
On the π-calculus and distributed calculi for
co-intuitionistic logic

Gianluigi Bellin

Dipartimento di Informatica, Università di Verona
Strada Le Grazie, 37134 Verona, Italy
gianluigi.bellin@univr.it

Summary. We reconsider early work on the π-calculus and linear logic ([6], written
in 1992), asking whether distributed aspect of logical computation are expressed in
the π-calculus translation. As a test case we propose a term assignment to Gentzen
systems for linear co-intuitionistic logic (cfr [4]). We argue that this calculus has dis-
tinctive features of distributed computations and conclude that a translation such
logics in some system of distributed π-calculus may better represent their computa-
tional properties than the 1992 version of the (synchronous) π-calculus.

1 Introduction

In the large body of literature about R. Milner’s π-calculus, starting from
[18], there has been a continuous stream of research on what Milner called the
synchronous π-calculus; an early development of it is found in the translations
of linear logic into the π-calculus, which were pursued both by S. Abramsky
and by R. Milner around 1991.1

Linear logic [9] was regarded as a good candidate for representing concur-
rent logical computations: Girard himself had presented the representation
of derivations in classical linear logic in the system of proof nets as a way
to realize the “parallelization of the syntax”; in [9] this goal was regarded as
achieved for the multiplicative fragment of linear logic. Therefore the encoding
in the π-calculus of linear logic proofs, and in particular of proof-nets, and the
representation of logical normalization of proofs through the transformation
of the corresponding π-calculus processes were regarded as an interesting test
both of π-calculus expressivity and of the claim of linear logic to be a logic
for concurrency.

1 We thank Neil Jones, Massimo Merro, Ugo Solitro and Carolyn Talcott for helpful
conversations.

2 Gianluigi Bellin

Documentation of that research is in the paper by Bellin and Scott [6]2. The
paper clearly indicates that one of Milner’s motivation for development of
that version of the synchronous calculus was the encoding of linear logic: as
stated in the introduction of [6], this version of the π-calculus was “purposely
supporting some of the logical rewriting envisioned by Abramsky”. In partic-
ular, contextual rewriting is generally required by normalisation in logic and
in the lambda calculus but becomes impossible within a term P in the scope
of a guarding prefix x(z̃)Q or x〈ã〉Q, namely, when no interaction involving
subterms of Q is allowed to start until the channel x has acted. To mini-
mize syntactic restrictions to interaction, the congruence ω1ω2P ≡ ω2ω1P
was introduced for arbitrary prefixes ω1 and ω3, when no free variable be-
comes bound and no bound variable becomes free. But Milner also allowed
the use of the “guarding dot” ω.P , regarded as an independent operator. The
translation was successful for the multiplicative fragment MLL of linear logic,
where the “guarding dot” was not used, but in the multiplicative and additive
fragment the representability of cut-elimination was seriously limited by its
use.

In the π-calculus there is an evident asymmetry between receiving prefixes
x(z̃)Q, that bind the variables z̃ in Q and sending prefixes x〈ã〉P which do
not. In the case of senders there seems to be no reason to distinguish between
x〈ã〉y〈b̃〉P and y〈b̃〉x〈ã〉P and even between x〈ã〉y〈b̃〉P and y〈b̃〉‖x〈ã〉‖P , while
receivers may impose an ordering, as in the case of x(y)y(z)P . This fact was
exploited by Milner, who sought to allow non-guarding prefixes and at the
same time to use name binding to simulate the effect of guarding prefixes.
About ten years later Milner’s goal was achieved: see, e.g., work by C. Laneve
and B. Victor [15] (particularly the second encoding). Here guarding prefixes
are simulated but the asymmetry between senders and receivers is removed
and binding is performed only by the ν-operator (abstraction).

In Bellin and Scott [6] one also sees that research in linear logic was already
interested in the notion of polarity and thus tried to exploit the asymmetry
between senders and receivers rather than to eliminate it. The goal was to
simulate the information flow, which occurs within proofs, in the π-calculus
translation. The notion of an information flow within intuitionistic proofs
(from input formulas AI in the elimination part of proof-branches to output
formulas CO in the introduction parts) was well-known, but we learnt from Gi-
rard’s proof-nets that a more complex information flow occurs within classical
linear proofs as well.3 Thus π-calculus translations were required to translate
input and output formulas with an receiving and sending process, respectively.

2 In 1991-2 the authors were in Edinburgh, learning the π-calculus from Robin
Milner; also they were well aware of the work by Samson Abramsky, who gave a
lecture on it in Edinburgh in 1992.

3 This idea, developed at length in section 5 of [6], was also studied at the time
by François Lamarche [14]. Later the “information flow” was related to Chu’s
construction and to the abstract form of game-semantics, see, e.g.. [2].

Dual calculus and pi calculus 3

Girard’s notion of a “parallelization of the syntax” through the representation
of proofs as multiple conclusions proof-nets RA1,...,An is based on the principle
that all conclusions A1, . . ., An must be regarded as equivalent “interaction
ports”: this is made possible by the facts that linear negation is an involution,
(i.e., A⊥⊥ = A); thus, e.g., there is no reason to give “privileged access” to
one of the two “ports” of an axiom A A⊥. The opposite assumption is made
when a logic is regarded as polarized. Much work in linear logic in recent year
has been based on the idea that polarized logics and polarized proof-nets offer
the most fruitful results from the viewpoint of logical computation; certainly
game semantics is naturally polarized and this fact carries much weight as we
come to appreciate the rich results of the interaction between proof-theory
and game-semantics. One could say that in their maturity linear logic and the
π-calculus have proceeded in different directions: but this does not mean that
research following earlier ideas and motivations must be sterile, only that it
may need to exploit fresh new ideas.

Let’s take the idea of a “parallel syntax” seriously. Consider the multiple
conclusions A1, . . . , An of a proof-net R, representing a derivation in clas-
sical linear logic: can we regard such a derivation as a concurrent and dis-
tributed process? Suppose we could: certainly we would expect to recognize
these features also in the π-calculus translation. Now consider the “ports”
x1 : A1, . . . , xn : An of a proof-net R in the π-calculus translation π(R) and
think of these “ports” as operated by distinct agents in distinct locations.
In which sense the computation is distributed among them? A glance at the
Abramsky-Milner translation of linear logic into the synchronous π-calculus
translation in [6] shows that x1, . . ., xn are only channels through which an
agent can access to some parts the process π(R), other parts being accessible
only through other ports. The computation may be seen as concurrent, in the
sense that two mutually inaccessible processes compute in parallel, unless and
until their scopes merge; but as a matter of fact the interaction between pro-
cesses is tightly constrained through name-bindings (by the ν-operator and
receiving prefixes) and it is hard to see it as the action of independent agents
in a distributed context.

This fact is not surprising. Certainly the π-calculus is a calculus of concurrent
interaction and communication between processes; but is it also a distributed
calculus? Since the 1990s distributed versions of the π-calculus have been pro-
vided (see, e.g., [1, 19, 12, 11] and the book [10]), as a theoretical framework
for the study of real distributed systems in presence of nodes and link failure,
or for the solution of concrete problems, such as safety and control of mobile
code. Distributed π-calculi extend the π-calculus with symbols and actions
for locations and sometimes differ in the treatment of basic operators: in some
early papers, e.g., in [1, 19], communication is global, while for others [12, 11]
only processes in the same location can interact. Some version of the dis-
tributed π-calculus would seem appropriate to highlight distributed features
of logical computations in logics with “parallel syntax”.

4 Gianluigi Bellin

1.1 A test case: co-intuitionistic linear logic.

In this paper we propose a term assignment to co-intuitionistic linear logic,
in a calculus which appears to be “more distributed” than the 1992 version of
the synchronous π-calculus. We may think of co-intuitionistic logic as being
about making hypotheses. Its consequence relation has the form

H ` H1, . . . ,Hn. (1)

Suppose H is a hypothesis: which (disjunctive sequence of) hypotheses H1 or
. . . or Hn can we prove to be compatible with H? Since the logic is linear,
commas in the meta-theory stand for Girard’s par and the structural rules
Weakening and Contraction are not allowed. Here we insist on interpreting
the consequence relation as distributed, i.e., we think of the alternatives H1,
. . ., Hn in (1) as lying in different locations.

The main connectives are subtraction A r B (possibly A and not B) and
Girard’s par A℘B. Natural Deduction inference rules for subtraction are as
follows. Here again we insist in the distributed interpretation of multiple con-
clusion sequents.

H ` Γ, C D ` ∆
r-intro

H ` Γ,C r D,∆

H ` ∆, C r D C ` D,Υ
r-elim

H ` •,∆, Υ

Notice that in the r-elimination rule the evidence of possible compatibility
between C and D given by the right premise has become inconsistent with the
hypothesis C r D in the left premise, thus in the conclusion we drop D and
add • to remember the removed evidence of this now inconsistent alternative.

However if the left premise of r-elim., proving that CrD with ∆ is compatible
with H, has been obtained by a r-introduction, this inference has the form

H ` ∆1, C D ` ∆2

H ` ∆1,∆2, C r D
.

But then the pair of introduction/elimination rules can be eliminated: using
the removed evidence that D with Υ are compatible with C (right premise of
r-elim.) we can conclude that ∆1,∆2, Υ are compatible with H. This is, in a
nutshell, the principle of normalization (or cut-elimination) for subtraction.

We provide a term assignment to co-intuitionistic linear logic with the prop-
erty that distinct terms t1, . . . tn are assigned to the formulas H1, . . ., Hn,
respectively, in the given context (1). A term ti formally expresses a parcel
of evidence that H and Hi may be compatible in the given context; thus the
terms ti are distributed in the locations of the formulas Hi.4

4 This feature is also found in the term assignment to full intuitionistic linear logic
[13], although in most calculi, including Crolard’s [8] for subtraction, terms are
assigned to a selected formula in the succedent.

Dual calculus and pi calculus 5

The calculus presented here is the linear version of the term assignment to full
co-intuitionistic logic in [3, 4]. Since it is designed to decorate precisely the
derivations that are dual of intuitionistic linear derivations, it may be called
dual linear lambda calculus. The calculus is not based on name passing; the
operators make-coroutine (mkc) and postpone (postp) associated with sub-
traction introduction and elimination are similar to CPS terms (see [20] and
also [17]); in fact, we may regard our calculus as consisting of intuitionistic
continuations. A distinctive feature is the absence of a ν-operator, as the de-
pendence between binding constructs is dealt with by replacing variables with
functional terms reminiscent of Herbrand functions. The distributed character
of the dual linear calculus is evident not only in the locations of terms, buts
also in other features, such as the “broadcasting” of remote substitutions (see
in particular Remark 4 in Section 6).

2 Basic Synchronous π-calculus

We review here the basic synchronous π-calculus presented in [6].

We are given a countable family X of variables (names), denoted by a, d, c, . . . , x, y, z;
we denote vectors of names with x̃, ỹ, etc.

Definition 1. (Grammar) The π-calculus processes P are denoted by the
expressions (π-terms) defined by the following grammar:

P,Q := • | (νx̃)P | (P‖Q) | x〈ỹ〉P | x(ỹ)P

Here

(o) • denotes the null process. (P‖Q) denotes the process resulting from P
and Q acting concurrently.

(i) A prefix of the form x〈ỹ〉 (sender) or x(ỹ) (receiver) denotes a channel
named x through which the names in ỹ can be sent or received, respectively.

(ii) In the π-terms x(ỹ)P and (νx̃)P the receiver x(ỹ) and the expression (νỹ)
(hiding) are name-binding operators and P is their scope.

Prefixes are denoted by π and ω denotes either a prefix or a hiding operator.

(Free and bound names) The sets fn(P) and bn(P) of free and bound
names in P are defined as follows:
(a) fn(•) = bn(•) = ∅;
(b) fn(P‖Q) = fn(P) ∪ fn(Q); bn(P‖Q) = bn(P) ∪ bn(Q);
(c) fn(x〈ỹ〉P) = {x} ∪ ỹ ∪ fn(P); bn(x〈ỹ〉P) = bn(P);
(d) fn(x(ỹ)P) = fn(P) r ỹ ∪ {x}; bn(x(ỹ)P) = bn(P) ∪ ỹ;
(e) fn((νỹ)P) = fn(P) r ỹ; bn((νỹ)P) = bn(P) ∪ ỹ.

We define α-equivalence, renaming of bound variables and capture-avoiding
simultaneous substitution P [ỹ/x̃] as usual.

(Congruence) A congruence relation ≡ on π-terms is defined as follows:

6 Gianluigi Bellin

1. ω1ω2P ≡ ω2ω1P provided no free variable becomes bound and no bound
variable becomes free.

2. ω(P‖Q) ≡ ωP‖Q, provided bn(ω) ∩ fn(Q) = ∅.
3. Parallel composition ‖, regarded as a binary operator on processes, satisfies

the axioms of a commutative monoid with unit • .
4. (νx)• ≡ • .

(Basic 1-step reduction)

(x〈ỹ〉P ‖ x(z̃)Q �1 (P‖Q[ỹ/z̃])

Rewriting is contextual and modulo ≡, so that for all context C, if P ′ ≡ P
and Q ≡ Q′, then we have P � Q ⇒ C[P ′] �1 C[Q′].

Remark 1. It is important to notice that in this version of the π-calculus the
notion of the scope of a prefix is essentially related to binding. For instance,
since x〈ỹ〉(P‖Q) ≡ (x〈ỹ〉P‖Q) we have xỹx(z̃P ≡ (•‖x(z̃P) �1 P [ỹ/z̃].
To constrain the reduction process in the synchronous calculus one uses the
guarding operator (dot): π.P .

Remark 2. We cannot survey here the recent literature in which ideas related
to the synchronous π-calculus have been developed, but the paper by Laneve
and Victor [15] is particularly relevant, as it shows how guarding prefixes can
be encoded in a calculus where the only binding operator is abstraction (the
ν-operator).

3 Multiplicative co-Intuitionistic Logic

The logic we apply the π-calculus translation to is co-IMLL, the dual of
Multiplicative Intuitionistic Linear Logic (IMLL). Intuitionistic Linear Logic
IMLL−◦⊗ with linear implication (−◦) and tensor product (⊗) is formalized
in Gentzen calculi with single-conclusion sequents

x1 : A1, . . . xn : An ` t : A

which can be decorated with linear lambda terms with tensor. The dual
logic co-IMLLr℘ on the connectives subtraction (A r B) and par (A℘B)
is formalized in a sequent calculus MLJr℘ with single-premise and multiple-
conclusions sequents

x : C ` t1 : C1, . . . , tn : Cn.

Here the terms t1, . . ., tn belong to the dual linear lambda calculus, or simply
dual linear calculus defined in Section 5.

Given a countable sequence of elementary formulas denoted by η1, η2, . . . the
language of co-IMLLr℘ is given by the following grammar:

Dual calculus and pi calculus 7

A,B := η | A r B | A℘B

Here η =Hp expresses the hypothesis that proposition p is true. If A and B
are hypothetical expressions, then the intended meaning of A r B is possibly
A and not B; we take an intuitive explanation of A℘B (A par B) to be it
is not possible that definitely not A and definitely not B. For co-intutionistic
logic as a logic of hypotheses, see [4].

Sequent calculus MLJr℘

The rules of the sequent calculus MLJr℘ for Multiplicative co-Intuitionistic
Linear Logic with subtraction and par are given in Table 1.

axiom cut

A ` A
E ` Γ, A A ` ∆

E ` Γ, ∆

r-R r-L
E ` Γ, C D ` ∆

E ` Γ, C r D, ∆

C ` D, ∆

C r D ` ∆

℘-R ℘-L
E ` Γ, C0, C1

E ` Γ, C0℘C1

C0 ` Γ0 C1 ` Γ1

C0℘C1 ` Γ0, Γ1

Table 1. Sequent Calculus MLJr℘

3.1 Example.

Consider the Petri net N in Figure 1 and the computation resulting from the
given initial marking, namely, using resources A and B to fire the first tran-
sition and obtain C and then using a resource D to fire the second transition
and obtain E.
Such computation can be represented in Intuitionistic Multiplicative Linear
Logic IMLL by a (cut free) sequent derivation of

(A,A, B,D,D︸ ︷︷ ︸
M1

, A −◦ (B −◦ C)︸ ︷︷ ︸
T1

, C −◦ (D −◦ E)︸ ︷︷ ︸
T2

` E ⊗ (A⊗D)︸ ︷︷ ︸
M2

(2)

as shown, e.g., in [16].

The same computation can be encoded in an easy CCS computation:

8 Gianluigi Bellin

A

B

C

D

1

1

1 1

1

1

Initial Marking: AAB DD Final Marking: A D

E

Petri Net with Markings

E

Fig. 1. A Petri Net.

a‖a‖b‖d‖d‖(νxy)
(
a.x‖b.x.y‖d.y.e

)
� a‖d‖e (3)

But here the use of guarding prefixes of CCS (or some encoding of them in
the π-calculus) is essential, so there is no way to represent the cut-elimination
process of IMLL in CCS: for this purpose, as pointed out above, contextual
rewriting would be required within guarded processes.

If we decorate IMLL natural deduction or sequent derivations with the lin-
ear λ-terms with ⊗ and let constructs as, e.g., in [7], then we have a full
and faithful representation of normalization or cut-elimination in IMLL and
this allows us to represent other computation strategies. For instance, in our
simple example we may load the nodes B, D and A in this order and still the
computation would go through. Thus we have derivations D11, D12, D21 and
D22 decorated with the following terms:

D11 :
g : T2, f : T1 ` λbλdλa.g(fab)d︸ ︷︷ ︸

u

: B −◦ (D −◦ (A −◦ E))

D12 :
y1 : A⊗A, b : B, y2 : D ⊗D,h : B −◦ (D −◦ (A −◦ E)) ` ` : E ⊗ (A⊗D)

where ` = let y2 be d⊗ d′ in `1 and `1 = let y1 be a⊗ a′ in (hbda)⊗ (a′ ⊗ d′)

D21 :
a : A, a′ : A ` a⊗ a′ : A⊗A

D22 :
d : D, d′ : D ` d⊗ d′ : D ⊗D

and we obtain a derivation D0 with cut as follows:

Dual calculus and pi calculus 9

D21

D22

D11 D12 cut1
y1 : A⊗A, b : B, y2 : D ⊗D, g : T2, f : T1 ` `[u/h] : E ⊗ (A⊗D)

cut2
d : D, d′ : D, y1 : A⊗A, b : B, g : T2, f : T1 ` `[u/h][d⊗ d/y2] : E ⊗ (A⊗D)

cut3
d : D, d′ : D, a : A, a′ : A, b : B, g : T2, f : T1 ` `[u/h][d⊗ d′/y2][a⊗ a′/y1] : E ⊗ (A⊗D)

As expected, by eliminating cuts we get

d : D, d′ : D, b : B, a : A, a′ : A, g : T2, f : T1 ` g(fab)d : E

3.2 The example in co-Intuitionistic Multiplicative Linear Logic

Here we consider a dual representation of the same Petri Net computation as
derivations of the sequent R :

E℘(A℘D)︸ ︷︷ ︸
M⊥

2

` (E r D) r C︸ ︷︷ ︸
T⊥

2

, (C r B) r A︸ ︷︷ ︸
T⊥

1

, A, A,B,D, D︸ ︷︷ ︸
M⊥

1

The following is a cut free derivation DR of R in MLJrg:

E ` E D ` D r-R
E ` E r D, D

C ` C B ` B r-R
C ` C r B, B A ` A

r-R
C ` (C r B) r A, A, B

r-R
E ` (E r D) r C, T1, A, B, D

A ` A D ` D ℘-L
A℘D ` A, D

r-R
E℘(A℘D) ` T1, T2, A, A, B, D, D

This derivation represents the Petri net computation showing the reachability
of E in Figure 1 in the linear co-intuitionistic sequent calculus MLLr℘.

4 Abramsky’s π-calculus processes for MLJr℘

The following encoding is the same as that of classical multiplicative linear
logic in [6]. Notice however that here we exploit the “logical flow” of co-
intuitionistic logic by decorating the formula in the antecedent with a receiver
and the formulas in the succedent with a sender.

Logical rule π-translation
Ixy : x : A ` y : A Ixy = x(a)y〈a〉

cut

...
Fvx̃x :

v : D ` x̃ : Γ, x : A

...
Gyỹ :

y : A ` ỹ : ∆

Cutz(F, G)x̃ỹ : v : D ` x̃ : Γ, ỹ : ∆

Cutz(F, G)x̃ỹ =

= νz
“
Fvx̃[z/x] ‖ Gỹ[z/y])

”

10 Gianluigi Bellin

subtraction introduction

...
Fvx̃x :

v : D ` x̃ : Γ, x : A

...
Gyỹ :

y : B ` ỹ : ∆

SIxy
z (F, G)x̃ỹ : v : D ` x̃ : Γ, z : A r B, ỹ : ∆

SIxy
z (F, G)x̃ỹ =

= νxy
“
z〈xy〉 (Fvx̃x ‖ Gyỹ)

”

subtraction elimination
...

Fxyx̃ : x : A ` y : B, x̃ : Γ

SExy
z (F)x̃ : z : A r B ` x̃ : Γ

SExy
z (F)x̃ = z(xy)Fxyx̃

4.1 The Cut Algebra for MLJr

Symmetric Reductions:

(1) Cutz(Fx̃, Gỹ) = Cutz(Gỹ, Fx̃)
(2) Cutx(Fṽx, Ixy) � Fṽx[y/x]
(3) Cutz(SIxy

z (Fx, Gy),SExy
z (Hxy))x̃ỹw̃ � Cuty(Cutx(Fx,Hxy), Gy)x̃ỹw̃

(4) ≡ Cuty(Gy,Cutx(Fx,Hxy))x̃ỹw̃

Commutative Reductions: If SEcd
v and SIcd

v do not react with x 5 and neither
c nor d occurs in H, then

(5) Cutx(SEcd
v (Fcdx),Hx)x̃w̃ = SEcd

v (Cutx(Fcdx,Hx))x̃w̃

(6) Cutx(SIcd
v (Fc, Gdx),Hx)x̃ỹw̃ = SIcd

v (Fc,Cutx(Gdx,Hx))x̃ỹw̃ and
Cutx(SIcd

v (Fcx, Gdx),Hx)x̃ỹw̃ = SIcd
v (Cutx(Fcx,Hx), Gd)x̃ỹw̃.

Theorem 1. (Soundness) Let D be a proof in MLJr and let π(D) be its
π-calculus translation.

(i) If D �′D by a 1-step symmetric reduction in the cut-elimination process,
then π(D) �1 π(D′) in the synchronous π-calculus.

(ii) If D �′D by a 1-step commutative reduction in the cut-elimination process,
then π(D) ≡ π(D′) in the synchronous π-calculus.

(see [6]).

4.2 π calculus processes and cut algebra for MLJrg

To the logical rules and π calculus processes for MLJr we add the following
rules and translations:

5 In the context of this translation it suffice to assume that c 6= x 6= d.

Dual calculus and pi calculus 11

Logical rule π-translation

disjunction introduction
...

Fxyx̃ : v : D ` x : A, y : B, x̃ : Γ

DIxy
z (F)x̃ : v : D ` z : A g B, x̃ : Γ

DIxy
z (F)x̃ = νxy (z〈xy〉Fxyx̃)

disjunction elimination
...

Gxx̃ : x : A ` x̃ : Γ

...

Hyỹ : y : B ` ỹ : ∆

DExy
z (G, H)x̃ỹ : z : A g B ` x̃ : Γ, ỹ : ∆

DExy
z (G, H)x̃ỹ =

“
z(xy) (Gxx̃ ‖ Hyỹ)

”

To the Symmetric Reductions we add the following cases:

(3’) Cutz(DIxy
z (Fxy),DExy

z (Gx,Hy))x̃ỹw̃ � Cuty(Cutx(Fxy, Gx),Hy)x̃ỹw̃

(4’) ≡ Cutx(Cuty(Fxy,Hy), Gx)x̃ỹw̃

To the Commutative Reductions we add the following cases:
If DIcd

v , DEcd
x do not react with x and neither c nor d occurs in H, then

(5’) Cutx(DIcd
v (Fcdx),Hx)x̃w̃ = DIcd

v (Cutx(Fcdx,Hx))x̃w̃

(6’) Cutx(DEcd
v (Fc, Gdx),Hx)x̃ỹw̃ = DEcd

v (Fc,Cutx(Gdx,Hx))x̃ỹw̃ and
Cutx(DEcd

v (Fcx, Gdx),Hx)x̃ỹw̃ = DEcd
v (Cutx(Fcx,Hx), Gd)x̃ỹw̃.

With these definitions the Soundness Theorem still holds for MLJr℘.

An example of π-calculus translation and computation is given in the Ap-
pendix (Section 8).

4.3 Proof-theoretic refinements

In [6], sections 4 and 5, representations of proofs in Classical Multiplicative
Linear Logic (MLL) are considered for which not only Soundess (Theorem
1) but also Local Fullness holds of Abramsky’s translation.

Given a logic L, for suitable representations of proofs and of proof-normalization
in L and for their Abramsky translation π into π-calculus terms, local Full-
ness is the following property:

Let R be a proof in L and suppose π(R) � Q. Then in L there exists a proof
R′ such that π(R′) = Q and R � R′.
For the sequent calculus MLJr℘ for Multiplicative co-Intuitionistic Logic, as
well as for the sequent calculus for Classical Multiplicative Linear Logic MLL,
Local Fullness holds only modulo permissible permutations of inferences (e.g.,
the commutative reductions above). On the other hand the representation

12 Gianluigi Bellin

of MLL proofs as proof nets [9] identifies sequent calculus proofs modulo
permutations of inferences and therefore is suitable for a Local Fullness result.

It would be possible to follow Section 5 of [6] and develop a theory of proof-
nets with orientations for linear co-intuitionistic logic simply by dualizing the
input-output orientations; similarly, one would obtain Lamarche’s essential
nets for linear co-intuitionistic logic [14]. For instance, simply by reversing
the roles of input/output we obtain the following translations:

(A r B)O =df AO ⊗BI (A r B)I =df AI℘BO

(A℘B)O =df AO℘BO (A℘B)I =df AI ⊗BI

We cannot pursue the topic here.

5 A dual linear calculus for co-IMLLr℘

We present the grammar and the basic definitions of our dual linear calculus
for the fragment of linear co-intuitionistic logic with subtraction and disjunc-
tion.

Definition 2. We are given a countable set of free variables (denoted by x,
y, z . . .), and a countable set of unary functions (denoted by x, y, z, . . .).

(i) Terms are defined by the following grammar:

t, u := x | x(t) | t℘u | casel(t) | caser(t) | mkc(t, x)

(ii) Let t1, t2, . . . an enumeration in a given order of all the terms freely gen-
erated by the above grammar starting with a special symbol ∗ and no variables
(a selected variable a would also do the job). Thus we have a fixed bijection
ti 7→ xi between terms and free variables.

(iii) Moreover, if t is a term and u is a term such that y occurs in u, then
postp(y 7→ u{y := y(t)}, t) is a p-term.

We use the abbreviations (t → y) for mkc(t, y) and w
z 7→uoo for postp(z 7→

u, w).

Notice that a p-term cannot be a subterm of other terms.

Definition 3. (i) The free variables FV (`) in a term are defined as follows:

FV (x) = {x}
FV (x(t) = FV (t)
FV (t℘u) = FV t ∪ FV u

FV (casel(t)) = FV (caser(t)) = FV (t)
FV (mkc (t, x) = FV (t)

FV (postp(x 7→ u, t) = FV (u) ∪ FV (t).

(ii) A computational context Sx is a set of terms and p-terms containing the
free variable x and no other free variable. We may represent a computational
context as a list κ of terms and p-terms.

Dual calculus and pi calculus 13

Definition 4. Substitution of a term t for a free variable x in a in a list of
terms κ is defined as follows:

x{x := t} = t, y{x := t} = y if x 6= y;
y(u){x := t} = y(u{x := t}); (r℘u){x := t} = r{x := t}℘u{x := t})

casel(r){x := t} = casel(r{x := t}), caser(r){x := t} = caser(r{x := t});
mkc(r, y){x := t} = mkc(r{x := t}, y),

postp(y 7→ (u), s){x := t} = postp(y 7→ (u{x := t}), s{x := t}).
(){x := t} = () (u · κ){x := t} = t{x := t} · κ{x := t}

Definition 5. β-reduction of a redex Red in a computational context Sx is
defined as follows.
(i) If Red is a term u of the following form, then the reduction is local and
consists of the rewriting u β u′ in Sx as follows:

casel (t℘u) β t; caser (t℘u) β u.

(ii) If Red has the form (t → y)z 7→uoo , i.e., postp(z 7→ u, mkc(t, y)), then
Sx has the form

Sx = Red, κ, ζy, ξz

where y(t) occurs in ζy and z((t → y)) occurs in ξz and neither y(t) nor
z((t → y)) occurs in κ. Using our bijection between the set of terms and the
free variables, we can write y = y(t) and z = z((t → y)); then a reduction of
Red transforms the computational context as follows:

Sx κ, ζ{y := u{z := t}}, ξ{z := t}. (4)

Thus for ζ = u1, . . . , uk and ξ = r1, . . . , rm we have:

ξ{z := t} = r1{z := t}, . . . , rm{z := t};
ζ{y := u{z := t}} = u1{y := u{z := t}}, . . . , uk{y := u{z := t}}.

6 Term assignment to MLJr℘

Definition 6. (term assignment) The assignment of terms of the dual lin-
ear calculus to sequent calculus derivation in MLJr℘ is given in Table 2.

Remark 3. (Bound variables and α-conversion.) Since in our calculus the bind-
ing of a free variable x is expressed by the substitution of x with a term
x(t), how can we avoid that the same term x(t) may come to represent dis-
tinct bindings of the variable x? Since in the case of linear co-intuitionistic
logic no copying of subtrees is produced by the normalization procedure, here
such an undesirable effect may only arise if two distinct occurrences of the

14 Gianluigi Bellin

Labelled Sequent Calculus MLJr℘

identity rules
logical axiom:

x : C ` π : • | x : C

cut:

x : E ` π1 : • | ` : Υ1 , t : C y : C ⇒ π2 : • | κ : Υ2

x : E ` π1, π2{y := t} : • | ` : Υ1, κ{y := t} : Υ2

logical rules

r right:

x : E ` π1 : • | ` : Υ1, t : C y : D ⇒ π2 : • | κ : Υ2

E ` π1, π2{y := y(t)} : • | ` : Υ1, κ{y := y(t)} : Υ2 , mkc(t, y) : C r D

r left:

x : C ` π1 : • | ` : Υ, u : D

y : C r D ` π1 : •, postp(x 7→ u{x := x(y)}, y) : • | `{x := x(y)} : Υ

℘ right

x : C ` π1 : • | ` : Υ, t0 : D0, t1 : D1

y : C r D ⇒ π1 : •, ` : Υ, t0℘t1 : D0℘D1

℘ left:

x : D0 ` π1 : • | ` : Υ1 y : D1 ⇒ π2 : • | κ : Υ2

z : D0℘D1 ` π1{x := casel(z)}, π2{y := caser(z)} : • |

`{x := casel(z)} : Υ1, κ{y := caser(z)} : Υ2

Table 2. Labelled sequent calculus MLJr℘

free variables x become bound in different parts of the computational con-
text. Therefore to avoid “capture of free variables” in the term assignment
to derivations in NJrg, it is enough to require derivatons to have the pure
parameter property:

Convention. We assume that in a derivation free variables assigned to dis-
tinct open assumptions are distinct.

Remark 4. Consider the global reduction in equation 4: in a distributed inter-
pretation, after the substitution u{z := t} has been performed in the location
of u, the substitutions ζ{y := u{z := t}} and ξ{z := t} must be performed in
remote locations, which are reachable because the term assignment encodes
the structure of a tree like network (see in particular the graphical represen-

Dual calculus and pi calculus 15

tation in the Appendix, section 8.3). Remote substitutions evoke the notion
of agent mobility which is crucial to distributed versions of the π-calculus.

6.1 Labelled Prawitz’ trees

As trees in Prawitz style Natural Deduction MNJ−◦ can be decorated with
linear λ terms, so we find more perspicuous to assign terms of our dual linear
calculus to Prawitz trees for MNJr derivations, rather than to MLJr se-
quent derivations. In the linear case the correspondence between the sequent
calculus co−MLJr and natural deduction MNJr is straightforward. For
the general case see [4].

In the Appendix (Section 8) we consider part of the derivation with cut in our
example (Sections 3.2 and 8.2) and give the assignment of terms of the dual
linear calculus to Prawitz’ trees for MNJr.

6.2 Dualities

Given the Natural Deduction system for MNJ−◦⊗ with term assignment in
the linear lambda calculus with ⊗ and let operators, as in [7], consider the
Natural Deduction system for MNJr℘ with term assignment corresponding
to the sequent calculus in Tables 2. In this setting the following facts are clear:

Proposition 1. (i) Given a Natural Deduction derivation DS of a sequent
with term assignment S : x1 : A1, . . . , xn : An ` t : A in MNJ−◦⊗, there
is a Natural Deduction derivation D⊥S⊥ of a sequent with term assignment
S⊥ : x : A⊥ ` t1 : A⊥1 , . . . , tn : An IMLJr℘, and conversely;
(ii) If a MNJ−◦⊗ derivation DS reduces to D′S′ , then the MNJr℘ derivation
D⊥S⊥ reduces in one step to (D′)⊥(S′)⊥ , and conversely.

The proposition is proved by a straightforward induction on the length of the
given derivation (part (i)) and on the length of the reduction sequence (part
(ii)). It is understood that “a step” of reduction in the dual linear calculus
must be seen as “macro” instruction for several steps of rewriting, which may
nevertheless be seen as a unit.

In conclusion, reconsider the question is the dual linear calculus a distributed
system? This is a non-mathematical question: the answer depends on opinions
of what a distributed system is. However, evidence gathered so far shows that
Gentzen calculi for co-intuitionistic linear logic and the dual linear calculus
certainly admit a distributed interpretation, in a sense that bears some resem-
blance to the meaning of “distributed” as used in “distributed π-calculus”.

7 Conclusion

In this paper we have revisited a version of Milner’s synchronous π-calculus
that was used in the early days of the subject as documented in [6]; as a

16 Gianluigi Bellin

test case we have applied Abramsky’s translation of classical multiplicative
linear logic into the synchronous π-calculus to co-intuitionistic linear logic co-
IMLLr℘ with subtraction and par. For this logic we have presented Gentzen
systems which are dual to the corresponding systems for intuitionistic mul-
tiplicative linear logic IMLL−◦⊗ with linear implication and tensor product
and also we have given a term assignment to those Gentzen systems for co-
IMLLr℘ in a dual linear calculus. We chose linear co-intuitionistic logic be-
cause it is naturally formalized in multiple-conclusion sequents and our calcu-
lus assigns a term to each formula in the succedent of a sequent, thus suggest-
ing an interpretation of the term assignment as a distributed system, where
each formula inhabits a distinct location. Having compared the translation
in the synchronous π-calculus and the dual linear term assignment applied
to a derivation that encodes a simple Petri Net computation, we concluded
that the dual linear term assignment expresses the intuition of a distributed
computation more clearly than the synchronous π-calculus.

This suggests comparing the dual linear term assignment with a translation
of linear co-intuitionistic logic in some system of distributed π-calculus. The
general lines of such translation seem clear: distinct subprocesses should be
assigned to the active formulas of a subtraction introduction and they should
lie in distinct locations; similarly, a subprocess should be assigned to the
active formulas of a subtraction elimination and it should lie in a distinct lo-
cation from those of the subprocesses assigned to the passive formulas; similar
considerations may apply to subtraction. Some substitutions involved in the
cut-elimination process may be performed in a locations, but others will have
to be routed to remote locations. However the choice of a suitable distributed
π-calculus and the details of such a translation may require some thought.

Moreover, one would like to consider the full system of co-intuitionistic logic
co-ILr℘, with the sequent calculus LJrg, not just its linear part. Here we
have the structural rules Weakening and Contraction, and the π-calculus
translation uses the iteration operator; as a consequence, the simple step
by step correspondence between cut-elimination and π-calculus reduction no
longer holds and one need to reason modulo an appropriate notion of bisim-
ulation. It seems appropriate to leave such a project to future work.

References

1. R. M. Amadio. An asynchronous model of locality, failure, and process mobility,
In COORDINATION ’97, Lecture Notes in Computer Science volume 1282,
Springer Verlag, 1997, pp. 374–391.

2. G. Bellin. Chu’s Construction: A Proof-theoretic Approach. in Ruy J.G.B.
de Queiroz editor, Logic for Concurrency and Synchronisation, Kluwer Trends
in Logic n.18, 2003, pp. 93-114.

3. G. Bellin. A Term Assignment for Dual Intuitionistic Logic, conference paper
presented at the LICS’05-IMLA’05 Workshop, Chicago, IL, June 30, 2005

Dual calculus and pi calculus 17

4. G. Bellin. Assertions, hypotheses, conjectures and expectations. Rough set se-
mantics and proof-theory, in: Advances in Natural Deduction - Proceedings of
the Natural Deduction conference in Rio de Janeiro, 2001, Kluwer Trends in
Logic, to appear 2011.

5. G. Bellin, M. Hyland, E.Robinson and C. Urban. Categorical Proof Theory
of Classical Propositional Calculus Theoretical Computer Science Vol. 364, 2,
November 2006, pp. 146-165.

6. G. Bellin and P. J. Scott. On the Pi-calculus and linear logic, Theoretical Com-
puter Science 135, 1994, pp. 11-65.

7. G. Bierman On Intuitionistic Linear Logic, PhD Dissertation, University of
Cambridge Computer Laboratory, Technical Report n. 346,1994

8. T. Crolard. A Formulae-as-Types Interpretation of Subtractive Logic. In: Jour-
nal of Logic and Computation, vol.14(4), 2004, pp. 529-570

9. J-Y. Girard. Linear Logic, Theoretical Computer Science 50, 1987, pp. 1-102.
10. M. Hennessy. A distributed pi-calculus, Cambridge University Press, 2007.
11. M. Hennessy, M. Merro and J. Rathke, Towards a behavioural theory of access

and mobility control in distributed systems, Theoretical Computer Science 322,
(3), 2004, pp. 615-669

12. M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents.
Information and Computation, 173 (1). 2002, pp. 82-120

13. J. M. Hyland and V. de Paiva. Full Intuitionistic Linear Logic, Annals of Pure
and Applied Logic 64, 1993, pp. 273-91.

14. F. Lamarche. Proof Nets for Intuitionistic Linear Logic: Essential Nets, 2008
Available from http://hal.inria.fr/inria-00347336/

15. C. Laneve and B. Victor. Solos in Concert, in: Mathematical Structures in Com-
puter Science 13, 5, 2003, pp. 657-683.

16. N. Mart́ı-Oliet and J. Meseguer. From Petri Nets to Linear Logic, in Category
Theory and Computer Science, Manchester, UK. Springer-Verlag LNCS 389,
1989.

17. M. Merro. On the observational theory of the CPS-calculus. Acta Informatica
47, 2010, pp. 111–132.

18. R. Milner. The polyadic π-calculus: A tutorial, in: Bauer, Brauer and Schwicht-
enberg eds., Logic and Algebra of Specification, vol. 94 of Series F. NATO ASI,
Springer 1993.

19. P. Sewell. Global/local subtyping and capability inference for a distributed π-
calculus, In Proceedings of ICALP ’98, LNCS 1443, 1998, Springer-Verlag, pp.
695–706.

20. H. Thielecke. Categorical Structure of Continuation Passing Style. PhD Thesis,
University of Edinburgh, 1997. Also available as technical report ECS-LFCS-
97-376.

8 APPENDIX. Examples of computation.

In Section 8.1 of this Appendix we give the derivation D⊥0 with cuts in multi-
plicative co-intuitionistic MLJrg, which is dual of the derivation D0 in mul-
tiplicative linear logic in Section 3.1: both D0 and D⊥0 represent a strategy for
the Petri net computation in Figure 1.

18 Gianluigi Bellin

Next we show two encodings of a part of the derivation given in Section 8.1
and of the cut-elimination process applied to it: in Section 8.2 we use the
synchronous π-calculus and in Section 8.3 we use our dual calculus.

8.1 Example: derivation with cut in the sequent calculus MLJrg

Here are the dual derivations D⊥11

E ` E D ` D r-R
E ` E r D,D

C ` C B ` B r-R
C ` C r B,B A ` A

r-R
C ` (C r B) r A,A, B

r-R
E ` (E r D) r C, T⊥1 , A, B,D

E r B ` T⊥1 , T⊥2 , A, D

(E r B) r D ` T⊥1 , T⊥2 , A

((E r B) r D) r A ` T⊥1 , T⊥2

D⊥12:
E ` E B ` B

E ` B,E r B D ` D

E ` B,D, (E r B) r D A ` A

E ` A,B, D, ((E r B) r D) r A
A ` A D ` D

A℘D ` A,D

E℘(A℘D) ` A,A, B,D,D, ((E r B) r D) r A

E℘(A℘D) ` A℘A, B,D,D, ((E r B) r D) r A

E℘(A℘D) ` A℘A, B,D℘D, ((E r B) r D) r A

D⊥21 and D⊥22:
A ` A A ` A

A℘A ` A,A
D ` D D ` D

D℘D ` D,D

Now the derivation D⊥0 has cut formulas C1 = ((E rB)rD)rA, C2 = D℘D
and C3 = A℘A:

D⊥12
E℘(A℘D) ` A℘A, D℘D,C1

D⊥11
C1 ` T⊥1 , T⊥2

cut1
E℘(A℘D) ` T⊥1 , T⊥2 A℘A, B, D℘D

D⊥22
D℘D ` D, D

cut2
E℘(A℘D) ` T⊥1 , T⊥2 A℘A, B, D, D

D⊥21
A℘A ` A, A

cut3
E℘(A℘D) ` T⊥1 , T⊥2 A, A, B, D, D

8.2 Example in the π-calculus

We go through the π-calculus translation of the proofs D⊥11 and D⊥12 in Section
8.1 step by step.

Dual calculus and pi calculus 19

Derivation D⊥
11.

First we have four steps of subtraction introduction (r-R).

π(st1) =

{
Iee1 : e : E ` e1 : E Idd1 : d : D ` d1 : D

SIe1d
z1

(Iee1‖Idd1) : e : E ` z1 : E r D, d1 : D

π(st2,3) =

Icc1 : c : C ` c1 : C Ibb1 : b : B ` b1 : B

SIc1b
z2

(Icc1‖Ibb1) : c : C ` z2 : C r B, b1 : B Iaa1 : a : A ` a1 : A

SIz2a
z3

(
SIc1b

z2
(Icc1‖Ibb1)‖Iaa1

)
: c : C ` z3 : (C r B) r A︸ ︷︷ ︸

T⊥
1

, a1 : A, b1 : B

π(st4) =

8>>>>><>>>>>:
π(st1) : e : E ` z1 : E r D, d1 : D π(st2,3) : c : C ` z3 : T2, a1 : A, b1 : B

SIz1c
z4

“
π(st1)‖π(st2,3)

”
: e : E ` z4 : (E r D) r C| {z }

T⊥
2

, z3 : T⊥1 , a1 : A, b1 : B, d1 : D

Next we have three steps for subtraction elimination (r-L)

π(D⊥11) =

 π(st4) : e : E ` z3 : T⊥1 , z4 : T⊥2 , a1 : A, b1 : B, d1 : D

SEz6a1
z7

(
SEz5d1

z6

(
SEeb1

z5
π(st4)

))
: z7 : ((E r B) r D) r A ` z3 : T⊥1 , z4 : T⊥2

Derivation D⊥
12:

Again we have three steps of subtraction introduction (r-R).

π(intro) =

{
SIz9a′′

z10

(
SIz8d′′

z9

(
SIe”1b′′

z8
(Ie′′e′′1‖Ib′′b′′1)

∥∥Id′′d′′1

)∥∥∥Ia′′a′′1

)
:

e′′ : E ` a′′1 : A, b′′1 : B, d′′1 : D, z10 : ((E r B) r D) r A

Next we have two steps of par elimination (℘-L)

π(parelim1) = DEa+d+

w1

(
Ia+a+

1
‖Id+d+

1

)
: w1 : A℘D ` a+

1 : A, d+
1 : D

and

π(parelim2) =

π(intro)e”a”1b”1d”1z10 π(parelim1)w1a+

1 d+
1

DEe”w1
w2

(
π(intro)‖π(parelim1)

)
:

w2 : E℘(A℘D) ` a”1, a
+
1 : A, b”1 : B, d”1, d

+
1 : D,

z10 : ((E r B) r D) r A

followed by two steps of par introduction (℘-R)

20 Gianluigi Bellin

π(D12) =

π(parelim2)w2a”1a+

1 d”1d+
1 z10

DEa”1a+1
w4

(
DEd”1d+

1
w3

(
π(parelim2)

))
w2 : E℘(A℘D) ` w4 : A℘A, b”1 : B,w3 : D℘D, z10 : ((E r B) r D) r A

Consider the π-calculus translation of the result of cut1 with cut formula
C1 = ((E r B) r D) r A, namely,

P = (νz)D⊥12[z/z10] ‖ D⊥11[z/z7]

The processes π(D⊥12)[z/z10] and π(D⊥11)[z/z7] can communicate only through
the channel z; their interaction triggers interactions between z9 and z6 (re-
named z9), and between between z8 and z5 (renamed z8); in these steps also e,
a1, b1 and d1 in π(D⊥11) have been renamed as e′′1, a”, b” and d”. This makes it
possible to have interactions between the subprocesses Ie′′1e1 , Iaa”, Idd”, Ibb”

(after renaming) of π(D⊥11) with the subprocesses Ie′′e′′1 , Ia”a”1 , Id”d”1 Ib”b”1

of π(D⊥11), respectively: the resulting rewritings yield subprocesses Ie′′e1 , Iaa”1 ,
Idd”1 and Ibb”1 and corresponds to the cut-elimination process applied to cut1.
Performing the formal steps briefly described here we see that the process P
reduces to

P ∗ =

SIz1c

z4

„
SIe1d

z1 (Ie′′e1‖Idd′′1)

‚‚‚‚SIz2a
z3

“
SIc1b

z2 (Icc1‖Ibb′′1)
‚‚‚ Iaa′′1

”«!
:

e′′ : E ` z4 : T⊥2 , z3 : T⊥1 , a′′1 : A, b′′1 : B, d′′1 : D

The rest of the proof is similar and is omitted.

8.3 Example in the dual linear calculus

In this section we give the term assignment in the dual linear calculus to a
part of the MLJrg derivation given in Section 8.1.

For convenience, we still draw trees with the root at the bottom, keeping in
mind that here derivations are built from bottom up. We shall use the notation
(t → a) for mkc(t, a) and e 7→u // t for postp(e 7→ u, t).

Dual calculus and pi calculus 21

S0 : r
Red0

w 7→a′oo v,u 7→b′oo w,v 7→d′oo ((c → b′) → a′) ((u → d′) → c)

((c→b′)→a′KKKK

eeKKKK

a′

99ssssssssss

(c→b′)KKKK

eeKKKK

b′

99ttttttttt
(u→d′)→c

eeKKKKKKKKKK c

99ssssssssss
u→d′

eeKKKKKKKKKK d′

99ttttttttt

u

OO

v

OO

w

OO

r=((z→b)→d)→a)JJJJ

eeJJJJ
a

66mmmmmmmmmmmmm
(z→b)→d

hhQQQQQQQQQQQQQ d

44iiiiiiiiiiiiiiiiii
z→b

jjUUUUUUUUUUUUUUUUUU b

66nnnnnnnnnnnn

z

OO

reduces to

22 Gianluigi Bellin

S1 : w
Red1

v 7→d′oo v,u 7→b′oo ((c → b′) → a′) ((u → d′) → c)

((c→b′)→a′)LLLL

eeLLLL

a′

99rrrrrrrrrr

(c→b′)LLLL

eeLLLL

b′

;;vvvvvvvv
((u→d′)→c)

eeLLLLLLLLLL c

99rrrrrrrrrr
(u→d′)

eeLLLLLLLLLL d′

;;vvvvvvvv

u

OO

v

OO

w=((z→b)→d)HHH

ccHHH

d

66nnnnnnnnnnnnn
(z→b)

hhPPPPPPPPPPPPP b

44iiiiiiiiiiiiiiiiii

z

OO

reduces to

Dual calculus and pi calculus 23

S2 : (z → b
Red2

u 7→b′oo ((c → b′) → a′) ((u → d′) → c)

((c→b′)→a′)OOOOO

ggOOOOO

a′

88qqqqqqqqqq

(c→b′)MMMM

ffMMMM

b′

>>}}}}}}}
((u→d′)→c)

ggOOOOOOOOOOOO c

88qqqqqqqqqq
(u→d′)

ffMMMMMMMMMM d′

>>}}}}}}}

u

OO

v=((z→b)→d)AAA

``AAA

b

66nnnnnnnnnnnnn

z

OO

reduces to

S3 : ((c → b′) → a′) ((u → d′) → c)

((c→b′)→a′)GGG

ccGGG

a′

>>}}}}}}}

(c→b′)AAA

``AAA

b′

66nnnnnnnnnnnnn
((u→d′)→c)

ccGGGGGGGG c

>>}}}}}}}
(u→d′)

``AAAAAAA d′

66nnnnnnnnnnnnn

z

OO

We show here the steps of the computation:

24 Gianluigi Bellin∣∣∣

S0 : r,
Red0

w 7→a′oo v,u 7→b′oo w,v 7→d′oo ((c → b′) → a′) ((u → d′) → c)

where b = b(z), d = d(z → b), a = a((z → b) → d), w = w((((z → b) → d) → a)), v = v(w)
u = u(v), d′ = d′(u), c = c(u → d′), b′ = b′(c), a′ = a(c → b′).

Reducing Red0: S1 = S0 −Red0 {w := ((z → b) → d)} {a := a′{w := ((z → b) → d)}}

S1 : ((z → b) → d),
Red1

v 7→d′oo v,u 7→b′oo ((c → b′) → a′) ((u → d) → c)

where b = b(z), d = d(z → b), v = v((z → b) → d)
u = u(v), d′ = d′(u), c = c(u → d′), b′ = b′(c), a′ = a(c → b′).

Reducing Red1: S2 = S1 −Red1 {v := (z → b)} {d := d′{v := (z → b)}}.

S2 : e,
y 7→(b)oo (z → b)

Red2

u 7→b′oo ((c → b′) → a′) ((u → d) → c) (ii)

where b = b(z), u = u((z → b)), d′ = d′(u), c = c(u → d′), b′ = b′(c), a′ = a(c → b′).

Reducing Red2: S3 = S2 −Red2 {u := z} {b := b′{u := z}}.

S3 : ((c → b′) → a′) ((u → d) → c) (iii)
where d′ = d′(z), c = c(z → d′), b′ = b′(c), a′ = a(c → b′).

∣∣∣

