α is not forced by consistency of forcing, since σ % ¬α by definition, and thus
(∀n)(σn % ¬α), i.e. (∀n)(σn - % α);

• all γ ∈ Γ are forced, since ¬¬γ is forced in the model, i.e.

(∀σ)(∃τ 3 σ)(τ % γ),

and the construction of the generic branch will then force γ when it comes
to it.

If ρ is the generic environment relative to that generic branch, then [[γ]]ρ = 1
for all γ ∈ Γ, but [[α]]ρ -= 1 (by the Truth Lemma), so Γ -|= α. !

Soundness and Completeness Theorems

We can now state the fundamental result about presentations of the Classical
Propositional Calculus.

Theorem 20.2.12 The Magnificent Seven of Classical Propositional Cal-
culus. The following are equivalent, for any Γ and α:

1. Γ %NC α (natural deduction)

2. Γ %HC α (Hilbert system)

3. Γ %SC α (sequent system)

4. Γ %T C α (classical tableaux)

5. Γ |=ac α (Boolean algebras)

6. Γ |= α (classical worlds)

7. Γ |=g α (generic worlds).

Proof. By 21.2.6, 20.2.2, 20.2.5 and 20.2.11. !

Representation theorems ! 485

20.3 Representation Theorems !

We now ask how far the examples of Boolean algebras produced in Section 20.1 are
typical. Some of the results of this section are paradigms for the ones of Section 5.4
for Heyting algebras, and actually special cases of them, while others are specific
for Boolean algebras.

Lindenbaum algebras

Theorem 20.3.1 First Representation for Boolean Algebras (Tarski [1935a])
Any Boolean algebra is isomorphic to a Lindenbaum algebra for the Classical Propo-
sitional Calculus.

Proof. As in 5.4.1, by working with Boolean algebras and %NC in place of Heyting
algebras and %N . !

Power sets

Theorem 20.3.2 Second Representation for Boolean Algebras (Stone [1936])
Any Boolean algebra is isomorphic to a field of sets.

Proof. The proofs of 5.4.2 and 17.1.28 already prove the result, since the function
defined there has the needed properties. The only added piece of information is
that f preserves complements too, and this is immediate because complements are
characterized by the conditions

x " x = 1 and x ! x = 0,

and !, ", 0, 1 are all preserved. !

Corollary 20.3.3 Any Boolean algebra is isomorphic to a subalgebra of a power
set.

Proof. A field of sets is a subalgebra of the power set consisting of all subsets of
its unit element. !

The formulation of the corollary just proved raises the question of which Boolean
algebras are isomorphic not only to a subalgebra, but to a full power set. The answer
is given in terms of the following analogue of 18.3.1.

Definition 20.3.4 (Schröder [1891]) An element a -= 0 of a Boolean algebra is
an atom if

x / a =⇒ x = 0 ∨ x = a,

i.e. if there is no other element between it and 0.

486 F. Classical Propositional Calculus

A Boolean algebra is atomic if for every element x -= 0 there is an atom a such
that a / x.

The set of atoms of a Boolean algebra A is indicated by At(A).

Exercises 20.3.5 (Tarski [1935]) a) An element a .= 0 is an atom if and only if it is
0-irreducible, i.e.

a = (x 0 y) =⇒ (a = x) ∨ (a = y).

(Hint: suppose a is 0-irreducible and 0 $ x $ a. Then

a = a + 1 = a + (x 0 x) = (a + x) 0 (a + x) = x 0 (a + x)

by distributivity, so a = x or a = a + x. In the latter case x $ a $ x, i.e. x = 0.)
b) An element a .= 0 is an atom if and only if it is a co-point, i.e.

a $ (x 0 y) =⇒ (a $ x) ∨ (a $ y).

(Hint: by distributivity, as in 18.3.2.c.)
c) An element a .= 0 is an atom if and only if a is a point . (Hint: the conditions

a $ x 0 y =⇒ a $ x ∨ a $ y

and
a - x + y =⇒ a - x ∨ a - y

are equivalent.)
d) A Boolean algebra is atomic if and only if it has enough points as a Heyting algebra.

(Hint: first notice that a Boolean algebra A is atomic if and only if, for every x and y in
A, if x .= y, then there is an atom below one of x and y but not below the other. For
example, if x .$ y, then x + y .= 0, and an atom a $ x + y cannot be below y, otherwise
a $ y + y = 0.

Then notice that, for any atom a,

a $ x ⇐⇒ a .- x.

The left to right implication holds for any element a .= 0. For the right to left implication,
from a $ 1 = x 0 x we have

a = a + (x 0 x) = (a + x) 0 (a + x),

and by part a) either a = a + x or a = a + x, i.e. a $ x or a $ x. Then, by taking
complements, a $ x or a - x.)

e) A Boolean algebra is atomic if and only if every element is the l.u.b. of the atoms
below it . (Hint: given x .= 0, if x is not the l.u.b. of the atoms below it, then there is
y ! x above all such atoms. If A is atomic, by part d) there is an atom below one of x
and y but not the other, contradiction.)

f) Not every atomic Boolean algebra is complete, and not every complete Boolean al-

gebra is atomic. (Hint: consider the set of finite or cofinite elements of P(ω), and the

Representation theorems ! 487

quotient of P(ω) w.r.t. the ideal of finite sets or, equivalently, the filter of cofinite sets.)

The next result shows that for Boolean algebras the various notions of Heyting
algebras studied in Chapter 17 all coincide among each other, as well as with the
newly introduced notion of complete atomic Boolean algebra.

Proposition 20.3.6 (Tarski [1935], Lindenbaum) The following are equiva-
lent for a Boolean algebra A:

1. A is complete and atomic

2. A is complete with enough co-points

3. A is complete with enough strong co-points

4. A is algebraic

5. A is completely distributive

6. A is continuous

7. A is complete with enough points.

Proof. Conditions 1, 2 and 7 are equivalent by 20.3.5.
Conditions 1 and 3 are equivalent in a similar way. In one direction, an atom is

obviously
⊔

-irreducible, and hence a strong co-point by 18.2.2.c (notice that !
⊔

-
distributivity holds in every Heyting algebra by 5.3.6, and hence in every Boolean
algebra). In the opposite direction, a strong co-point is a co-point, and hence an
atom.

Conditions 3 and 7 are equivalent by the first part of the proof. The remain-
ing conditions 4, 5 and 6 are intermediate between conditions 3 and 7, and hence
equivalent to them, by 18.5.3, 18.6.4, 18.6.5, 18.6.12.e and 18.6.12.f. !

The previous result implies that the next one is a version of 18.3.4, but it is
instructive to give a direct proof. Notice that for (complete) Heyting algebras
we cannot use atoms in place of points, since in general the elements are not
distinguished by the atoms below them (for example, a linear ordering with an
atom is atomic, but all elements different from 0 have the same atoms below them).
For Boolean algebras, instead, we can.

Theorem 20.3.7 (Tarski [1935], Lindenbaum) A Boolean algebra is isomor-
phic to a power set if and only if it is atomic and complete.

488 F. Classical Propositional Calculus

Proof. To show that the conditions are necessary, note that a power set is closed
under arbitrary unions and intersections, its atoms are the singletons {x}, and
every nonempty set (i.e. any element -= 0) contains a singleton.

For sufficiency, let A be any Boolean algebra, and consider the function cp1

from A to P(At(A)) defined as follows:

cp(x) = {a : a atom ∧ a / x}.

Then cp is automatically a homomorphism of Boolean algebras, for the following
reasons:

• cp(0) = ∅
By definition, for any atom a we have a -= 0, and so a -/ 0.

• cp(1) = the set of atoms of A
By definition, for any element a we have a / 1.

• cp(x ! y) = cp(x) ∩ cp(y)
For any element a,

a / (x ! y) ⇐⇒ (a / x) ∧ (a / y)

by definition of !.

• cp(x " y) = cp(x) ∪ cp(y)
For any atom a,

a / (x " y) ⇐⇒ (a / x) ∨ (a / y).

Indeed, the right to left implication holds by definition of ", for any element
a. For the left to right implication, let a be an atom and a / x " y. Then

a = a ! (x " y) = (a ! x) " (a ! y)

by distributivity, and thus a = x1 " y1 for some x1 / x and y1 / y. Since an
atom is "-irreducible, a = x1 or a = y1, and hence a / x or a / y.

• cp(x) = cp(x)
This follows from the fact that complements are characterized by the condi-
tions

x " x = 1 and x ! x = 0,

and !, ", 0, 1 are all preserved.
In particular, this shows that

a / x ⇐⇒ a -/ x,

for any atom a.
1We use the letters cp as a reminder that an atom is a co-point, see 20.3.5.b.

Representation theorems ! 489

• if A is atomic, then cp is one-one
If x -= y, then x -/ y or y -/ x. Suppose e.g. that x -/ y. Then x ! y -= 0.
Otherwise x ! y = 0, and by distributivity

y = 0 " y

= (x ! y) " y

= (x " y) ! (y " y)
= (x " y) ! 1
= x " y,

contradicting x / y.

Since x! y -= 0 and A is atomic, there is an atom a such that a / x! y, and
hence a / x and a / y. Then, as noticed above, a -/ y, and so a is an atom
below x but not below y, i.e. cp(x) -= cp(y).

• if A is complete, then cp is onto
Given a set X of atoms,

⊔
X exists because A is complete. We want to show

that cp(
⊔

X) = X .

The inclusion X ⊆ cp(
⊔

X) is trivial: if a ∈ X , then obviously a /
⊔

X , by
definition of

⊔
.

We prove the inclusion cp(
⊔

X) ⊆ X by contrapositive: if a -∈ X , we want
to show a ! x = 0, so that a -/ x (otherwise 0 = a ! x = a -= 0).

If b ∈ X , then a -/ b because both a and b are atoms, and a -= b since a -∈ X
and b ∈ X . Then, as noticed above, a / b, and a! b = 0 (since b! b = 0). So

0 =
⊔

b∈X

(a ! b) = a ! (
⊔

b∈X

b) = a ! x

by complete distributivity. !

Finite Boolean algebras

The previous results have a number of trivial but nice consequences.

Theorem 20.3.8 Algebraic Characterization of Finite Boolean Algebras.
The finite Boolean algebras are, up to isomorphism, the finite fields of sets.

Proof. By 20.1.8 and 20.3.2. !

Recall from ?? that, instead, the finite Heyting algebras are, up to isomorphism,
the finite rings of set.

490 F. Classical Propositional Calculus

Theorem 20.3.9 Set-Theoretical Characterization of Finite Boolean Al-
gebras. The finite Boolean algebras are, up to isomorphism, the power sets of
finite sets.

Proof. By 20.1.8 and 20.3.7, since a finite Boolean algebra is obviously atomic
and complete. !

Corollary 20.3.10 Classification Theorem for Finite Boolean Algebras.
Two finite Boolean algebras are isomorphic if and only if they have the same number
of elements.

Proof. The condition is obviously necessary. For sufficiency, by the previous
characterization a finite Boolean algebra is the power set of a finite set, and hence
it has 2n elements and n atoms, for some n. Thus two finite Boolean algebras
with the same number of elements must have the same number of atoms, and any
bijection of their atoms induces an isomorphism between the two algebras. !

The Boolean Prime Ideal Theorem

Notice that in the proof of 20.3.7 we used the following properties of atoms:

• if a / x " y, then a / x or a / y

• a / x or a / x.

They respectively say that the principal filter generated by a is a prime filter and
an ultrafilter . In a Boolean algebra the two conditions are equivalent, as the next
exercises show.

Exercises 20.3.11 Ultrafilters. (Cartan [1937]) In a Boolean algebra a nontrivial filter
F is called an ultrafilter if the following condition holds, for any x in A:

x ∈ F or x ∈ F.

a) A nontrivial filter is an ultrafilter if and only if it is prime. (Hint: since x 0 x =
1 ∈ F , by primality x ∈ F or x ∈ F , and so a prime filter is an ultrafilter. Conversely, if
F is an ultrafilter and x .∈ F and y .∈ F , then x ∈ F and y ∈ F . So x + y = x 0 y ∈ F
by closure under +. Thus x 0 y .∈ F , otherwise F would contain both an element and its
complement, hence their g.l.b. 0, and it would be trivial.)

b) A non trivial filter is an ultrafilter if and only if it is maximal . (Hint: let F be a
maximal filter and x .∈ F . The filter generated by F ∪ {x} is trivial by maximality, and
so 0 is in it. By distributivity and definition of generated filter, there is a ∈ F such that
a+ x = 0. Then a $ x, and x ∈ F by upward closure. Conversely, let F be an ultrafilter,
and suppose x .∈ F . Then x ∈ F , so both x and x are in the filter generated by F ∪ {x},
which is trivial because x + x = 0. Then F is maximal.)

Representation theorems ! 491

c) A subset X of a Boolean algebra A is an ultrafilter if and only if the characteristic
function cX : A → {0, 1} is a homomorphism of Boolean algebras. (Hint: the proof of

20.3.7 shows necessity. For sufficiency, e.g. if cX(x) = cX(x), then cX(x) = 0 if and only

if cX(x) = 1, i.e. x ∈ X if and only if x .∈ X. Similarly, x 0 y ∈ X if and only if x ∈ X or
y ∈ X.)

If we replace the function

cp(x) = {a : a atom ∧ a / x}

by the function

u(x) = {U : U is an ultrafilter containing x}

in the proof of 20.3.7, we still get a homomorphism of Boolean algebras. Moreover,
the proof of the condition

if A is atomic, then cp is one-one

shows that
if A has enough ultrafilters, then u is one-one.

By the duality between (ultra)filters and (prime) ideals, a Boolean algebra has
enough ultrafilters if and only if it has enough prime ideals. That any Boolean
algebra has enough prime filters follows from the so-called Boolean Prime Ideal
Theorem saying that if x -/ y on a Boolean algebra, then there is a prime ideal
containing y but not x.2 By verifying it, with a proof dual to that of 17.1.28, we
get back the proof of 20.3.2, thus showing that the latter is a generalization of the
one-one embedding part of 20.3.7 to arbitrary (not necessarily atomic) Boolean
algebras. More precisely, the role of atoms is taken by ultrafilters. And the condi-
tion that there are sufficiently many atoms, i.e. that the Boolean algebra is atomic,
becomes the condition that there are sufficiently many ultrafilters, which is always
satisfied by the Boolean Prime Ideal Theorem.

Exercises 20.3.12 a) The Boolean Prime Ideal is equivalent to the existence of an ul-
trafilter not containing any given x .= 1. (Stone [1936]) (Hint: if x .$ y, then x 0 y .= 1
follows as in the proof of 20.3.7. An ultrafilter not containing x 0 y contains x + y, and
hence x but not y. Its complement is a prime ideal containing y but not x.)

2By 20.3.11, the Boolean Prime Ideal Theorem is equivalent to the Boolean Maximal Ideal
Theorem saying that if x "(y on a Boolean algebra, then there is a maximal ideal containing y
but not x.

The Boolean Prime Ideal Theorem is equivalent to the Heyting Prime Ideal Theorem (Scott
[1954a]) and hence, by note 6 on p. 422, it is not provable in ZF , it implies a weak form of the
Axiom of Choice, and it does not imply the full Axiom of Choice.

492 F. Classical Propositional Calculus

b) The Boolean Prime Ideal Theorem is equivalent to the Strong Algebraic Complete-
ness Theorem. (Henkin [1954]) (Hint: one direction is given by the proof of 20.2.5.
Conversely, given any Boolean algebra, we can find a Lindenbaum algebra AΓ isomorphic
to it as in 20.3.1. If x .= 1, then x corresponds to [[α]]ρ, for some formula α not provable
from Γ. If the Strong Algebraic Completeness Theorem holds, there is an environment
ρ on {0, 1} that sends all formulas of Γ to 1 and α to 0. Then the set {[[β]]ρ = 1} is an
ultrafilter of the Lindenbaum algebra not containing [[α]]ρ, which corresponds through the
isomorphism to an ultrafilter not containing x.)

Thus the use of the Boolean Prime Ideal Theorem, or of something equivalent to it,

in the proof of the Strong Algebraic Completeness Theorem is not eliminable.

Clopen sets

While the Second Representation Theorem for Boolean algebras refers to power
sets, and does not require any use of topology, it is unsatisfactory in that it only
represents Boolean algebras as generic subalgebras of power sets, without charac-
terizing them.

The consideration of Stone topologies, which were introduced to deal with ⇒
in Heyting algebras, allows us to get an analogue of 18.4.7 for Boolean algebras,
and to represent arbitrary Boolean algebras up to isomorphism.

Theorem 20.3.13 Third Representation for Boolean Algebras (Stone [1937a])
Any Boolean algebra is isomorphic to the algebra of clopen sets of its Stone space.

Proof. The proof of 18.4.7 shows that a Boolean algebra and the algebra of
compact open sets of its Stone space are isomorphic as Heyting algebras, with an
isomorphism given by the function f : A → P(Fp

A) defined as follows:

f(x) = the set of all prime filters containing x.

It is thus enough to show that if the Heyting algebra A is a Boolean algebra, then
the set f(A) of compact open sets of its Stone space coincides with the set of clopen
sets:

• every element of f(A) is clopen
For any x, f(x) is open by definition of Stone topology. Moreover, f(x) is
open, too. Since f preserves complements, because it preserves 0, 1, ! and
", then f(x) = f(x), i.e. f(x) is closed.

• every clopen set is in f(A)
Let X be a clopen set. Then both X and X are open, and

X =
⋃

x∈B

f(x) and X =
⋃

x∈C

f(x)

Relationships with Heyting algebras ! 493

for some subsets B and C of A, since f(A) generates the Stone topology.
Then

Fp
A = X ∪ X =

⋃

x∈B∪C

f(x).

By 18.4.8, the Stone space Fp
A is compact, and thus finitely many f(x) with

x ∈ B ∪ C are enough to cover it. In particular, there is a finite subset
{x1, . . . , xn} of B such that

X = f(x1) ∪ · · · ∪ f(xn).

Then
X = f(x1 " · · · " xn)

because f preserves ", and thus X ∈ f(A). !

The previous proof shows in particular that, on the Stone space of a Heyting
algebra,

{X : X clopen} ⊆ {X : X compact open}.

Equality holds if and only if the Heyting algebra is a Boolean algebra. One direction
follows from the previous proof. The other direction follows from the fact that if
equality holds, then by 18.4.7 the Heyting algebra is isomorphic to an algebra of
clopen sets, and hence it is a Boolean algebra.

20.4 Relationships with Heyting Algebras !

The goal of the present section is to look at the relationship between the Intu-
itionistic and Classical Propositional Calculi from an algebraic point of view, as a
relationship between Heyting and Boolean algebras. In particular, we look for a
canonical way of associating a Boolean algebra to a given Heyting algebra.

Pseudocomplements

Since ¬α is defined as α → ⊥ in the Intuitionistic Propositional Calculus, the
following algebraic version of it in Heyting algebras will play a crucial role.

Definition 20.4.1 In a Heyting algebra we let the pseudocomplement of an
element a be the element ∼ a = a ⇒ 0, i.e. the greatest element x such that
x ! a = 0.

The next result shows that ∼ behaves in a Heyting algebra as ¬ does in the
Intuitionistic Propositional Calculus, as expected.

Proposition 20.4.2 The following laws hold in any Heyting algebra:

494 F. Classical Propositional Calculus

1. No Contradiction. a ! ∼ a = 0

2. ‘Good’ Contrapositive. If a / b, then ∼ b / ∼ a.

3. ‘Good’ Double Negation. a / ∼∼ a

4. Triple Negation. ∼ a = ∼∼∼ a

5. ‘Good’ De Morgan. ∼ a ! ∼ b = ∼ (a " b).

Proof. 1 is an obvious consequence of the definition of ∼ a.
2 says that

if a / b then (b ⇒ 0) / (a ⇒ 0).

This follows from the fact that if a / b and b ! x = 0, then a ! x = 0.
3 follows from the fact that a ! ∼ a = 0 by definition, and ∼∼ a is the greatest

element x such that x ! ∼ a = 0, i.e. a / ∼∼ a.
4 follows from 3. ∼ a / ∼∼∼ a is a special case of it (for ∼ a). And ∼∼∼ a /

∼ a follows from a /∼∼ a by the ‘Good’ Contrapositive Law.
5 says that

(a " b) ⇒ 0 = (a ⇒ 0) ! (b ⇒ 0),

and this follows from the fact that

(a " b) ! x = 0 ⇐⇒ (a ! x) " (b ! x) = 0
⇐⇒ a ! x = 0 and b ! x = 0,

by distributivity and definition of l.u.b. !

Complemented elements and clopen sets

The next result relates the two notions of complement and pseudocomplement.

Proposition 20.4.3 If a exists in a Heyting algebra, then a = ∼ a.

Proof. Since ∼ a is the greatest x such that x ! a = 0, a / ∼ a. From a " a = 1
we get a " ∼ a = 1. Since a ! ∼ a = 0 holds automatically, ∼ a = a follows by
uniqueness of complements. !

We now look at elements that are or have complements.

Definition 20.4.4 An element a is complemented if a = b for some b.

Notice that a is complemented if and only if a exists . In one direction, if a = b,
then a = b. In the other direction, if a exists, then we can let b = a.

The complemented elements provide a first way of extracting a Boolean algebra
from a Heyting algebra.

Relationships with Heyting algebras ! 495

Proposition 20.4.5 Given a Heyting algebra A, the set of complemented elements

A = {a : (∃b)(a = b)}

is a Boolean algebra.

Proof. To prove that the complemented elements form a Boolean algebra, we need
the following facts:

• 0 and 1 are complemented
It is enough to notice that 0 = 1 and 1 = 0, since 0 " 1 = 1 and 0 ! 1 = 0.

• if a and b are complemented, so are a ! b and a " b
By De Morgan’s Laws, a ! b = a " b and a " b = a ! b.

• if a and b are complemented, so is a ⇒ b
If a is complemented, then (a ⇒ b) = (a " b). If b is complemented, then
a ⇒ b = (a ! b) by the De Morgan’s Laws. !

Corollary 20.4.6 A is a subalgebra of A.

In a topological Heyting algebra,

A = the set-theoretical complement of A,

and thus the complemented elements are the clopen sets.

Negative elements and regular open sets

The negative formulas, i.e. those equivalent to negations, provide a classical frag-
ment inside the Intuitionistic Propositional Calculus (see 21.3.2). We now translate
this fact into algebraic language.

Definition 20.4.7 An element a negative if a = ∼ b for some b.

Notice that a is negative if and only if a = ∼∼ a. In one direction, if a = ∼ b,
then ∼∼ a = ∼∼∼ b = ∼ b = a by the Triple Negation Law. In the other direction,
if a = ∼∼ a, then we can let b = ∼ a.

The negative elements provide a second way of extracting a Boolean algebra
from a Heyting algebra.

Proposition 20.4.8 (Tarski [1938], McKinsey and Tarski [1946], Rasiowa
and Sikorski [1963]) Given a Heyting algebra A, the set of negative elements

∼ A = {a : (∃b)(a = ∼ b)}

is a Boolean algebra, and it contains A.

496 F. Classical Propositional Calculus

Proof. To prove that the negative elements of a Heyting algebra form a Boolean
algebra, we need the following facts:

• 0 and 1 are negative
It is enough to notice that ∼ 0 = 1 and ∼ 1 = 0. The former holds because
x ! 0 = 0 for every x. The latter holds because x ! 1 = 0 only for x = 0.

• if a and b are negative, then a ! b is negative (and hence it is the g.l.b. of a
and b in ∼ A)
If a and b are negative, then a = ∼ a1 and b = ∼ b1. By the ‘Good’ De
Morgan Law, ∼ a1 ! ∼ b1 = ∼ (a1 " b1).

• if a and b are negative, then ∼∼ (a " b) is the least negative element above
a " b (and hence it is the l.u.b. of a and b in ∼ A)
It is enough to prove that, in general, ∼∼ x is the least negative element
above x.
By the ‘Good’ Double Negation Law, x / ∼∼ x. Conversely, suppose x / y
and y is negative. Then ∼∼ x / ∼∼ y = y, by a double application of the
‘Good’ Contrapositive Law, and because y is negative.

• if b is negative, so is a ⇒ b
Since b is negative, b = ∼ c for some c. It is enough to prove

(a ⇒ ∼ c) = ∼ (a ! c),

i.e.
a ⇒ (c ⇒ 0) = (a ! c) ⇒ 0.

By definition of adjointness,

x / a ⇒ (c ⇒ 0) ⇐⇒ (x ! a) / (c ⇒ 0)
⇐⇒ x ! a ! c / 0
⇐⇒ x / (a ! c ⇒ 0).

• every negative element is complemented in ∼ A
We show that if a is negative, then ∼ a is the complement of a. Since a and
∼ a are both negative (the former by hypothesis, the latter by definition), by
what we have already proved it is enough to show

a ! ∼ a = 0 and ∼∼ (a " ∼ a) = 1.

Obviously, a ! ∼ a = 0 by definition of ∼. Moreover

∼ (a " ∼ a) = ∼ a ! ∼∼ a = 0

by the ‘Good’ De Morgan Law and the definition of ∼. Thus ∼∼ (a " ∼
a) = 1, because ∼ 0 = 1.

Relationships with Heyting algebras ! 497

That A ⊆ ∼ A follows from 20.4.3, since if a = b, then a = ∼ b. !

In a topological Heyting algebra,

∼ A = the largest open set contained in A = the interior of A,

and open sets of the form ∼ A are called regular open sets.

Exercises 20.4.9 a) ∼ A is the smallest subset B of A such that:

• 0 ∈ B

• if b ∈ B, then a ⇒ b ∈ B.

(Hint: ∼ A has the two properties. Moreover, if B has the two properties, then it contains
∼ a = (a ⇒ 0) for any a ∈ A.)

b) ∼ A is not, in general, equal to A. (Hint: consider the topological Heyting algebra
of the real line. Then the open interval (−∞, 0) is negative because (−∞, 0) = ∼ (0,∞),
but it is not complemented because it is not clopen.)

c) ∼ A is not, in general, a subalgebra of A. (Hint: the only way in which ∼ A can
fail to be a subalgebra of A is if there are negative elements a and b such that a0 b is not
negative, since ∼ A is closed under + and ⇒. Consider the topological algebra of part
b): both the open intervals (−∞, 0) and (0,∞) are negative, but their union {0} is not
negative, since ∼ {0} = ∅ while ∼ ∅ is the whole space, and hence ∼∼ {0} .= {0}.

This shows that the regular open sets of a topological space are always a Boolean
algebra, but not always a field of sets.)

d) The following laws are equivalent for a Heyting algebra:

1. Weak Excluded Middle. ∼ a 0 ∼∼ a = 1

2. ‘Bad’ De Morgan. ∼ a 0 ∼ b = ∼ (a + b)

3. ∼ A = A

4. ∼ A is a subalgebra of A.

(Johnstone [1979]) (Hint: for the equivalence of 1 and 2, see 21.4.6.
For the equivalence of 1 and 3, a negative element ∼ a is complemented in A if and

only if ∼ a 0 ∼∼ a = 1.
For the equivalence of 1 and 4, as in 21.4.5 from 1 we get filtration of ∼∼ through 0.

Thus, if a and b are negative,

∼∼ (a 0 b) = (∼∼ a 0 ∼∼ b) = a 0 b.

Conversely, if ∼ A is a subalgebra of A, then

∼ a 0 ∼∼ a = ∼∼ (∼ a 0 ∼∼ a) = ∼ (∼∼ a + ∼ a) = ∼ 0 = 1,

because ∼ a and ∼∼ a are negative, and by the ‘Good’ De Morgan Law.)

498 F. Classical Propositional Calculus

Exercises 20.4.10 Completion of Boolean algebras. (MacNeille [1937], Stone [1937b])
Given a Boolean algebra A, a complete Boolean algebra C is the completion of A if it
contains (an isomorphic copy of) A as a subalgebra, and every element of C is the l.u.b.
of a subset of A.

a) Every Boolean algebra has a completion. (Hint: given a Boolean algebra A, let B
be the complete Heyting algebra of the open sets of its Stone space, and consider ∼ B,
i.e. the complete Boolean algebra of the regular open sets. By 20.3.13, A is isomorphic to
the algebra of clopen sets, which is a subalgebra of ∼ B. Moreover, ∼ B is the completion
of the algebra of clopen sets, since the latter generates the Stone topology.)

b) The completion of a Boolean algebra is unique, up to isomorphism. (Hint: given
two completions C1 and C2 of A, define an isomorphism f : C1 → C2 by letting f(x) be
the l.u.b. in C2 of the set of elements of A below x in C1.)

c) The completion of a Boolean algebra is not necessarily atomic, and in particular not
necessarily isomorphic to a power set. (Hint: if A is atomless, then so is its completion.)

d) A Boolean algebra is complete if and only if it is isomorphic to the algebra of regular
open sets of its Stone space. (Hint: by part a).)

e) A Boolean algebra is complete if and only if every regular open set of its Stone space
is clopen. (Hint: by part a) and 20.4.9.d.3.)

f) A Boolean algebra is complete if and only if the regular open sets of its Stone space

are closed under finite union. (Hint: by part a) and 20.4.9.d.4.)

Weak units and dense open sets

By 21.1.3 the classically provable propositional formulas are exactly those whose
double negation is intuitionistically provable, and the Classical Propositional Cal-
culus can be obtained from the intuitionistic one by collapsing double negations.
We now translate these facts into algebraic language.

Definition 20.4.11 An element a is a weak unit if ∼∼ a = 1.

Notice that a is a weak unit if and only if ∼ a = 0, i.e. a is the only element x
such that a ! x = 0 is 0. In one direction, if ∼∼ a = 1, then ∼∼∼ a = 0 because
∼ 1 = 0, and ∼ a = 0 by the Triple Negation Law. In the other direction, if
∼ a = 0, then ∼∼ a = 1 because ∼ 0 = 1.

The weak units provide a third way of extracting a Boolean algebra from a
Heyting algebra.

Proposition 20.4.12 (Tarski [1938], Rasiowa and Sikorski [1963]) Given a
Heyting algebra A, the set of weak units

{a : ∼∼ a = 1}

is a filter, and the quotient Heyting algebra A/∼∼ generated by it is a Boolean
algebra.

Relationships with Heyting algebras ! 499

Proof. To prove that the weak units of a Heyting algebra form a filter, we need
the following facts:

• if a and b are weak units, so is a ! b
It is enough to note that

(a ! b) ! x = 0 =⇒ a ! (b ! x) = 0 =⇒ b ! x = 0 =⇒ x = 0

by distributivity, and because a and b are weak units.

• if a is a weak unit and a / b, then b is a weak unit
It is enough to note that

b ! x = 0 =⇒ a ! x = 0 =⇒ x = 0

because a / b, and a is a weak unit.

Recall from 5.1.13 that a filter F on a Heyting algebra A induces an equivalence
relation

a ∼F b ⇐⇒ (a ⇒ b) ∈ F ∧ (b ⇒ a) ∈ F,

and that the set of equivalence classes is a (quotient) Heyting algebra whose oper-
ations are induced by the operations of A. It is thus enough to note that in the
special case when

F = {a : ∼∼ a = 1},

the quotient Heyting algebra is a actually a Boolean algebra, with the complemen-
tation operation induced by ∼.

This is just an observation, based on the following two facts:

• a ! ∼ a = 0
By the No Contradiction Law.

• (a " ∼ a) ∈ F
This says that [a " ∼ a] is the unit element of the quotient, and follows from

∼ (a " ∼ a) = ∼ a ! ∼∼ a = 0,

by the ‘Good’ De Morgan Law and the first fact (applied to ∼ a). !

Exercises 20.4.13 a) F = {a : a = (b 0 ∼ b) for some b}, i.e. A/∼∼ is obtained by
making the Excluded Middle true. (Hint: b 0 ∼ b ∈ F by the proof above. Conversely, if
a ∈ F , then ∼ a = 0, i.e. a = a 0 0 = a 0 ∼ a.)

b) F = {a : a = (∼∼ b ⇒ b) for some b}, i.e. A/∼∼ is obtained by making the ‘Bad’
Double Negation true. (Hint: if a ∈ F , then ∼∼ a = 1, so a = (1 ⇒ a) = (∼∼ a ⇒ a).
Conversely, ∼∼ b ⇒ b ∈ F because F is upward closed, ∼ b 0 b ∈ F and

(∼ b 0 b) = (∼∼∼ b 0 b) $ (∼∼ b ⇒ b),

500 F. Classical Propositional Calculus

where the last step follows from the fact that (∼ c 0 b) $ (c ⇒ b).)
c) a ∼F b if and only if ∼∼ a = ∼∼ b, i.e. A/∼∼ is obtained by identifying double

negations. (Hint: if ∼∼ a = ∼∼ b, then ∼∼ a ∼F ∼∼ b obviously. And a ∼F b follows
from ∼∼ a ∼F a and ∼∼ b ∼F b, where e.g. ∼∼ a ∼F a holds because (a ⇒ ∼∼ a) =
1 ∈ F , and (∼∼ a ⇒ a) ∈ F from part b).

Conversely, if a ∼F b, then a ∼F ∼∼ b, so (a ⇒ ∼∼ b) ∈ F , i.e.

1 = ∼∼ (a ⇒ ∼∼ b) = (a ⇒ ∼∼ b),

where the last equality follows from ∼∼ (a ⇒ ∼ c) = (a ⇒ ∼ c), which we are going to
prove. Then a $ ∼∼ b, and ∼∼ a $ ∼∼ b. The converse is symmetrical.

To prove ∼∼ (a ⇒ ∼ c) = (a ⇒ ∼ c), notice that

(a ⇒ ∼ c) = [a ⇒ (c ⇒ 0)] = [(a + c) ⇒ 0] = ∼ (a + c),

so that
∼∼ (a ⇒ ∼ c) = ∼∼∼ (a + c) = ∼ (a + c) = (a ⇒ ∼ c)

by the Triple Negation Law.)

We have seen that the negative elements of a topological Heyting algebra are
the regular open sets. If we call closure of A the smallest closed set containing it,
then

∼ A = the complement of the closure of A.

Thus the weak units of a topological Heyting algebra are the open dense sets,
i.e. the open sets whose closure is the whole space.

The canonical Boolean algebra associated with a Heyting al-
gebra

We have associated two Boolean algebras ∼ A and A/∼∼ with a given Heyting
algebra, and the next result shows that they are just different ways of looking at
the same algebra.

Proposition 20.4.14 (Rasiowa and Sikorski [1963]) Given a Heyting algebra
A, the two Boolean algebras ∼ A and A/∼∼ associated with it are isomorphic.

Proof. Let f : A → A/∼∼ be the canonical homomorphism of Heyting algebras
defined by f(a) = [a]. We show that its restriction to ∼ A is an isomorphism of
Boolean algebras, as follows:

• f preserves g.l.b.’s, the order, 0 and 1 of ∼ A
f preserves g.l.b.’s of ∼ A because the latter coincide with g.l.b.’s of A, which
are preserved because f is a homomorphism. Similarly for the order, 0 and
1.

Relationships with Heyting algebras ! 501

• f preserves l.u.b.’s of ∼ A
If a and b are negative, their l.u.b. in ∼ A is ∼∼ (a " b). Since f preserves
l.u.b.’s of A, it is enough to show that [a " b] = [∼∼ (a " b)].
We show more generally that [x] = [∼∼ x], which follows by proving that
both x ⇒ ∼∼ x and ∼∼ x ⇒ x are in the filter F of weak units.
Since x / ∼∼ x we have

1 = (x ⇒ x) / (x ⇒ ∼∼ x)

by 5.1.8.7 and monotonicity of ⇒, and hence x ⇒ ∼∼ x is in any filter.
Since we know that (x " ∼ x) ∈ F , to get that (∼∼ x ⇒ x) ∈ F it is enough
to show that (x " ∼ x) / (∼∼ x ⇒ x). By the Triple Negation Law, it is
equivalent to show that (x " ∼∼∼ x) / (∼∼ x ⇒ x), which follows from
(x " ∼ y) / (y ⇒ x), by taking y = ∼∼ x.
Finally, (x " ∼ y) / (y ⇒ x) holds as follows:

(x " ∼ y) / (y ⇒ x)
⇐⇒ (x " ∼ y) ! y / x

⇐⇒ (x ! y) " (y ! ∼ y) / x

⇐⇒ (x ! y) / x,

by adjointness, distributivity and the fact that y ! ∼ y = 0.

• f is one-one on ∼ A
We want to show that if a and b are negative and [a] / [b], i.e. (a ⇒ b) ∈ F ,
then a / b.
The hypotheses are equivalent to ∼∼ a = a, ∼∼ b = b and ∼∼ (a ⇒ b) = 1.
Then (∼∼ a ⇒ ∼∼ b) = 1 by the last hypothesis and the ‘Good’ Contrapos-
itive Law (applied twice), and (a ⇒ b) = 1 by the first two hypotheses. This
implies a / b, because by adjointness

1 / a ⇒ b ⇐⇒ 1 ! a / b ⇐⇒ a / b.

• the restriction of f to ∼ A is onto A/∼∼
We proved above that [a] = [∼∼ a]. Then every element of ∼ A is the image
via f of a negative element. !

Conditions for a Heyting algebra to be a Boolean algebra

The previous results provide a satisfactory answer to the question of how to asso-
ciate a canonical Boolean algebra to a given Heyting algebra, and we now turn to

502 F. Classical Propositional Calculus

the complementary question of when is a given Heyting algebra already a Boolean
algebra.

The first answer we provide is local algebraic, and it translates the fact that the
Classical Propositional Calculus is obtained from the Intuitionistic Propositional
Calculus by adding either the Law of the Excluded Middle or the Double Negation
Law (see 21.2.3). It also shows that the pseudocomplements of a Boolean algebra
are simply the complements.

Proposition 20.4.15 The following laws are equivalent for a Heyting algebra:

1. Excluded Middle. a " ∼ a = 1

2. ‘Bad’ Double Negation. ∼∼ a / a

3. ‘Bad’ Contrapositive. If ∼ a / ∼ b then b / a,

and a Heyting algebra is a Boolean algebra if and only if it satisfies (any of) them.

Proof. To prove the equivalence of 1 and 2, suppose a " ∼ a = 1. Then

∼∼ a = ∼∼ a ! 1 = ∼∼ a ! (a " ∼ a) = (∼∼ a ! a) " (∼∼ a ! ∼ a) = ∼∼ a ! a

by distributivity, and the fact that ∼∼ a ! ∼ a = 0. Then ∼∼ a / a.
Conversely, suppose ∼∼ (a " ∼ a) / (a " ∼ a). Then a " ∼ a = 1, because

∼∼ (a " ∼ a) = ∼ (∼ a ! ∼∼ a) = ∼ 0 = 1

by the ‘Good’ De Morgan Law.
To prove the equivalence of 2 and 3, suppose ∼ a / ∼ b. Then ∼∼ b / ∼∼ a

by the ‘Good’ Contrapositive Law, and

b / ∼∼ b / ∼∼ a / a

by the ‘Good’ and ‘Bad’ Double Negation Laws.
Conversely, ∼ a / ∼∼∼ a by the ‘Good’ Double Negation Law applied to ∼ a,

so ∼∼ a / a by 3.
Because of the equivalences just proved, it is now enough to show that a Heyting

algebra is a Boolean algebra if and only if it satisfies the Law of the Excluded
Middle. In one direction, since a ! ∼ a = 0 always holds, the Law implies that
every element is complemented (with ∼ as the complementation operation). In
the other direction, in a Boolean algebra ∼ is the complementation operation, and
thus the Law is satified. !

Exercise 20.4.16 A Heyting algebra is a Boolean algebra if and only if 1 is the only

weak unit . (Hint: if ∼∼ a $ a, then from ∼∼ a = 1 we have a = 1. Conversely, since

Relationships with Heyting algebras ! 503

∼∼ (a 0 ∼ a) = 1 always holds, if 1 is the only weak unit, then a 0 ∼ a = 1.)

The second answer to the problem stated at the beginning of the subsection is
global algebraic.

Proposition 20.4.17 (Nachbin [1947]) A Heyting algebra is a Boolean algebra
if and only if every prime filter is maximal.

Proof. We already know from 20.3.11 that in a Boolean algebra every prime filter
is maximal.

For the converse, suppose that a Heyting algebra has a non complemented
element a. Consider first the filter J of all elements joining to 1 with a, i.e.

J = {x : a " x = 1},

and then the filter F generated by J ∪ {a}. By distributivity, F is the upward
closure of

{a ! x : x ∈ J} = {a ! x : a " x = 1}.

Then F is a proper filter, otherwise 0 ∈ F , and there would be an x such that

0 = a ! x and a " x = 1,

i.e. a would be complemented.
We want to prove that there is a prime filter S contained in F and avoiding a,

so that S ⊂ F and S is not maximal. Consider the ideal I generated by F ∪ {a}.
It is disjoint from J , otherwise there is x ∈ J (i.e. satisfying a " x = 1) such that
x / a " y for some y ∈ F . But since a " x = 1, a " y = 1 too, and y ∈ J ⊆ F ,
contradiction.

We now prove that there is a prime filter S extending J and disjoint from I: in
particular, S is a prime filter contained in F and avoiding a. We consider the family
FA of all filters extending J and disjoint from I, and notice that since every chain
in this set has a l.u.b. (namely, its union), by Zorn’s Lemma there is a maximal
element S. It only remains to prove that S is prime.

Suppose S is not prime. Then there are x, y -∈ S such that x " y ∈ S, and
the filters generated by S ∪ {x} and S ∪ {y} are not in the family FA, because
they properly contain the maximal element S. Since the two filters contain J by
definition, this means that they are not disjoint from I. Then there must exist
elements

a1 ∈ I and b1 ∈ S such that a1 3 x ! b1

a2 ∈ I and b2 ∈ S such that a2 3 y ! b2.

Then

a1 " a2 3 (x ! b1) " (y ! b2) = (x " y) ! (b1 " y) ! (x " b2) ! (b1 " b2),

504 F. Classical Propositional Calculus

by distributivity. The last expression is in S because the first conjunct is in S by
hypothesis, and the remaining three are in S because each is above one of b1 and
b2, and S is a filter. By upward closure of S, then a1 " a2 ∈ S too, and hence
S ∩ I -= ∅, contradicting the fact that S is disjoint from I. !

The third and final answer to the problem stated at the beginning of the sub-
section is topological . Recall from 18.3.5 that a topology is T2 if any pair of distinct
elements can be separated by disjoint open sets.

Proposition 20.4.18 (Stone [1937]) A Heyting algebra is a Boolean algebra if
and only if its Stone topology is T2.

Proof. Let f be the function from a Boolean algebra A to its Stone space Fp
A

considered in 20.3.2 and 20.3.13, i.e.

f(x) = the set of all prime filters containing x.

Since f is a homomorphism of Boolean algebras, if x!y = 0, then f(x)∩f(y) = ∅,
i.e. f(x) and f(y) are disjoint open sets.

To show that Fp
A is T2 it is thus enough to find, for any pair F and G of distinct

elements of Fp
A (i.e. distinct prime filters on A) two elements x and y of A such

that x ! y = 0, F ∈ f(x) and G ∈ f(y).
Since F and G are distinct, there is an element x on which they differ, e.g.

x ∈ F −G. Then ∼ x ∈ G−F (if x ∈ F , then ∼ x -∈ F , otherwise x ! ∼ x = 0 ∈ F ;
if x -∈ G, then ∼ x ∈ G, because a prime filter is an ultrafilter). Thus x ! ∼ x = 0,
F ∈ f(x) because x ∈ F , and G ∈ f(∼ x) because ∼ x ∈ G.

Conversely, let A be a Heyting algebra. By 18.4.7, A is isomorphic to the algebra
of compact open sets of its Stone space, and this algebra contains all clopen sets.
We show that if the Stone space is T2, then every compact open set is closed, so
that A is isomorphic to an algebra of clopen sets, and in particular it is a Boolean
algebra.

Let X be a compact open set in the Stone space, and y -∈ X . We want to find
an open set Oy containing y and disjoint from X , so that X =

⋃
y∈X Oy. Thus X

is open, and X is closed.
If x ∈ X , then x -= y because y -∈ X . Since the Stone space is T2, there are

disjoint open sets Bx and Cx such that x ∈ Bx and y ∈ Cx. Since the Stone
space is compact (by 18.4.8) and X ⊆

⋃
x∈X Ax, there are x1, . . . , xn such that

X ⊆ Ax1 ∪ · · · ∪ Axn . Then Oy = Bx1 ∩ · · · ∩ Bxn is an open set containing y and
disjoint from X , as needed. !

Exercise 20.4.19 A topology is homeomorphic to the dual Stone topology of a Boolean

algebra if and only if it is coherent and T2. (Stone [1937]) (Hint: by 18.5.7 and 20.4.18.)

Boolean Bicartesian Closed Categories ! 505

20.5 Boolean Bicartesian Closed Categories !

Having introduced a classical analogue of Heyting algebras, we now look for a
classical analogue of bicartesian closed categories. According to the motto

bicartesian closed categories = Heyting algebras + morphisms,

the following is the obvious notion.

Definition 20.5.1 A bicartesian closed category is called Boolean if the under-
lining Heyting algebra is a Boolean algebra.

The previous motto now becomes:

Boolean bicartesian closed categories = Boolean algebras + morphisms.

The next result shows that, unlike the intuitionistic case, the classical case collapses.

Proposition 20.5.2 (Joyal) A Boolean bicartesian closed category is a Boolean
algebra.

Proof. We need to show that, given two objects A and B, there is at most one
morphism between them. Since the category is Boolean, and hence the underlining
algebra satisfies the double negation law, the object B is isomorphic to ∼∼ B, and
hence to an object C ⇒ 0 (where C is B ⇒ 0). By cartesian closure,

Hom(A, B) ∼= Hom(A, C ⇒ 0) ∼= Hom(A × C, 0).

If we show that in a cartesian closed category with 0 the set Hom(X, 0) has at
most one element, then the right-hand-side has at most one element, and hence so
does the left-hand-side.

We prove that if Hom(X, 0) is not empty then X ∼= 0: thus either Hom(X, 0)
is empty or it can have only one element, by definition of 0.

Suppose Hom(A, 0) -= ∅: then there is at least one morphism h : A → 0. Since
0 is initial, there is exactly one morphism iX : 0 → X . To prove that X ∼= 0, it is
enough to show the following:

• h ◦ iX = id0

Both h ◦ iX and id0 are morphisms from 0 to the same object (again 0): by
definition of initial object there can be only one such morphism, so they must
be equal.

• iX ◦ h = idX

By definition of product 0 × X

h = l0,X ◦ 〈h, idX〉 and iX = r0,X ◦ 〈id0, iX〉,

506 F. Classical Propositional Calculus

and hence
iX ◦ h = r0,X ◦ 〈id0, iX〉 ◦ l0,X ◦ 〈h, idX〉,

i.e.
X

〈h,idX〉−→ 0 × X
l0,X−→ 0

〈id0,iX〉−→ 0 × X
r0,X−→ X.

Let us consider the central morphism

〈id0, iX〉 ◦ l0,X ∈ Hom(0 × X, 0 × X) :

by cartesian closure

Hom(0 × X, 0 × X) ∼= Hom(0, (0 × X)X),

and since the right-hand-side contains only one element because 0 is initial,
so does the left-hand-side; since obviously

id0×X ∈ Hom(0 × X, 0 × X),

it follows that
〈id0, iX〉 ◦ l0,X = id0×X .

Then

iX ◦ h = r0,X ◦ id0×X ◦ 〈h, idX〉
= r0,X ◦ 〈h, idX〉
= idX ,

by the properties of the identity id0×X , and of the projection r0,X . !

The result just proved can be rephrased in the following proportion:

Heyting algebras
bicartesian closed categories = Boolean algebras

Boolean algebras,

and shows that there is no categorical analogue of Boolean algebras. In particular,
category theory is inherently intuitionistic, and it could not have been anticipated
in a simplified form in a classical framework (in the same way as Heyting algebras
were anticipated by Boolean algebras).

More generally, the proof of the result also sheds light on the proof theory of
negative formulas (possibly from premises), by showing that there can be at most
one such proof for each such formula, up to equivalence. In other words, if such for-
mulas are provable at all (it does not matter whether classically or intuitionistically,
by 21.3.2), then they are provable in an essentially unique way.

æ

Chapter 21

Relationships with
Intuitionism

In this chapter we consider various relationships between the Classical and the
Intuitionistic Propositional Calculi, from two points of view. First of all, we find
extensions of the intuitionistic systems N and H by new axioms, thus providing ap-
proaches to the Classical Propositional Calculus in the styles of Natural Deduction
and Hilbert systems. Secondly, we look for syntactical transformations of formulas
that allow translations of the Classical Propositional Calculus into the intuitionis-
tic one. The two approaches are complementary, and they respectively expand the
intuitionistic notion of proof, and the classical interpretation of formulas.

21.1 Intuitionistic Analysis of Tautologies

We introduce the main technical tool of the chapter, namely an analysis of the
notion of tautology from an intuitionistic point of view.

Excluded Middle

We start by showing that the laws governing the formation of classical truth-tables
can actually be proved in the intuitionistic system N , if we identify truth and falsity
assertions about a formula with, respectively, the formula itself and its negation.

We consider all propositional connectives, although classically ¬ and ∧ would
suffice (see 19.2), because we want to analize different translations of the Classical
Propositional Calculus into the intuitionistic one, while the restriction to ¬ and ∧
would instead correspond to a fixed translation (see 21.3.1).

507

508 F. Classical Propositional Calculus

Proposition 21.1.1 The formation laws of classical truth-tables are provable in
N . More precisely, for every α and β:

1. Negation. ¬α is true if α is false, and false if α is true:

¬α %N ¬α α %N ¬¬α.

2. Conjunction. α ∧ β is true if both α and β are true, and false if one of
them is false:

α,β %N α ∧ β ¬α %N ¬(α ∧ β) ¬β %N ¬(α ∧ β).

3. Disjunction. α ∨ β is true if one of α and β is true, and false if they are
both false:

α %N α ∨ β β %N α ∨ β ¬α,¬β %N ¬(α ∨ β).

4. Implication. α → β is true if α is false or β is true, and false if α is true
and β is false:

¬α %N α → β β %N α → β α,¬β %N ¬(α → β).

Proof. The first property of negation is an axiom, and the second is proved by
the following:

[α](2) [¬α](1)
⊥

(¬¬α)(1)

α(2) → ¬¬α,

The first property of conjunction is the rule of ∧-introduction. The second is
proved by the following:

[α ∧ β](1)
α ¬α

⊥
¬(α ∧ β)(1),

and similarly for the third property.
The first two properties of disjunction are the rules of ∨-introduction, and the

last one is proved by the following:

[α ∨ β](2)
[α](1) ¬α

⊥
[β](1) ¬β

⊥
⊥(1)

¬(α ∨ β)(2).

Intuitionistic Analysis of Tautologies 509

The first property of implication is proved by the following (using ⊥-elimination):

[α](1) ¬α
⊥
β

α(1) → β.

The second property follows from the rule of →-introduction, and the last one is
proved by the following:

α [α → β](1)
β ¬β

⊥
¬(α → β)(1). !

Knowing that the formation rules of truth-tables can be proved in N we imme-
diately have, by induction on the construction of a truth-table, that also any row
of any truth-table can be so proved.

Theorem 21.1.2 Intuitionistic Provability of Tautologies from the Ex-
cluded Middle (Gentzen [1934]) For any tautology α, if the letters occurring
in it are among p1, . . . , pn, then

p1 ∨ ¬p1, . . . , pn ∨ ¬pn %N α.

Proof. By iterated ∨-eliminations, to prove

p1 ∨ ¬p1, . . . , pn ∨ ¬pn %N α

it is enough to prove α from all possible 2n sequences p1, . . . , pn, in which each pi

is one of pi and ¬pi.
If, as above, we identify truth and falsity assertions about a formula with,

respectively, the formula itself and its negation, such sequences p1, . . . , pn can be
identified with a truth assignments to the letters p1, . . . , pn, where pi is true or
false in the given assignment according to whether pi is either pi or ¬pi.

Then the fact that α is a tautology, i.e. that any row of a truth-table for α
makes it true, implies by induction on the construction of the truth-table (using
21.1.1) that α can be proved from any such sequence p1, . . . , pn. !

Double Negation

In the previous subsection we kept tautologies as they are, and accounted for them
in the Intuitionistic Propositional Calculus by adding axioms to it. In the present

510 F. Classical Propositional Calculus

subsection we keep the Intuitionistic Propositional Calculus as it is, and account
for the tautologies by doubly negating them.

The next result provides an intuitionistic justification of the non intuitionis-
tic principles of the Classical Propositional Calculus, such as the Law of the Ex-
cluded Middle. It shows that, although these principles cannot be proved outright,
at least their negation can be refuted. This strategy was first used by Aristotle
(Metaphysics, Γ, 1006a) in justifying the unprovable principles of methaphysics,
including the Law of the Excluded Middle.

Theorem 21.1.3 Double Negation of Tautologies (Kolmogorov [1925],
Glivenko [1929], Gödel [1933], Gentzen [1933]) For any α,

|= α ⇔ %N ¬¬α.

Proof. We only have to prove the left to right direction, since α and ¬¬α are
classically equivalent.

By the ∧ and → introduction rules, in 21.1.2 we have actually proved that if α
is a tautology, then:

%N [
∧

1≤i≤n

(pi ∨ ¬pi)] → α.

We prove below the following ‘Good’ Contrapositive Law :

%N (β → γ) → (¬γ → ¬β).

By using it twice we then get

%N ¬¬[
∧

1≤i≤n

(pi ∨ ¬pi)] → ¬¬α.

We then show that double negation filters through finite conjunctions, so that

%N [
∧

1≤i≤n

¬¬(pi ∨ ¬pi)] → ¬¬α.

Finally we notice that, unlike p ∨ ¬p itself, ¬¬(p ∨ ¬p) is actually provable in N
for any p, and thus ¬¬α is too.

1. ‘Good’ Contrapositive Law
We prove that, for any β and γ,

%N (β → γ) → (¬γ → ¬β).

Since negation is defined in terms of implication, it is enough to prove the
Transitive Law of Implication

(β → γ) → [(γ → δ) → (β → δ)],

Intuitionistic Analysis of Tautologies 511

from which the claim can be obtained by letting δ = ⊥. Transitivity is proved
by the following:

[β → γ](3) [β](1)
γ [γ → δ](2)

δ
β(1) → δ

(γ → δ)(2) → (β → δ)
(β → γ)(3) → [(γ → δ) → (β → δ)].

2. double negation filters through conjunction
The argument given at the beginning requires a step from

%N ¬¬(β ∧ γ) → ¬¬α,

where β and γ are instances of the excluded middle, to

%N (¬¬β ∧ ¬¬γ) → ¬¬α.

For this, we only need the following:

%N (¬¬β ∧ ¬¬γ) → ¬¬(β ∧ γ)

or, by the ∧ and → introduction rules,

¬¬β,¬¬γ %N ¬¬(β ∧ γ).

This is proved by the following:

[¬(β ∧ γ)](3)
[β](1) [γ](2)

β ∧ γ
⊥

¬β(1) ¬¬β
⊥

¬γ(2) ¬¬γ
⊥

¬¬(β ∧ γ)(3).

Although we don’t need it in the present proof, we notice for future use that
also the opposite implication holds. Indeed, from β ∧ γ → β we have, by a
double application of the ‘Good’ Contrapositive Law, ¬¬(β ∧γ) → ¬¬β, and
similarly for γ, i.e.

%N ¬¬(β ∧ γ) → ¬¬β ∧ ¬¬γ.

512 F. Classical Propositional Calculus

3. double negation of the excluded middle
This is proved by the following:

[¬(p ∨ ¬p)](2)

[¬(p ∨ ¬p)](2)
[p](1)

p ∨ ¬p
⊥

¬p(1)

p ∨ ¬p
⊥

¬¬(p ∨ ¬p)(2).

This finishes the proof. !

Notice that the proof can be seen as a reduction of the double negation of
tautologies to double negations of atomic instances of the Law of the Excluded
Middle, which are then proved outright.

Exercise 21.1.4 Prove the double negation of the Law of the Excluded Middle by forcing .
(Hint: trivial, by definition of forcing for negation.)

This proof is much more direct than the one in N , but it does not give any hint on

how to find the latter. A better hint is provided by a proof in S .

While the previous proof only provides a translation of classical validity, a small
addition provides a similar translation of classical logical consequence.

Corollary 21.1.5 The Double Negation Translation. For every Γ and α,

Γ |= α ⇔ ¬¬Γ %N ¬¬α,

where ¬¬Γ = {¬¬γ : γ ∈ Γ}.

Proof. We first prove the following:

• double negation filters through implication
We prove that

%N ¬¬(α → β) ↔ (¬¬α → ¬¬β).

Intuitionistic Analysis of Tautologies 513

The left to right direction follows from:

[α](1) [α → β](2)
β [¬β](3)

⊥
¬α(1) [¬¬α](4)

⊥
¬(α → β)(2) [¬¬(α → β)](5)

⊥
¬¬β(3)

¬¬α(4) → ¬¬β
¬¬(α → β)(5) → (¬¬α → ¬¬β).

The right to left direction follows from the following, by using ⊥-elimination:

[¬¬α → ¬¬β](5)

[¬α](2) [α](1)
⊥
β

α(1) → β [¬(α → β)](4)
⊥

¬¬α(2)

¬¬β

[β](3)
α → β [¬(α → β)](4)

⊥
¬β(3)

⊥
¬¬(α → β)(4)

(¬¬α → ¬¬β)(5) → ¬¬(α → β).

To prove the corollary, by the Compactness Theorem we restrict our attention
to finite sets of formulas {γ1, . . . , γn}. Then:

γ1, . . . , γn |= α

⇔ |= γ1 ∧ · · · ∧ γn → α

⇔ %N ¬¬(γ1 ∧ · · · ∧ γn → α)
⇔ %N ¬¬γ1 ∧ · · · ∧ ¬¬γn → ¬¬α
⇔ ¬¬γ1, . . . ,¬¬γn %N ¬¬α

by the Deduction Theorem, 21.1.3, the fact that double negation filters through
both ∧ and → (as proved in 21.1.3 and above), and → and ∧ introduction. !

Exercise 21.1.6 Prove the Double Negation Translation in the form

Γ |= α ⇔ ¬¬Γ "H ¬¬α.

514 F. Classical Propositional Calculus

(Hint: if Γ |= α, then Γ "HC α by 21.1.2, where HC is obtained from H by adding the
Law of the Excluded Middle as a schema of axioms. We can then take a proof of α from
Γ in HC, and insert ¬¬ everywhere. To turn the result into a proof of ¬¬α from ¬¬Γ in
H, we then only need to provide the following in H:

• for each instance p∨¬p of the Law of the Excluded Middle, a proof of ¬¬(p∨¬¬p)

• for each axiom β of H, a proof of ¬¬β from β (which can be used as an axiom) and
β → ¬¬β (which is provable in H)

• for each application of Modus Ponens

γ γ → δ
δ,

a proof of ¬¬δ from ¬¬γ and ¬¬γ → ¬¬δ. The latter can be deduced from
¬¬(γ → δ) by a double application of the ‘Good’ Contrapositive Law).

Translations such as the ones discussed above are interesting because they pro-
vide relative consistency proofs: if it is possible to prove a contradiction (namely,
both α and ¬α) in the Classical Propositional Calculus, then it is possible to prove
a contradiction in the Intuitionistic Propositional Calculus (namely ¬¬α and ¬α).
This is of little interest in the context of propositional logic, where consistency
is provable by finitary means, but it becomes interesting with stronger systems,
where consistency becomes problematic.

21.2 Extensions of the Intuitionistic Propositional
Calculus

The results of the previous section suggest the possibility of seeing the Classical
Propositional Calculus as an extension of the intuitionistic one, obtained by adding
to the latter the Laws of the Excluded Middle or of Double Negation. We now
spell out this suggestion, thus obtaining a number of formulations of the Classical
Propositional Calculus.

Excluded Middle and Double Negation again

First we notice that the two laws have the same strength from the intuitionistic
point of view.

Proposition 21.2.1 The following two laws:

1. Excluded Middle. α ∨ ¬α

2. ‘Bad’ Double Negation. ¬¬α → α

are intuitionistically equivalent and not valid.

Extensions of the Intuitionistic Propositional Calculus 515

Proof. 1 implies 2 as follows:

α ∨ ¬α [α](1)

[¬α](1) [¬¬α](2)
⊥
α

α(1)

¬¬α(2) → α.

Conversely, 2 implies 1 as follows. By assuming 2 for any formula, we have

¬¬(α ∨ ¬α) → (α ∨ ¬α).

By 21.1.3 the premise is intuitionistically provable, because α ∨ ¬α is a classical
tautology. The conclusion then follows.

Because of the equivalence just proved, it is enough to show that the Law of
the Excluded Middle is not intuitionistically valid. This follows from the fact that
it fails in a Kripke model with two nodes ∅ and 0, and such that A∅ = {∅}, and
A0 = {α}. !

The intuitionistic equivalence of the two schemata cannot be improved to an
equivalence of formulas. Indeed, while

(α ∨ ¬α) → (¬¬α → α)

has been proved in the proof above, the converse implication

(¬¬α → α) → (α ∨ ¬α)

fails intuitionistically, because it fails in a Kripke model with three nodes ∅, 0 and
1, and such that A∅ = A0 = ∅ and A1 = {α}.

A number of intuitionistic principles turn out to be equivalent to the two just
discussed, and the next exercise provides an additional one.

Exercise 21.2.2 The ‘Bad’ Contrapositive Law. We have seen in the proof of 21.1.3
that the ‘Good’ Contrapositive Law is intuitionistically valid. We now consider the ‘bad’
one, namely

(¬α → ¬β) → (β → α).

The ‘Bad’ Contrapositive Law is equivalent to the Law of the Excluded Middle. (Hint:
it is easier to prove the equivalence with the ‘Bad’ Double Negation Law. In one direction,

we use the ‘Good’ Contrapositive Law and then eliminate double negations by transitivity
of implication. In the other direction, we let β = ¬¬α in the ‘Bad’ Contrapositive Law

and notice that the premise is intuitionistically valid.)

516 F. Classical Propositional Calculus

Both the Law of the Excluded Middle and the ‘Bad’ Double Negation Law are
stated for arbitrary formulas, but for the purpose of axiomatizing the Classical
Propositional Calculus weaker schemata (namely, only the atomic instances of any
of the two laws) are enough.

Proposition 21.2.3 The Classical Propositional Calculus can be obtained by adding
to either H or N either one of the following laws:

• Excluded Middle. p ∨ ¬p

• ‘Bad’ Double Negation. ¬¬p → p.

Proof. 21.1.2 already shows that the atomic instances of the Law of the Excluded
Middle are enough to derive all tautologies.

21.1.3 seems instead to require the ‘Bad’ Double Negation Law as a schema, to
step from provability of ¬¬α to provability of α. But a simple induction on α in
the language of ¬ and ∧, which is classically adequate, shows that the full schema
is implied by its atomic instances. For conjunctions, this follows from the fact that
double negation completely filters through conjunctions (see the proof of 21.1.3).
For negations, this follows from the following Law of Triple Negation:

%N ¬β ↔ ¬¬¬β,

which is proved by the following:

[γ](2) [¬γ](1)
⊥

¬¬γ(1)

γ(2) → ¬¬γ.

For γ = ¬β, this gives %N ¬β → ¬¬¬β. For γ = β, this gives %N β → ¬¬β, and
by contrapositive we then get %N ¬¬¬β → ¬β. !

Peirce’s Law

The previous result showed that, from the point of view of the complexity of for-
mulas , only the atomic instances of the Law of the Excluded Middle or of the ‘Bad’
Double Negation Law need to be assumed. We now take the complementary point
of view of the complexity of language, and look for formulations of the two laws in
terms of implication alone.

We first deal with the Law of the Excluded Middle, which is stated in the
language of negation and disjunction. The latter can be reformulated in terms of
implication, as follows:

Extensions of the Intuitionistic Propositional Calculus 517

• negation
By definition, ¬α can be replaced by α → ⊥.

• disjunction
Since α∨γ and (γ → α) → α are classically equivalent (for example, because
they have the same truth-tables), the former can be replaced by the latter.

Then we have the following classical equivalence:

(α ∨ ¬α) ⇔ [(α → ⊥) → α] → α.

The right-hand-side still involves the constant ⊥, but is an instance of the following
purely implicational schema, called Peirce’s Law:

[(α → β) → α] → α.

There are two interesting facts about Peirce’s Law. First, as a schema it implies
every instance of the Law of the Excluded Middle. Second, each of its instances is
classically provable, e.g. as follows:

α %SC β,α
%SC α → β,α α %SC α

(α → β) → α %SC α
%SC [(α → β) → α] → α.

In other words, Peirce’s Law is an implicational translation of the Law of the
Excluded Middle, and it can be taken as an axiom schema in place of it. This is
particularly useful if we are interested in the Classical Implicational Calculus, since
then we get the following axiomation of it.

Theorem 21.2.4 Axiomatization of the Classical Implicational Calculus
(Tarski and Bernays [19??]) The Classical Implicational Calculus can be for-
mulated as the system with the following axioms:

1. γ → (α → γ)

2. [(α → (γ → δ)] → [(α → γ) → (α → δ)]

3. [(α → β) → α] → α.

Proof. We already know that the full Classical Propositional Calculus can be
formulated by adding the Law of the Excluded Middle, and hence also Peirce’s Law,
to the axioms of the Intuitionistic Propositional Calculus. By the Normalization
Theorem for the full Intuitionistic Propositional Calculus with axioms, any logical
symbol or constant occurring in a normal proof must already occur in the conclusion
or in the premises. Thus a valid classical implicational formula admits a proof in
which the only logical symbol occurring is implication. Then such a proof is a proof
in the Implicational Calculus from the axioms 1–3. !

518 F. Classical Propositional Calculus

Axiomatizations of the Classical Propositional Calculus

The trick just played with the Law of the Excluded Middle cannot be fully played
with the ‘Bad’ Double Negation Law. Indeed, while we obviously have the following
intuitionistic equivalence (by definition of ¬):

(¬¬α → α) ⇔ [(α → ⊥) → ⊥] → α,

the purely implicational schema

[(α → β) → β] → α

is not classically valid, being false under any assignment that makes α false and
β true. Thus the latter cannot be used for an axiomatization of the Classical
Implicational Calculus, but the former can be used for a neat formulation of the
full Classical Propositional Calculus.

Proposition 21.2.5 Axiomatization of the Full Classical Propositional
Calculus. The Classical Propositional Calculus can be formulated as the system
with only one connective → and one constant ⊥, and the following axioms:

1. γ → (α → γ)

2. [(α → (γ → δ)] → [(α → γ) → (α → δ)]

3. [(α → ⊥) → ⊥] → α.

Proof. By the adequacy of → and ¬. !

Obviously, various other formulations of the full Classical Propositional Calcu-
lus can be obtained by adding any of the Excluded Middle, ‘Bad’ Double Nega-
tion, ‘Bad’ Contrapositive, or Peirce’s Laws to either the Natural Deduction or the
Hilbert style axiomatizations of the Intuitionistic Propositional Calculus.

Any one of these additions gives classical versions NC of Natural Deduction,
and HC of Hilbert system, for which we can prove the following result.

Proposition 21.2.6 Equivalence of Classical Systems. For every Γ and α:

Γ %NC α ⇔ Γ %HC α ⇔ Γ %SC α ⇔ Γ |= α.

Proof. Since the same axiom was added to N and H to get the corresponding
classical systems, the first equivalence follows from 1.2.2, which was proved for any
set of assumptions.

In the second equivalence, one direction follows from the equivalence of H and
S and any proof of the additional axiom SC (one is given in 21.2.4). The other
direction follows from the last equivalence and 21.2.4.

Extensions of the Classical Propositional Calculus 519

The last equivalence was proved in the Classical Soundness and Completeness
Theorem 19.1.4. !

Finally, a different formulation of NC can be obtained by adding the ‘Bad’
Double Negation Law to N not as an axiom, but as the following rule:

Γ %NC ¬¬α
Γ %NC α,

corresponding to the possibility of extending proofs as follows:

¬¬α
α.

Then %NC ¬¬α → α becomes provable by →-introduction.

21.3 Extensions of the Classical Propositional Cal-
culus

The results of this section provide a view of the relationships between the Classical
and Intuitionistic Propositional Calculi opposite and complementary to the one
exposed in the previous section.

Intuitionistic Propositional Calculus

For our present purposes, the basic observation is the following.

Theorem 21.3.1 (Gödel [1933]) If α is a propositional formula in the language
of ¬ and ∧ alone, then α is classically valid if and only if it is intuitionistically
valid, i.e.

|= α ⇔ %N α.

Proof. We only have to prove the left to right direction, since any formula provable
in N is classically valid. We proceed inductively on the construction of α:

1. letters
There is nothing to prove, since single letters are neither classically provable
(because not valid), nor intuitionistically provable.

2. negations
If α = ¬β, then %N ¬¬¬β by 21.1.3, and %N ¬β by the Law of Triple
Negation (proved in the proof of 21.2.3).

520 F. Classical Propositional Calculus

3. conjunctions
If α = β ∧ γ and α is classically valid, then so are both β and γ. By the
induction hypothesis, %N β and %N γ, and by ∧-introduction %N β ∧ γ. !

The result is the best possible, in the sense that it fails when → or ∨ are added
to the language. Peirce’s Law is an example of a formula in the language of → that
holds classically but not intuitionistically, and the Law of the Excluded Middle is
an example in the language of ¬ and ∨.

Although the result fails for the full language of the Classical Propositional
Calculus, this is not a restriction from a classical point of view, where every formula
is equivalent to one in the language of ¬ and ∧ alone. Thus the Intuitionistic
Propositional Calculus can be seen as an extension of the classical one, in which
the new connectives ∨ and → are introduced from scratch by new rules, instead of
being defined from the old ones.

In a precise sense the Classical Propositional Calculus is thus naturally a subsys-
tem of the intuitionistic one, since its connectives are interpreted truth-functionally
from the very beginning (and the completeness proof of ¬, ∧ is quite simple). On
the other hand, the Intuitionistic Propositional Calculus is a subsystem of the clas-
sical one unnaturally, only if the meaning of its connectives (other than ¬ and ∧)
is brutally changed.

If we look at the full language, there is a class of formulas that are classically
provable if and only if they are intuitionistically provable. They are the so-called
negative formulas, i.e. those equivalent to ones that begin by a negation.

Proposition 21.3.2 (Glivenko [1929]) If α is a propositional formula in the full
language of ¬, ∧, ∨ and →, then its negation is classically valid if and only if it is
intuitionistically valid, i.e.

|= ¬α ⇔ %N ¬α.

Proof. By 21.1.3,
|= ¬α ⇔ %N ¬¬¬α.

And by the Triple Negation Law,

%N ¬¬¬α ⇔ %N ¬α. !

It follows in particular that a formula α is classically decidable, i.e. one of α
and ¬α is provable, if and only if α is intuitionistically weakly decidable, i.e. one
of ¬α and ¬¬α is provable.

Minimal Propositional Calculus !

Gödel’s result 21.3.1 can be improved to show that the Classical Propositional
Calculus is a subsystem not only of the intuitionistic one, but even of the weaker

Extensions of the Classical Propositional Calculus 521

Minimal Propositional Calculus , which is obtained from the intuitionistic one by
retaining the constant ⊥, but dropping the ⊥-elimination rule.

Thus in the Minimal Propositional Calculus we do have negation, since ¬α can
still be defined as α → ⊥, but all its properties follow from properties of implication
alone, because no special meaning is attached to the constant ⊥.

This does not sound very promising, and we may think that only trivial prop-
erties of negation are provable in the Minimal Propositional Calculus. Contrary to
this first impression, it turns out that most of the properties of negation are indeed
minimal. For example, the following are, as the reader can easily verify:

1. No Contradiction. ¬(α ∧ ¬α)

2. ‘Good’ Contrapositive. (α → β) → (¬β → ¬α)

3. ‘Good’ Double Negation. α → ¬¬α

4. Triple Negation. ¬α ↔ ¬¬¬α

5. ‘Good’ De Morgan. ¬α ∧ ¬β ↔ ¬(α ∨ β).

Moreover, the following:

6. Weak Form of ⊥-Elimination. ⊥ → ¬α

also turns out to be minimally provable, being just an instance of β → (α → β),
for β = ⊥.

The following result is a strengthening of 21.3.1, obtained at no additional cost.

Corollary 21.3.3 If α is a propositional formula in the language of ¬ and ∧ alone,
then α is classically valid if and only if it is minimally valid.

Proof. By taking a close look at the proofs of 21.1.1, we see that we only made
use of ⊥-elimination in the proof of the following formation rule:

¬α %N α → β.

In particular, the formation rules for ¬, ∧ and ∨ have all been proved in the Minimal
Propositional Calculus.

Since there was no use of ⊥-elimination in the proof of 21.1.3, it follows that if
α is a propositional tautology in the language of ¬, ∧ and ∨, then ¬¬α is provable
in the Minimal Propositional Calculus.

Finally, since there was no use of ⊥-elimination in the proof of 21.3.1, it follows
that if α is a propositional tautology in the language of ¬ and ∧, then α itself is
provable in the Minimal Propositional Calculus. !

The Minimal Propositional Calculus has the following interesting property.

522 F. Classical Propositional Calculus

Proposition 21.3.4 Collapse of the Double Negation Translation (Fried-
man [1978]) If α is a propositional formula not containing negations, then ¬¬α
is minimally provable if and only if so is α itself.

Proof. By definition of negation,

¬¬α = (α → ⊥) → ⊥.

Since ⊥ has no special meaning in the Minimal Propositional Calculus, by substi-
tuting any formula β for ⊥ in the proof of ¬¬α we still get a proof. If α contains no
negation, then the substitution has no effect on it, and hence it produces a proof
of

(α → β) → β.

In particular, by letting β = α we get a proof of

(α → α) → α.

Since the premise α → α is provable, so is the conclusion α. !

The restriction on α cannot be dropped. For example, ¬¬(p ∨ ¬p) is provable
in the Minimal Propositional Calculus by 21.1.3, but p ∨ ¬p is not. Actually, the
latter is not even provable in the Intuitionistic Propositional Calculus.

The restriction on the Minimal Propositional Calculus cannot be dropped ei-
ther. For example, the double negation of Peirce’s Law is intuitionistically provable
by 21.1.3, but Peirce’s Law itself is not. Notice that the minimal analogue of 21.1.3
cannot be applied here to show that the double negation of Peirce’s Law is mini-
mally provable, because it only holds for formulas not containing →.

21.4 Translations

In the present section we present a number of translations of the Classical into the
Intuitionistic and Minimal Calculi, each with its own special properties.

Gödel’s Translation

Gödel’s result 21.3.1 deals with formulas in the restricted language of ¬ and ∧
alone, but it can be reformulated as a result for formulas in the full language, after
a translation of → and ∨ in terms of ¬ and ∧.

Translations 523

Proposition 21.4.1 Gödel’s Translation (Gödel [1933]) If

p∗ = p
(¬α)∗ = ¬α∗

(α ∧ β)∗ = α∗ ∧ β∗

(α ∨ β)∗ = ¬(¬α∗ ∧ ¬β∗)
(α → β)∗ = ¬(α∗ ∧ ¬β∗),

then, for every α,
|= α ⇔ %N α∗.

Proof. The formula α∗ is obtained by translating → and ∨ in the language of ¬
and ∧ in a canonical way, and thus

|= α ⇔ |= α∗ ⇔ %N α∗

because the translation is classically valid, and α∗ is a formula in the language of
¬ and ∧ alone. !

Gödel’s Translation, while preserving theorems , does not preserve consequences .
For example, ¬¬p |= p, but (¬¬p)∗ -%N p∗ because ¬¬p -%N p, otherwise the ‘Bad’
Double Negation Law would be intuitionistically provable.

Gentzen’s Translation

The weak point noted at the end of the previous subsection is repaired in the next
result, which modifies Gödel’s Translation by leaving implication unchanged, and
doubly negating all propositional letters.

Proposition 21.4.2 Gentzen’s Translation (Gentzen [1933]) If

p◦ = ¬¬p
(¬α)◦ = ¬α◦

(α ∧ β)◦ = α◦ ∧ β◦

(α ∨ β)◦ = ¬(¬α◦ ∧ ¬β◦)
(α → β)◦ = α◦ → β◦,

then, for every Γ and α,
Γ |= α ⇔ Γ◦ %N α◦,

where Γ◦ = {γ◦ : γ ∈ Γ}.

Proof. The result follows from the Double Negation Translation 21.1.5, by noticing
that if β is a formula in the language of ¬, ∧ and →, then

%N β◦ ↔ ¬¬β.

524 F. Classical Propositional Calculus

This is easily proved by induction on β. For letters, it holds by definition. For
negations, il holds trivially. For conjunctions and implications, it holds because
double negation filters through conjunction and implication. !

Notice that Gentzen’s Translation of disjunction could also have been defined
as

(α ∨ β)◦ = ¬¬(α◦ ∨ β◦),

using the fact that the following ‘Good’ De Morgan’s Law holds intuitionistically:

¬α ∧ ¬β ↔ ¬(α ∨ β).

Exercises 21.4.3 De Morgan’s Laws.
a) (¬α ∧ ¬β) ↔ ¬(α ∨ β) holds intuitionistically (actually, minimally).
b) (¬α ∨ ¬β) → ¬(α ∧ β) holds intuitionistically (actually, minimally).

c) ¬(α∧ β) → (¬α∨¬β) fails intuitionistically . (Hint: consider a Kripke model with
three nodes ∅, 0 and 1, and such that A∅ = ∅, A0 = {α} and A1 = {β}.)

We can ask whether Gentzen’s Translation of disjunction could simply be dropped,
by defining

(α ∨ β)◦ = α◦ ∨ β◦.

This would make the translation a very simple homomorphism of propositional for-
mulas, consisting only of the insertion of double negations in front of propositional
letters, and leaving all connectives unchanged.

For the above proof to go through we would need filtration of double negation
through disjunction, i.e.

%N ¬¬(α ∨ β) ↔ (¬¬α ∨ ¬¬β).

But while the right to left direction holds, as it can easily be checked, the left to
right direction fails intuitionistically (see 21.4.5).

Actually, it is not only the particular proof considered above that fails, but the
result itself. Otherwise, from |= α ∨ ¬α we would get %N ¬¬α ∨ ¬¬¬α, and thus
%N ¬¬α ∨ ¬α by the Triple Negation Law. But this weak form of the Law of the
Excluded Middle fails intuitionistically (see 21.4.5).

Gentzen’s Translation, while preserving consequences , does not preserve substi-
tution: for example, p∗ = ¬¬p but (α ∧ β)∗ -= ¬¬(α∗ ∧ β∗).

Kolmogorov’s Translation

The weak point noted at the end of the previous subsection is repaired in the next
result, which modifies Gentzen’s Translation by doubly negating all propositional
letters and subformulas (except for negation, whose double negation has no effect
by the Triple Negation Law).

Translations 525

Proposition 21.4.4 Kolmogorov’s Translation (Kolmogorov [1925]) If

p6 = ¬¬p
(¬α)6 = ¬α6

(α ∧ β)6 = ¬¬(α6 ∧ β6)
(α ∨ β)6 = ¬¬(α6 ∨ β6)

(α → β)6 = ¬¬(α6 → β6),

then, for every Γ and α,
Γ |= α ⇔ Γ6 %N α6,

where Γ6 = {γ6 : γ ∈ Γ}.

Proof. Instead of indirectly relying on previous results such as 21.1.3 or 21.3.1,
we directly show how to transform classical into intuitionistic proofs. This is done
not only to provide an independent proof of the result, but also to derive stronger
consequences.

First notice that
%N α6 ↔ ¬¬α6,

since α6 always begins with ¬¬, and by the triple negation law four negations are
equivalent to two.

We now start from a proof of Γ % α in the system NC, and produce a proof
of Γ6 % α6 in the system N by substituting each formula in the given proof by its
translation, and inserting proofs of appropriate lemmas when needed. There are
three sets of cases:

• axioms
Since (p∨¬¬p)6 = ¬¬(¬¬p∨¬p) by the Triple Negation Law, the translations
of the axioms are provable, by a proof similar to the of ¬¬(¬¬p ∨ ¬p) given
in the proof of 21.1.3.

• introduction rules
A ∧-introduction step

α β
α ∧ β

becomes
α6 β6

α6 ∧ β6

¬¬(α6 ∧ β6)
(α ∧ β)6

by the induction hypothesis, an instance of a proof of γ → ¬¬γ, and definition
of 6. Here and in the following, we indicate by a double line the fact that we
step from the top to the bottom not directly, but rather by inserting a proof.

526 F. Classical Propositional Calculus

A ∨-introduction step
α

α ∨ β

becomes
α6

α6 ∨ β6

¬¬(α6 ∨ β6)
(α ∨ β)6

by the induction hypothesis, an instance of a proof of γ → ¬¬γ, and definition
of 6.

A →-introduction step
[α]
D
β

α → β

becomes
[α6]
D6

β6

α6 → β6

¬¬(α6 → β6)
(α → β)6

by the induction hypothesis, an instance of a proof of γ → ¬¬γ, and definition
of 6.

• elimination rules
A ∧-elimination step

α ∧ β
α

becomes
[α6 ∧ β6](1)

α6 [¬α6](2)
⊥

¬(α6 ∧ β6)(1)
(α ∧ β)6

¬¬(α6 ∧ β6)
⊥

(¬¬α6)(2)

α6

by definition of 6, and the equivalence between ¬¬α6 and α6.

Translations 527

A ∨-elimination step

α ∨ β

[α]
D1

γ

[β]
D2

γ
γ

becomes

[α6 ∨ β6](1)

[α6]
D6

1

γ6

[β6]
D6

2

γ6

γ6 [¬γ6](2)
⊥

¬(α6 ∨ β6)(1)
(α ∨ β)6

¬¬(α6 ∨ β6)
⊥

(¬¬γ6)(2)

γ6

by definition of 6, and the equivalence between ¬¬γ6 and γ6.
A →-elimination step

α α → β
β

becomes

α6 [α6 → β6](1)
β6 [¬β6](2)

⊥
¬(α6 → β6)(1)

(α → β)6

¬¬(α6 → β6)
⊥

(¬¬β6)(2)

β6

by definition of 6, and the equivalence between ¬¬β6 and β6.
Finally, we deal with a ⊥-elimination step

⊥
α.

First,
⊥

¬α6 → ⊥
¬¬α6

α6

528 F. Classical Propositional Calculus

by →-introduction, definition of ¬ and the equivalence between ¬¬α6 and
α6. Then, by two applications of the ‘good’ contrapositive law,

¬¬⊥
¬¬α6,

and hence
⊥6

α6

by the equivalence between ¬¬α6 and α6. !

Notice how the lemmas we need to insert in the tranformed proof are quite triv-
ial and uniform. They use introductions and instances of γ → ¬¬γ in one direction,
eliminations and instances of ¬¬α6 ↔ α6 in the other direction. Moreover, they
never use the ⊥-elimination rule, even in the transformation of a ⊥-elimination
step, and are thus proofs in the Minimal Propositional Calculus.

We could easily recast the proofs of the Double Negation or Gentzen’s Trans-
lations in the same framework of proof transformation just used for Kolmogorov’s
Translation. Then we would need to insert proofs of filtration of ¬¬ through con-
nectives. However, some of these proofs (given in the proofs of 21.1.3 and 21.1.5)
are not trivial, one (filtration through →) uses ⊥-elimination, and one (filtration
through ∨) simply fails. In particular, on the one hand, the given transformation
cannot deal with proofs in the full system, only in the system without disjunction.
On the other hand, it only provides a translation into the Intuitionistic, not into
the Minimal Propositional Calculus.

All things said, Kolmogorov’s Translation is thus the most efficient among the
ones we considered. From the point of view of formula transformation, it preserves
substitution. From the point of view of proof transformation, it restrains the size
of the proof by inserting only very simple and uniform lemmas, and it translates
into the Minimal, not just into the Intuitionistic Propositional Calculus.

But even Kolmogorov’s Translation is not the last word. On the one hand, it
uses the maximum possible number of ¬¬, namely, the number of occurrences of
letters and connectives in a given formula. On the other hand, it does not provide
an isomorphism of proofs of the formula in NC, and of the translation in N . Girard
[199?] has devised a translation that minimizes the number of ¬¬, and does provide
such an isomorphism.

Weak Excluded Middle !

The next result shows that the two principles whose failure we mentioned in the
discussion of Gentzen’s Translation are actually intuitionistically equivalent, and

Translations 529

that the addition of any of them to the Intuitionistic Propositional Calculus pro-
vides an Intermediate Propositional Calculus stronger than the intuitionistic, but
weaker than the classical one.

Proposition 21.4.5 The following two schemata:

1. Weak Excluded Middle. ¬α ∨ ¬¬α

2. Filtration of ¬¬ through ∨. ¬¬(α ∨ β) → (¬¬α ∨ ¬¬β)

are intuitionistically equivalent, not valid, and strictly weaker than the Law of Ex-
cluded Middle.

Proof. 1 implies 2 as follows. By 1, both ¬α∨¬¬α and ¬β ∨¬¬β hold. Hence so
does the following disjunction, by the Distributivity Laws of ∧ and ∨ (which are
intuitionistically valid):

(¬α ∧ ¬β) ∨ (¬α ∧ ¬¬β) ∨ (¬¬α ∧ ¬β) ∨ (¬¬α ∧ ¬¬β).

To prove 2, assume ¬¬(α ∨ β). By the ‘Good’ De Morgan’s Law, ¬(¬α ∧ ¬β)
holds, and hence the first disjunct above fails. But each of the three remaining
ones implies ¬¬α ∨ ¬¬β, because it implies one of ¬¬α and ¬¬β.

2 implies 1 because ¬¬(α ∨ ¬α) holds by 21.1.3, and by 2 (with β = ¬α) we
get ¬¬α ∨ ¬¬¬α, from which 1 follows by the Triple Negation Law.

Because of the equivalences just proved, we can concentrate on the Law of the
Weak Excluded Middle and notice that:

• It is implied by the Law of the Excluded Middle, being a special case of it
for negated formulas.

• It does not imply the Law of the Excluded Middle, because the former holds
but the latter fails in a Kripke model with two nodes ∅ and 0, and such that
A∅ = ∅ and A0 = {α}.

• It is not intuitionistically valid, because it does not hold in a Kripke model
with three nodes ∅, 0 and 1, and such that A∅ = A0 = ∅, and A1 = {α}. !

Actually, a number of intuitionistic principles turn out to be equivalent to the
two just discussed. The next exercise provides an additional one, and Johnstone
[1979] discusses the matter in detail.

Exercise 21.4.6 The ‘Bad’ De Morgan law. We have seen that the ‘Good’ De
Morgan Law is intuitionistically valid. We now consider the ‘bad’ one, namely

¬(α ∧ β) → ¬α ∨ ¬β.

530 F. Classical Propositional Calculus

The ‘Bad’ De Morgan’s Law is intuitionistically equivalent to the Weak Law of the
Excluded Middle. (Hint: it is easier to prove the equivalence with the filtration of ¬¬
through ∨. In one direction, we proceed as follows:

¬(α ∧ β)
⇒ ¬¬¬(α ∧ β) by the Triple Negation Law
⇒ ¬(¬¬α ∧ ¬¬β) by filtration of ¬¬ through ∧
⇒ ¬¬(¬α ∨ ¬β) by the ‘Good’ De Morgan’s Law
⇒ ¬¬¬α ∨ ¬¬¬β by filtration of ¬¬ through ∨
⇒ ¬α ∨ ¬β by the Triple Negation Law.

In the other direction, from ¬¬(α ∨ β) we get ¬(¬α ∧ ¬β) by the ‘Good’ De Morgan’s

Law, and then ¬¬α ∨ ¬¬β by the ‘Bad’ De Morgan’s Law.)

Exercise 21.4.7 A Kripke model forces all instances of the Weak Law of the Excluded
Middle if and only if it (is equivalent to one that) has a greatest element. (Hint: suppose
the model A has a greatest element a. By definition of forcing a negation, if ∅ does not
force ¬α, then there is a state forcing α. By monotonicity of forcing, a must force α too,
and then ∅ forces ¬¬α.

Conversely, suppose a greatest element cannot be added. There must be two elements

a and b and a letter p, such that p is forced above a but not above b. Then neither ¬p
nor ¬¬p can be forced, the former because p is forced above a, and the latter because p

is not forced above b.)

Exercises 21.4.8 Dummett Intermediate Logic (Skolem [1913], Gödel [1932], Dum-
mett [1959], Horn [1962])

a) The following two schemata:

1. (α→ β) ∨ (β → α)

2. (α ∧ β → γ) → [(α → γ) ∨ (β → γ)]

are intuitionistically equivalent . (Hint: 1 implies 2 by cases, because if α → β then
α → α ∧ β, and from α ∧ β → γ we get α → γ. Similarly, if β → α, then β → γ.

2 implies 1 by letting γ be α ∧ β. Then (α → α ∧ β) ∨ (β → α ∧ β), from which 1
follows by α ∧ β → α and α ∧ β → β.)

b) The previous two schemata are intuitionistically implied by the Law of the Excluded
Middle, but not conversely . (Hint: since α → (β → α) and ¬α → (α → β) hold
intuitionistically, 1 follows from α ∨ ¬α by cases.

The Kripke model with two nodes ∅ and 0, and such that A∅ = ∅ and A0 = {α},
shows that the converse implication fails.)

c) The previous two schemata intuitionistically imply the Weak Law of the Excluded
Middle, but not conversely . (Hint: the implication follows from 21.4.6, since 2 reduces to
the ‘Bad’ De Morgan Law when γ = ⊥.

The Kripke model with four nodes 0, a, b and 1, with a and b incomparable, and such
that A0 = ∅, Aa = {α}, Ab = {β} and A1 = {α,β}, shows that the converse implication
fails.)

Classical and Intuitionistic Connectives 531

d) A Kripke model (equivalent to one) with a smallest element forces all instances of
the previous two schemata if and only if it is linear . (Hint: by 5.3.2.d and the definition of
forcing for disjunction. The Kripke model with only two incomparable elements a and b,
and such that Aa = {α} and Ab = {β}, shows that the condition on the smallest element
is necessary.)

e) A formula is an intuitionistic consequence of the previous two schemata if and only
if it is forced in every linear Kripke model . (Hint: by part d), since the models provided
by the Intuitionistic Completeness Theorem all have a smallest element.)

f) A formula is an intuitionistic consequence of the previous two schemata if and only

if it holds in every linear Heyting algebra. (Hint: by part e) and 5.3.2.)

Intuitionistic Propositional Logic can thus be extended to at least three, in-
creasingly comprehensive logics, by respectively adding to its axioms ¬α ∨ ¬¬α,
(α → β) ∨ (β → α), or α ∨ ¬α. In the first case one gets the intermediate logic
studied in this section, in the second Dummett Logic, and in the last full Classical
Propositional Logic.

21.5 Classical and Intuitionistic Connectives

We have considered in this chapter a number of classically valid equivalences that
are intuitionistically only ‘half valid’, in the sense that one implication is valid but
the other one is not.

This is so, in particular, for the usual classical reductions of all connectives
(and, actually, of all truth-valued functions) to negation and either conjunction or
disjunction, as the next result shows.

Proposition 21.5.1 The following formulas hold intuitionistically (actually, in
the first two cases, minimally):

(α ∧ β) → ¬(¬α ∨ ¬β) (21.1)
(α ∨ β) → ¬(¬α ∧ ¬β) (21.2)
(α → β) ← (¬α ∨ β). (21.3)

Proof. To prove 1:

[¬α ∨ ¬β](2)
[¬α](1)

α ∧ β
α

⊥
[¬β](1)

α ∧ β
β

⊥
⊥(1)

¬(¬α ∨ ¬β)(2).

532 F. Classical Propositional Calculus

To prove 2:

α ∨ β
[α](1)

[¬α ∧ ¬β](2)
¬α
⊥

[β](1)
[¬α ∧ ¬β](2)

¬β
⊥

⊥(1)

¬(¬α ∧ ¬β)(2).

To prove 3:

¬α ∨ β

[¬α](1) [α](2)
⊥
β [β](1)

β(1)

α(2) → β.

Since the step from ⊥ to β makes an appeal to the ⊥-Rule, the previous proof
is not minimal. No such an appeal is made instead in the first two proofs, which
are thus minimal. !

Obviously, if any of the previous implication were reversible then the relative
connective would be the definable in terms of the others. Unfortunately, this is not
the case.

Proposition 21.5.2 None of ¬, ∧, ∨ and → is intuitionistically definable from
the remaining ones.

Proof. Since ¬ is defined in terms of ⊥ and →, it is enough to prove that none of
⊥, ∧, ∨ and → is definable from the remaining ones.

• falsity
Consider the Heyting algebra {0, 1}, and the environment ρ which sends all
propositional letters to 1. Then [[⊥]]ρ = 0, but [[α]]ρ = 1 for any formula α
involving only ∧, ∨ and →.
Since {0, 1} is actually a Boolean algebra, this shows that ⊥ is not even
classically definable in terms of ∧, ∨ and →.

• conjunction
Consider the Heyting algebra obtained as the product of {0, 1} and {0, a, 1},
and the environment ρ which sends the letter p to (0, 1) and all the others to
(1, a). If q is different from p, then [[p∧ q]]ρ = (0, a), but [[α]]ρ -= (0, a) for any
formula α involving only p and q, as well as ⊥, ∨ and →.

• disjunction
Consider the Heyting algebra

Classical and Intuitionistic Connectives 533

"
" "

"
"

!
!

#
#

#
#

!
!

1

a " b

a b

0

and any environment ρ which sends the letter p to a, and all the others to b.
If q is different from p, then [[p∨ q]]ρ = a" b, but [[α]]ρ -= a" b for any formula
α involving only p and q, as well as ⊥, ∧ and → (notice, in particular, that
a ⇒ 0 = ∼ a = b).

• implication
Consider the Heyting algebra obtained as the product of {0, a, 1} and {0, a, 1},
and the environment ρ which sends the letter p to (a, a) and all the others
to (1, a). If q is different from p, then [[p → q]]ρ = (a, 1), but [[α]]ρ -= (a, 1) for
any formula α involving only p and q, as well as ⊥, ∧ and ∨. !

Thus in intuitionistic logic every connective plays its own individual role, and
it is not reducible to the other ones as in classical logic. As one might expect,
other indipendent intuitionistic connectives can be added to the four usual ones: it
follows from Gödel [1932] that there are actually infinitely many possibilities, and
from McKinsey and Tarsky [1946] that this is true even of the unary connectives,
i.e. those built from a single propositional letter.

In terms of the Lindenbaum algebra this corresponds to the fact that, while in
classical logic the free Boolean algebra on one generator has only four elements,
namely:

"
" "

"
!

!
#

#

#
#

!
!

p ∨ ¬p

p ¬p

p ∧ ¬p

in intuitionistic logic the free Heying algebra on one generator has infinitely many
elements, with the following structure characterized by Nishimura [1960]:

534 F. Classical Propositional Calculus

p → p"

"
" "

" "
"

"
" "

"#
#

!
!

!
!

#
#

#
#

#
#

!
!

!
!!!!!!!!

!!!!
!!!

!
!

!
!

#
#

#
#

!
!

p ∨ ¬p ¬p → p

p ¬p

p ∧ ¬p

Bibliography

Abian, S., and Brown, A.B.
[1961] A theorem on partially ordered sets with applications to fixed-point theorems, Can.

J. Math. 13 (1961) 78–83.

Alexandrov, P.S.
[1937] Diskrete Räume, Math. Sb. 43 (1937) 501–519.

Baeten, J., and Boerboom, B.
[1979] Ω can be anything it shouldn’t be, Indag. Math. 41 (1979) 111–120.

Barendregt, H.
[1981] The Lambda Calculus, North Holland, 1981 (Second edition, 1984).

Beth, E.W.
[1956] Semantic construction of intuitionistic logic, Kon. Nederl. Akad. Wetensch. 19 (1956)

357–388.

Birkhoff, G.
[1933] On the combination of subalgebras, Proc. Cambr. Phil. Soc. 29 (1933) 441–464.
[1940] Lattice theory , American Mathematical Society, 1940.

Birkhoff, G., and Frink, O.
[1948] Representation of lattices by sets, Trans. Am. Math. Soc. 64 (1948) 299–316.

Büchi, J.R.
[1952] Representation of complete lattices by sets, Portug. Math. 11 (1952) 151–167.

Cantor, G.
[1874] Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, J. Math. 77

(1874) 258–262.

Cartan, H.
[1937] Théorie des filtres, Compt. Rend. Acad. Sci. 205 (1937) 595–598.
[1937a] Filtres et ultrafilters, Compt. Rend. Acad. Sci. 205 (1937) 777–779.

Church, A.
[1933] A set of postulates for the foundation of logic (second paper), Ann. Math. 34 (1933)

839–864.
[1936] An unsolvable problem of elementary number theory, Am. J. Math. 58 (1936) 345–

363.
[1936a] A note on the Eintscheidungsproblem, J. Symb. Log. 1 (1936) 40–41.
[1941] The Calculi of Lambda Conversion, Princeton University Press, 1941.

Church, A., and Rosser, B.J.
[1936] Some properties of conversion, Trans. Am. Math. Soc. 39 (1936)472–482.

535

536 Bibliography

Cohen, P.J.
[1963] The independence of the continuum hypothesis, Proc. Nat. Acad. Sci. 50 (1963)

1143–1148.

Collins, G.E.
[1954] Distributivity and an axiom of choice, J. Symb. Log. 19 (1954) 275–277.

Coppo, M., and Dezani, M.
[1980] An extension of basic functionality theory for λ-calculus, Notre Dame J. Form. Log.

21 (1980) 685–693.

Coppo, M., Dezani, M., and Venneri, B.
[1981] Functional characters of solvable terms, Zeit. Math. Log. Grund. Math. 27 (1981)

45–58.

Curry, H.B.
[1930] Grundlagen der Kombinatorischen Logik, Am. J. Math. 52 (1930) 789–834.
[1942] The inconsistency of certain formal logics, J. Symb. Log. 7 (1942) 115–117.
[1969] The undecidability of λK-conversion, in Foundations of Mathematics, Bulloff et al.

eds., Springer, 1969, pp. 10–14.

Curry, H.B., and Feys, R.
[1958] Combinatory logic, North Holland, 1958.

Curry, H.B., Hindley, J.R., and Seldin, J.P.
[1972] Combinatory logic, volume II, North Holland, 1972.

Day, B.J., and Kelly, G.M.
[1970] On topological quotients maps preserved by pullbacks or products, Proc. Cambr.

Phil. Soc. 67 (1970) 553–558.

Dragalin, A.G.
[1968] The computation of primitive recursive terms of finite type, and primitive recursive

realization, Zap. Nau. Sem. Lenin. 8 (1968) 32–45.

Dummett, M.A.
[1959] A propositional calculus with denumerable matrix, J. Symb. Log. 24 (1959) 97–106.

Dummett, M.A., and Lemmon, E.J.
[1959] Modal logics between S4 and S5, Zeit. Math. Log. Grund. Math. 5 (1959) 250–264.

Engeler, E.
[1981] Algebras and combinators, Alg. Univ. 13 (1981) 389–392.

Fitting, M.
[1983] Proof methods for modal and intuitionistic logics, Reidel, 1983.

Freyd, P.J.
[1964] Abelian categories, Harper and Row, 1964.

Friedberg, R.M., and Rogers, H.
[1959] Reducibilities and completeness for sets of integers, Zeit. Math. Log. Grund. Math.

5 (1959) 117–125.

Friedman, H.
[1975] Equality between functionals, Springer Lect. Not. Math. 453 (1975) 22–37.
[1978] Classically and intuitionistically provably recursive functions, Springer Lect. Not.

Math. 669 (1978) 21–28.

Gandy, R.O.
[1980] Proofs of strong normalization, in Seldin and Hindley [1980], pp. 457–477.

Bibliography 537

Gentzen, G.
[1935] Untersuchungen über das logische Schliessen, Math. Zeit. 39 (1935) 176–210, 405–

431, transl. in [1969], pp. 68–131.
[1969] Collected papers, North Holland, 1969.

Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.
[1980] A compendium of continuous lattices, Springer, 1980.

Gödel, K.
[1932] Zum intuitionistischen Aussagenkalkül, Anz. Akad. Wiss. Wien 69 (1932) 65–66,

transl. in [1986], pp. 222–225.
[1986] Collected works, volume I , Oxford University Press, 1986.

Grassmann, H.
[1861] Lehrbuch der Arithmetik für höhere Lehranstalten, Berlin, 1861.

Grothendieck, A., and Dieudonné, J.
[1960] Élements de géometrie algébrique, Volume I, Springer Verlag, 1960.

Gunter, C.A., and Scott, D.S.
[1990] Semantic domains, in Handbook of Theoretical Computer Science, volume B , van

Leeuwen ed., North Holland, 1990, pp. 635–674.

Halpern, J.D.
[1964] The independence of the axiom of choice from the Boolean prime ideal theorem,

Fund. Math. 55 (1964) 57–66.

Henkin, L.
[1954] Boolean representation through propositional calculus, Fund. Math. 41 (1954) 89–96.

Herbrand, J.
[1928] Sur la théorie de la démonstration, Compt. Rend. Acad. Sci. 186 (1928) 1274–1276.

Heyting, A.
[1930] Die formalen Regeln der intuitionistichen Logik, Sitzung. Preuss. Akad. Wiss. Phys.

Math. Klasse, 1930, pp. 42–71.

Hinata, S.
[1967] Calculability of primitive recursive functionals of finite type, Sci. Rep. Tokyo Kyoi.

Daig. 9 (1967) 218–235.

Hinatani, Y.
[1966] Calculabilité des fonctionnels recursives primitives de type fini sur les nombres na-

turels, Ann. Jap. Ass. Phil. Sci. 3 (1966) 19–30.

Hindley, J.R.
[1997] Basic Simple Type Theory , Cambridge University Press, 1997.

Hindley, J.R., and Seldin, J.P.
[1986] Introduction to Combinators and λ-Calculus, Cambridge University Press, 1986.

Hofmann, K.H., and Keimel, K.
[1972] A general character theory for partial ordered sets and lattices, Memoirs of the Amer-

ican Mathematical Society n. 122, 1972.

Hofmann, K.H., and Lawson, J.D.
[1978] The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246

(1978) 285–310.

Hofmann, R.E.
[1981] Continuous posets, prime spectra of completely distributive complete lattices, and

Hausdorff compactifications, Springer Lect. Not. Math. 871 (1981) 159–208.

538 Bibliography

Horn, A.
[1962] Logic with truth-values in a linearly ordered Heyting algebra, J. Symb. Log. 27 (1962)

159–170.

Howard, W.
[1970] Assignments of ordinals to terms for primitive recursive functionals of finite type, in

Intuitionism and Proof Theory , Kino et al. eds., North Holland, 1970, pp. 443–458.

Huet,G.
[1980] Confluent reductions, J. Ass. Comp. Mach. 27 (1980) 797–821.

Hughes, G.E., and Cresswell, M.J.
[1968] An introduction to modal logic, Methuen, 1968.

Huntington, E.V.
[1904] Sets of independent postulates for the algebra of logic, Trans. Am. Math. Soc. 5

(1904) 288–309.

Jaskowski, S.
[1936] Recherches sur le système de la logique intuitionniste, Actes Congr. Intern. Phil.

Scient. 6 (1936) 58–61.

Johnstone, P.T.
[1979] Conditions related to De Morgan’s law, Springer Lect. Not. Math. 753 (1979) 479–

491.
[1982] Stone spaces, Cambridge University Press, 1982.
[1983] The point of pointless topology, Bull. Am. Math. Soc. (1983) 41–53.

Kamara, M.
[1978] Treillis continus et treillis complètement distributifs, Semigr. Forum 16 (1978) 387–

388.

Kan, D.M.
[1958] Adjoint functors, Trans. Am. Math. Soc. 87 (1958) 294–329.

Kleene, S.K.
[1935] A theory of positive integers in formal logic, Am. J. Math. 57 (1935) 153–173, 219–

244.
[1936] λ-definability and recursiveness, Duke Math. J. 2 (1936)340–353.

Klimovsky, G.
[1958] El teorema de Zorn y la existencia de filtros y ideales maximales en los reticulados

distributivos, Rev. Un. Mat. Argen. 18 (1958) 160–164.

Klop, J.W.
[1980] Combinatory reduction systems, Amsterdam Mathematisch Centrum, 1980.

Knaster, B.
[1928] Un théorème sur les fonctions d’ensembles, Ann. Soc. Polon. Math. 6 (1928) 133–134.

Kreisel, G., and Putnam, H.
[1957] Eine Unableitbarkeitsbeweismethode für den intuitionistichen Aussagenkalkül, Arch.

Math. Log. 3 (1957) 74–78.

Kripke, S.
[1963] Semantical considerations on modal and intuitionistic logic, Acta Phil. Fenn. 16

(1963) 83–94.
[1965] Semantical analysis of Intuitionistic Logic, I, in Formal Systems and Recursive Func-

tions, Crossley et al. eds. North Holland, 1965, pp. 92–130.

Lawson, J.D.
[1979] The duality of continuous posets, Houston J. Math. 5 (1979) 357–386.

Bibliography 539

Linton, F.E.J., and Mikkelsen, C.J.
[1981] Choice as distributivity, manuscript, 1981.

"Loš, J.
[1951] An algebraic proof of completeness for the two-valued propositional calculus, Coll.

Math. 2 (1951) 236–240.

"Loš, J., and Ryll Nardzewski, C.
[1954] Effectiveness of the representation theory for Boolean algebras, Fund. Math. 41 (1954)

49–56.

Markowsky, G.
[1976] Chain-complete posets and directed sets with applications, Alg. Univ. 6 (1976) 53–68.
[1981] A motivation and generalization of Scott’s notion of a continuous lattice, Springer

Lect. Not. Math. 871 (1981) 298–307.

Mac Neille, H.M.
[1937] Partially ordered sets, Trans. Am. Math. Soc. 42 (1937) 416–460.

McKinsey, J.C.C., and Tarski, A.
[1946] On closed elements in closure algebras, Ann. Math. 47 (1946) 122–162.
[1948] Some theorems on the sentential calculi of Lewis and Heyting, J. Symb. Log. 13

(1948) 1–15.

Meredith, C.A., and Prior, A.N.
[1963] Notes on the axiomatics of propositional calculus, Notre Dame J. Form. Log. 4

(1963)172–187.

Mitschke, G.
[1979] The standardization theorem for the λ-calculus, Zeit. Math. Log. Grund. Math. 25

(1979) 29–31.

Monk, J.D., and Bonnet R., eds.
[1989] Handbook of Boolean algebras, North Holland, 1989.

Mrowka, S.
[1956] On the ideals extension theorem and its equivalence to the axiom of choice, Fund.

Math. 43 (1956) 46–49.

Nachbin, L.
[1947] Une propriété caractéristique des algèbres Booléiennes, Portugal Math. 6 (1947) 115–

118.
[1949] On a characterization of the lattice of all ideals of a Boolean ring, Fund. Math. 36

(1949) 137–142.

Nederpelt, R.P.
[1973] Strong Normalization in a Typed Lambda Calculus with Lambda Structured Types,

Ph.D. Thesis, Eindhoven, 1973.

Nerode, A.
[1957] General topology and partial recursive functionals, Talks Cornell Summ. Inst. Symb.

Log., Cornell, 1957, pp. 247–251.
[1990] Some lectures on intuitionistic logic, in Springer Lect. Not. Math. 1429 (1990) 12–59.

Nerode, A., and Odifreddi, P.
[1990] Lambda calculus and constructive logics, Mathematical Sciences Institute Technical

Reports, 55 (1990).
[1994] Lambda calculus and constructive logics II , Mathematical Sciences Institute Techni-

cal Reports, 44 (1994).
[1997] Constructive logic from many points of view , Mathematical Sciences Institute Tech-

nical Reports, 4 (1997).

540 Bibliography

Newman, M.H.A.
[1942] On theories with a combinatorial definition of “equivalence”, Ann. Math. 43 (1942)

223–243.

Nishimura, I.
[1960] On formulas of one variable in intuitionistic propositional calculus, J. Symb. Log. 25

(1960) 327–331.

Odifreddi, P.
[1989] Classical Recursion Theory , North Holland, 1989 (Second edition, 1999).
[1989a] Lecture notes on Lambda Calculus, Monash University Logic Papers, 65 (1989).
[1990] Logic and Computer Science (editor), Academic Press, 1990.
[1997] Short course on Logic, Algebra, and Topology, in Complexity, Logic, and Recursion

Theory , Sorbi ed., Dekker, 1997, pp. 277–301.
[1999] Classical Recursion Theory, volume II , North Holland, 1999.

Ogasawara, T.
[1939] Relation between intuitionistic logic and lattices, Hirosh. Univ. Sci. Ser. 9 (1939)

157–164.

Owings, J.C.
[1973] Diagonalization and the recursion theorem, Notre Dame J. Form. Log. 14 (1973)

95–99.

Papert, S.
[1959] Which distributive lattices are lattices of closed sets?, Proc. Camb. Phil. Soc. 55

(1959) 172–176.

Park, D.M.
[1970] The Y combinator in Scott’s lambda-calculus, Memo, University of Warwick, 1970.

Peano, G.
[1884] Addenda to Angelo Genocchi, Calcolo differenziale e principii di calcolo integrale,

Bocca, 1884.
[1891] Sul concetto di numero, Rivista di Matematica, 1 (1891) 87–102 and 256–267.

Peyton Jones, S.L.
[1987] The Implementation of Functional Programming Languages, Prentice Hall, 1987.

Plotkin, G.D.
[1972] A set-theoretical definition of application, Mimeographed Notes, University of Edin-

burgh, 1972.
[1980] Lambda definability in the full type hierarchy, in Seldin and Hindley [1980], pp.

363–373.

Pottinger, G.
[1980] A type assignment for the strongly normalizable terms, in To H.B. Curry: essays on

combinatory logics, lambda calculus and formalism, Seldin et al. eds., Academic Press, 1980, pp.
561–577.

Raney, G.N.
[1952] Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952) 677–680.

Rasiowa, H.
[1951] Algebraic treatment of the functional calculi of Heyting and Lewis, Fund. Math. 38

(1951) 101–116.
[1974] An algebraic approach to non-classical logic, North Holland, 1974.

Rasiowa, H., and Sikorski, R.
[1950] A proof of the completeness theorem of Gödel, Fund. Math. 37 (1950) 193–200.
[1963] The mathematics of metamathematics, Państwowe Wydawnictwo Naukowe, 1963.

Bibliography 541

Rieger, L.
[1949] On the lattice theory of Brouwerian propositional logic, Acta Fac. Rer. Natur. Univ.

Carol. 189 (1949) 1–40.

Rogers, H.
[1959] Computing degrees of unsolvability, Math. Ann. 138 (1959) 125–140.

Rosenbloom, P.C.
[1950] The elements of mathematical logic, Dover Press, 1950.

Rosser, B.J.
[1935] A mathematical logic without variables, Ann. Math. 36 (1935) 127–150.

Sallé, P.
[1978] Une extension de la théorie des types en λ-calcul, Springer Lect. Not. Comp. Sci. 62

(1978) 398–410.

Sanchis, L.E.
[1967] Functionals defined by recursion, Notre Dame J. Form. Log. 8 (1967) 161–174.

Schönfinkel, M.
[1924] Über die Bausteine der mathematischen Logik, Math. Ann. 92 (1924) 305–316, transl.

in Van Heijenoort [1967], pp. 357–366.

Schröder, E.
[1891] Algebra der Logik , Volume II, 1891.

Schwichtenberg, H.
[1975] Definierbare Funktionen im λ-Kalkül mit Typen, Arch. Math. Log. Grund. Math. 17

(1975) 113–114.

Scott, D.S.
[1954] The theorem on maximal ideals in lattices and the axiom of choice, Bull. Am. Math.

Soc. 60 (1954) 83.
[1954a] Prime ideal theorems for rings, lattices and Boolean algebras, Bull. Am. Soc. 60

(1954) 390.
[1963] A system of functional abstraction, Mimeographed Notes, 1963.
[1969] Models for the λ-calculus, Mimeographed Notes, 1969.
[1970]
[1972] Continuous lattices, Springer Lect. Not. Math. 274 (1972) 97–136.
[1975] Lambda Calculus and Recursion Theory, in Proceedings of the Third Scandinavian

Logic Symposium, Kanger ed., North Holland, 1975, pp. 154–193.

Seldin, J.P., and Hindley, J.R. (editors)
[1980] To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,

Academic Press, 1980.

Serre, J.P.
[1955] Faisceaux algébriques cohérents, Ann. Math. 61 (1955) 197–278.

Shoenfield, J.R.
[1967] Mathematical Logic, Addison Wesley, 1967.

Skolem, T.A.
[1913] Undersøkelser innenfor logikkens algebra, Ph.D. Thesis, University of Oslo, 1913.
[1919] Logisch-Kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit

mathematischen Sätze nebst einem Theoreme über dichte Mengen, Viden. Krist. 4 (1919) 1–36.

Statman, R.
[1979] The typed λ-calculus is not elementary recursive, Theor. Comp. Sci. 9 (1979) 73–81.
[1980] Completeness, invariance and λ-definability, J. Symb. Log. 47 (1980) 17–26.
[1982]
[1985] Logical relations and the typed lambda calculus, Inf. Contr. (1985) 85–97.

542 Bibliography

Stone, M.H.
[1935] Postulates for Boolean algebras and generalized Boolean algebras, Am. J. Math. 57

(1935) 703–732.
[1936] The theory of representation for Boolean algebras, Trans. Am. Math. Soc. 40 (1936)

37–111.
[1937] Topological representation of distributive lattices and Brouwerian logic, Čas. Mat.

Fys. 67 (1937) 1–25.
[1937a] Applications of the theory of Boolean rings to general topology, Trans. Am. Math.

Soc. 41 (1937) 321–364.
[1937b] Algebraic characterization of special Boolean rings, Fund. Math. 29 (1937) 223–303.

Tait, W.
[1967] Intensional interpretations of functionals of finite type, I, J. Symb. Log. 32 (1967)

198–212.

Takahashi, M.
[1989] Parallel reductions in λ-calculus, J. Symb. Comp. 7 (1989) 113–123.
[1995] Parallel reductions in λ-calculus, Inf. Comp. 118 (1995) 120–127.

Tarski, A.
[1930] Über einige fundamentale Begriffe der Metamathematik, Compt. Rend. Soc. Sci. Lett.

Varsov. 23 (1930) 22-29, transl. in [1956], pp. 30–37.
[1935] Zur Grundlegung der Boole’schen Algebra, Fund. Math. 24 (1935) 177–198, transl.

in [1956], pp. 320–341.
[1935a] Grundzüge der Systemenkalküls, Fund. Math. 25 (1935) 503–536, transl. in [1956],

pp. 342–383.
[1938] Der Aussasgenkalkül und die Topologie, Fund. Math. 31 (1938) 103–134, transl. in

[1956], pp. 421–454.
[1954] Prime ideal theorems for Boolean algebras and the axiom of choice, Bull. Am. Math.

Soc. 60 (1954) 390–391.
[1955] A lattice-theoretical fixed-point theorem and its applications, Pac. J. Math. 5 (1955)

285–309.
[1956] Logic, semantics, metamathematics, Clarendon Press, 1956.

Turing, A.
[1936] On computable numbers with an application to the Entscheidungsproblem, Proc.

London Math. Soc. 42 (1936) 230–265, corrections ibidem, 43 (1937) 544-546.
[1937] Computability and λ-definability, J. Symb. Log. 2 (1937) 153–163.
[1942] Proof that every typed formula has a normal form, in Seldin and Hindley [1980], pp.

454–455.

Uspenskii, V.A.
[1955] On enumeration operators, Dokl. Acad. Nauk 103 (1955) 773–776.

Van Heijenoort, J., ed.
[1967] From Frege to Gödel , Harvard University Press, 1967.

Vickers, S.
[1989] Topology via logic, Cambridge University Press, 1989.

Wittgenstein, L.
[1921] Logisch-philosophische Abhandlung, Ann. Naturphil. 14 (1921) 185–262.

Zermelo, E.
[1908] Untersuchungen über die Grundlagen der Mengenlehre I, Math. Ann. 65 (1908) 261–

281, transl. in Van Heijenoort [1967], pp. 200–215.
æ

