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Preliminaries

Aim of these lectures is to provide a brief introduction to the notion of an almost split

sequence and its use in the representation theory of finite dimensional algebras. For a

comprehensive treatment we refer to [16].

We will only assume some basic knowledge in module theory and category theory. In

particular, we will use the following notions that can be found in any textbook on modules

or algebras, e.g. in [2], or [19]: free module, maximal submodule, simple module, module

of finite length, direct sum, direct summand, local ring, artinian ring, equivalence, duality,

tensor product.

Further background material is collected in the first chapter.

1 SOME HOMOLOGICAL ALGEBRA

Throughout this chapter, let R be a ring, and denote by R Mod the category of all left

R-modules.

1.1 Projective and injective modules

Definitions.

(1) A sequence of R-homomorphisms

. . .
fn−1−−→ Mn−1

fn−→ Mn
fn+1−−→ Mn+1 −→ . . .

is said to be exact in case Imfn = Kerfn+1 for each n.

(2) An exact sequence of the form 0 → A
f−→ B

g−→ C → 0 is called a short exact sequence.

(3) A split exact sequence is a short exact sequence 0 → A
f−→ B

g−→ C → 0 where g is a

split epimorphism, i.e. there is a homomorphism g′ : C → B such that the composition

g g′ = idC . This is equivalent to the condition that f is a split monomorphism, i.e. there

is a homomorphism f ′ : B → A such that the composition f ′ f = idA.

(4) Let S be a ring, and let F : R Mod → S Mod be a covariant functor. If for every short

exact sequence 0 → A
f−→ B

g−→ C → 0 the sequence 0 → F (A)
F (f)−−→ F (B)

F (g)−−→ F (C) is

exact, then F is said to be left exact. Similarly, if the sequence F (A)
F (f)−−→ F (B)

F (g)−−→
F (C) → 0 is exact, then F is said to be right exact.

If F is a contravariant functor, then it is left exact provided for every short exact sequence

0 → A
f−→ B

g−→ C → 0 the sequence 0 → F (C)
F (g)−−→ F (B)

F (f)−−→ F (A) is exact, and right

exactness of F is defined correspondingly.

(5) A functor that is both left and right exact is said to be exact. Note that the image of

any exact sequence under an exact functor is exact.

An example of left exact functors is given by the Hom-functors.
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Proposition 1.1.1. If RM is a module, then the covariant functor HomR(M,−) : R Mod →
ZMod and the contravariant functor HomR(−,M) : R Mod → ZMod are left exact.

We are now going to discuss the modules for which the Hom functor is even exact.

Definition. A module RP is said to be projective if the functor HomR(P,−) : R Mod →
ZMod is exact. Dually, a module RI is said to be injective if the functor HomR(−, I) :

R Mod → ZMod is exact.

Theorem 1.1.2. [2, 17.2] The following statements are equivalent for a module RP .

(1) P is projective

(2) P is isomorphic to a direct summand of a free left R-module.

(3) Every epimorphism g : M → P in R Mod is a split epimorphism.

We see that projective modules are closely related to free modules. In fact, they can also

be characterized as follows.

Lemma 1.1.3. [2, Exercise 17.11] A module RP is projective if and only if it has a dual

basis, that is, a pair ( (xi)i∈I , (ϕi)i∈I ) consisting of elements (xi)i∈I in P and homomor-

phisms (ϕi)i∈I in P ∗ = HomR(P, R) such that every element x ∈ P can be written as

x =
∑

i∈I ϕi(x) xi with ϕi(x) = 0 for almost all i ∈ I.

As a consequence, we obtain the following properties of the contravariant functor
∗ = Hom(−, R) : RMod −→ Mod R.

Proposition 1.1.4. Let P be a finitely generated projective left R-module. Then P ∗ is a

finitely generated projective right R-module, and P ∗∗ ∼= P . Moreover, for all M ∈ RMod

HomR(P,M) ∼= P ∗ ⊗R M

Proof : We only sketch the arguments. First of all, note that the evaluation map

c : P → P ∗∗ defined by c(x)(ϕ) = ϕ(x) on x ∈ P and ϕ ∈ P ∗ is a monomor-

phism. Further, if ( (xi)1≤i≤n, (ϕi)1≤i≤n ) is a dual basis of P , then it is easy to see

that ( (ϕi)1≤i≤n, (c(xi))1≤i≤n ) is a dual basis of P ∗. This shows that P ∗ is finitely gen-

erated projective. The isomorphism P ∗∗ ∼= P is proved by showing that the assignment

P ∗∗ 3 f 7→ ∑n
i=1 f(ϕi) xi ∈ P is inverse to c.

Finally, for the last statement, one verifies that the map α : HomR(P, M) → P ∗ ⊗R M ,

h 7→ ∑n
i=1 ϕi ⊗ h(xi), and the map β : P ∗ ⊗R M → HomR(P, M) given by

β(ϕ⊗m) : P → M, x 7→ ϕ(x) m, are well-defined and mutually inverse. 2
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1.2 Finitely presented modules

Let RM be a module. Of course, M is epimorphic image of a free module. Moreover,

M is finitely generated if and only if it is epimorphic image of a finitely generated free

module, that is, there is an exact sequence Rn → M → 0 for some n ∈ N. Finally, M is

said to be finitely presented if there is an exact sequence Rm → Rn → M → 0 for some

n,m ∈ N.

We will denote by Rmod the category of finitely presented modules.

1.3 Injective envelopes, projective covers

We have seen above that every module is epimorphic image of a projective module. Dually,

every module can be embedded in an injective module. Moreover, this embedding can be

chosen in a minimal way.

Definition. A homomorphism f : A → B is called left minimal if each t ∈ End B with

tf = f is an isomorphism. Right minimal homomorphisms are defined dually.

Theorem 1.3.1 (Eckmann-Schopf 1953 [2, 18.10]). For every module RM there exist

an injective module E(M) and a left minimal monomorphism e : M → E(M). The module

E(M) is uniquely determined up to isomorphism and is called the injective envelope of

M .

Remark 1.3.2. Dually, a right minimal epimorphism p : P (M) → M where P (M) is

projective is called a projective cover of M . In general, however, projective covers need

not exist. A ring R is said to be semiperfect if every finitely generated left R-module (or

equivalently, every finitely generated right R-module) has a projective cover. For example,

every finite dimensional algebra, or more generally, every Artin algebra, is semiperfect,

cf. Section 3.

Over a semiperfect ring, a finitely presented module M always has a minimal projective

presentation P1
p1−→ P0

p0−→ M → 0, i. e. an exact sequence where P0, P1 are finitely

generated projective, P0 is a projective cover of M , and P1 is a projective cover of Ker p0.

The original definition of injective envelope and projective cover uses the following notions.

Definition. Let RM be a module, and let U be a submodule of M .

(1) U is said to be an essential submodule in case for every submodule V of M the

condition U ∩ V = 0 implies V = 0.

(2) U is said to be an superfluous submodule in case for every submodule V of M the

condition U + V = M implies V = M .

Proposition 1.3.3. [33, 1.2.11 and 1.2.12] Let RM be a module.

(1) A monomomorphism f : M → I where I is injective is an injective envelope if and

only if Im f is an essential submodule of I.

(2) An epimomorphism g : P → M where P is projective is a projective cover if and only

if Ker g is a superfluous submodule of P .



4 1 SOME HOMOLOGICAL ALGEBRA

We will later need the following observation which is an immediate consequence of 1.3.3(1).

Remark 1.3.4. Let RS be a simple module and RI = E(S) its injective envelope.

(1) Every nonzero submodule RV of RI contains S.

(2) The endomorphism ring EndR I of RI is a local ring.

1.4 Cogenerators

Definition. A module RC is said to be a cogenerator of RMod if every left R-module M

can be embedded in a product of copies of C, that is, for every RM there are a set I and

a monomorphism M ↪→ CI .

Proposition 1.4.1. [2, 18.16] Assume that S1, . . . , Sn are representatives of the isomor-

phism classes of the simple left R-modules. Then C =
⊕n

i=1 E(Si) is an injective cogen-

erator of RMod. Moreover, C is a minimal cogenerator, that is, a left R-module RC ′ is a

cogenerator of RMod if and only if it has a direct summand isomorphic to C.

Cogenerators can be employed to detect monomorphisms. In particular, we have the

following property of injective cogenerators.

Remark 1.4.2. [2, 18.14] Let C be an injective cogenerator of RMod. Then a

sequence M ′ → M → M ′′ is exact if and only if the induced sequence

HomR(M ′′, C) → HomR(M,C) → HomR(M ′, C) is exact.

1.5 Radical and Socle

Essential and superfluous submodules are closely related to the following notions. Given

a module RM , the radical of M is defined as

Rad M =
⋂
{U | U is a maximal submodule of M}

and the socle of M is defined as

Soc M =
∑

{S | S is a simple submodule of M}

Proposition 1.5.1. [2, 9.13 and 9.7] Let RM be a module.

(1) Rad M =
∑{V | V is a superfluous submodule ofM}.

(2) Soc M =
⋂{U | U is an essential submodule ofM}.

The radical of the left module RR coincides with the radical of the right module RR, see

[2, 15.14], and is called the Jacobson radical of R. We denote it by J = J(R).

Remark 1.5.2. [2, 15.15] Let R be a local ring. Then J consists of all non-invertible

elements of R, and it is the unique maximal (left or right) ideal of R. Moreover, R/J is

the unique simple (left or right) R-module up to isomorphism, and E(R/J) is a minimal

injective cogenerator.
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1.6 Push-out and Pull-back

Proposition 1.6.1. [30, pp. 41] Consider a pair of homomorphisms in RMod

A −−f−→Byg

C

There is a module RL together with homomorphisms σ : C → L and τ : B → L such that

(i) the diagram

A −−f−→ Byg
yτ

C −−σ−→ L

commutes; and

(ii) given any other module RL′ together with homomorphisms σ′ : C → L′ and τ ′ : B → L′

making the diagram

A −−f−→ Byg
yτ ′

C −−σ′−→ L′

commute, there exists a unique homomorphism γ : L → L′ such that γσ = σ′ and γτ = τ ′.

The module L together with σ, τ is unique up to isomorphism and is called push-out of f

and g.

Proof : We just sketch the construction. The module L is defined as the quotient

L = B ⊕ C / { (f(a),−g(a)) | a ∈ A }, and the homomorphisms are given as

σ : C → L, c 7→ (0, c), and τ : B → L, b 7→ (b, 0). 2

Remark 1.6.2. If f is a monomorphism, also σ is a monomorphism, and Coker σ ∼=
Coker f .

Dually, one defines the pull-back of a pair of homomorphisms

Byf

C−−g−→ A

1.7 A short survey on Ext1

Aim of this section is to give a brief introduction to the functor Ext1, as needed in the

sequel. For a comprehensive treatment we refer to textbooks in homological algebra, e.g.

[30].
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Definition. Let A,B be two R-modules. We define a relation on short exact sequences

of the form E : 0 → B → M → A → 0 by setting

E1 : 0 → B → E1 → A → 0 ∼ E2 : 0 → B → E2 → A → 0

if there is f ∈ HomR(E1, E2) making the following diagram commute

E1 : 0 → B −−−→ E1 −−−→ A −−−→0
|| yf ||

E2 : 0 → B −−−→ E2 −−−→ A −−−→0

It is easy to see that ∼ is an equivalence relation, and we denote by Ext1
R(A,B) the set

of all equivalence classes.

Next, we want to define a group structure on Ext1
R(A,B). Let [E] be the equivalence class

of the short exact sequence E : 0 → B → E → A → 0. First of all, for β ∈ HomR(B, B′)
we can consider the short exact sequence β E given by the push-out diagram

E : 0 → B −−−→ E −−−→ A −−−→0yβ
y ||

β E : 0 → B′ −−−→ E′ −−−→ A −−−→0

In this way, we can define a map

Ext1
R(A, β) : Ext1

R(A, B) → Ext1
R(A,B′), [E] 7→ [β E]

For β1 ∈ HomR(B′, B′′) and β2 ∈ HomR(B, B′) one verifies

Ext1
R(A, β1) Ext1

R(A, β2) = Ext1
R(A, β1β2)

Dually, for α ∈ HomR(A′, A), we use the pull-back diagram

E α : 0 → B −−−→ E′ −−−→ A′ −−−→0
||

y yα

E : 0 → B −−−→ E −−−→ A −−−→0

to define a map

Ext1
R(α, B) : Ext1

R(A, B) → Ext1
R(A′, B), [E] 7→ [Eα]

Since

Ext1
R(α, B′) Ext1

R(A, β)[E] = Ext1
R(A′, β) Ext1

R(α, B)[E]

the composition of the maps above yields a map

Ext1
R(α, β) : Ext1

R(A,B) → Ext1
R(A′, B′)
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Now we are ready to define an addition on Ext1
R(A,B), called Baer sum. Given two

sequences E1 : 0 → B → E1 → A → 0 and E2 : 0 → B → E2 → A → 0, we consider the

direct sum E1⊕E2 : 0 → B⊕B → E1⊕E2 → A⊕A → 0 together with the diagonal map

∆A : A → A⊕A, a 7→ (a, a), and the summation map ∇B : B⊕B → B, (b1, b2) 7→ b1+b2.

We then set

[E1] + [E2] = Ext1
R(∆A,∇B)([E1 ⊕ E2]) ∈ Ext1

R(A,B)

In this way, Ext1
R(A,B) becomes an abelian group. Its zero element is the equivalence

class of all split exact sequences. The inverse element of the class [E] given by the sequence

E : 0 → B
f−→ E

g−→ A → 0 is the equivalence class of the sequence 0 → B
f−→ E

−g−→ A → 0.

Moreover, the maps Ext1
R(A, β), Ext1

R(α,B) are group homomorphisms, and we have a

covariant functor Ext1
R(A,−) : R Mod → ZMod and a contravariant functor Ext1

R(−, B) :

R Mod → ZMod.

The Ext1-functors “repair” the non-exactness of the Hom-functors as follows.

Lemma 1.7.1. Let E : 0 → B
β−→ B′ β′−→ B′′ → 0 be a short exact sequence, and let A be

an R-module. Then there is natural homomorphism δ = δ(A, E) such that the sequence

0 → HomR(A, B)
HomR(A,β)−−−−−−→ HomR(A,B′)

HomR(A,β′)−−−−−−−→ HomR(A,B′′) δ−−−→ Ext1
R(A,B)

Ext1R(A,β)−−−−−−→ Ext1R(A, B′)
Ext1R(A,β′)−−−−−−→ Ext1R(A,B′′) is exact. Here δ is defined by δ(f) = [E f ].

The dual statement for the contravariant functors Hom(−, B), Ext1
R(−, B) also holds true.

Note that, since every short exact sequence starting at an injective module is split exact,

we have Ext1
R(A, I) = 0 for all injective modules I and all modules A. As a consequence,

we obtain the following description of Ext1.

Proposition 1.7.2. Let A,B be left R-modules.

If 0 → B → I
π−→ C → 0 is a short exact sequence where I is injective, then

Ext1
R(A,B) ∼= Coker HomR(A, π)

Similarly, if 0 → K
ι−→ P → A → 0 is a short exact sequence where P is projective, then

Ext1
R(A,B) ∼= Coker HomR(ι, B)
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2 ALMOST SPLIT SEQUENCES

2.1 Almost split maps

Let R be a ring, and let M be the category R Mod or R mod.

Definition.

(1) A homomorphism g : B → C in M is called right almost split in M if

(a) g is not a split epimorphism, and

(b) if h : X → C is a morphism in M that is not a split epimorphism, then h factors

through g.

B
g // C

X
h

>>~~~~~~~

``

(2) g : B → C is called minimal right almost split in M if it is right minimal and right

almost split in M.

The definition of a (minimal) left almost split map is dual.

Remark 2.1.1. Let g : B → C be right almost split in M. Then End C is a local ring

and J(End C) = g ◦ HomR(C, B). If C is not projective, then g is an epimorphism.

Proposition 2.1.2. The following statements are equivalent for an exact sequence

0 → A
f−→ B

g−→ C → 0 in M.

(1) f is left almost split and g is right almost split in M.

(2) EndR C is local and f is left almost split in M.

(3) EndR A is local and g is right almost split in M.

(4) f is minimal left almost split in M.

(5) g is minimal right almost split in M.

Definition. An exact sequence 0 → A
f−→ B

g−→ C → 0 in M is called almost split

(Auslander-Reiten sequence) in M if it satisfies one of the equivalent conditions above.

Remark 2.1.3. [16, V.2, 1.16] Almost split sequences starting (or ending) at a given

module are uniquely determined up to isomorphism. More precisely, if 0 → A −→ B −→
C → 0 and 0 → A′ −→ B′ −→ C ′ → 0 are almost split sequences, then A ∼= A′ if and

only if C ∼= C ′ if and only if there are isomorphisms a, b, c making the following diagram

commute
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0 → A −−−→ B −−−→ C −−−→0ya
yb

yc

0 → A′ −−−→ B′ −−−→ C ′ −−−→0

We will now show the abundance of almost split sequences. We first need some prelimi-

naries.

2.2 The Auslander-Bridger transpose

We have seen in 1.1.4 that the functor ∗ = Hom(−, R) : RMod −→ Mod R induces a

duality between the full subcategories of finitely generated projective modules in R Mod

and ModR. The following construction from [13] can be viewed as a way to extend this

duality to all finitely presented modules.

We denote by RmodP the full subcategory of Rmod consisting of the modules without

non-zero projective summands.

From now on, we will assume that the ring R is semiperfect, cf. Remark 2.4.2.

Let M ∈ R modP and let P1
p1−→ P0

p0−→ M → 0 be a minimal projective presentation of M .

Applying the functor ∗ = HomR(−, R) on it, we obtain a minimal projective presentation

P ∗
0

p∗1−→ P ∗
1 → Coker p∗1 → 0 .

Set Tr M = Coker p∗1. Then Tr M ∈ mod RP . Moreover, the following hold true.

(1) The isomorphism class of Tr M does not depend on the choice of P1 → P0 → M → 0.

(2) There is a natural isomorphism Tr2(M) ∼= M .

Let us now consider a homomorphism f ∈ HomR(M, N) with M, N ∈ R mod. It induces

a commutative diagram

P1 −−p1−→ P0 −−p0−→ M −−−→0yf1

yf0

yf

Q1 −−q1−→ Q0 −−q0−→ N −−−→0

Applying ∗ = Hom(−, R), we can construct f̃ ∈ Hom(Tr N, Tr M) as follows:

P ∗0 −−p∗1−→ P ∗1 −−−→TrM −−−→0xf∗0
xf∗1

xf̃

Q∗
0 −−q∗1−→ Q∗1 −−−→TrN −−−→0

Note that this construction is not unique since f̃ depends on the choice of f0, f1. How-

ever, if we choose another factorization of f , say by maps g0 and g1, and conctruct g̃

correspondingly, then the difference f0 − g0 ∈ Ker q0 = Im q1 factors through Q1, and so

f̃ − g̃ factors through P ∗
1 , as illustrated below:
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P1

g1

»»

f1

²²

p1
// P0

g0

»»

f0

²²

p0
// M

f

²²

// 0

Q1 q1

// Q0 q0

// N // 0

⇒
P ∗

0

p∗1 // P ∗
1

// Tr M // 0

Q∗
0

f∗0

OO

q∗1
//

g∗0

XX

Q∗
1

f∗1

OO

//

g∗1

XX

Tr N

bbEEEEEEEEE
f̃

OO

//

g̃

YY

0

In other words, if we consider the subgroups

P (M,N) = {f ∈ Hom(M, N) | f factors through a projective module} ≤ HomR(M, N),

then f̃ is uniquely determined modulo P (Tr N, Tr M).

We set HomR(M,N) = HomR(M, N)/P (M,N), and let R mod be the category with the

same objects as R mod and morphisms HomR(M, N). It is called the stable category of

R mod modulo projectives. We obtain the following.

Proposition 2.2.1.

(1) There is a group isomorphism Hom(M, N) → Hom(Tr N, Tr M), f 7→ f̃ .

(2) EndR M is local if and only if End Tr MR is local.

(3) Tr induces a duality R mod → mod R.

As we will see in Section 5.1, over hereditary rings the transpose is isomorphic to the

functor Ext1
R(−, R). In general, we have the following result.

Lemma 2.2.2. Let E : 0 −→ X −→ Y −→ Z −→ 0 be a short exact sequence, and let

A ∈ RmodP . Then there is a natural homomorphism δ = δ(A, E) such that the sequence

0 → HomR(A,X) → HomR(A, Y ) −→ HomR(A,Z)
δ−→ Tr A ⊗R X → Tr A ⊗R Y →

Tr A⊗R Z → 0 is exact.

Proof : Let P1
p1−→ P0

p0−→ A → 0 be a minimal projective presentation of A. Since the Pi,

i = 0, 1, are finitely generated projective, we know from 1.1.4 that HomR(Pi,M) ∼= P ∗
i ⊗R

M for any M ∈ RMod. So the cokernel of Hom(p1,M) : HomR(P0,M) −→ HomR(P1,M)

is isomorphic to Tr A⊗R M . Hence we have a commutative diagram with exact rows

0 0 0y y y
0 → HomR (A,X) −−−→ HomR (A, Y ) −−−→ HomR (A,Z)y y y
0 → HomR (P0, X)−−−→HomR (P0, Y )−−−→HomR (P0, Z)→ 0y y y
0 → HomR (P1, X)−−−→HomR (P1, Y )−−−→HomR (P1, Z)→ 0y y y

Tr A⊗X −−−→ TrA⊗ Y −−−→ Tr A⊗ Z → 0y y y
0 0 0

and by the snake-lemma [30, 6.5] we obtain the claim. 2
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2.3 The local dual

Lemma 2.3.1. Let MR be a finitely presented right R-module with local endomorphism

ring. Let S = End MR and SV be an injective envelope of SS/J(S). Set

M+ = R HomS(M, V )

Then M+ is a left R-module with local endomorphism ring EndR M+ ∼= EndS V .

Proof : M+ is a left R-module with respect to r · f : M → V, m 7→ f(mr).

We have EndR M+ = HomR (R HomS(M, V ), R HomS(M,V )) ∼=
∼= HomS (MR ⊗ HomS(M, V ), SV ) ∼= HomS (HomS (HomR (M,M), SV ), SV ) ∼= EndS V

where the first isomorphism follows by Hom-⊗-adjointness, and the second holds true

because MR is finitely presented and SV is injective, see e.g. [20, 3.2.11]. Finally, EndS V

is local by 1.3.4. 2

In general, the local dual M+ of a finitely presented module M need not be finitely

presented.

Example 2.3.2. [31, p.1936] Take the upper triangular matrix ring R =

(
G GGF

0 F

)

where F ⊂ G is a field extension with dimGF < ∞ and dimF G = ∞. The ring R

is artinian hereditary, see [16, III,2.1]. Set e1 =

(
1 0

0 0

)
. Then P1 = e1 R is an

indecomposable projective right R-module with End P1
∼= G, and P+

1 = R HomG(P1, G)

is an indecomposable injective left R-module which is not finitely generated. Moreover,

using results of W. Zimmermann [34], one can show that there is no almost split sequence

in modR starting at P1.

2.4 Existence of almost split sequences

Theorem 2.4.1 (Auslander 1978). Let RC be a finitely presented non-projective module

with local endomorphism ring. Then there is an almost split sequence 0 → A → B →
C → 0 in R Mod, and A = (Tr C)+.

This result was first proven in [10]. We here present a proof from [34].

Proof : First of all, since End C local, also T = End Tr C is local by Proposition 2.2.1.

Let T U be an injective envelope of T T/J(T ), and RA = HomT (Tr C, T U) = (Tr C)+. Then

by Lemma 2.3.1 also S = EndR A ∼= End T U is local.

Let 0 → K
i−→ P

p−→ C → 0 be a projective cover. The strategy of the proof now consists
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in constructing a map a : K → A, such that the push-out

0 // K

a

²²

i // P

²²

p // C // 0

0 // A
f

// B g
// C // 0

yields an almost split sequence.

1. Step: Let us first establish the required properties of the map a.

If a ∈ HomR(K, A) satisfies

(i) a does not factor through i, but

(ii) the composition sa factors through i for any s ∈ J(S),

then the sequence 0 → A −→
f

B −→
g

C → 0 constructed as above is almost split in RMod.

In fact, f is not a split monomorphism by condition (i). Moreover, we claim that every

h : A −→ X which is not a split monomorphism factors through f . To this end, we

consider the push-out diagram

0 // A

h
²²

f // B

²²

g // C // 0

0 // X
f ′

// B′
g′

// C // 0

Now, if l ∈ HomR(X,A), then lh ∈ J(S), and lha factors through i by condition

(ii), so by the push-out property l factors through f ′. This shows that the sequence

0 → HomR(C, A) → HomR(B′, A)
(f ′,A)−−−→ HomR(X, A) → 0 is exact. Since T U is an

injective cogenerator, using 1.4.2 together with Hom-⊗-adjointness, we obtain that also

0 → Tr C ⊗R X → Tr C ⊗R B′ → Tr C ⊗R C → 0 is exact.

Then from the long exact sequence of Lemma 2.2.2

0 → HomR(C,X) → HomR(C,B′) −−−−−−−→
HomR(C,g′)

EndR C
δ−→ Tr C ⊗R X ↪→ Tr C ⊗R B′

we infer that HomR(C, g′) is an epimorphism, hence g′ a split epimorphism. But then the

bottom row in the second diagram above is split exact, and h factors through f .

2 Step: Existence of a.

In the long exact sequence of Lemma 2.2.2

0 → HomR(C, K) → HomR(C,P ) −−−−−−→
HomR(C,p)

EndR C
δ−→ Tr C ⊗R K

Tr C⊗i−−−−→ Tr C ⊗R P

we have Ker δ = Im HomR(C, p) = P (C,C). So, by Proposition 2.2.1 (1) we have an exact

sequence of T -modules

0 // T/P (Tr C, Tr C)

∼=
²²

// Tr C ⊗R K
Tr C⊗i// Tr C ⊗R P

EndR C/P (C,C)
δ

66lllllllllllll
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Now applying HomT (−, T U), and using Hom-⊗-adjointness together with the isomor-

phism S ∼= EndT U , we obtain an exact sequence of right S-modules

HomR(P, A)
HomR(i,A)−−−−−−→ HomR(K,A)

δ̃−→ HomT (T/P (Tr C, Tr C), T U) → 0

Note that T/P (Tr C, Tr C) 6= 0 as Tr C is not projective. Hence the left T -module

HomT (T/P (Tr C, Tr C), T U) is a non-zero submodule of HomT (T, U) ∼= T U , and by Re-

mark 1.3.4 it contains a simple module T M isomorphic to T T/J(T ). Let us choose a

generator γ of T M and let a ∈ HomR(K,A) be a preimage of γ under δ̃. Then a satisfies

condition (i) since δ̃(a) 6= 0. Moreover, using that SocT U · J(EndT U) = 0, it is not hard

to infer that a also satisfies (ii). 2

Remark 2.4.2. Let R be an arbitrary ring. Then the construction of Tr M depends on

the initial choice of the projective presentation P1
p1−→ P0

p0−→ M → 0. For details, we

refer to [10, pp.13]. In particular, if Tr1 M and Tr2 M are obtained by using different

projective presentations, then we can only say that there are projective modules P,Q

such that Tr1 M ⊕ P ∼= Tr2 M ⊕Q. This shows that 2.2.1 (2) is no longer valid.

For the proof of Theorem 2.4.1 one then proceeds as follows. Let RC be a finitely presented

non-projective module with local endomorphism ring. Fix a projective presentation of C,

construct Tr C, and set T = End Tr C. Since P (C,C) ⊂ J(EndR C), by 2.2.1 (1) there is a

surjective ring homomorphism T → EndR C/J(EndR C). So, EndR C/J(EndR C) can be

viewed as simple left T -module. Choose an injective envelope T U of T EndR C/J(EndR C)

and set RA = HomT (Tr C, T U). Then one checks as in 2.3.1 that S = EndR A ∼= End T U

is local. Moreover, by [10, I, 3.4] there is an isomorphism

HomT (HomR (C,C), T U) ∼= Ext1
R (C, A)

This isomorphism is used to construct the almost split sequence 0 → A → B → C → 0

in R Mod, see [10, I, 3.4 and II, 5.1].

Further existence results for almost split sequences over rings can be found in [8, 9, 34,

36, 37, 3, 31, 4, 24].

3 ARTIN ALGEBRAS

Definition. An Artin algebra is an algebra over a commutative artinian ring k which, in

addition, is a finitely generated k-module.

Throughout this chapter, we fix a commutative artinian ring k and an Artin algebra Λ

over k. We start out by collecting some well-known properties of Artin algebras.
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3.1 First properties of Artin Algebras

(1) Λ is an artinian ring.

(2) [16, I.1 and I.3.2] All finitely generated Λ-modules have finite length.

(3) Every finitely generated Λ-module M has an indecomposable decomposition M =
n⊕

i=1

Mi

with EndΛ Mi local for all 1 ≤ i ≤ n (Theorem of Krull-Schmidt).

(4) If M,N are finitely generated Λ-modules, then HomΛ(M, N) is a finitely generated

k-module via the multiplication

α · f : m 7→ αf(m) for α ∈ k, f ∈ HomΛ(M, N)

In particular, EndΛ N and (EndΛ N)op are again Artin k-algebras, and N is a Λ-

(EndΛ N)op-bimodule via the multiplication

n · s := s(n) for n ∈ N, s ∈ EndΛ N

Moreover, HomΛ(M, N) is an End N -End M -bimodule which has finite length on both

sides.

(5) [2, 15.16, 15.19, 27.6] The Jacobson radical J = J(Λ) is nilpotent, and Λ/J is semisim-

ple. In particular, Λ is semiperfect, and there are orthogonal idempotents e1, . . . , en ∈
Λ such that 1 =

n∑
i=1

ei, and eiΛei is a local ring for every 1 ≤ i ≤ n. Note that

ΛΛ =
n⊕

i=1

Λei and ΛΛ/J ∼=
n⊕

i=1

Λei/Jei are indecomposable decompositions.

(6) Λ is Morita equivalent to a basic Artin algebra, that is, to an Artin algebra S with the

property that SS is a direct sum of pairwise nonisomorphic projectives, or equivalently,

S/J(S) is a product of division rings, see [2, p. 309] or [16, II.2].

From now on, we will assume that Λ is basic. Then

Λe1, . . . , Λen

are representatives of the isomorphism classes of the indecomposable projectives in Λ Mod,

and

Λe1/Je1, . . . , Λen/Jen

are representatives of the isomorphism classes of the simples in Λ Mod. In order to describe

the indecomposable injectives, we have to introduce the following construction.
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3.2 The duality

Let kI be an injective envelope of k/J(k). Then kI is an injective cogenerator of Mod k.

Proposition 3.2.1. [16, II.3]

(1) kI is finitely generated.

(2) If kM is a finitely generated module, then Homk(M, I) is a finitely generated k-module

of the same length.

(3) If M ∈ Λmod, then Homk(M, I) is a finitely generated right Λ-module via the multi-

plication

f · r : m 7→ f(rm) for f ∈ Homk(M, I), r ∈ Λ

(4) The evaluation map c : M → Homk(Homk(M, I), I), given by c(m)(f) = f(m) is a

functorial isomorphism of Λ-modules.

Proof : We sketch the argument for (4): Of course, c is a monomorphism of k-modules,

and it is an isomorphism since the lengths of M and Homk(Homk(M, I), I) coincide by

(2). Further, c is easily seen to be Λ-linear. 2

So, the functor D : Λmod −→ mod Λ, M 7→ Homk(M, I) is a duality. We are now going

to see that

D(e1Λ), . . . , D(enΛ)

are representatives of the isomorphism classes of the indecomposable injectives in Λ Mod.

Lemma 3.2.2. Let 1 ≤ i ≤ n. Then

(1) D(Λei/Jei) ∼= eiΛ/eiJ .

(2) ΛD(eiΛ) is an injective envelope of Λei/Jei.

(3) ΛD(ΛΛ) is an injective envelope of ΛΛ/J and an injective cogenerator of ΛMod.

Proof : We only sketch the arguments and refer to [16, II.4] for more details.

(1) Note that D(Λei/Jei) · J = 0 because for f ∈ D(Λei/Jei), r ∈ J , x ∈ Λ, we have

(f · r)(xei) = f(r · xei) = f(rxei) = 0. Hence D(Λei/Jei) is a Λ/J-module, thus it

is semisimple. As End D(Λei/Jei) ∼= (End Λei/Jei)
op by means of the duality D, and

End Λei/Jei is local, we conclude that D(Λei/Jei) is simple. It remains to prove that

D(Λei/Jei) ∼= eiΛ/eiJ . For 0 6= ei ∈ Λei/Jei there exists α ∈ Homk(Λei/Jei, I) =

D(Λei/Jei) such that α(ei) 6= 0. Then 0 6= αei ∈ D(Λei/Jei)Λ since αei(ei) = α(eiei) =

α(ei). So, we can define a non-zero Λ-linear map f : eiΛ → D(Λei/Jei), eir 7→ αeir. Then

f must be a Λ-epimorphism with Ker f = eiJ , and the claim is proven.

(2) The onto map f : eiΛ ³ D(Λei/Jei) is a projective cover. Hence Λei/Jei
∼=

D2(Λei/Jei) ↪→ D(eiΛ) is an injective envelope.

(3) is an immediate consequence of (2) and 1.4.1. 2
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As a further consequence, we see that D and the local duality coincide for Artin algebras.

Corollary 3.2.3. Let M ∈ mod Λ be indecomposable. Then M+ ∼= D(M).

Proof : Since Λ is an Artin algebra, also the endomorphism ring S of MΛ is an Artin

algebra by 3.1 (4), thus D(SS) is an injective envelope of SS/J(S), see Lemma 3.2.2. So,

we choose SV = D(SS) and M+ = HomS(M, D(SS)) ∼= Homk(S ⊗S M, I) ∼= D(M). 2

3.3 The Auslander-Reiten translation

We now combine the transpose with the duality D.

Denote by ΛmodI the full subcategory of Λmod consisting of the modules without non-

zero injective summands. For M,N ∈ Λmod consider further the subgroup

I(M,N) = {f ∈ HomΛ(M,N) | f factors through an injective module} ≤ HomΛ(M, N),

set HomΛ(M, N) = HomΛ(M,N)/I(M, N), and let Λ mod be the category with the same

objects as Λ mod and morphisms HomΛ(M, N).

Proposition 3.3.1. (1) The duality D induces a duality Λ mod → mod Λ.

(2) The composition τ = D Tr: Λ mod → Λ mod is an equivalence with inverse

τ− = Tr D : Λ mod → Λ mod.

Example: Let Λ = kA3 be the path algebra of the quiver •
1
→ •

2
→ •

3
. We compute τ S2.

The indecomposable projectives are P1, P2 = JP1, P3 = S3 = JP2, and the indecompos-

able injectives are I1 = S1 = I2/S2, I2 = I3/S3, I3 = P1. We compute τS2. Applying the

functor ∗ on 0 → P3 → P2 → S2 → 0 we obtain 0 → e2Λ → e3Λ → Tr S2 → 0, and

applying D we get 0 → τS2 → I3 → I2 → 0, showing that τS2 = S3.

The functor τ is called Auslander-Reiten translation and plays a fundamental role in the

computation of almost split sequences. In fact, as a direct consequence of Theorem 2.4.1,

we obtain the following result.

Theorem 3.3.2 (Auslander-Reiten 1975). (1) For every finitely generated indecom-

posable non-projective module M there is an almost split sequence 0 → τM → B →
M → 0 in ΛMod with finitely generated modules.

(2) For every finitely generated indecomposable non-injective module M there is an almost

split sequence 0 → M → E → τ−M → 0 in ΛMod with finitely generated modules.

Proof : For (1), combine Theorem 2.4.1 with Lemma 3.2.3.

(2) By (1) there is an almost split sequence ending at D(M). Applying D on it, we obtain

an almost split sequence in Λmod with end-term D(τ D(M)) ∼= Tr D(M) = τ− M . It is
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even an almost split sequence in ΛMod. This follows for instance from [34, Proposition 3]

by using that M is pure-injective. In fact, all finitely generated Λ-modules are endofinite,

i. e. they have finite length over their endomorphism ring, see Property (4) in 3.1, and it

is well known that endofinite modules are pure-injective (even Σ-pure-injective). 2

The Theorem above was originally proved in [14] using the Auslander-Reiten formula that

we are going to discuss next. Another proof, using functorial arguments, is given in [11].

3.4 The Auslander-Reiten formula

Theorem 3.4.1 (Auslander-Reiten 1975). Let A,C be Λ-modules with A ∈ ΛmodP .

Then there are natural k-isomorphisms

(I) HomΛ (C, τ A) ∼= D Ext1
Λ (A,C)

(II) D HomΛ (A,C) ∼= Ext1
Λ (C, τ A)

These formulae were first proven in [14], see also [26]. A more general version of (II), valid

for arbitrary rings, is proven in [10, I, 3.4], cf. 2.4.2. We here sketch a proof from [23].

Following [16, IV.4], we associate to any short exact sequence E : 0 −→ X
ι−→ Y

π−→
Z −→ 0 and any module M the covariant defect E∗(M) and the contravariant defect

E∗(M) defined as the cokernels E∗(M) = Coker Hom(ι,M), and E∗(M) = Coker Hom(M, π).

Lemma 3.4.2. If E : 0 −→ X
i−→ Y −→ Z −→ 0 is an exact sequence and A ∈ ΛmodP ,

then there is a k-isomorphism E∗(τ A) ∼= D E∗(A).

Proof : By Lemma 2.2.2 we have an exact sequence 0 → E∗(A) → Tr A⊗X
Tr A⊗i−→ Tr A⊗Y

of abelian groups, and it is easy to check that it is also an exact sequence of k-modules.

Now applying the duality D and using Hom-⊗-adjointness, we obtain a commutative

diagram

D(Tr A⊗ Y ) //

adj. ∼=
²²

D(Tr A⊗X) //

adj. ∼=
²²

D E∗(A) //

∼=
²²

0

HomR(Y, τA)
Hom(i,τA)

// HomR(X, τA) // E∗(τA) // 0

inducing the desired isomorphism. 2

Proof of Theorem 3.4.1: (I) Take an injective envelope E : 0 → C
i−→ I → Z → 0

of C and use 1.7.2. Then E∗(A) ∼= Ext1
Λ(A, C) and E∗(τA) = Coker Hom(i, τ A) =

HomΛ(C, τ A) because I(C, τ A) = Im Hom(i, τ A). So Lemma 3.4.2 yields the claim.

(II) is proven dually.2
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3.5 The Auslander-Reiten quiver

We now use almost split maps to study the category Λmod. First of all, we have to take

care of the indecomposable projective and the indecomposable injective modules.

Proposition 3.5.1.

(1) If P indecomposable projective, then the embedding g : Rad P ↪→ P is minimal right

almost split in ΛMod.

(2) If I indecomposable injective, then the natural surjection f : I → I/ Soc I is minimal

left almost split in ΛMod.

Proof : (1) Note that Rad P = JP and P/JP is simple [16, I,3.5 and 4.4], so Rad P is

the unique maximal submodule of P . Thus, if h : X → P is not a split epimorphism,

then it is not an epimorphism and therefore Imh is contained in Rad P . Hence g is right

almost split. Moreover, g is right minimal since every t ∈ End Rad P with gt = g has to

be a monomorphism, hence an isomorphism.

(2) is proven with dual arguments. 2

Let now M ∈ Λmod be indecomposable. From 3.5.1 and 3.3.2 we know that there is a

map g : B −→ M with B ∈ Λmod which is minimal right almost split, and there is a map

f : M −→ N with N ∈ Λmod which is minimal left almost split. Consider decompositions

B =
n⊕

i=1

Bi and N =
m⊕

k=1

Nk

into indecomposable modules Bi and Nk. The maps

g|Bi and prNk
f

are characterized by the property of being irreducible in the following sense, see [16, V.5.3].

Definition. A homomorphism h : M → N between indecomposable modules M, N is

said to be irreducible if h is not an isomorphism, and in any commutative diagram

M

α
ÃÃA

AA
AA

AA
A

h // N

Z
β

>>~~~~~~~

either α is a split monomorphism or β is a split epimorphism.

In particular, if h is irreducible, then h 6= 0 is either a monomorphism or an epimorphism.

Irreducible morphisms can also be described in terms of the following notion, which is

treated in detail in [16, V.7].
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Definition. For two modules M,N ∈ Λmod, we define the radical of HomΛ(M, N) by

r(M,N) = { f ∈ HomΛ(M,N) | for each indecomposable module Z ∈ Λmod, every

composition of the form Z → M
f−→ N → Z is a non-isomorphism}

For n ∈ N set

rn(M, N) = {f ∈ HomΛ(M, N) | f = gh with h ∈ r(M, X), g ∈ rn−1(X, N), X ∈ Λmod}

Proposition 3.5.2. If M,N ∈ Λmod are indecomposable modules, then

(1) r(M, N) consists of the non-isomorphisms in HomΛ(M, N), so r(M, M) = J(EndΛ M).

(2) f ∈ HomΛ(M, N) is irreducible if and only if f ∈ r(M,N) \ r2(M, N).

Since the irreducible morphisms arise as components of minimal right almost split maps

and minimal left almost split maps, we obtain the following result.

Proposition 3.5.3. Let M,N be indecomposable modules with an irreducible map M →
N . Let g : B → N be a minimal right almost split map, and f : M → B′ a minimal left

almost split map. Then there are integers a, b > 0 and modules X,Y ∈ Λ mod such that

(1) B ∼= Ma ⊕X and M is not isomorphic to a direct summand of X,

(2) B′ ∼= N b ⊕ Y and N is not isomorphic to a direct summand of Y .

Moreover,

a = dim r(M,N)/r2(M, N)End M/J(End M)

b = dimEnd N/J(End N) r(M, N)/r2(M,N)

Thus a = b provided that k is an algebraically closed field.

Proof : The End N -End M -bimodule structure on HomΛ(M, N) from 3.1 (4) induces an

End N/J(End N)-End M/J(End M)-bimodule structure on r(M,N)/r2(M, N). Now

End N/J(End N) and End M/J(End M) are skew fields. Consider the minimal right

almost split map g : B −→ N . If g1, . . . , ga : M → N are the different components of

g |Ma , then g1, . . . , ga is the desired End M/J(End M)-basis. Dual considerations yield an

End N/J(End N)-basis of r(M,N)/r2(M, N). For details, we refer to [16, VII.1].

Finally, since End N/J(End N) and End M/J(End M) are finite dimensional skew field

extensions of k, we conclude that a = b provided that k is an algebraically closed field.2

Definition. The Auslander-Reiten quiver (AR-quiver) Γ = Γ(Λ) of Λ is constructed as

follows. The set of vertices Γ0 consists of the isomorphism classes [M ] of finitely generated

indecomposable Λ-modules. The set of arrows Γ1 is given by the following rule: set an

arrow

[M ]
(a,b)−−→ [N ]
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if there is an irreducible map M → N with (a, b) as above in Proposition 3.5.3.

Observe that Γ is a locally finite quiver (i.e. there exist only finitely many arrows starting

or ending at each vertex) with the simple projectives as sources and the simple injectives

as sinks. Moreover, if k is an algebraically closed field, we can drop the valuation by

drawing multiple arrows.

Proposition 3.5.4. Consider an arrow from Γ

[M ]
(a,b)−−→ [N ]

(1) Translation of arrows:

If M,N are indecomposable non-projective modules, then in Γ there is also an arrow

[τM ]
(a,b)−−→ [τN ]

(2) Meshes:

If N is an indecomposable non-projective module, then in Γ there is also an arrow

[τN ]
(b,a)−−→ [M ]

Proof : (1) can be proven by exploiting the properties of the equivalence

τ = D Tr: Λ mod → Λ mod from 3.3.1. In fact, the following is shown in [15, 2.2]:

If N is an indecomposable non-projective module with a minimal right almost split map

g : B −→ N , and B = P ⊕ B′ where P is projective and B′ ∈ ΛmodP has non non-zero

projective summand, then there are an injective module I ∈ Λmod and a minimal right

almost split map g′ : I ⊕ τB′ −→ τN such that τ(g) = g′. Now the claim follows easily.

(2) From the almost split sequence 0 −→ τN −→ Ma ⊕X −→ N −→ 0 we immediately

infer that there is an arrow [τN ]
(b′,a)−−−→ [M ] in Γ. So we only have to check b′ = b. We

know from 3.5.3 that b′ = dim r(τN, M)/r2(τN, M)End τN/J(End τN). Now, the equivalence

τ = D Tr: Λ mod → Λ mod from 3.3.1 defines an isomorphism EndΛN ∼= EndΛτN , which

in turn induces an isomorphism End N/J(End N) ∼= End τN/J(End τN). Moreover, us-

ing 3.5.3 and denoting by ` the length of a module over the ring k, it is not difficult to

verify that b′·`(End τN/J(End τN)) = a·`(End M/J(End M)) = `(r(M, N)/r2(M,N)) =

b · `(End N/J(End N)), which implies b′ = b. 2

Example: Let Λ = KA3 be the path algebra of the quiver •
1
→ •

2
→ •

3
.

Λ is a serial algebra. The module I3
∼= P1 has the composition series P1 ⊃ P2 ⊃ P3 ⊃ 0.

Furthermore, I3/ Soc I3
∼= I2, and I2/ Soc I2

∼= I1. So, there are only three almost split

sequences, namely 0 → P3 → P2 → S2 → 0, and 0 → P2 → S2 ⊕ P1 → I2 → 0, and
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0 → S2 → I2 → I1 → 0. Hence Γ(Λ) has the form

P1
∼= I3

''NNNNNNNNNNNN

P2

77pppppppppppp

''NNNNNNNNNNNNN . . . . . . . . . I2

$$IIIIIIIIIII

P3

::uuuuuuuuuu
. . . . . . . . . S2

77pppppppppppppp . . . . . . . . . I1

4 ARTIN ALGEBRAS OF FINITE REPRESENTATION TYPE

Definition. An Artin algebra Λ is said to be of finite representation type if there are only

finitely many isomorphism classes of finitely generated indecomposable left Λ-modules.

This is equivalent to the fact that there are only finitely many isomorphism classes of

finitely generated indecomposable right Λ-modules.

Artin algebras of finite representation type are completely described by their AR-quiver.

Theorem 4.0.5 (Auslander 1974, Ringel-Tachikawa 1973). Let Λ be an Artin alge-

bra of finite representation type. Then every module is a direct sum of finitely generated

indecomposable modules. Moreover, every non-zero non-isomorphism f : X → Y between

indecomposable modules X, Y is a sum of compositions of irreducible maps between inde-

composable modules.

Proof: The first statement was proven independently in [6] and [32, 29]. Let us briefly

explain a further proof due to W. Zimmermann which uses the notion of a pure-exact

sequence, for details see [22, Theorem 14]. We take a complete irredundant set M1, . . . , Mn

of finitely generated indecomposable left modules and consider M =
⊕n

i=1 Mi. It is enough

to show that every left module A is isomorphic to a direct summand of a direct sum of

copies of M . First of all, A is a direct limit of finitely presented modules. Thus there are

a set I and a pure-exact sequence

(∗) 0 → K → M (I) → A → 0

Since M is finitely presented, applying Hom(M,−) we obtain an exact sequence

(∗∗) 0 → Hom(M,K) → Hom(M,M (I)) → Hom(M, A) → 0

of left modules over S = (End M)op. Moreover, (∗∗) is even pure-exact, as we can easily

verify by using Hom-⊗-adjointness. Note that the middle-term of (∗∗) is isomorphic to

S(I), and the ring S is perfect. It follows that (∗∗) splits. But then also the sequence

0 → M ⊗S Hom(M,K) → M ⊗S Hom(M, M (I)) → M ⊗S Hom(M, A) → 0
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splits. Now remember that M is a generator of ΛMod, which implies M⊗S Hom(M, X) ∼=
X for any left module X. So, we conclude that our original sequence (∗) splits, and A

has the required property.

We now sketch the proof of the second statement, and refer to [16, V.7] for details.

Take a non-zero non-isomorphism f : X → Y between indecomposable modules X, Y . If

g : B → Y is minimal right almost split, and B =
⊕n

i=1 Bi with indecomposable modules

Bi, then we can factor f as follows:

Bi
Â Ä // B g

// Y

X

h

OO

hi

``

f

??~~~~~~~~
f = gh =

n∑
i=1

g|Bi
◦ hi with irreducible maps g|Bi

.

Moreover, if hi is not an isomorphism, we can repeat the argument. But this procedure

will stop eventually, because we know from the assumption that there is a bound on the

length of nonzero compositions of non-isomorphisms between indecomposable modules

(e. g. by the Lemma of Harada and Sai, see [16, VI.1.3]). So after a finite number of steps

we see that f has the desired shape. 2

Remark 4.0.6. (1) In [7], Auslander also proved the converse of the first statement in

Theorem 4.0.5. Combining this with a result of Zimmermann-Huisgen [35], we obtain

that an Artin algebra is of finite representation type if and only if every left module is

a direct sum of indecomposable left modules. The question whether the same holds true

for any left artinian ring is known as the Pure-Semisimple Conjecture. We refer e. g. to

[22] for a discussion of this problem.

(2) A proof for the converse of the second statement in Theorem 4.0.5 has been announced

by Alvares-Coelho [1].

5 HEREDITARY ARTIN ALGEBRAS

As we have seen in the last section, the information on the indecomposable finite length

modules is encoded in the AR-quiver. We now describe its shape in the hereditary case

(thus in particular for path algebras).

5.1 Hereditary rings

We briefly recall the notion of a hereditary ring. For a more detailed treatment, we refer

to [30, p. 120], or [19, 3.7].

Definition. A ring R is left hereditary if it satisfies one of the following equivalent

conditions:
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(a) Every left ideal of R is projective.

(b) Every submodule of a projective left R-module is projective.

(c) Every factor module of an injective left R-module is injective.

A ring which is left and right hereditary is called hereditary.

Example: Let Q be a finite quiver without oriented cycles, and let Λ = kQ be the path

algebra of Q over a field k. Let Q0 be the set of vertices of Q.

(1) The Jacobson radical J = J(Λ) is the ideal of Λ generated by all arrows.

(2) The empty paths ei = (i‖i), i ∈ Q0, are orthogonal idempotents as in 3.1(5).

(3) For each vertex i ∈ Q0, the paths starting in i form a k-basis of Λei.

(4) Let i ∈ Q0 be a vertex, and denote by α1, . . . , αt the arrows i • αk−→ • jk of Q which

start in i. Then Jei =
t⊕

k=1

Λejk
αk. Hence Jei

∼=
t⊕

k=1

Λejk
is projective for each i ∈ Q0.

In particular, Λ is hereditary.

Proposition 5.1.1. Let Λ be a hereditary Artin algebra.

(1) Let ΛM be an indecomposable Λ-module. Then every non-zero map f ∈ HomΛ(M, P )

with ΛP projective is a monomorphism.

(2) If P is an indecomposable projective Λ-module, then EndΛ P is a skew field.

(3) If M ∈ ΛmodP , then HomΛ(M,P ) = 0 for all projective modules ΛP .

(4) Tr induces a duality ΛmodP → mod ΛP which is isomorphic to the functor Ext1
Λ(−, Λ),

and there is an equivalence τ : ΛmodP −→ ΛmodI with inverse τ−.

Proof : We sketch the argument for (4). By (3) we have P (M,N) = 0 for all M, N ∈
ΛmodP , and similarly, I(M,N) = 0 for all M,N ∈ ΛmodI . Moreover, if M ∈ ΛmodP ,

then a minimal projective presentation 0 → P1 → P0 → M → 0 yields a long exact

sequence 0 → M∗ → P ∗
0 → P ∗

1 → Ext1
Λ(M, Λ) → 0 where M∗ = 0, so Ext1

Λ(M, Λ) ∼=
Tr M . 2

The Auslander-Reiten formulae now read as follows.

Corollary 5.1.2. Let Λ be a hereditary Artin algebra. Let A ∈ ΛmodP and C ∈ ΛMod.

(I) HomΛ (C, τ A) ∼= D Ext1
Λ (A,C)

(II) D HomΛ (A,C) ∼= Ext1
Λ (C, τ A)
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5.2 Preprojective, preinjective and regular components

Throughout this section, Λ denotes a (basic) hereditary finite dimensional algebra over

an algebraically closed field k with AR-translation τ = D Tr, and AR-quiver Γ. Then Λ

is isomorphic to the path algebra of a quiver Q without oriented cycles. We will assume

that Q is a connected quiver, that is, Λ is indecomposable (this is a harmless assumption,

cf.[16, II.5]). Then all indecomposable projective modules lie in the same component of

Γ, and dually, the same holds true for the indecomposable injectives.

Definition. The component p of Γ containing all projective indecomposable modules

is called the preprojective component. The component q of Γ containing all injective

indecomposable modules is called the preinjective component. The remaining components

of Γ are called regular.

Recall that the preprojective and preinjective components are obtained from Q by apply-

ing the Knitting Procedure discussed in [17]. This can be formalized by employing the

following notion.

Definition. Let Q be a locally finite quiver without loops. For two vertices i, j ∈ Q0, let

dji be the number of arrows i → j.

(1) We construct a quiver ZQ as follows:

The set of vertices is Z×Q0.

The set arrows is given by the following rule: if n ∈ Z and i, j ∈ Q0 with dji 6= 0,

then we put dji arrows

......... (n− 1, j)

%%KKKKKKKKK
(n, j)

%%KKKKKKKKK
(n + 1, j) .........

(n, i)

;;wwwwwwwww
(n + 1, i)

88qqqqqqqqqqq

(2) We denote by NQ, respectively −NQ, the full subquivers of ZQ with vertices

{0, 1, 2, . . . } ×Q0, respectively {0,−1,−2, . . . } ×Q0.

(3) Finally, we denote by Qop the quiver obtained from Q by reverting the arrows.

Such infinite quivers are called translation quivers. For a more precise treatment, we refer

to [16, VII.4].

Example: Consider the quiver A3 •
1
→ •

2
→ •

3
and compute ZAop

3 .

(−1, 1)

##HH
HH

HH
HH

H (0, 1)

##FFFFFFFF (1, 1)

##FFFFFFFF (2, 1) . . .

(−1, 2)

$$IIIIIIIII

::uuuuuuuuu
(0, 2)

##FFFFFFFF

;;xxxxxxxx
(1, 2)

##FFFFFFFF

;;xxxxxxxx
(2, 2)

::uuuuuuuuu

. . . (−1, 3)

99ssssssssss
(0, 3)

;;vvvvvvvvv
(1, 3)

;;xxxxxxxx
(2, 3)

;;xxxxxxxx
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We see that ZAop
3 contains the AR-quiver Γ(kA3) of the path algebra of A3 as a subquiver,

cf. the Example in 3.5.

The following result was proved in [21].

Theorem 5.2.1 (Gabriel-Riedtmann 1979). Let Λ and Q be as above.

(1) If Q is a Dynkin quiver, then Γ = p = q is a full finite subquiver of NQop.

(2) If Q is not a Dynkin quiver, then p = NQop, and q = −NQop, and the modules in p

and q are uniquely determined by their dimension vectors. Moreover p ∩ q = ∅, and

p ∪ q $ Γ.

So, regular components only occur when Λ is of infinite representation type. They have

a rather simple shape, as we are going to see next.

Lemma 5.2.2. Let C be a regular component of Γ. Let further M, N be modules in C,
and let f : τN → M and g : M → N be irreducible maps. Then g is a monomor-

phism (respectively, an epimorphism) if and only if f is an epimorphism (respectively, a

monomorphism).

Proof : If f and g were both monomorphisms, then by 5.1.1(4) also τnf and τng would be

proper monomorphisms for each n ∈ N. But then we would obtain an infinite descending

chain of proper monomorphisms

· · · τ 2N
τf
↪→ τM

τg
↪→ τN

f
↪→ M

g
↪→ N

contradicting the fact that N has finite length. 2

The following was shown independently in [12] and [27].

Theorem 5.2.3 (Auslander-Bautista-Platzeck-Reiten-Smalø; Ringel 1979). Let

Λ be of infinite representation type. Let C be a regular component of Γ. For each [M ] in

C there are at most two arrows ending in [M ].

More precisely, if g : B −→ M is a minimal right almost split map with M ∈ C, and

if we denote by α(M) the number of summands in an indecomposable decomposition

B = B1 ⊕ . . .⊕Bα(M), then it was proven that α(M) ≤ 2.

For a proof, we refer to [16, VIII.4]. Here we only explain the

Construction of a regular component C: Let us start with a module C0 ∈ C of

minimal length. Such a module is called quasi-simple (or simple regular).

Note that α(C0) = 1. Otherwise there is an almost split sequence of the form 0 →
τC0

(f1,f2)t

−→ X1 ⊕X2
(g1,g2)−→ C0 → 0 with non-zero modules X1, X2 of length l(Xi) ≥ l(C0),

and g1, g2 must be epimorphisms. On the other hand, if g1 is an epimorphism, then
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so is f2, see [16, I, 5.7]. But then it follows from 5.2.2 that g2 is a monomorphism, a

contradiction.

Now α(C0) = 1 implies that in Γ there is a unique arrow [X] −→ [C0] ending in C0,

and therefore by 3.5.4, also a unique arrow starting in [C0]. So we have an almost split

sequence 0 −→ C0
f0−→ C1

g0−→ τ−C0 −→ 0 with C1 being indecomposable. Moreover,

we have an almost split sequence 0 −→ τC1 −→ C0 ⊕ Y
(f0, h)−→ C1 −→ 0 where Y 6= 0

because f0 is an irreducible monomorphism. Hence α(C1) = 2 and Y is indecomposable.

Furthermore, one checks that h must be an irreducible epimorphism.

Setting C2 = τ−Y and g1 = τ−h, we obtain an almost split sequence 0 −→ C1
(f1, g0)t

−→
C2⊕ τ−C0

(g1, τ−f0)−→ τ−C1 −→ 0 where g0, g1 are irreducible epimorphisms and f1, τ
−f0 are

irreducible monomorphisms.

Proceeding in this manner, we obtain a chain of irreducible monomorphisms C0 ↪→ C1 ↪→
C2 . . . with almost split sequences 0 −→ Ci −→ Ci+1 ⊕ τ−Ci−1 −→ τ−Ci −→ 0 for all i.

The component C thus has the shape

...

...

...

...

...

...

Y = τC2

h $$IIIIIII
III C2

g1 ##HHHHHHHHH τ−C2

. . . τC1

$$JJJJJJJJJJ

::tttttttttt
C1

g0 ""EE
EE

EE
EE

f1

<<yyyyyyyy
τ−C1

;;vvvvvvvvv
. . .

. . . τC0

<<yyyyyyyy
C0

f0

::uuuuuuuuuu
τ−C0

τ−f0

;;vvvvvvvvv
. . .

and every module in C has the form τ rCi for some i and some r ∈ Z.

Observe that if τ rCi
∼= Ci for some i and r, then τ rC ∼= C for all C in C.

Corollary 5.2.4. Let A∞ be the infinite quiver • → • → • → • · · ·
Then C has either the form ZA∞ or it has the form ZA∞/〈τn〉 where

n = min{r ∈ N | τ rC ∼= C for some C ∈ C}.

Definition. We call ZA∞/〈τn〉 a (stable) tube, and we call it homogeneous if n = 1.

Stable tubes do not occur in the wild case. In the tame case, the regular components

form a family of tubes t =
⋃

tλ indexed over the projective line P1k, and all but at most

three tλ are homogeneous, see [28, 3.6] and [27, 2.4].

Let us illustrate the considerations above by an example.
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5.3 The Kronecker Algebra

Consider the quiver

Q = Ã1 :
1• −→−→

2•

A finite dimensional representation of Q is given as

V1

fα−→−→
fβ

V2

where V1, V2 are finite dimensional k-vectorspaces and fα, fβ : V1 → V2 are k-linear.

In other words, every finite dimensional representation of Q corresponds to a pair of matri-

ces (A,B) with A,B ∈ kn×m and n,m ∈ N0. Moreover, it is easy to see that isomorphism

of two representations, in terms of matrix pairs (A,B) and (A′, B′) corresponds to the ex-

istence of two invertible matrices X ∈ GLn(K) and Y ∈ GLm(K) such that A′ = XAY −1

and B′ = XBY −1. So, the classification of the finite dimensional representations of Q

translates into the classification problem of matrix pencils considered by Kronoceker in

[25]. For this reason Λ = kQ is called the Kronecker algebra.

Let us now collect some information on Λ. For unexplained terminology, we refer to

[17, 18].

The Cartan Matrix. We have two indecomposable projectives Λe1 and Λe2 with di-

mension vectors
p1 = dimΛe1 = (1, 2)

p2 = dimΛe2 = (0, 1)

Hence the Cartan matrix is

C =

(
p1

p2

)
=

(
1 2

0 1

)

with inverse

C−1 =

(
1 −2

0 1

)

The Coxeter transformation. The map

c : Zn → Zn , x 7→ −x C−1 Ct

is called Coxeter transformation. We have

c(x) = − x C−1 Ct = x

(
3 2

−2 −1

)

Setting v = (1, 1), we can write

c(x) = x

((
1 0

0 1

)
+ 2

(
1 1

−1 −1

))
= x + 2(x1 − x2)v
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and since c(v) = v, we have

cmx = x + 2m(x1 − x2)v for each m.

Note that c can be used to compute τ .

Proposition 5.3.1. [16, VIII,2.2]

(1) If A ∈ Λmod is indecomposable non-projective, then c(dimA) = dim τA.

(2) An indecomposable module A ∈ Λmod is projective if and only if c(dimA) is negative.

The AR-quiver. We are now ready to compute Γ:

s s s
s s

¡¡µ¡¡µ¡¡µ¡¡µ @@R@@R @@R@@R . . . s s s
s s

¡¡µ¡¡µ¡¡µ¡¡µ @@R@@R @@R@@R. . .¨
§

¥
¦

...
...

¨
§

¥
¦

...
...

¨
§

¥
¦

...
...

. . . . . .

p t q

For the shape of p and q we refer to Theorem 5.2.1. Let us compute the dimension vectors.

For example, from the first two arrows on the left we deduce that there is an almost split

sequence 0 −→ P2 −→ P1 ⊕ P1 −→ C −→ 0 and dimC = (1, 2) + (1, 2) − (0, 1) = (2, 3).

In this way we observe the following.

Dimension vectors.

p consists of the modules X with dimX = (m,m + 1).

q consists of the modules X with dimX = (m + 1,m).

The modules in t are precisely the modules X with dimX = (m,m).

Let us check the last statement. Let X ∈ t and dimX = (l, m). If l < m, then

cm(dimX) = (l,m) + 2m(l −m, l −m)

is negative. By 5.3.1 we have cm(dimX) = c(dimτm−1X), thus τm−1X is projective, and

X ∈ p. Dually, l > m implies X ∈ q. Hence we conclude l = m.

We now explain the shape of t.
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The regular components. First of all, the quasi-simple modules, that is, the in-

decomposable regular modules of minimal length, are precisely the modules X with

dimX = v = (1, 1). A complete irredundant set of quasi-simples is then given by

Vλ : K
1−→−→
λ

K, λ ∈ K, and V∞ : K
0−→−→
1

K

Note that each Vλ is sincere with composition factors S1, S2.

Furthermore, applying Hom(−, Vµ) on the projective resolution 0 → Λe2 → Λe1 → Vλ →
0 we see that Vλ, Vν are “perpendicular”:

dimk HomΛ(Vλ, Vµ) = dimk Ext1
Λ(Vλ, Vµ) =

{
1 µ = λ

0 else

Next, we check that each Vλ defines a homogeneous tube tλ.

In fact, τVλ
∼= Vλ for all λ ∈ K ∪ {∞}:

dimτVλ = c(dimVλ) = (1, 1)

(
3 2

−2 −1

)
= (1, 1) ,

hence τVλ
∼= Vµ with Ext1(Vλ, Vµ) 6= 0 , thus µ = λ .

So, for each λ ∈ K ∪ {∞} there is a chain of irreducible monomorphisms

Vλ = Vλ,1 ↪→ Vλ,2 ↪→ . . .

that gives rise to a homogeneous tube tλ
∼= ZA∞ \ 〈τ〉 consisting of modules Vλ,j with

τVλ,j
∼= Vλ,j, dimVλ,j = (j, j), and Vλ,j+1/Vλ,j

∼= Vλ.

Moreover, there are neither nonzero maps nor extensions between different tubes tλ.

Finally, let us indicate how to show that every indecomposable regular module X is

contained in some tube tλ. We already know that X has the form X : Km
α−→−→
β

Km.

Now, suppose that α is a isomorphism. Then, since k is algebraically closed, α−1β has

an eigenvalue λ, and, as explained in [16, VIII.7.3], it is possible to embed Vλ ⊂ X. This

proves that X belongs to tλ. Similarly, if Ker α 6= 0, it is possible to embed V∞ ⊂ X,

which proves that X belongs to t∞.

The tubular family t is separating, that is:

(a) Hom(q,p) = Hom(q, t) = Hom(t,p) = 0

(b) Any map from a module in p to a module in q factors through any tλ.

To verify (b), let us consider a homomorphism f : P → Q with P ∈ p, and Q ∈ q. The

argument is taken from [28, p.126].

Let λ ∈ K ∪{∞} be arbitrary, and let dimP = (l, l + 1) and dimQ = (m + 1,m). Choose

an integer j ≥ l + m + 1. We are going to show that f factors through Vλ,j.
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Note that Ext1
Λ(P, Vλ,j) = 0 by 5.1.2. We employ the bilinear form

B : Qn ×Qn → Q, (x, y) 7→ x C−1yt

in order to compute dimk HomΛ(P, Vλ,j) = dimk HomΛ(P, Vλ,j) − dimk Ext1
Λ(P, Vλ,j) =

B(dimP, dimVλ,j) = (l, l + 1) ( 1 −2
0 1 )

(
j
j

)
= j.

So, the k-spaces HomΛ(P, Vλ,j), j ≥ 0, form a strictly increasing chain. Hence there exists

a map g : P → Vλ,j such that Im g 6⊂ Vλ,j−1, and by length arguments we infer that Im g is

a proper submodule of Vλ,j. Thus Im g is not regular. Then it must contain a preprojective

summand P ′, and we deduce that g is a monomorphism. Consider the exact sequence

0 −→ P
g−→ Vλ,j −→ Q′ −→ 0

The module Q′ cannot have regular summands, so it is a direct sum of preinjective mod-

ules. We claim that even Q′ ∈ q. To see this, we use the Q-linear map

δ : Q2 → Q, x 7→ B(v, x) = x1 − x2

called the defect. Note that p consists of the indecomposable modules X with δ(dimX) =

−1, while q consists of the indecomposable modules X with δ(dimX) = 1, and t consists

of the indecomposable modules X with δ(dimX) = 0. So, by computing

δ(dimQ′) = δ(dimVλ,j)− δ(dimP ) = 1

we conclude that Q′ is indecomposable.

Furthermore, dimQ′ = (s + 1, s) with s = j − (l + 1) ≥ m, which proves Ext1
Λ(Q′, Q) = 0.

Thus we obtain a commutative diagram

0 // P

f ÁÁ>
>>

>>
>>

>
g // Vλ,j

~~

// Q′ // 0

Q

proving the statement.
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Università degli Studi dell’Insubria,
Via Mazzini 5, I - 21100 Varese, Italy
e-mail: lidia.angeleri@uninsubria.it


