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Introduction

Precovers and preenvelopes were introduced in the early eighties by Enochs

[48] and, independently, by Auslander and Smalø [16]. Enochs gave a general

definition in terms of commutative diagrams for modules over arbitrary rings,

whereas Auslander and Smalø, mainly concerned with the case of finitely gen-

erated modules over finite-dimensional algebras, stressed the functorial view-

point and coined the terminology of contravariantly and covariantly finiteness.

Both approaches turned out to be extremely fruitful for general module theory

as well as for representation theory.

The idea behind these concepts is to exploit interesting features of a special

class of modules X for the study of the whole module category. The link

between X and the other modules is given by some universal homomorphisms,

namely the precovers and the preenvelopes.

The work of Enochs and other authors provided a common frame for a

number of classical notions, such as injective envelopes or projective covers,

and on the other hand, it also raised many challenging problems that are still

object of current research. For instance, the well-known Flat Cover Conjecture,

asserting that each module admits a flat cover, remained open for almost

twenty years and was settled only very recently [22], [47].

Similarly, contravariantly and covariantly finite subcategories had a sig-

nificant impact on the representation theory of finite-dimensional algebras.

Auslander and Reiten pointed out in [15] that these concepts are intimately

related to the notion of a tilting module introduced by Brenner and Butler [25]

and Happel and Ringel [54]. This connection provided a better understanding

of some problems in tilting theory, and further, it led to notable progress on

quasi-hereditary algebras [80] and on the homological conjectures.

Let us focus for a moment on two applications of the theory of contravari-

antly and covariantly finite subcategories. The first concerns the homological
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conjectures. For a finite-dimensional algebra Λ the little finitistic dimension

findimΛ is defined as the supremum of the projective dimensions attained on

the category P<∞ of all finitely generated Λ-modules of finite projective di-

mension, while the big finitistic dimension FindimΛ is defined correspondingly

on the category of all Λ-modules of finite projective dimension. The Finitistic

Dimension Conjectures ask when these dimensions coincide (this is known to

fail in general), and moreover, whether the little finitistic dimension is always

finite. Now, it was shown by Auslander and Reiten [15] that findimΛ is finite

provided the category P<∞ is contravariantly finite. Indeed, it is enough to

consider the projective dimensions of the P<∞-covers of the (finitely many)

simple Λ-modules; the projective dimension of any other finitely generated Λ-

module will then be either infinite or bounded by the maximum of these num-

bers. Huisgen-Zimmermann and Smalø [60] later gave a direct limit argument

which allowed to extend this result to arbitrary Λ-modules, and so they could

prove that contravariantly finiteness of P<∞ also yields FindimΛ = findimΛ.

The second result is related to the concept of a partial tilting module.

A module M of finite projective dimension with ExtkΛ (M,M) = 0 for all

k > 0 is called a partial tilting module. The question whether M admits

a complement, that is, a module N turning M ⊕ N into a tilting module,

is of interest for tilting theory and also because of its relationship with the

homological conjectures, see [55]. While such complements always exist in

case the projective dimensions involved are at most one [24], the same does

not hold in general for higher projective dimensions. However, the situation

changes once we allow also infinite-dimensional tilting modules as studied in

[40] and [6]. Applying a general result on the existence of preenvelopes due to

Eklof and Trlifaj [46], we have recently proved in a joint work with Coelho [7]

that every finitely generated partial tilting module M over a finite-dimensional

algebra admits a (possibly infinite-dimensional) complement N . Here N is

obtained as a preenvelope of Λ with respect to a class of modules related to

M .

Both results show how precovers and preenvelopes can be employed. More-

over, they illustrate the interaction between finite-dimensional and infinite-

dimensional modules, between the representation-theoretical approach and

general module theory.

This interaction is also one of the main aspects of the present work. We

consider an arbitrary ring R and discuss the existence of precovers and preen-
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velopes with respect to certain classes X of (right) R-modules. Actually, the

only constrain on our classes X concerns their size. More precisely, we will

assume that there is a set of modules {Mi | i ∈ I} such that every module in

X is isomorphic to a direct summand of a coproduct of copies of the module

M =
∐

i∈IMi. Such classes are denoted by AddM . For example, the class of

all projective modules, but also the class of all pure-projective modules, can

be written in this way.

Our starting point is an easy observation. Namely, a finitely generated

module AR has an AddM -preenvelope A→ X if and only if the left EndRM-

module HomR (A,M) is finitely generated. This allows us to translate the

categorical notion of a preenvelope into an endoproperty of M , that is, into a

module-theoretical property of M over its endomorphism ring S = EndRM .

We will thus handle infinite categories X in terms of finiteness conditions

on a single module SM . On the other hand, we will investigate non-finitely

generated modules MR and even big products of copies of MR by studying the

category X given by the (perhaps finitely generated or indecomposable) direct

summands of MR.

One of the main endoproperties we will consider is coherence. We show for

example that SM being coherent entails the existence of AddM -preenvelopes

for all finitely presented rightR-modules. We also investigate some stronger co-

herence properties related to S-submodules of M of some special kind, namely

the matrix subgroups studied by Zimmermann [98]. By specializing to the

case M = R, we then rediscover some known features of coherent rings and

of the strongly coherent rings introduced by Zimmermann-Huisgen in [92].

With similar techniques, we further relate the existence of left almost split

morphisms in our category to noetherianness of SM .

Furthermore, we will deal with AddM -precovers. Every module CR has

an AddM -precover g : B → C. But is there even an AddM -cover? That

is, can we choose g in such a way that it also satisfies a minimality condition

ensuring that B is uniquely determined by C up to isomorphism? For the case

M = R, the answer is given by Bass’s work on perfect rings. We will see that

Bass’s results extend to the general situation. In fact, we prove that AddM -

covers exist for instance when AddM consists of modules with semiregular

endomorphism ring, or when the endomorphism ring of each Mi is local and

SM satisfies the descending chain condition on cyclic S-submodules. By using

some results on perfect functor categories due to Harada and Simson [56],
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[83], we then obtain that these perfectness conditions even characterize the

existence of AddM -covers in case that all Mi are finitely presented.

We then turn to AddM -envelopes, that is, AddM -preenvelopes satisfying

a dual minimality condition. It was shown by Krause and Saoŕın that AddM -

envelopes exist if and only if all products of copies of M have well-behaved

direct sum decompositions. We refine this relationship between preenvelopes

and direct summands of products by describing when an indecomposable direct

summand of a product of modules
∏

k∈K Xk is isomorphic to a direct summand

of one of the factors Xk, and we answer a question posed by Auslander in [13].

Furthermore, we see that closure of AddM under direct products can be char-

acterized by combining the coherence and perfectness properties mentioned

above. This extends a well-known theorem of Chase asserting that all prod-

ucts of projective modules are projective if and only if R is left coherent and

right perfect. As a consequence, we will also obtain some new characterizations

of endofinite modules.

So, the theory of precovers and preenvelopes allows to extend some classical

results on rings to arbitrary modules, and, at the same time, to put these old

results in a new context by stressing their representation-theoretic meaning.

Let us now describe the contents of the paper in more detail.

We begin in Chapter 1 by reviewing the notions of a (pre)cover and a

(pre)envelope together with some known results on their existence.

Chapter 2 is devoted to the existence of AddM -covers. We use Harada’s

concept of T -nilpotency to investigate some endoproperties of M which in the

case M = R correspond to perfectness. Further, we recall Simson’s charac-

terization of perfect functor categories and employ some results of Lenzing

to translate it into properties of AddM . An important role in this context

is played by Azumaya’s notion of a locally split epimorphism. In case that

all Mi are finitely presented, we then characterize the existence of AddM -

covers by a number of properties which can all be viewed as generalizations of

Σ-pure-injectivity.

In chapter 3, we deal with the existence of AddM -preenvelopes. A result of

Zimmermann [101] on matrix subgroups together with some properties of the

functor HomR ( ,M) : ModR → SMod will enable us to relate this problem

to some coherence properties of SM . We describe when all matrix subgroups,

respectively all finite matrix subgroups, of M are finitely generated over S.

Further, we discuss the case that SM is coherent or that even the finitely
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generated S-submodules of arbitrary products of copies of SM are finitely

presented (Theorem 3.17). In the case M = R, we obtain known results on

coherent rings due to several authors [48], [50], [92], [69], [27].

In chapter 4, we apply our previous results to the study of direct products

of modules. We describe the case that M is product-rigid, that is, that every

direct summand A of a product of copies of M with EndRA local is isomorphic

to some indecomposable direct summand of M itself. We see that every endo-

noetherian module is product-rigid, and every endocoherent module has the

corresponding property restricted to finitely presented A. We then discuss the

notion of a product-complete module introduced by Krause and Saoŕın [66]

and show that M is product-complete if and only if it has the perfectness and

coherence properties of chapters 2 and 3. As an application, we characterize

the pure-projective product-complete modules over an artin algebra.

In chapter 5, we study the existence of left and right almost split morphisms

in our category by investigating finiteness conditions on the radicals S r (A,M)

and r (M,C)S. Moreover, we deal with the question of when the property

product-rigid is inherited by direct summands. We show that this is equivalent

to the existence of certain maps closely related to left almost split maps and

answer a question posed by Auslander in [13]. We then combine our results

to characterize endofinite modules in terms of product-rigidity as well as in

terms of the existence of preenvelopes and left almost split maps.

We close the paper with chapter 6 devoted to applications and examples.

We first give some applications of our results on endocoherence to tilting the-

ory. Next, we address the question of the existence of ProdM -precovers and

answer it to the positive in case that M is Σ-pure-injective. Finally, we illus-

trate some of our results by considering the case that R is a finite-dimensional

hereditary algebra or a pure-semisimple ring.

I would like to thank Wolfgang Zimmermann for his constant interest and

his many valuable comments on my work. There are also several other persons

I would like to thank for stimulating discussions on this or related topics,

in particular Flávio Coelho, Riccardo Colpi, Henning Krause, Sverre Smalø,

Alberto Tonolo, and Jan Trlifaj. Moreover, I acknowledge a research grant

of the University of Munich inside the HSPIII-program. Finally, many many

thanks to my family! Without their great patience and their constant support

this work would not have been possible.



6 1 PRELIMINARIES

1 PRELIMINARIES

Let us start with some general notation which we will use throughout the

paper. We denote by R an arbitrary ring with the Jacobson radical J(R)

and write ModR and modR for the categories of all, respectively of the

finitely presented, right R-modules. Moreover, we fix for the whole paper a

skeletally small subcategory M of ModR, and let {Mi | i ∈ I} be a complete

irredundant set of representatives of the isomorphism classes of M. We put

M =
∐

i∈IMi with S = EndRM , and N =
∏

i∈IMi with T = EndRN .

We will say thatM is endonoetherian, or endofinite, if SM is noetherian,

or a module of finite length, respectively. Furthermore, we will consider a

special class of S-submodules of M , the matrix subgroups [98]. Recall that, if

YR is a module and U a subgroup of the abelian group Y , then U is said to

be a matrix subgroup of Y if there is a module AR and an element x ∈ A

such that U equals the set HA,x(Y )= {f(x) | f ∈ HomR (A, Y )}. Of course,

every matrix subgroup is a left submodule of Y over the endomorphism ring

EndR Y . Moreover, the functor Y 7→ HA,x(Y ) commutes with products and

coproducts. A matrix subgroup HA,x(Y ) is called finite matrix subgroup if

AR is finitely presented.

Finally, given a class of modules X , we denote by AddX (respectively,

addX ) the class consisting of all modules isomorphic to direct summands

of (finite) direct sums of modules of X . The class consisting of all modules

isomorphic to direct summands of products of modules of X is denoted by

ProdX . If X consists just of one module X , then we write AddX , respec-

tively addX , or ProdX .

By a subcategory we always mean a full subcategory.
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1.1 Precovers and preenvelopes

Let X ⊂ ModR and A,C be right R-modules. Following Enochs [48], we say

that a homomorphism a : A → X is an X -preenvelope if X ∈ X and the

abelian group homomorphism HomR(a,X ′) : HomR(X,X ′) → HomR(A,X ′)

is surjective for each X ′ ∈ X . Dually, a homomorphism b : Y → C is called an

X -precover if Y ∈ X and the abelian group homomorphism HomR(Y ′, b) :

HomR(Y ′, Y ) → HomR(Y ′, C) is surjective for each Y ′ ∈ X . In the represen-

tation theory of artin algebras, the usual terminology is left, respectively right,

X -approximation.

We will say that X is a preenvelope class, respectively a precover class, if

every right R-module has an X -preenvelope, respectively an X -precover.

Rada and Saoŕın have characterized precover and preenvelope classes in

[77]. According to [77], we will say that X is locally initially small if for

every module AR there is a set XA ⊂ X such that every map A → X where

X ∈ X factors through ProdXA. Dually, X is said to be locally finally small

if for every module CR there is a set XC ⊂ X such that every map Y → C

where Y ∈ X factors through AddX C . We have the following characterization

of preenvelope, respectively precover classes.

Theorem 1.1 (Rada-Saoŕın [77, 3.3 and 3.4]) Let X be a class in ModR.

(I) X is a preenvelope class if and only if it is locally initially small and every

product of modules in X is a direct summand of a module in X .

(II) X is a precover class if and only if it is locally finally small and every

coproduct of modules in X is a direct summand of a module in X .

With the above notations, we have the following consequence.

Corollary 1.2 (Rada-Saoŕın [77, 3.5, 2.9 and 3.6]) (1) ProdM is a preen-

velope class, AddM is a precover class.

(2) AddM is locally initially small. More precisely, every map A→ X where

X ∈ AddM factors through
∐

i∈IM
(Hi)
i where Hi = Hom(A,Mi). Thus

AddM is a preenvelope class if and only if it is closed under products.

Following Krause and Saoŕın [66], we will call M product-complete if

AddM is closed under products.

We turn to a further application of Theorem 1.1. Using a result of Kie lpiński

on purity, Rada and Saoŕın have shown that every class X in ModR which is
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closed under pure submodules is locally initially small [77, 2.8]. So, they have

obtained the following useful result.

Proposition 1.3 (Rada-Saoŕın [77, 3.5]) A class X in ModR which is

closed under pure submodules is a preenvelope class if and only if it is closed

under products.

For our skeletally small subcategoryM, the existence of addM-preenvelopes

and addM-precovers can be interpreted in terms of the functor category as

observed by Auslander and Smalø [16]. More precisely, a module A has an

addM-preenvelope if and only if the covariant functor HomR(A, ) |M from

M to the category Ab of all abelian groups is finitely generated. Similarly, C

has an addM-precover if and only if the contravariant functor HomR( , C) |M
is finitely generated. So, if Y ⊂ ModR is a subcategory containing M, then

M is said to be covariantly finite in Y if every A ∈ Y has an addM-

preenvelope, and M is contravariantly finite in Y if every C ∈ Y has an

addM-precover.

We now give a more elementary interpretation.

Proposition 1.4 (1) A module AR has an addM-preenvelope if and only if

the left T -module THomR (A,N) is generated by finitely many maps whose

images are contained in a finite subproduct
∏

i∈I0 Mi of N .

(2) A module CR has an addM-precover if and only if the right S-module

HomR (M,C)S is generated by finitely many maps whose kernels contain a

cofinite subcoproduct
∐

i∈I\I0 Mi of M .

Proof : (1) Let a : A → X be an addM-preenvelope. By the universal

property of products, every map f : A → N factors through a. Moreover,

there is a split monomorphism ι : X →
⊕n
k=1Xk for some X1, . . . , Xn ∈ M,

and for each 1 ≤ k ≤ n there is ik ∈ I such that Xk
∼= Mik , giving rise to a split

monomorphism αk : Xk → N . Then the maps ak : A
a
−→ X

ι
−→

⊕n
k=1Xk

prk−→

Xk
αk−→ N , 1 ≤ k ≤ n, form a generating set of HomR (A,N) over T with

the required property. Conversely, assume that ck : A → N, 1 ≤ k ≤ n, is a

generating set of HomR (A,N) over T and that there is a finite subset I0 ⊂ I

such that Im ck ⊂ X =
∏

i∈I0 Mi for all k. Then one can easily check that the

map c : A→ Xn induced by the ck is an addM-preenvelope of A.

(2) is proven dually. 2
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In case we are considering the single module MR, we immediately obtain

the following useful criterion.

Corollary 1.5 (1) AR has an addM -preenvelope if and only if the left

S-module SHomR (A,M) is finitely generated.

(2) CR has an addM -precover if and only if the right S-module HomR (M,C)S

is finitely generated. 2

Throughout the paper, we will freely use the fact that for a finitely gen-

erated module AR, every homomorphism A → X ∈ AddM factors through

addM. In particular, since we always have addM ⊂ addM ⊂ AddM,

we obtain that for a finitely generated module the existence of an addM -

preenvelope is equivalent to the existence of an addM-preenvelope, and also

to the existence of an AddM-preenvelope.

1.2 Covers and envelopes

So far, we have only reviewed the notions of a precover and a preenvelope. Let

us now add the following minimality conditions. A homomorphism a : A→ X

is said to be left minimal if every endomorphism h : X → X such that

h a = a is an isomorphism. Dually, a homomorphism b : Y → C is right min-

imal if every endomorphism h : Y → Y such that b h = b is an isomorphism.

Left minimal preenvelopes are called envelopes, and right minimal precovers

are called covers. Envelopes and covers are uniquely determined up to iso-

morphism [91, 1.2.1 and 1.2.6]. We will say that X ⊂ ModR is an envelope

class, respectively a cover class, if every right R-module has an X -envelope,

respectively an X -cover.

We say that a homomorphism b : Y → C has a right minimal version if

there is a decomposition Y = Y ′ ⊕K such that b(K) = 0 and the restriction

b′ = b|Y ′ : Y ′ → C of b on Y ′ is right minimal. Of course, if b is an X -precover

and Y ′ ∈ X , then b′ is an X -cover. Moreover, if b is an X -precover and C

admits an X -cover, then there exists an X -cover which is a right minimal

version of b, see [91, 1.2.7]. Left minimal versions are defined dually and

have the dual properties [91, 1.2.2].

When we are dealing with finite length modules, we can always find right or

left minimal versions by choosing suitable modules of minimal length [16, 1.2

and 1.4]. This is the situation usually considered in the representation theory

of artin algebras. In general, however, a module may have an X -precover (or
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an X -preenvelope) without having an X -cover (respectively, an X -envelope),

as in the case X = AddR with R non-perfect. The following result is a

useful criterion for the existence of left, respectively right, minimal versions.

It contains the finite length case and also a result of Krause and Saoŕın [66,

1.3], see [101]. We include a proof for the reader’s convenience, since we are

going to apply it in the sequel.

Theorem 1.6 (Zimmermann [101]) (I) Let f : A→ X be a homomorphism,

E = EndRX and ℓE(f) = {h ∈ E | h f = 0}. Then f has a left minimal

version provided that (i) there is a left ideal I in E such that ℓE(f) + I = E

and ℓE(f) ∩ I ⊂ J(E); and (ii) idempotents lift modulo J(E).

(II) Let g : Y → C be a homomorphism, E = EndR Y and rE(g) =

{h ∈ E | g h = 0}. Then g has a right minimal version provided that (i) there

is a right ideal I in E such that rE(g) + I = E and rE(g) ∩ I ⊂ J(E); and

(ii) idempotents lift modulo J(E).

Proof : We show statement (II), the proof of (I) is dual. Let us denote by x

the equivalence class in E/J(E) of an element x ∈ E. By condition (i) there

are a ∈ rE(g) and b ∈ I such that a, b are orthogonal idempotents in E/J(E)

with a + b = 1E .

Let us first prove that we can assume b idempotent in E. Indeed, by condition

(ii), we can find an idempotent b′ ∈ E with b′ = b. Then the element u =

1E − (b′ − b) is invertible in E, and, using that (u − b) b′ = 0, we obtain

that the idempotent b′′ = u b′ u−1 = b b′ u−1 is an element of I satisfying

b′′ = b′′ u = u b′ = b′ = b.

Next, we deduce from 1E − (a + b) ∈ J(E) that we can find an element

v ∈ E such that (a + b)v = 1E, hence av = 1E − bv. Then it is easy to

check that e = b + bv(1E − b) ∈ I is an idempotent with 1E − e ∈ rE(g) and

rE(g) ∩ eE ⊂ e J(E). This implies in particular that reEe(g) ⊂ e J(E) e.

Now it follows that every element h ∈ eEe with g h = g e satisfies e − h ∈

e J(E) e and thus is invertible in eEe. But then the restriction g′ = g|Y ′ of g on

the direct summand Y ′ = eY of Y is right minimal. Since g((1E− e)(Y )) = 0,

we conclude that g′ is a right minimal version of g. 2
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2 PERFECTNESS

As we have seen in Corollary 1.2, the category AddM is always a precover

class. When is it even a cover class? For the case M = {RR}, the answer is

given by Bass’s work on perfect rings. We are now going to discuss how Bass’s

results extend to the general case.

In section 2.1, we start by applying the criterion 1.6 for the existence of right

minimal versions and prove that AddM is a cover class if it consists of mod-

ules with semiregular endomorphism ring. Harada’s notion of T-nilpotency

will then enable us to relate this sufficient condition to the descending chain

condition for finitely generated S-submodules of M and also to the case where

the functor category ((addM)op, Ab) is perfect (Proposition 2.7). We recall

Simson’s characterization of perfect functor categories in section 2.2 and trans-

late it into properties of AddM in case that M consists of finitely presented

modules by applying some results of Lenzing. An important role in this con-

text is played by Azumaya’s notion of a locally split epimorphism, and more

precisely, by the category G(M) of all locally split epimorphic images of mod-

ules in AddM, which we introduce in section 2.3. Our main result (Theorem

2.13) finally characterizes the subcategoriesM⊂ modR providing for AddM-

covers in terms of the two endoproperties mentioned above as well as in terms

of closure properties under direct limits.

2.1 Semiregular endomorphism rings

A ring R is said to be semiregular if R/J(R) is von Neumann regular and

idempotents lift modulo J(R). These rings were introduced by Oberst and

Schneider [75] under the name F-semiperfect and were later studied by Nichol-

son [74] and other authors. We recall some equivalent conditions.
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Theorem 2.1 (Oberst-Schneider [75, Satz 1.2]) The following statements

are equivalent.

(1) R is semiregular.

(2) Every finitely presented right (or left) R-module has a projective cover.

(3) Every finitely generated right (or left) ideal A has an additive complement,

i. e. a right (respectively, left) ideal I which satisfies A+I = R and is minimal

with respect to this property.

Applying Theorem 1.6, we obtain a criterion for the existence of AddM-

covers.

Proposition 2.2 If EndRA is semiregular for all A ∈ AddM, then AddM

is a cover class.

Proof : Let CR be a module and g : M (H) → C an AddM-precover. Set

E = EndRM
(H), and assume that rE(g) = {h ∈ E | g h = 0} is a finitely

generated right ideal. Then it admits an additive complement I by the above

Theorem 2.1. It is well known that rE(g) ∩ I is then superfluous in I and

therefore also in E. Thus condition (i) in Theorem 1.6 is satisfied, and condi-

tion (ii) is satisfied by the definition of semiregular rings. Hence g has a right

minimal version, and we are done.

So, our task is to show that we can assume rE(g) finitely generated without

loss of generality. First of all, putting K = Ker g, we deduce from the exact

sequence 0 → HomR (M (H), K)E −→ EE
HomR (M (H), g)

−−−−−−−−→ HomR (M (H), C)E → 0

that rE(g) ≃ HomR (M (H), K). Let us now consider an AddM-precover

f : M (J) → K. If the cardinality of J is less or equal the cardinality of H , then

the epimorphism HomR (M (H), f) : HomR (M (H),M (J))E → HomR (M (H), K)E
shows that rE(g) is even a cyclic ideal. If the cardinality of J is greater than

the cardinality of H , then J has a subset L such that M (L) ⊕M (H) ∼= M (J),

and we can replace g and f by the AddM-precovers g′ = (0, g) : M (J) ∼=

M (L)⊕M (H) → C and f ′ = pr⊕f : M (J)⊕M (J) → M (L)⊕K = Ker g′, where

pr denotes the canonical projection. Then, putting E ′ = EndRM
(J), we infer

from the epimorphism HomR (M (J), f ′) : E ′2
E′ → HomR (M (J),Ker g′)E′ that

rE′(g′) is a finitely generated right ideal of E ′, and the proof is complete. 2

Our aim is now to prove that the converse of Proposition 2.2 holds true

when M consists of finitely presented modules. To this end, we first need a

better understanding of modules with semiregular endomorphism ring. These
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modules have been characterized by Harada in terms of the notion of semi-T-

nilpotency.

We say that the family (Mi)i∈I is locally (right) semi-T-nilpotent if

for each sequence of non-isomorphisms Mi1

f1
−→ Mi2

f2
−→ Mi3 . . . with pair-

wise different indices (in)n∈IN from I, and each element x ∈ Mi1 , there ex-

ists m = mx ∈ IN such that fm fm−1 . . . f1(x) = 0. If the same condition

is satisfied also when we allow repetitions in the sequence of indices (in)n∈IN
involved, then the family (Mi)i∈I is called locally (right) T-nilpotent. If, fur-

thermore, the index m does not depend on the element x, that is, if for each

sequence of non-isomorphisms Mi1

f1−→ Mi2

f2−→ Mi3 . . . there exists m ∈ IN

such that fm fm−1 . . . f1 = 0, then the family (Mi)i∈I is said to be (right)

T-nilpotent. In Auslander’s terminology [12], this means that all families of

non-isomorphisms between modules from M are noetherian. Of course, if all

Mi are finitely generated, then (Mi)i∈I is T-nilpotent whenever it is locally

T-nilpotent.

Recall moreover that a submodule X of a module Y is called a local direct

summand of Y if it has a decomposition X =
∐

k∈K Xk with the property that
∐

k∈K0
Xk is a direct summand of Y for every finite subset K0 ⊂ K. Finally,

we refer to [96] for a definition of the exchange property.

Theorem 2.3 (Harada, Zimmermann-Huisgen and Zimmermann [57,

7.3.15] [96, Corollary 6]) Assume that the endomorphism ring of each Mi is

local. Then the following statements are equivalent.

(1) S is semiregular.

(2) The family (Mi)i∈I is locally semi-T-nilpotent.

(3) Every local direct summand of M is a direct summand.

(4) M has the (finite) exchange property.

2.2 Perfect functor categories

The concept of T-nilpotency can also be interpreted in terms of the functor cat-

egory. Let X be a skeletally small subcategory of ModR, and let {Xβ | β ∈ B}

be a complete irredundant set of representatives of the isomorphism classes of

X . We denote by (X op, Ab) the category of all additive contravariant functors

X → Ab from X to the category Ab of abelian groups. It is well known that

(X op, Ab) is a locally finitely presented Grothendieck category and that the

functors Hβ = HomR ( , Xβ) |X , β ∈ B, form a family of finitely presented

projective generators.
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The functors F ∈ (X op, Ab) which are direct limits of finitely generated free

objects, that is, of finite coproducts of some Hβ, are called flat. Furthermore,

a direct system (Fj, ϕkj)k,j∈K in (X op, Ab) is said to be factorizable if for

every j ∈ J there exists l ≥ j such that ϕlj factors through each ϕkj with

k ≥ j. Extending the concept of a Mittag-Leffler module due to Gruson and

Raynaud [53], Simson has studied in [83] the functors F ∈ (X op, Ab) which are

colimits of factorizable direct systems consisting of finitely presented objects.

He has called them Mittag-Leffler objects. They coincide with the Mittag-

Leffler modules of [53] when the category X just consists of the module RR.

For further details we refer to [83] and [72].

Flat objects and Mittag-Leffler objects play a prominent role in Simson’s

characterization of perfect functor categories. We say that (X op, Ab) is perfect

if each of its objects admits a projective cover.

Theorem 2.4 (Simson [83, Theorem 5.4]) The following statements are

equivalent for a skeletally small subcategory X ⊂ ModR.

(1) The category (X op, Ab) is perfect.

(2) Every flat object in (X op, Ab) has a projective cover.

(3) Every flat object in (X op, Ab) is projective.

(4) Every flat object in (X op, Ab) is a Mittag-Leffler object.

Corollary 2.5 [83] Let X ⊂ ModR be a skeletally small subcategory. If

(X op, Ab) is perfect, then each X ∈ X has a finite decomposition in modules

with local endomorphism ring.

Proof : If all flat objects in (X op, Ab) are projective, then we know from [83,

Corollary 5.2] that every finitely generated projective object in (X op, Ab) has

a semiperfect endomorphism ring. So, we deduce from Yoneda’s Lemma that

each X ∈ X has a semiperfect endomorphism ring, which proves our claim by

[49, 3.14]. 2

We now turn to the connection with T-nilpotency.

Theorem 2.6 (Harada [56, Theorem 5]) Assume that the endomorphism

ring of each Mi is local. Denote by M′ the category of all finite coproducts

of modules which are isomorphic to some Mi. Then the family (Mi)i∈I is

T-nilpotent if and only if the category (M′ op, Ab) is perfect.
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Combining Theorem 2.3 with Theorem 2.6, we now establish a relationship

between perfectness of ((addM)op, Ab) and coperfectness of SM . Recall that

a left module BX over a ring B is said to be coperfect if it satisfies the

descending chain condition for finitely generated (or equivalently, for cyclic)

B-submodules [23].

Proposition 2.7 Assume that the endomorphism ring of each Mi is local.

Then the following statements are equivalent.

(1) EndRA is semiregular for all A ∈ AddM.

(2) The family (Mi)i∈I is locally T-nilpotent.

(3) SM is coperfect.

Moreover, the conditions (1)-(3) are satisfied provided that ((addM)op, Ab) is

perfect, and the converse implication holds when all Mi are finitely generated.

Proof : (1)⇒(2) : Let Mi1

f1
−→ Mi2

f2
−→ Mi3 . . . be a sequence of non-isomor-

phisms with possible repetitions in the indices (in)n∈IN taken from I. Roughly

speaking, we will now force the indices to become pairwise different by con-

sidering the (external) direct sum A =
∐

n∈IN Min . More precisely, we denote

by en : Min → A the canonical embeddings and set An = en(Min). Since

the endomorphism ring of A ∈ AddM is semiregular, the family (An)n∈IN
is locally semi-T-nilpotent by Theorem 2.3. Moreover, our sequence of non-

isomorphisms corresponds to a sequence of non-isomorphisms between the An

where none of the modules involved occurs more than once. Then for any

element x ∈Mi1 there exists n ∈ IN such that fn fn−1 . . . f1(x) = 0.

(2)⇒(1) : If a ring E is semiregular and e ∈ E is idempotent, then eEe is

semiregular as well [74, 2.3]. So, it is enough to consider modules A of the

form M (K) for some set K. But M (K) =
∐

(i,k)∈I×KM(i,k) where M(i,k) ≃Mi for

all i ∈ I and k ∈ K, and the family (M(i,k))(i,k)∈I×K is locally semi-T-nilpotent

by assumption. Thus the claim follows from Theorem 2.3.

(2)⇔(3) is proven in a recent paper by Huisgen-Zimmermann, Krause and

Saoŕın [59, Proposition F].

For the last statement, we note that the category M′ of all finite coproducts

of modules which are isomorphic to some Mi coincides with addM. Indeed,

every module X ∈ addM is isomorphic to some direct summand U of a mod-

ule inM′. But then, by using for instance [2, 12.7], we deduce that also U has

a finite decomposition in modules with local endomorphism ring which must

be isomorphic to some Mi. So, U and X are in M′ as well. Theorem 2.6 now

completes the proof. 2
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2.3 Locally split homomorphisms

In order to discuss the existence of AddM-covers, we still need some prelimi-

nary results on two subcategories of ModR related to M.

Following Azumaya [17], we will say that a homomorphism g : B → A is a

locally split epimorphism if for each x ∈ A there is a map ϕ = ϕx : A→ B

such that x = gϕ(x). Dually, a homomorphism f : A → B is said to be

a locally split (or strongly pure [78]) monomorphism if for each x ∈ A

there is a map ψ = ψx : B → A such that x = ψf(x). Of course, every

split epimorphism (monomorphism) is locally split. Further, given a locally

split epimorphism g : B → A (or a locally split monomorphism f : A → B)

and a finite number of elements x1, . . . , xn ∈ A, we can use an argument of

Villamayor (see [28, Proposition 2.2] or [19, Corollary 2]) to construct a map

ϕ : A → B such that xi = gϕ(xi) for all 1 ≤ i ≤ n (or, respectively, a map

ψ : B → A such that xi = ψf(xi) for all 1 ≤ i ≤ n). This shows that every

locally split epimorphism g : B → A (or every locally split monomorphism

f : A → B) is a pure epimorphism (respectively, a pure monomorphism),

and moreover, that g splits whenever A is countably generated (respectively,

f splits whenever A is finitely generated), see [67, Exercises 38 and 39 in

Chapter II, §4].

A submodule X of a module Y is said to be a locally split (or strongly

pure [78]) submodule if the embedding X ⊂ Y is locally split. Examples for

locally split submodules are the local direct summands considered in section

2.1.

Furthermore, a module X is called locally pure-projective if every pure

epimorphism Y → X is locally split, and X is called locally pure-injective

if every pure monomorphism X → Y is locally split.

Locally split submodules and locally pure-injective modules are studied in

[78] and in a recent paper by Zimmermann [102]. As far as locally pure-

projective modules are concerned, it was shown by Azumaya [19, Proposition

8] that they coincide with the strict Mittag-Leffler modules studied by Gruson

and Raynaud in [53]. Indeed, they can be characterized as follows.

Proposition 2.8 (Azumaya [19, Proposition 4]) A module A is locally pure-

projective if and only if for each x ∈ A there are a finitely presented module

F and homomorphisms f : A→ F and ϕ : F → A such that ϕ f(x) = x.

Here we are mainly interested in modules A admitting a locally split epi-
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morphism g : M (K) → A for some set K. We will denote by G(M) the

category of all such modules.

In the case M = R, these modules were extensively studied by several au-

thors, namely by Gruson and Raynaud [53] under the name ‘flat strict Mittag-

Leffler modules’, by Ohm and Rush [76] under the name ‘trace modules’, by

Garfinkel [50] under the name ‘universally torsionless’ and by Zimmermann-

Huisgen [92] under the name locally projective, which is the terminology

we will adopt here. Observe that a module A is locally projective if and only

if every epimorphism Y → A is locally split, or equivalently, if A is flat and

locally pure-projective.

In the general case, the modules in G(M) can be characterized as follows.

Lemma 2.9 The following statements are equivalent for a module AR.

(1) A ∈ G(M).

(2) Every AddM-precover of A is a locally split epimorphism.

(3) For all XR and x ∈ X we have HX,x(A) =
∑

g∈HomR (M,A) g(HX,x(M)).

(4) For each x ∈ A there are n ∈ IN and homomorphisms f : A → Mn and

ϕ : Mn → A such that ϕ f(x) = x.

Proof : (1)⇒(2) : This follows immediately from the fact that the locally split

epimorphism g : M (K) → A factors through any AddM-precover of A. Since

every module has an AddM-precover, we then conclude (1)⇔(2).

(1)⇒(3) : Let h ∈ HomR (X,A) and g : M (K) → A a locally split epimor-

phism. Then there is a map ϕ : A → M (K) such that h(x) = gϕh(x) =
∑

k∈K0
(gek) (prkϕh)(x) where K0 is a finite subset of K and ek : M → M (K)

and prk : M (K) → M , k ∈ K0, are the canonical inclusions and projections,

respectively. Since gek ∈ HomR (M,A) and (prkϕh)(x) ∈ HX,x(M), we have

shown the inclusion ⊂. The other inclusion is always true.

(3)⇒(4) : Every x ∈ A can be written as x = idA(x) ∈ HA,x(A) and therefore

as x =
∑n
i=1 gi(yi) for some gi ∈ HomR (M,A) and yi ∈ HA,x(M), or, more

precisely, as x =
∑n
i=1 gi fi(x) where fi ∈ HomR (A,M). But this means that

x = ϕ f(x) where f : A → Mn is the product map induced by the fi and

ϕ : Mn → A is the coproduct map induced by the gi.

(4)⇒(1) : For all x ∈ A choose nx ∈ IN , fx : A → Mnx and ϕx : Mnx → A

such that ϕx fx(x) = x. Then it is easy to check that the coproduct map

g :
∐

x∈AM
nx → A induced by the ϕx is a locally split epimorphism. 2

Let us investigate the closure properties of G(M).
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Lemma 2.10 (1) A module A ∈ G(M) belongs to AddM provided it is

countably generated or pure-projective or has a local endomorphism ring.

(2) G(M) is closed under coproducts, locally split submodules and locally split

epimorphic images.

Proof : (1) The first two statements follow from the considerations at the

beginning of this section. Assume that A has a local endomorphism ring and

that g : M (K) → A is a locally split epimorphism. Take an element 0 6= x ∈ A

and a homomorphism ϕ : A→ M (K) such that x = gϕ(x). The endomorphism

idA − g ϕ ∈ EndRA then maps the nonzero element x to zero and therefore is

a non-isomorphism. This implies that g ϕ is an isomorphism and g is a split

epimorphism.

(2) The closure under coproducts and locally split epimorphic images is straight-

forward. The closure under locally split submodules is easily verified using

condition (4) in Lemma 2.9. 2

When M consists of finitely presented modules, G(M) has some further

nice properties which we are going to discuss now. To this aim we first need

some knowledge on the category ~M of all modules which are the direct limit

of some direct system of modules in addM.

Lemma 2.11 (Lenzing [70, 2.1]) Assume thatM is a subcategory of modR.

Then the following statements are equivalent for a module AR.

(1) A ∈ ~M.

(2) There is a pure epimorphism
∐

k∈K Xk → A for some modules Xk in M.

(3) Every homomorphism h : F → A where F is finitely presented factors

through a module in addM.

We then obtain the following result.

Proposition 2.12 Assume that M is a subcategory of modR. Then G(M)

consists of all modules in ~M which are locally pure-projective. In particular,

G(M) is closed under pure submodules.

Proof : If A admits a locally split epimorphism g : M (K) → A for some set

K, then it satisfies condition (2) in the above Lemma and therefore lies in
~M. Further, since M (K) is pure-projective by assumption, the map g factors

through any pure epimorphism h : Y → A, which thus has to be locally split
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as well. This shows that A is locally pure-projective. Conversely, it is straight-

forward that any locally pure-projective module satisfying condition (2) in the

above Lemma belongs to G(M).

It remains to show that G(M) is closed under pure submodules. From condi-

tion (3) in Lemma 2.11 it follows that ~M is closed under pure submodules,

see [65, 3.10]. So, we have only to verify that every pure submodule A′ ⊂ A

of a locally pure-projective module A is locally pure-projective. To this end,

we apply Azumaya’s characterization 2.8. Let x ∈ A′. Then there are a

finitely presented module F and homomorphisms f : A → F and ϕ : F → A

such that ϕ f(x) = x. Setting y = f(x) ∈ F , we see that x is contained

in the finite matrix subgroup HF,y(A). But A′ ⊂ A being pure implies that

HF,y(A)∩A′ = HF,y(A
′), see [98, p. 1088]. Thus we can find a map ϕ′ : F → A′

such that x = ϕ′(y), and we conclude that the maps ϕ′ and f ′ = f |A′ : A′ → F

satisfy x = ϕ′ f ′(x), as required. 2

Further properties of G(M) will be discussed in section 3.1.

2.4 AddM-covers

We are finally in a position to describe when a categoryM of finitely presented

modules provides for AddM-covers.

Theorem 2.13 Assume that M ⊂ modR. Then the following statements

are equivalent.

(1) AddM is a cover class.

(2) ((addM)op, Ab) is perfect.

(3) AddM is closed under direct limits.

(4) G(M) is closed under direct limits.

(5) All modules in ~M are Mittag-Leffler modules.

(6) EndRA is semiregular for all A ∈ AddM.

(7) SM is coperfect, and M has a decomposition in modules with local endo-

morphism ring.

(8) Every pure submodule (or every locally split submodule, or every local

direct summand) of a module A ∈ AddM is a direct summand.

If M is a finite category, then (1)-(8) are further equivalent to

(9) S is right perfect.

Proof : We will employ the functor H : ModR −→ ((addM)op, Ab) which

maps every module AR to the functor HA = HomR ( , A) |addM and every
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homomorphism g ∈ HomR (B,A) to the natural transformation HomR ( , g) :

HB → HA. Since M ⊂ modR, we know that H commutes with coprod-

ucts and direct limits. As a consequence, H induces an equivalence between
~M and the category of the flat objects in ((addM)op, Ab), which restricts to

an equivalence between AddM and the category of the projective objects in

((addM)op, Ab), see [70, 2.4]. This shows immediately that condition (3) is

satisfied if and only if every flat object in ((addM)op, Ab) is projective, which

is equivalent to condition (2) by Theorem 2.4.

Further, it is straightforward that a homomorphism g : B → A is an AddM-

precover if and only if HomR ( , g) : HB → HA is an epimorphism with HB

being projective. Also, as an easy consequence of Yoneda’s Lemma, we see

that g is right minimal if and only if so is HomR ( , g). But an epimorphism

in ((addM)op, Ab) of the form HB → F is right minimal if and only if it is

superfluous, see [14, 2.1]. So, we conclude that under the action of H , the

AddM-covers correspond to the projective covers. Thus we have (2)⇒(1).

Conversely, condition (1) implies that all flat objects in ((addM)op, Ab) have

a projective cover, which again by Theorem 2.4 is equivalent to (2). We remark

that (3)⇒(1) can also be obtained as a special case of [91, Theorem 2.2.8].

Next, we recall that G(M) consists of the modules in ~M which are locally

pure-projective by Proposition 2.12. In particular, this implies that (3)⇒(4)

is true. Moreover, if (4) is satisfied, then all modules in ~M are locally pure-

projective and therefore Mittag-Leffler modules by a result of Azumaya [19,

Theorem 5]. This shows (4)⇒(5).

Assume now condition (5). Using again Yoneda’s Lemma, we see that a di-

rect system in ModR is factorizable if and only if so is the direct system in

((addM)op, Ab) which corresponds to it under the action of H . Hence, as

observed by Simson [83, p. 105], a module A ∈ ~M is a Mittag-Leffler module

if and only if HA is a Mittag-Leffler object in ((addM)op, Ab). But then we

deduce from (5) that all flat objects in ((addM)op, Ab) are Mittag-Leffler ob-

jects, which is equivalent to (2) by Theorem 2.4.

So, we have proven the equivalence of the first five conditions. For the next

equivalences, we first remind Corollary 2.5 which asserts that under condition

(2), each Mi has a decomposition in modules Nij , j = 1 . . . ni, with local en-

domorphism ring. We are then in a position to apply Proposition 2.7 to the

family (Nij), and obtain that (6) and (7) are satisfied. Conversely, condition

(7) implies (6), and (6) implies (1) by Proposition 2.2.
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Let us now turn to condition (8). Observe that the cokernel C of a pure

monomorphism f : A′ → A with A ∈ AddM belongs to ~M by Lemma 2.11.

So, if AddM is closed under direct limits, the module C is pure-projective

and f splits. This shows that (3) implies the strongest version of (8). Then

also the special cases hold true, that is, the locally split submodules, and in

particular, the local direct summands, of modules in AddM split. Conversely,

it is enough to require that all local direct summands of modules in AddM

are direct summands to obtain condition (6). In fact, it was recently proven by

J. L. Gómez Pardo and P. A. Guil Asensio [51, 2.3] that under this assumption

M has a decomposition in modules with local endomorphism ring. But then

we can apply Theorem 2.3 to the modules of the form A = M (K) for some

set K and conclude that A has a semiregular endomorphism ring. Since this

implies by [74, 2.3] that also the direct summands of A have a semiregular

endomorphism ring, we have just proven (8)⇒(6).

Finally, let us consider the case that M is a finite category. Then the well-

known argument of Bass [2, pp. 316] shows that under condition (7) the Ja-

cobson radical J(S) of S is right T-nilpotent, cp. [56, Theorem 5] or [83,

5.4]. Moreover, S is then obviously semiperfect and therefore right perfect.

Conversely, (9)⇒(8) is proven by a standard argument applying the functor

HomR (M, ) : ModR → ModS on pure-exact sequences 0 −→ A′ f
−→ A −→

C −→ 0 in ModR with A ∈ AddM. 2

Of course, in the case M = R, Theorem 2.13 contains Theorem P of Bass

[21] as well as some other characterizations of perfect rings due to Nicholson

[74, 3.9], Huisgen-Zimmermann [94, p. 60] and to Azumaya and Facchini [20,

Corollary 2], [18, Theorem 5].

In case that M is an arbitrary projective module, we rediscover and im-

prove a characterization of perfect modules due to Stock. According to [71],

a projective module P is called perfect if all modules generated by P have a

projective cover.

Corollary 2.14 (cp. [85, 3.9]) Assume that M is projective. Then the follow-

ing statements are equivalent.

(1) M is perfect.

(2) EndRM
(K) is semiregular for all sets K.

If M is finitely generated, (1) is further equivalent to

(3) S is right perfect.
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Proof : (1)⇒(2) was already proven by Mares [71, 2.4 and 4.5]. Conversely,

condition (2) implies by our Proposition 2.2 that every module A has a right

minimal AddM -precover g : B → A. If A is M-generated, then g is an

epimorphism and hence a projective cover, see [91, 1.2.12]. Thus (2)⇒(1). If,

moreover, M is finitely generated, the equivalence of (6) and (9) in Theorem

2.13 yields (2)⇔(3). 2

Finally, in the case M = modR, our Theorem 2.13 contains known char-

acterizations of pure-semisimple rings which we will recall in section 6.4.
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3 COHERENCE

We have seen in chapter 2 that the existence of AddM-covers can be inter-

preted in terms of perfectness. Similarly, the existence of AddM-preenvelopes

is related to coherence.

Indeed, it was already shown by Enochs that the category of all finitely

generated projective modules is covariantly finite in modR if and only if R

is left coherent, and more generally, it was proven by Crawley-Boevey that

covariantly finiteness ofM in modR is characterized by closure under products

of the category ~M.

We now interpret these results in terms of endoproperties of M . More

precisely, we use the functor HomR ( ,M) : ModR → SMod to investigate

the connection between the existence of AddM-preenvelopes and coherence

properties of SM (Theorem 3.17). Further, we employ a result of Zimmermann

to show that a subcategory M of modR is covariantly finite in modR if and

only if all finite matrix subgroups ofMR are finitely generated over S (Corollary

3.3). We then discuss when all matrix subgroups of MR are finitely generated

over S. This turns out to be equivalent to closure under products of G(M), in

analogy to Crawley-Boevey’s result mentioned above.

Our results contain known characterizations of two special classes of coher-

ent rings, the strongly coherent and the π-coherent rings (Corollaries 3.12 and

3.18).

In the last section, we compare the different coherence properties of SM

and relate them to coherence properties of S.

3.1 When matrix subgroups are finitely generated

We begin by establishing a connection between AddM-preenvelopes and ma-

trix subgroups of MR. In fact, as we will now see, the existence of an AddM-
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preenvelope for a module A implies that all matrix subgroups of M induced

by A are finitely generated modules over the endomorphism ring of M .

Lemma 3.1 Let AR be a module and assume there is a map a : A→ X such

that X ∈ AddM and all maps h ∈ HomR (A, Y ) where Y ∈ addM factor

through a. Then there is a family (gk)k∈K in HomR (A,M), and for every

x ∈ A there is a finite subset Kx ⊂ K such that the matrix subgroup HA,x(M)

is generated by (gk(x))k∈Kx
as a left module over S = EndRM .

Proof : Since X ∈ AddM, there is a family (Xk)k∈K in M and a split

monomorphism e : X →
∐

k∈K Xk. Moreover, for any k ∈ K there is a

split monomorphism ek : Xk → M . Taking gk : A
a
−→ X

e
−→

∐

k∈K Xk

prk−→

Xk
ek−→ M where prk are the canonical projections, we obtain a family in

HomR (A,M) with the stated property. Indeed, for every x ∈ A there is a

finite subset Kx ⊂ K such that gk(x) = prk ea(x) = 0 for all k ∈ K \Kx, and

so HA,x(M) =
∑

k∈Kx
S · gk(x). 2

The following result of Zimmermann will enable us to find a sort of global

converse for finitely generated modules. We include the proof for the reader’s

convenience.

Proposition 3.2 (Zimmermann [101]) Let AR be a module, and letA denote

the category of all modules X which are isomorphic to A/A′ for some finitely

generated submodule A′ ⊂ A. Assume that all matrix subgroups of the form

HX,x(M) with X ∈ A and x ∈ X are finitely generated over S. Then for all

n ∈ IN , all X ∈ A and x = (x1, . . . , xn) ∈ Xn we have that the image HX,x(M)

of the S-homomorphism εx : HomR (X,M) −→ Mn, f 7→ (f(x1), . . . , f(xn))

is finitely generated. In particular, if AR is finitely generated, then the left

S-module HomR (A,M) is finitely generated.

Proof : If X ∈ A, then the module Y = X/x1R is in A as well, and the

exact sequence 0 −→ x1R −→ X
ν
−→ Y −→ 0 together with the element

y = (ν(x2), . . . , ν(xn)) ∈ Y n−1 give rise to the following commutative diagram

with S-linear maps
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0−−−→HomR (Y,M)
HomR (ν,M)

−−−−−−−−→ HomR (X,M) −−
εx1−→ HX,x1(M) −−−→0

↓εy εx↓ ‖

0−−−→ SHY,y(M) −−−→ SHX,x(M) −−−→ SHX,x1(M)−−−→0

∩ ∩ ∩

0−−−→ Mn−1 −−−−−−→ Mn
pr1

−−−−−−→ M −−−→0

where pr1 denotes the canonical projection on the first component. So, the

claim follows by induction on n. Finally, if AR is generated by the elements

a1, . . . , an and a = (a1, . . . , an) ∈ An, then the S-homomorphism εa is injective,

and we obtain that SHomR (A,M) is finitely generated. 2

We now obtain a useful criterion for the existence of AddM-preenvelopes

in terms of finiteness conditions on S-submodules. In particular, we see that a

subcategory M⊂ modR is covariantly finite in modR if and only if all finite

matrix subgroups of M are finitely generated over S.

Corollary 3.3 Every finitely generated (finitely presented) module has an

AddM-preenvelope if and only if all matrix subgroups of the form HA,x(M)

with AR finitely generated (finitely presented) and x ∈ A are finitely generated

over S.

Proof : Combine the above results with Corollary 1.5, keeping in mind that the

category A in Proposition 3.2 consists of finitely generated (finitely presented)

modules if AR is finitely generated (finitely presented). 2

Note that covariantly finiteness can also be characterized in terms of the

category ~M by employing Lemma 2.11 and Proposition 1.3, as observed by

Crawley-Boevey and Krause.

Theorem 3.4 (Crawley-Boevey, Krause [42, 4.2] [65, 3.11]) The fol-

lowing statements are equivalent for a subcategory M of modR.

(1) M is covariantly finite in modR.

(2) ~M is closed under products.

(3) ~M is a preenvelope class.

Our aim in this section will be to give an analogous characterization of the

case that all matrix subgroups of M are finitely generated over S. We will see

that the role of ~M will now be played by G(M). But let us first point out that
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Theorem 3.4 contains two known characterizations of coherence. Recall that

a ring R is said to be left coherent if all finitely generated left ideals of R are

finitely presented, or equivalently, if the category of all flat right R-modules

is closed under products. But the latter is nothing else than condition (2) in

the above theorem for the case thatM just consists of the regular module R,

and so we rediscover results of Enochs and Zimmermann.

Corollary 3.5 (Enochs, Zimmermann [48, 5.1] [98, 1.3]) The following

statements are equivalent for a ring R.

(1) R is left coherent.

(2) Every right R-module has a flat preenvelope.

(3) All finite matrix subgroups of RR are finitely generated left ideals.

In order to discuss when all matrix subgroups of M are finitely generated

over S, we start out by showing that the matrix subgroups of M induced by

modules A in G(M) are always finitely generated over S.

Lemma 3.6 Let A ∈ G(M), x ∈ A and Y ∈ ModR. Then there is an n ∈ IN

and an element m ∈ Mn such that HA,x(Y ) = HMn,m(Y ). In particular, if

Y = M , then there are m1, . . . , mn ∈ M which generate HA,x(M) over S.

Proof : We know from Lemma 2.9 that there are n ∈ IN and homomor-

phisms f : A → Mn and ϕ : Mn → A such that ϕ f(x) = x. Then,

putting m = f(x), we have for all h ∈ HomR (A, Y ) that h(x) = h′(m) with

h′ = hϕ ∈ HomR (Mn, Y ). This shows HA,x(Y ) ⊂ HMn,m(Y ). The other im-

plication follows from the fact that h(m) = hf(x) for all h ∈ HomR (Mn, Y ).

Assume now Y = M and write m = (m1, . . . , mn) ∈ Mn. Then for ev-

ery element h(x) ∈ HA,x(M) there is h′ ∈ HomR (Mn,M) with components

s1, . . . , sn ∈ S such that h(x) = h′(m) =
∑n
j=1 sj(mj). 2

We will now need a category which can be viewed as the dual counterpart

of G(M), namely the category C(M) of all modules which are isomorphic to

some locally split submodule of a product of copies M . Dually to Lemma 2.9,

we can characterize C(M) as follows.

Lemma 3.7 The following statements are equivalent for a module CR.

(1) C ∈ C(M).

(2) Every ProdM -preenvelope of C is a locally split monomorphism.

(3) For all XR and x ∈ X we have HX,x(C) =
⋂

f∈HomR (C,M) f
−1(HX,x(M)).
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Proof : (1)⇔(2) is proven with arguments dual to those in Lemma 2.9.

(1)⇔(3): If C ∈ C(M), then there is a locally split monomorphism τ : C →

MJ for some set J . Thus every element c ∈
⋂

f∈HomR (C,M) f−1(HX,x(M))

satisfies τ(c) ∈
∏

j∈J HX,x(M) = HX,x(M
J) and admits a map ψ : MJ → C

such that c = ψτ(c), hence belongs to HX,x(C). Since the inclusion ⊂ is

always true, we have thus proven (1)⇒(3). Conversely, if C has property (3),

we consider the product map τ : C → MJ induced by all homomorphisms in

J = HomR (C,M). Then, if we choose X = MJ in (3), it is easy to check that

every c ∈ C belongs to HMJ ,τ(c)(C) and therefore has the form c = ψτ(c) for

some ψ : MJ → C. Thus τ is a locally split monomorphism, and C ∈ C(M). 2

Let us collect further properties of C(M).

Proposition 3.8 (1) A module C ∈ C(M) belongs to ProdM provided it is

finitely generated or pure-injective or has a local endomorphism ring.

(2) C(M) is closed under locally split submodules and locally split epimor-

phic images, and moreover, under products and coproducts. In particular,

G(M) ⊂ C(M).

(3) If M is pure-injective, then C(M) consists of all modules which are iso-

morphic to some pure submodule of a product of copies M and are locally

pure-injective.

Proof : (1) is proven with arguments dual to those in Lemma 2.10 (1).

(2) The closure under products and locally split submodules is straightforward.

Since
∐

k∈K Xk is a locally split submodule of
∏

k∈K Xk, we then also have that

C(M) is closed under coproducts. Let us now show that C ′ ∈ C(M) whenever

there is a locally split epimorphism g : C → C ′ with C ∈ C(M). Observe

first that for every c′ ∈ C ′ there is an element c ∈ C such that g(c) = c′ and

HC′,c′(M) = HC,c(M). We assume that c′ ∈
⋂

f ′∈HomR (C′,M) f
′−1(HX,x(M)) for

some XR and x ∈ X and choose an element c ∈ C as above. Then for every

f ∈ HomR (C,M) we have that f(c) belongs to HC′,c′(M) and therefore has

the form f(c) = f ′(c′) for some f ′ ∈ HomR (C ′,M). This shows that c lies

in
⋂

f∈HomR (C,M) f
−1(HX,x(M)), which coincides with HX,x(C) by assumption.

Since c′ = g(c), it then follows that c′ lies in HX,x(C
′). So, since the inclusion

⊂ in condition (3) of Lemma 3.7 is always true, we have proven that C ′ ∈

C(M). Observe that the inclusion G(M) ⊂ C(M) can also be verified by using

condition (4) in 2.9 to construct a locally split monomorphism A→
∏

x∈AM
nx .

(3) is proven with arguments dual to those in Proposition 2.12. 2
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The following examples show that C(M) in general is neither closed under

pure submodules nor under pure epimorphic images.

Example 3.9 (1) Let AR be a finitely generated module which is not pure-

injective. Such modules exist for example over von Neumann regular, non-

semisimple rings. Let further M be a pure-injective envelope of A. Then A is

a pure submodule of M . But A is not contained in C(M), because otherwise

it would even belong to ProdM by Proposition 3.8 and would therefore be

pure-injective.

(2) Let R be a left noetherian ring which is not right perfect. By Corollary 3.5

the class of all flat R-modules is a preenvelope class. Moreover, we will see in

Theorem 3.11 that C(R) coincides with the class G(R) of all locally projective

modules and is a preenvelope class as well. However, G(R) is not closed under

direct limits by Theorem 2.13. 2

The next result is inspired by an argument due to Ringel [81, Proposition

2].

Lemma 3.10 Let AR be a module, x ∈ A, and assume that there are a family

(Xk)k∈K in M and homomorphisms µ : A→
∏

k∈K Xk, and ε :
∏

k∈K Xk → A

with εµ(x) = x. Further, let λ be a cardinal such that the matrix subgroup of

M of the form HA,x(M) is a λ-generated left S-module. Then there is a family

(Yl)l∈L inM, where the index set L is finite if λ is finite or else has cardinality

λ, and there are homomorphisms f : A →
∏

l∈L Yl and ϕ :
∏

l∈L Yl → A such

that ϕf(x) = x.

Proof : Let (yj)j∈J be a generating set of HA,x(M) over S where J is a set of

cardinality λ. Since HA,x(M) ∼=
∐

i∈I HA,x(Mi), for each j ∈ J we have a finite

subset Ij ⊂ I and maps fjl ∈ HomR (A,Ml) such that yj =
∑

l∈Ij ιl fjl(x) where

the ιl : Ml → M are the canonical embeddings. Then our homomorphism f

will be the product map f : A→M ′ =
∏

j∈J

∏

l∈Ij Ml given by all fjl.

Further, for any k ∈ K there are maps ek : Xk → M and pk : M → Xk

with pk ek = idXk
. We set p =

∏

k∈K pk : MK →
∏

k∈K Xk and denote by

prk :
∏

k∈K Xk → Xk the canonical projections.

Our aim is to construct a map ψ : M ′ → MK such that for the composition

ϕ : M ′ ψ
−→ MK p

−→
∏

k∈K Xk
ε
−→ A we have ϕf(x) = x. To this end, we

consider µ(x) = (xk)k∈K and write each ek(xk) = ekprkµ(x) ∈ HA,x(M) as

ek(xk) =
∑

j∈Jk skjyj for some finite subset Jk ⊂ J and some skj ∈ S. Then
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we have ek(xk) =
∑

j∈Jk

∑

l∈Ij skjιlfjl(x). We now define maps ψk : M ′ → M ,

z = (zjl)j∈J,l∈Ij 7→
∑

j∈Jk

∑

l∈Ij skjιl(zjl), for each k and take the product map

ψ : M ′ → MK , z 7→ (ψk(z))k∈K . Then it is easy to check that ϕf(x) = x, and

the proof is complete. 2

We are now ready to prove the main result of this section.

Theorem 3.11 The following statements are equivalent.

(1) All matrix subgroups of M are finitely generated over S.

(2) G(M) = C(M).

(3) G(M) is closed under products.

(4) MM ∈ G(M).

If M⊂ modR, then the following statement is further equivalent.

(5) G(M) is a preenvelope class.

Proof : (1)⇒(2) : By Proposition 3.8, we have only to prove that C(M) ⊂

G(M). Let A ∈ C(M) and µ : A → MK a locally split monomorphism. For

every x ∈ A there is a map ε : MK → A such that x = ε µ(x). But then

condition (1) and Lemma 3.10 tell us that we can choose homomorphisms

f : A → Mn and ϕ : Mn → A with n ∈ IN such that x = ϕ f(x). In other

words, A satifies condition (4) in Lemma 2.9 and is therefore contained in

G(M).

(2)⇒(3) follows immediately from Proposition 3.8; (3)⇒(4) is clear.

(4)⇒(1) : It is well known that every matrix subgroup HA,x(M) of M can be

written in the form HMM ,y(M) by taking the element y = (ym)m∈M ∈ MM

defined by ym = m if m ∈ HA,x(M) and ym = 0 otherwise, see for instance

[92, p. 241]. But now we can apply Lemma 3.6 to conclude that HA,x(M) is

finitely generated over S.

Finally, if M ⊂ modR, then we know from Proposition 2.12 that G(M) is

closed under pure submodules. Hence Proposition 1.3 tells us that G(M) is a

preenvelope class if and only if it is closed under products. This completes the

proof. 2

If we restrict to the case M = R, then condition (3) in the above theorem

asserts that products of (locally) projective right R-modules are locally pro-

jective. Rings with this property have been called left strongly coherent

by Zimmermann-Huisgen [92]. The above theorem was actually inspired by

her characterization of these rings, which was also independently obtained by
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Garfinkel [50] and which we are now going to recall. The last condition in our

Corollary, however, seems to be new.

Corollary 3.12 (Garfinkel, Zimmermann-Huisgen [50, 5.4] [92, 4.2])

The following statements are equivalent for a ring R.

(1) R is left strongly coherent.

(2) All matrix subgroups of RR are finitely generated left ideals.

(3) All pure (or locally split) submodules of direct products of copies of R are

locally projective.

(4) The module RR is locally projective.

(5) Every right R-module has a locally projective preenvelope.

As pointed out in [92, p. 242], the commutative ring R = KIN over a field

K is an example of a strongly coherent ring which is not noetherian. For the

relationship between coherent and strongly coherent rings, we refer to section

3.3. Let us now close by exhibiting a rather natural example of modules with

all matrix subgroups being finitely generated.

Example 3.13 Let MR be a locally projective module over a left strongly

coherent ring R. Then all matrix subgroups of MR are finitely generated over

S if and only if SM is finitely generated. Indeed, the only-if part is always

true, for instance by applying Proposition 3.2 to A = R. For the if-part,

we need the fact that the matrix subgroups of a locally projective module

have the form HA,x(M) = M · HA,x(RR), see [92, Theorem 2.1]. Then, if SM

and RHA,x(R) are finitely generated, it follows immediately that SHA,x(M) is

finitely generated as well. 2

3.2 Endocoherence

This section is devoted to investigating coherence properties of a module over

its endomorphism ring. Some of the results will be applied to tilting theory in

section 6.1.

Let BQA be a bimodule. Recall that a module XA is said to be QA-

reflexive if the evaluation morphism δX : X → HomB (HomA (X,QA), BQ)

given by δX(x) : α 7→ α(x) is an isomorphism. Of course, since Ker δX co-

incides with the reject RejQ(X) of Q in X , all reflexive modules are in the

category CogenQ of Q-cogenerated modules. We denote further by cogenQ
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the category of all finitely Q-cogenerated modules, by copresQ (respectively,

by sfcopresQ) the category of all (semi-)finitely Q-copresented mod-

ules, that is, of all modules X admitting an exact sequence 0 −→ X −→

Qn −→ L −→ 0 where n ∈ IN and L is finitely Q-cogenerated (respectively,

Q-cogenerated). Dually, we write genQ for the category of all finitely Q-

generated modules, and presQ for the category of all finitely Q-presented

modules, that is, of all modules X admitting an exact sequence 0 −→ K −→

Qn −→ X −→ 0 where n ∈ IN and K is finitely Q- generated. Finally, we de-

note by K(QA) the subcategory of ModA consisting of all modules KA which

admit an exact sequence 0 −→ K −→ An −→ YA −→ 0 where n ∈ IN and YA

is QA-cogenerated, and by K(BQ) the corresponding subcategory of BMod.

We will be interested in the case where Q is our bimodule SMR. Then S is

obviously SM-reflexive, and we have the following result.

Lemma 3.14 (1) SHomR (A,M) ∈ sfcopres SM for all finitely generated mod-

ules AR, and SHomR (A,M) ∈ copres SM for all finitely presented modules AR.

(2) The functor HomR ( ,M) : ModR −→ SMod induces dense functors

genMR −→ K(SM) and presMR −→ copres SS.

Proof : (1) Let AR be finitely generated with an exact sequence 0 −→ K
f
−→

Rn −→ A −→ 0. We then have an exact sequence 0 → SHomR (A,M) →

SHomR (Rn,M)
HomR (f,M)
−−−−−−−−→ SHomR (K,M) where SHomR (K,M) is a sub-

module of SHomR (R(J),M) ≃ SM
J for some set J . Further, if AR is finitely

presented, then K is finitely generated, and SHomR (K,M) is a submodule of

SHomR (Rn,M) ≃ SM
n for some n ∈ IN .

(2) As in (1), we show that A ∈ genMR gives rise to an exact sequence 0 →

SHomR (A,M) → SHomR (Mn,M) →S HomR (K,M) where SHomR (K,M)

is SM-cogenerated, and moreover, that we can assume SHomR (K,M) finitely

cogenerated by S provided that A ∈ presMR. So, it remains to prove that the

functors are dense. Any exact sequence 0 −→ K −→ Sn −→ SY −→ 0 with

Y ∈ Cogen SM yields an exact sequence 0 → HomS (Y,M) → HomS (Sn,M)
g
−→ HomS (K,M) where LR = Im g is an epimorphic image of Mn. We obtain

the commutative diagram

0→ K −−−→ Sn −−−→ Y → 0


yα δSn



y



yδY

0→ HomR (L,M)−−−→HomR(HomS(S
n,M),M))−−−→HomR(HomS(Y,M),M)
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where α and δY are monomorphisms and δSn is an isomorphism. Then by

the snake lemma α is an isomorphism, hence SK ∼= HomR (L,M) with L ∈

genMR.

Assume further that there is a monomorphism i : Y → Sm for some m ∈ IN .

Then we also have a map f = HomS (i,M) : HomS (Sm,M) → HomS (Y,M)

with AR = Im f ∈ genMR and a commutative diagram

0−−−→ A −−−→HomS (Sn,M)−−−→ L′ −−−→0
⋂

e ‖


y

0−−−→HomR (Y,M)−−−→HomS(S
n,M)−−−→ L −−−→0

where L′ ∈ presMR. Since δ is a natural transformation, HomR (f,M) δY =

δSm i is a monomorphism, and therefore HomR (e,M) δY is a monomorphism

as well. So, we conclude as above from the commutative diagram

0→ K −−−→ Sn −−−→ Y → 0


yα δSn



y



yδY

0→ HomR (L,M)−−−→HomR(HomS(S
n,M),M))−−−→ HomR(HomS(Y,M),M)



yβ ‖


yHomR (e,M)

0→ HomR (L′,M)−−−→HomR(HomS(S
n,M),M))−−−→ HomR(A,M)

that βα is an isomorphism, hence SK ∼= HomR (L′,M) with L′ ∈ presMR. 2

Let us remark that if SMR is faithfully balanced, then by similar arguments,

the functor HomR ( ,M) : ModR −→ SMod induces dense functors

genR −→ sfcopres SM and modR −→ copres SM .

We now obtain a characterization of left coherent endomorphism rings.

Proposition 3.15 S is left coherent if and only if every A ∈ presM has an

addM -preenvelope.

Proof : Of course, S is left coherent if and only if every module in copres SS is

finitely generated over S. By Lemma 3.14 the latter means that SHomR (A,M)

is finitely generated for all modules AR ∈ presM . Combining this with Corol-

lary 1.5, we obtain the claim. 2

Note that Lenzing has described left coherence in terms of annihilators of

matrix rings [68, §4, Korollar 1]. More precisely, denoting by Sn×n the n × n

matrix ring over S, he has proven that S is left coherent if and only if for

every n ∈ IN and every f ∈ Sn×n the left annihilator ℓSn×n(f) of f in Sn×n is

a finitely generated left ideal. We are now going to investigate the annihilators
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of subsets of Mn in Sn×n ∼= EndRM
n, and we are going to see that they are

related to a stronger coherence property.

Proposition 3.16 The following statements are equivalent.

(1) Every finitely generated left S-module which is cogenerated by SM is

finitely presented.

(2) Every A ∈ genM has an addM -preenvelope.

(3) For every n ∈ IN and every X ⊂ Mn the annihilator annSn×n(X) of X in

Sn×n is a finitely generated left ideal.

Proof : (1) ⇔ (2) is shown combining Lemma 3.14 with Corollary 1.5 as in

the proof of Proposition 3.15.

(2)⇒(3) : Let X ⊂ Mn, put K = X · R and AR = Mn/K, and denote by

ν : Mn → A the canonical surjection. By assumption, AR ∈ genM has an

addM -preenvelope a : A → Mm, and we can consider the maps fi : Mn ν
−→

A
a
−→ Mm pri−→ M

ι
−→ Mn, 1 ≤ i ≤ m, where pri and ι denote the canonical

projections and a canonical injection, respectively. Obviously, f1, . . . , fm are

contained in annSn×n(X), and since every other map h ∈ annSn×n(X) factors

through ν and hence through aν, they are generators of annSn×n(X) over Sn×n.

(3)⇒(2) : Consider an exact sequence 0 −→ K −→ Mn g
−→ A −→ 0 and a

generating set f1, . . . , fm of annSn×n(K) over Sn×n. Then K is contained in

the kernel of the product map f : Mn → Mnm induced by the fi, and so

there is a map a : A → Mnm such that f = a g. Let us verify that a is an

addM -preenvelope. In fact, if we denote again by M
ι
−→ Mn a canonical

injection, then for every homomorphism h : A→M the composition ι h g lies

in annSn×n(K) and therefore has the form
∑m
i=1 ti fi for some t1, . . . , tm ∈ S

n×n.

This shows that h g factors through a g, and hence h factors through a. 2

Recall that a left module BX over a ring B is coherent if it is finitely

presented and every finitely generated submodule of BX is finitely presented.

Inspired by Lenzing’s and Camillo’s work on a special class of coherent rings

[68], [27], we will further say that BX is π-coherent if it is finitely presented

and every finitely generated left B-module which is cogenerated by BX is

finitely presented. Then the ring B is left π-coherent in the sense of [27] (or

‘stark links-kohärent’ in the sense of [68]) if and only if the regular left module

BB is π-coherent.

Theorem 3.17 (1) If SM is π-coherent, then every finitely generated module

has an addM -preenvelope. The converse holds if MR is finitely generated.
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(2) If SM is coherent, then every finitely presented module has an addM -

preenvelope. The converse holds if MR is finitely presented.

Proof : (1) If AR is finitely generated, then by Lemma 3.14 there is an ex-

act sequence 0 −→ SHomR (A,M) −→ SM
n −→ L −→ 0 where n ∈ IN

and L ∈ Cogen SM . By assumption L is then finitely generated and even

finitely presented, so SHomR (A,M) is finitely generated, and A has an addM -

preenvelope by Corollary 1.5. Conversely, if MR is finitely generated and every

finitely generated module has an addM -preenvelope, then we deduce that R

and every A ∈ genM have an addM -preenvelope. But this implies by 1.5 that

SM ∼=S HomR (R,M) is finitely generated, and moreover, that SM satisfies

condition (1) in Proposition 3.16. So, we conclude that SM is π-coherent.

(2) We show as in (1) that Lemma 3.14 and Corollary 1.5 yield the exis-

tence of an addM -preenvelope for every finitely presented module AR. Con-

versely, if MR is finitely presented and every finitely presented module has

an addM -preenvelope, then we deduce that R and every A ∈ presM have

an addM -preenvelope. In particular, S is then left coherent by Proposition

3.15. Moreover, if a : R → Mn is an addM -preenvelope with cokernel L,

then also LR is finitely presented, and therefore SHomR (L,M) is finitely gen-

erated by 1.5. So, we infer from the exact sequence 0 −→ SHomR (L,M) −→

SHomR (Mn,M) −→ SHomR (R,M) −→ 0 that SM is finitely presented and

hence coherent. 2

The above results also include known characterizations of π-coherent rings.

Corollary 3.18 ([68, Satz 4], [94, p. 36], [27], [77, 5.3]) The following state-

ments are equivalent.

(1) R is left π-coherent.

(2) For every n ∈ IN and every X ⊂ Rn the annihilator annRn×n(X) of X in

Rn×n is a finitely generated left ideal.

(3) All matrix subgroups of the form HA,x(RR) for some finitely generated

module AR are finitely generated left ideals.

(4) RHomR (A,R) is finitely generated for every finitely generated module AR.

(5) Every finitely generated module AR has a projective preenvelope. 2

If R is semiregular, then it was shown by Asensio Mayor-Martinez Hernan-

dez [10, Corollary 3] and by Rada-Saorin [77, Corollary 5.4] that R being left

(π-)coherent even implies the existence of projective envelopes for the finitely
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presented (respectively, finitely generated) modules. We can now use the cri-

terion for the existence of minimal versions in Theorem 1.6 to generalize those

results.

Corollary 3.19 Let S be semiregular.

(1) If SM is π-coherent, then every finitely generated module has an AddM-

envelope.

(2) If SM is coherent and MR is finitely presented, then every finitely presented

module has an AddM-envelope.

Proof : By Theorem 3.17 we have only to show the existence of a left minimal

version for an AddM-preenvelope f : A → Mn with A finitely generated

or finitely presented, respectively. Note that in both cases the cokernel L =

Coker f has an addM -preenvelope g : L→ Mm, too. Indeed, in case (1) this

follows from Proposition 3.16 and the fact that L ∈ genM , and in case (2) we

have only to remind that MR, and therefore also LR, are finitely presented.

Observe further that E = EndRM
n is semiregular by [74, 2.7]. From the exact

sequence EHomR (Mm,Mn) −→ EE
HomR (f,Mn)

−−−−−−−−→ EHomR (A,Mn) −→ 0 we

deduce that the left annihilator ℓE(f) is finitely generated. Then, as in the

proof of Proposition 2.2, we conclude that the criterion in Theorem 1.6 is

satisfied and f has a left minimal version. 2

We have just seen that the existence of addM -preenvelopes is related to

coherence properties of SM . Let us now investigate the existence of addM -

precovers in terms of coherence properties of the dual module M ∗
S =

HomR (M,W ) S, where WR denotes a minimal injective cogenerator of ModR.

Here we have to consider the covariant functor F = HomR (M, ) : ModR →

ModS together with its left adjoint G = ⊗SM : ModS → ModR. Again, we

have a natural homomorphism σY : YS → FG(YS) given by σY (y) : m 7→ y⊗m,

which is a monomorphism if and only if YS ∈ CogenM∗
S (see for instance [33,

3.2]), and of course, σS is an isomorphism. The following results are then

obtained by arguments dual to those used above, and we leave the details to

the reader.

Lemma 3.20 (1) HomR (M,C)S ∈ sfcopresM∗
S for all finitely W -cogenerated

modules CR, and HomR (M,C)S ∈ copresM∗
S for all finitely W -copresented

modules CR.
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(2) The functor F = HomR (M, ) : ModR→ ModS induces dense functors

cogenMR −→ K(M∗
S) and copresMR −→ copresSS. 2

Again, if we assume that the natural homomorphism ρW : GF (W ) =

HomR (M,W ) ⊗S M → W given by α ⊗ m 7→ α(m) is an isomorphism,

we also obtain that F induces dense functors copresW → copresM∗
S and

cogenW → sfcopresM∗
S.

Proposition 3.21 S is right coherent if and only if every C ∈ copresM has

an addM -precover. 2

Proposition 3.22 The following statements are equivalent.

(1) Every finitely generated right S-module which is cogenerated by M∗
S is

finitely presented.

(2) Every C ∈ cogenM has an addM -precover. 2

Theorem 3.23 (1) If M∗
S is π-coherent, then every finitely W -cogenerated

module has an addM -precover. The converse holds if MR is finitely W -co-

generated.

(2) If M∗
S is coherent, then every finitely W -copresented module has an addM -

precover. The converse holds if MR is finitely W -copresented. 2

If R is a right Morita ring, i. e. a right artinian ring such that the minimal

injective cogenerator WR of ModR is finitely generated, then we obtain a

characterization of contravariantly finiteness. This and other consequences are

collected in the following corollary. Note that the last statement generalizes a

result proven by Auslander for finitely generated projective modules [11, 6.6].

Corollary 3.24 (1) Assume that M is a finitely generated module over a right

Morita ring R. Then M∗
S is (π-)coherent if and only if M is contravariantly

finite in modR.

(2) Assume that MR is a finitely generated module over a right noetherian ring

R. IfM is contravariantly finite in modR, then every finitely generated right

S-module which is cogenerated by M∗
S is finitely presented. In particular, S is

then a right π-coherent ring.

(3) Assume that MR is a coherent module. If all finitely generated modules

have an addM -precover, then S is a right coherent ring.
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Proof : (1) By assumption every finitely generated module is finitely W -co-

presented and therefore has an addM-precover provided that M∗
S is coherent.

Conversely, assume that M is contravariantly finite in modR. Then every

finitely W -cogenerated module, being finitely presented by assumption, has

an addM -precover. Moreover, the finitely generated module MR is finitely

W -cogenerated, and we conclude from Theorem 3.23 that M∗
S is π-coherent.

(2) Under the given assumptions, all modules in cogenM are finitely presented

and therefore have an addM -precover whenever M is contravariantly finite

in modR. The claim then follows from Proposition 3.22. That S is right

π-coherent follows from the fact that SS is M∗
S-cogenerated.

(3) Under the given assumption, all modules in copresM are finitely generated

and therefore have an addM -precover. The claim then follows from Proposi-

tion 3.21. 2

3.3 Comparing coherence

We now collect a couple of results comparing the different notions of coherence

occurring in the previous sections. First of all, if MR is a finitely generated

module with all matrix subgroups being finitely generated over the endomor-

phism ring S, then it follows immediately from Theorem 3.17 and Corollary

3.3 that SM is π-coherent and in particular coherent. Examples for the failure

of the converse implications even in the case M = R are given in [94, Example

29], [50, Example 5.2] and [27]. In particular, every commutative von Neu-

mann regular ring which is not self-injective is coherent but not π-coherent,

and the ring R = K[X1, X2, . . .] over a field K is π-coherent but not strongly

coherent.

Next, we recall that the finitely generated S-submodules of a moduleMR are

matrix subgroups, and observe further that the class of all matrix subgroups

is closed under arbitrary intersections [98, p. 1088]. So, if all matrix subgroups

are finitely generated over S, we obtain that

(F) all finite matrix subgroups and all intersections of finitely generated

S-submodules of M are finitely generated over S.

For M = R, condition (F ) is equivalent to a sharpening of left coherence

considered in [50, pp. 136] and [92, pp. 241]. It was pointed out in [92, Example

4.4] that a ring satisfying (F ) need not be left strongly coherent. On the other

hand, of course, all matrix subgroups of a module MR are finitely generated
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over S whenever M satisfies (F ) and

(I) every matrix subgroup is an intersection of finite matrix subgroups.

Note that the latter property is shared by all locally pure-injective modules,

see [102, Theorem 2.1]. Moreover, if M is pure-projective, then the finitely

generated S-submodules of M are even finite matrix subgroups [97, p. 706].

So, we conclude that for pure-projective or locally pure-injective modules M ,

all matrix subgroups are finitely generated over S if and only if (F ) and (I)

hold true. In particular, this yields a characterization of left strongly coherent

rings which answers a question raised by Garfinkel [50, Question (2) on p. 137].

Since the locally projective modules coincide with the flat locally pure-

projectives, a ring is left strongly coherent if and only if it is left coherent and

all products of projective modules are locally pure-projective. The general

result for modules reads as follows.

Proposition 3.25 If all finite matrix subgroups of MR are finitely generated

over S and all products of copies of MR are locally pure-projective, then all

matrix subgroups are finitely generated over S. The converse holds provided

that M⊂ modR.

Proof : As in Theorem 3.11, it is actually enough to consider MM . Indeed,

by Azumaya’s characterization of locally pure-projective modules 2.8, we then

have for each x ∈ MM a finitely presented module F and homomorphisms

f : MM → F and ϕ : F → MM such that x = ϕ f(x). Moreover, Corollary

3.3 yields the existence of an AddM-preenvelope a : F → Mn with n ∈ IN .

We deduce that there is a homomorphism ϕ′ : Mn →MM such that ϕ = ϕ′ a.

Thus the maps f ′ = a f : MM → Mn and ϕ′ satisfy ϕ′ f ′(x) = x. This

verifies condition (4) in 2.9 and shows MM ∈ G(M). By Theorem 3.11 we

conclude that all matrix subgroups are finitely generated over S. Conversely,

ifM⊂ modR, then we know from Proposition 2.12 that all modules in G(M)

are locally pure-projective, and so the claim follows immediately from Theorem

3.11. 2

We now turn to a similar characterization of π-coherent rings, where the

role of the locally pure-projective modules is played by the R-Mittag-Leffler

(or finitely pure-projective) modules studied in [52], [29], [63] and [17]. Recall

that a Mittag-Leffler module XR is characterized by the property that the

canonical map X ⊗R (
∏

j∈J Yj) →
∏

j∈J(X ⊗R Yj) is a monomorphism for
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every family of left R-modules (Yj)j∈J . Similarly, a module XR is said to be

an R-Mittag-Leffler module if the canonical map X ⊗R RJ → XJ is a

monomorphism for every set J , or equivalently, if for every finitely generated

submodule AR the embedding A ⊂ X factors through a finitely presented

module. The relationship with the locally pure-projective modules is explained

in [17, Proposition 7]. Jones showed in [63, p. 104] that a ring is left π-coherent

if and only if it is left coherent and all products of copies of R (on either

side) are R-Mittag-Leffler modules. Note that since the class of R-Mittag-

Leffler modules is closed under pure submodules [17, Proposition 9], the latter

property amounts to saying that all products of projective modules are R-

Mittag-Leffler modules. We now prove the general statement for modules.

Proposition 3.26 The following statements are equivalent.

(1) SM is π-coherent.

(2) S is left (π-)coherent, SM is finitely presented, and all products of copies

of SM are S-Mittag-Leffler modules.

If MR is finitely presented, the following statement is further equivalent.

(3) S is left (π-)coherent, SM is finitely presented, and all products of copies

of MR are R-Mittag-Leffler modules.

Proof : (1)⇒(2) : Any epimorphism R(K) → M gives rise to a monomor-

phism SS ≃ HomR (M,M)→ HomR (R(K),M) ≃ SM
K , showing that S is left

(π-)coherent. Moreover, all finitely generated submodules of products of copies

of SM are finitely presented by definition, and so the claim is proven.

(2)⇒(1) : Let SA be a finitely generated submodule of a product of copies of

SM . By assumption, SA is contained in a finitely presented module SY , which

is coherent since so is the ring S. Hence SA is finitely presented, and we have

verified that SM is π-coherent.

(1)⇒(3) : Let AR be a finitely generated submodule of MJ for some set J . By

Theorem 3.17, the embedding A ⊂MJ factors through an addM -preenvelope

A→Mn, and Mn is finitely presented if so is MR.

(3)⇒(1) : We claim that every finitely generated module has an addM -pre-

envelope. The claim then follows from Theorem 3.17 whenever MR is finitely

generated. So, let AR be finitely generated. By possibly considering A/RejM(A),

we can assume without loss of generality that A is M-cogenerated. Then

the product map f : A → MJ induced by all maps in J = HomR (A,M)

is a monomorphic ProdM -preenvelope and therefore factors through a ho-

momorphism f ′ : A → F where F is finitely presented. But since SM is
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coherent by assumption, we obtain from Theorem 3.17 the existence of an

addM -preenvelope a : F → Mn. Now it is easy to check that the composition

a f ′ : A→ Mn is an addM -preenvelope as well. 2

In the above proof, we have already used the well-known fact that SM is

coherent provided that it is finitely presented and S is left coherent. When

MR is finitely generated, then SS is finitely cogenerated by SM , and therefore

we also have the converse implication. A similar relationship holds for strong

coherence.

Proposition 3.27 Assume that MR is finitely generated. If all matrix sub-

groups of MR are finitely generated over S, then SM is finitely presented and

S is left strongly coherent. The converse implication holds if MR is finitely

presented.

Proof : Assume first that MR is finitely presented. Then it is well-known (see

for instance [90, 51.10]) that the functors F and G defined on page 35 induce

mutually inverse equivalences between ~M and the category of all flat right

S-modules. We claim that these equivalences can be restricted to equivalences

between G(M) and the category of all locally projective right S-modules.

To this end, we start by showing that a locally split epimorphism g : M (K) → A

gives rise to a locally split epimorphism S(K) → F (A). Indeed, F commutes

with coproducts since MR is finitely generated. Moreover, taking a generating

set m1, . . . , mn of MR, we know that for any element α in F (A) there is a ho-

momorphism ϕ : A→ M (K) such that g ϕ(α(mj)) = α(mj) for all 1 ≤ j ≤ n.

But this means that α = g ϕα = F (g)F (ϕ)(α), and so we are done. Thus

F (A) is locally projective for all AR ∈ G(M). Conversely, if YS is a locally

projective module with a locally split epimorphism γ : S(K) → Y , then it is

easy to check that G(γ) = γ ⊗ idM is a locally split epimorphism, and so the

flat module YS is isomorphic to F (G(Y )) where G(Y ) ∈ G(M). This proves

our claim.

Of course, the functor F commutes with products. If we assume that also G

commutes with products, it is now straightforward that G(M) is closed un-

der products if and only if so is the category of all locally projective right

S-modules. In other words, using Theorem 3.11, we have that all matrix sub-

groups of MR are finitely generated over S if and only if S is left strongly

coherent and SM is finitely presented.

One implication, however, can also be proven when MR is just finitely gen-
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erated. In fact, we can employ a result of Zimmermann [101] asserting that

every matrix subgroup HY,y(SS) of SS is isomorphic as a left S-module to

the S-submodule HY⊗SM,y(MR) of Mn defined in Proposition 3.2 where y =

(y ⊗m1, . . . , y ⊗mn) and m1, . . . , mn is a generating set of MR. Recall that

these submodules are finitely generated over S if so are all matrix subgroups of

MR, and thus we can then conclude from Corollary 3.12 that S is left strongly

coherent. 2
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4 DIRECT SUMMANDS OF PRODUCTS

In this chapter, we employ our previous results to investigate direct products

of modules. One of the main problems in this context is to describe the inde-

composable direct summands of a product
∏

k∈K Xk. It is well known that they

need not be isomorphic to any of the direct summands of the Xk. Over artin al-

gebras, for instance, this phenomenon has important representation-theoretical

consequences, as shown by the work about generic modules of Crawley-Boevey

and Krause [41], [64].

Section 4.1 is devoted to modules M with the property that every (finitely

presented) direct summand of a product of copies of M having a local endo-

morphism ring is isomorphic to some indecomposable direct summand of M

itself. We call such modules (finitely) product-rigid. They can be characterized

in terms of the existence of preenvelopes and in terms of finiteness conditions

on matrix subgroups. In particular, we see that every endonoetherian module

is product-rigid, and every endocoherent module is finitely product-rigid.

The product-rigid modules which are Σ-pure-injective coincide with the

product-complete modules considered by Krause and Saoŕın in [66]. We dis-

cuss this notion in section 4.2. We show (in Proposition 4.10) that a module is

product-complete if and only if it satisfies the perfectness conditions of Theo-

rem 2.13 together with the coherence properties over the endomorphism ring

considered in section 3.1. This extends a well-known theorem of Chase. As

an application, we characterize the pure-projective product-complete modules

over an artin algebra (Theorem 4.12).

4.1 When summands of products are summands of a factor

When is an indecomposable direct summand of
∏

i∈IMi isomophic to an inde-

composable direct summand of some Mi? The results of section 3.1 provide
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an answer to this question.

Theorem 4.1 Let A be a module in ProdM with local endomorphism ring.

Then the following statements are equivalent.

(1) A is isomorphic to a direct summand of Mi for some i.

(2) A has an AddM-preenvelope.

(2’) A has an addM-preenvelope.

(3) Every matrix subgroup of M of the form HA,x(M) with x ∈ A is a finitely

generated left S-module.

(3’) There is a matrix subgroup of M of the form HA,x(M) with 0 6= x ∈ A

which is a finitely generated left S-module.

Proof : The implications (1)⇒(2), (1)⇒(2’), (3)⇒(3’) are clear. (2)⇒(3) and

(2’)⇒(3) follow from Lemma 3.1.

(3’)⇒(1): From Lemma 3.10 we know that there are Y1, . . . , Yn ∈M and maps

f : A →
∏n
k=1 Yk and ϕ :

∏n
k=1 Yk → A such that γ = ϕf ∈ EndRA satisfies

γ(x) = x. Hence idA−γ ∈ EndRA maps the nonzero element x ∈ A to zero and

is therefore a nonisomorphism. For the canonical embeddings and projections

ik : Yk →
∏n
k=1 Yk and prk :

∏n
k=1 Yk → Yk we have

∑n
k=1 ϕikprkf + idA − γ =

idA, and using that EndRA is local, we conclude that some prkf : A→ Yk ∈ M

must be a split monomorphism. This completes the proof. 2

Observe that if EndRA is not local, we still have the equivalences A ∈

AddM⇔ (2) and A ∈ addM⇔ (2’). In fact, we can just use the fact that

there are a family (Xk)k∈K inM and a split monomorphism µ : A→
∏

k∈K Xk

which will factor through the preenvelope.

Let us say thatM is (finitely) product-rigid if the equivalent conditions

of Theorem 4.1 are satisfied for every (finitely presented) A ∈ ProdM with

local endomorphism ring. The module MR will be called (finitely) product-

rigid if so is the subcategory {M}. Also, a ring R is said to be right (finitely)

product-rigid if the right module RR is (finitely) product-rigid.

Since M is (finitely) product-rigid if so is M (cp. Lemma 4.7), we now

restrict our attention to product-rigid modules.

Corollary 4.2 If every (finite) matrix subgroup of M is finitely generated

over S, then M is (finitely) product-rigid.

In particular, as already observed by Huisgen-Zimmermann [58], every en-

donoetherian module is product-rigid. Moreover, by Theorem 3.17, every mod-
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ule which is coherent over its endomorphism ring is finitely product-rigid.

As an immediate consequence of Lemma 2.10 or 3.6, we obtain a charac-

terization of product-rigid modules which is analogous to Theorem 3.11.

Proposition 4.3 A module M is (finitely) product-rigid if and only if every

(finitely presented) A ∈ ProdM with local endomorphism ring belongs to

G(M). 2

We now show that the converse of Corollary 4.2 is not true.

Example 4.4 Let R be a local left perfect ring which is not right artinian, and

let J be the Jacobson radical of R. Then the injective envelope MR of R/JR
is product-rigid, but not all matrix subgroups of M are finitely generated over

S = EndRM . In fact, if A is a module in ProdM with local endomorphism

ring, then A is indecomposable injective, and since R is left perfect, it has a

non-zero socle, hence it contains a module isomorphic to R/J , which implies

A ∼= M . Thus M is product-rigid. Assume now that all matrix subgroups of

M are finitely generated over S. From 3.3 we know that in this case every

finitely generated module XR has an addM -preenvelope a : X → Mn, which

must be a monomorphism since M is a cogenerator. The injective envelope

E of X is then isomorphic to a direct summand of the injective module Mn.

Using again that R is left perfect and therefore every right module has an

essential socle, we infer that E ∼= Mm for some m. From [2, 18.18] we then

conclude that every finitely generated module XR is finitely cogenerated. But

this means that R is right artinian, a contradiction. 2

Observe that by a result of Auslander [13], every module over an artin

algebra Λ is finitely product-rigid. However, as shown by Krause in [64, 5.1 and

8.7], for any indecomposable Σ-pure-injective Λ-module M , we can always find

an endofinite module in ProdM , and therefore M is product-rigid if and only

if it is endofinite. In particular, Crawley-Boevey’s and Krause’s results about

generic modules [41] [64] yield examples of indecomposable Σ-pure-injective

Λ-modules which are not product-rigid. We remark the following.

Remark 4.5 Assume that R is a finite-dimensional algebra over an alge-

braically closed field. Then the following statements are equivalent.

(1) R is of finite representation type.

(2) All R-modules are product-rigid.
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(3) The direct sum of a complete irredundant set of representatives of the

isomorphism classes of modR is product-rigid.

Proof : (1)⇒(2) : Of course, if R is of finite representation type, then every

module is endofinite [97, Theorem 6] and hence product-rigid.

(3)⇒(1) : Set M = modR, and assume that M is product-rigid and R is

representation-infinite. Then we know from [41, 7.3] that there is a generic,

i. e. an indecomposable endofinite infinite-dimensional R-moduleA. Further, it

is well-known that A is a pure submodule of a module of the form
∏

k∈K D(Xk),

where D : Rmod → modR is the ordinary duality and the Xk are some

modules in Rmod, see for instance [102, A.3]. But since A is Σ-pure-injective,

this implies that A ∈ ProdM , and by assumption A then belongs to modR,

a contradiction. 2

4.2 Product-complete modules

In the previous section, we have discussed when an indecomposable direct

summand of a product
∏

i∈IMi of arbitrary modules Mi is isomophic to an

indecomposable direct summand of some Mi. Krause and Saoŕın [66] studied

this problem in the case that all Mi coincide and are Σ-pure-injective.

Theorem 4.6 (Krause-Saoŕın [66, Theorem 3.1]) The following state-

ments are equivalent.

(1) Every product of copies of M is a coproduct of direct summands of M

(with local endomorphism ring).

(2) ProdM ⊂ AddM .

(3) M is product-complete.

(4) AddM is an envelope class.

Let us first compare the notion of product-rigid with product-completeness.

Lemma 4.7 (1) If M is (finitely) product-rigid, so isM. The converse holds

if M ∈ ProdN , in particular, if M is pure-injective.

(2) IfM is (finitely) product-rigid, so is N . The converse holds if N ∈ AddM .

Proof : We have addM ⊂ addN ⊂ ProdN = ProdM ⊂ ProdM , with

ProdM = ProdM whenever M ∈ ProdN . The latter assumption is sat-

isfied provided M is pure-injective since M always is a pure submodule of
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N . Further, we have addM ⊂ addM ⊂ AddM = AddM ⊂ AddN , and

AddM = AddN whenever N ∈ AddM . The two claims then follow easily

from Theorem 4.1. 2

Proposition 4.8 The following statements are equivalent.

(1) M is product-complete.

(2) ProdM⊂ AddM.

(3) N lies in AddM and is product-complete.

(4) M is product-rigid and M is Σ-pure-injective.

(5) M is product-rigid and Σ-pure-injective.

Proof : (1)⇔(5): Recall that M is Σ-pure-injective if and only if every product

of copies of M is a coproduct of modules with local endomorphism ring [93].

Combining this with Theorem 4.6, we immediately obtain our claim.

(1)⇒(2) : Since AddM is closed under products, we have ProdM⊂ AddM =

AddM.

(2)⇒(3) : ProdN = ProdM⊂ AddM⊂ AddN , hence N lies in AddM and

is product-complete by Theorem 4.6.

(3)⇒(4) : From (1)⇔(5) we have that N is Σ-pure-injective and product-rigid.

But then the pure submodule M of N is also Σ-pure-injective. Moreover, N

being product-rigid and lying in AddM implies by Lemma 4.7 that M is

product-rigid.

(4)⇒(5) : follows immediately from Lemma 4.7. 2

Chase proved in [28] that RR is product-complete if and only if R is right

perfect and left coherent. Thus, every left noetherian ring which is not left ar-

tinian is product-rigid by Corollary 4.2, but not product-complete. However,

the notions product-complete and product-rigid coincide for π-projective

modules, that is, modules M with all products of copies of M being projective.

Proposition 4.9 Assume that M is π-projective. Then the following state-

ments are equivalent.

(1) M is product-complete.

(2) M is (finitely) product-rigid.

(3) M is finitely generated over S.

Proof : (1)⇒(3) follows from [66, 4.2].

(3)⇒(2) : By assumption, every module A ∈ ProdM is projective, so if A is
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indecomposable, we have A ≃ eR for some local idempotent e ∈ R. But then

HomR (A,M) is a direct summand of HomR (R,M) ≃ SM and is therefore

finitely generated over S. We deduce that every matrix subgroup of M of the

form HA,x(M) with x ∈ A is a finitely generated left S-module. Hence M is

product-rigid. Moreover, we have just seen that all indecomposable modules in

ProdM are finitely presented, hence the notions of product-rigid and finitely

product-rigid coincide for M .

(2)⇒(1) follows from Proposition 4.8 and the fact that every π-projective

module is Σ-pure-injective by [99]. 2

Chase’s result asserting that perfectness on one side together with coherence

on the other side mean product-completeness can be extended to modules by

combining the results of Chapters 2 and 3. From Theorems 2.13 and 3.11

we then obtain a whole bunch of conditions characterizing product-complete

modules. We will only mention the most salient ones.

Proposition 4.10 The following statements are equivalent.

(1) M is product-complete.

(2) AddM = G(M), and all matrix subgroups of M are finitely generated

over S.

(3) SM is coperfect, and all finite matrix subgroups of M are finitely generated

over S.

If M⊂ modR, then (1) is further equivalent to

(4) AddM is a cover class, and M is covariantly finite in modR.

Proof : When M is Σ-pure-injective, every pure epimorphism of the form

M (K) → A splits, and hence G(M) = AddM. Then (1)⇔(2) follows imme-

diately from Theorem 3.11. Moreover, since every Σ-pure-injective module M

satisfies the descending chain condition for matrix subgroups, and in particu-

lar for finitely generated S-submodules, we obtain (1)⇒(3). Conversely, if M

satisfies the descending chain condition for finitely generated S-submodules

and all finite matrix subgroups are finitely generated S-submodules, then M

obviousy satisfies the descending chain condition for finite matrix subgroups

and is therefore Σ-pure-injective. But matrix subgroups of Σ-pure-injective

modules are always finite matrix subgroups [97, p. 704], and so we can even

conclude that (3)⇒(2). Finally, (3)⇔(4) is just Theorem 2.13 together with

Corollary 3.3. 2

In particular, the above Proposition contains a module-theoretical proof
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for a result which Krause and Saoŕın have proven with functorial methods [66,

4.2]. We also obtain a new proof for their characterization of finitely generated

product-complete modules.

Corollary 4.11 [66, 3.9] Assume that MR is finitely generated. Then MR is

product-complete if and only if S is left coherent and right perfect, and SM is

finitely presented.

Proof : The only-if part follows from Theorem 3.17 and from the fact that

finitely generated Σ-pure-injective modules have a semiprimary endomorphism

ring [69]. For the if-part, we observe that under the given assumptions, M

has a finite decomposition in modules N1, . . . , Nr with local endomorphism

ring [49, 3.14] and J(S) is right T-nilpotent. This implies that the family

(N1, . . . , Nr) is T-nilpotent, and thus SM is coperfect by Corollary 2.7. Since

SM is coherent, we then conclude from Theorem 3.17 and Corollary 3.3 that

condition (3) in Theorem 4.10 is satisfied, and the proof is complete. 2

We now describe the pure-projective product-complete modules over artin

algebras.

Theorem 4.12 Assume that R is an artin algebra with ordinary duality

D : modR→ Rmod and that M ⊂ modR. Let M∗ be the subcategory

of Rmod consisting of all duals D(X) of modules X ∈ M, and set M∗ =
∐

i∈I D(Mi). Then the following statements are equivalent.

(1) M is product-complete.

(2) G(M) and G(M∗) are closed under products.

(3) G(M) is closed under products, and M is contravariantly finite in modR.

(4) M∗ is product-complete.

Proof : (1)⇒(2) : G(M) is closed under products by Proposition 4.10. As

far as G(M∗) is concerned, we argue as in [97, Corollary 12] and use the

fact that M is Σ-pure-injective to deduce from [97, Proposition 3] that M∗

is endonoetherian. Of course, all matrix subgroups of M∗ are then finitely

generated over the endomorphism ring, and the claim follows from Theorem

3.11.

(2)⇒(3) : When G(M∗) is closed under products, we know from Theorem 3.11

and Corollary 3.3 thatM∗ is covariantly finite in Rmod. Hence, applying D,

we obtain that M is contravariantly finite in modR.
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(3)⇒(1) : We claim that G(M) is closed under direct limits. This will imply

that AddM is a cover class by Theorem 2.13, and that ~M = G(M) is closed

under products, hence M is covariantly finite in modR by Theorem 3.4. So,

M will be product-complete by Proposition 4.10.

To prove the claim, observe first thatM∗ is covariantly finite in Rmod, hence
~M∗ is closed under products by Theorem 3.4. Let now AR be a module in
~M. By Lemma 2.11 there is a pure-exact sequence 0 −→ K −→

∐

k∈K Xk −→

A −→ 0 with Xk in M. Applying D, we obtain a pure-exact sequence 0 −→

D(A) −→
∏

k∈K D(Xk) −→ D(K) −→ 0 with D(Xk) ∈ M
∗, and since D(A)

is pure-injective, we infer that D(A) lies in ProdM∗, hence in ~M∗. Again

by Lemma 2.11, we deduce that there is a pure-exact sequence 0 −→ K ′ −→
∐

j∈J Yj −→ D(A) −→ 0 with Yj ∈ M
∗, which in turn implies that D2(A) ∈

ProdM. Since G(M) is closed under products, D2(A) is then contained in

G(M). But A is a pure submodule of D2(A), and G(M) is closed under pure

submodules by Proposition 2.12. So, we conclude that A belongs to G(M),

which proves our claim.

(2)⇔(4) holds by symmetry. 2

However, we will see in 6.15 a situation as in Theorem 4.12 where M is

product-rigid while M∗ is not.
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Left and right almost split morphisms are usually studied for categories of

finitely generated modules over artin algebras. In section 5.1, we consider left

and right almost split morphisms forM and interpret their existence in terms

of finiteness conditions for the modules SM and TN . An important role in

this context is played by the radicals r (M,C)S and T r (A,N) where A and

C are R-modules. In case that M is a finite subcategory consisting of mod-

ules with local endomorphism ring, we can restrict ourselves to the Jacobson

radical J(S) of S, and we obtain for instance that M has left (respectively,

right) almost split morphisms if and only if J(S) is a finitely generated left

(respectively, right) S-module (Corollary 5.9).

In Section 5.2, we then investigate when the property product-rigid is in-

herited by direct summands. We show that this is equivalent to the existence

of certain maps closely related to left almost split maps. As a consequence, we

obtain a description of the right artinian rings R which satisfy the condition

If A and {Bk}k∈K are indecomposables in modR such that A is a

direct summand of
∏

k∈K Bk, then A ∼= Bk for some k ∈ K,

answering a question posed by Auslander in [13].

In Section 5.3, we then combine our results to give a characterization of

endofinite modules in terms of product-rigidity, as well as in terms of the

existence of preenvelopes and left almost split maps (Theorem 5.12).

5.1 Left and right almost split morphisms

The results in this section will appear in [5].

Recall that for two modules XR, YR the radical r (X, Y ) denotes the col-

lection of all homomorphisms f : X → Y such that there is no isomorphism of
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the form Z → X
f
−→ Y → Z where Z is a module with local endomorphism

ring. Then r (X, Y ) is an EndR Y − EndRX - subbimodule of HomR (X, Y ).

Let us collect some properties of this bimodule.

Lemma 5.1 Let YR be a module with endomorphism ring E = EndR Y , and

let XR be an indecomposable module.

(1) J(E) ⊂ r (Y, Y ), with equality if Y =
∐n
i=1 Yi and all Yi have local endo-

morphism ring.

(2) (cp. [14, 2.4]) HomR (X, Y )/r (X, Y ) is either zero or a simple left E-

module.

(3) r (X, Y ) is a noetherian left E-module if and only if HomR (X, Y ) is a

noetherian left E-module.

Proof : The first assertion in (1) is well-known. For the second assertion,

assume that Y has a decomposition as stated. This means that E is semiper-

fect, that is, idY =
∑n
i=1 ei for local idempotents e1, . . . , en ∈ E. Then every

f ∈ r (Y, Y ) has the form f =
∑n
i=1 f ei where Ef ei is properly contained in

E ei and therefore lies in J(E) ei, which shows f ∈ J(E).

(2) Assume that there is a nonzero element f ∈ HomR (X, Y )/r (X, Y ). Since

X is indecomposable, f is a split monomorphism and therefore generates the

left E-module HomR (X, Y ). This yields the claim.

(3) Apply statement (2) on the exact sequence of E-modules

0 −→ Er (X, Y ) −→E HomR (X, Y ) −→E HomR (X, Y )/r (X, Y ) −→ 0. 2

Following Auslander [14, §1], we say that a family of homomorphisms

(ak : A→ Xk)k∈K is finitely cogenerated if there is a finite subset K0 ⊂ K

such that the product map a : A→
∐

k∈K0
Xk induced by the ak with k ∈ K0

has the property that all ak, k ∈ K, factor through a. We start out with two

propositions describing when families of homomorphisms in
⋃

i∈I r (A,Mi) are

finitely cogenerated. The first one is proven as Proposition 1.4, cp. also [14,

1.10].

Proposition 5.2 The following statements are equivalent for a module A.

(1) The family of all homomorphisms in
⋃

i∈I r (A,Mi) is finitely cogenerated.

(2) The left T -module r (A,N) is generated by finitely many maps whose

images are contained in a finite subproduct
∏

i∈I0 Mi of N .

(3) There is a map a ∈ r (A,X) such thatX ∈ addM and all maps h ∈ r (A, Y )

where Y ∈ addM factor through a.
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If A is finitely generated, the following statement is further equivalent.

(4) r (A,M) is a finitely generated left S-module. 2

Proposition 5.3 The following statements are equivalent for a module A.

(1) Every family of homomorphisms in
⋃

i∈I r (A,Mi) is finitely cogenerated.

(2) r (A,N) is a noetherian left T -module.

If A is finitely generated, then (1) and (2) are further equivalent to

(3) r (A,M) is a noetherian left S-module.

Proof : Denote by pi : N →Mi and ei : Mi → N , i ∈ I, the canonical projec-

tions and injections, respectively.

(1)⇒(2) : For a submodule TU ⊂ r (A,N) we consider the family of homo-

morphisms {pi f | f ∈ U, i ∈ I} in
⋃

i∈I r (A,Mi). By assumption there are

indices i1, . . . , in ∈ I and maps fk ∈ U , 1 ≤ k ≤ n, such that the product map

a : A →
∐n
k=1Mik induced by the pik fk has the property that all other maps

of the form pi f with i ∈ I and f ∈ U factor through a. Then also all f ∈ U

factor through a, and so the fk, 1 ≤ k ≤ n, form a generating set of TU .

(2)⇒(1) : Let now (ak : A → Mik)k∈K be a family in
⋃

i∈I r (A,Mi), and

consider the T -submodule U =
∑

k∈K T fk of r (A,N) given by the maps

fk : A
ak−→ Mik

eik−→ N in r (A,N). By assumption TU =
∑

k∈K0
T fk for

some finite subset K0 ⊂ K. This implies that all fk, and therefore also all ak,

factor through the product map a : A →
∐

k∈K0
Mik induced by the ak with

k ∈ K0.

If A is finitely generated, the equivalence of (1) and (3) is proven with simi-

lar arguments, taking into account the fact that each map in r (A,M) has its

image in a finite subcoproduct of M . 2

As observed by Huisgen-Zimmermann [58], the module N is endonoetherian

if and only if for all finitely generated modules AR every family of homomor-

phisms in
⋃

i∈I HomR (A,Mi) is finitely cogenerated. Over a semilocal ring, we

can now restrict ourselves to families of homomorphisms in
⋃

i∈I r (A,Mi) with

A indecomposable.

Proposition 5.4 Assume that R is semilocal. Then the following statements

are equivalent.

(1) N is endonoetherian.

(2) M is endonoetherian.
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(3) For all finitely generated (or equivalently, for all finitely presented) inde-

composable modules AR every family of homomorphisms in
⋃

i∈I r (A,Mi) is

finitely cogenerated.

Proof : (2)⇔(3): M is endonoetherian if and only if HomR (A,M) is a noethe-

rian left S-module for every finitely generated (or equivalently, for every finitely

presented) module AR. Since R is semilocal, every finitely generated module

has a finite decomposition in indecomposables [49, 1.14]. So, it suffices to con-

sider finitely generated (or finitely presented) indecomposable modules A, and

the statement follows from 5.3 and 5.1. The equivalence (1)⇔(3) is proven by

the same arguments. 2

We now consider the dual situation. A family of homomorphisms

(bk : Xk → C)k∈K is said to be finitely generated [14, §1] if there is a

finite subset K0 ⊂ K such that the coproduct map b :
∐

k∈K0
Xk → C induced

by the bk with k ∈ K0 has the property that all bk, k ∈ K, factor through b.

Let us describe when families of homomorphisms in
⋃

i∈I r (Mi, C) are finitely

generated. The arguments are dual to those employed above, and we will

therefore omit the proofs.

Proposition 5.5 The following statements are equivalent for a module C.

(1) The family of all homomorphisms in
⋃

i∈I r (Mi, C) is finitely generated.

(2) The right S-module r (M,C) is generated by finitely many maps whose

kernels contain a cofinite subcoproduct
∐

i∈I\I0 Mi of M .

(3) There is a map b ∈ r (X,C) such that X ∈ addM and all maps h ∈ r (Y, C)

where Y ∈ addM factor through b. 2

Proposition 5.6 The following statements are equivalent for a module C.

(1) Every family of homomorphisms in
⋃

i∈I r (Mi, C) is finitely generated.

(2) r (M,C) is a noetherian right S-module. 2

We now give a dual version of Proposition 5.4. In section 6.4, we will then

apply both results to pure-semisimple rings.

Proposition 5.7 Assume that R is semilocal. Further, let WR be a minimal

injective cogenerator of ModR, and M∗
S = HomR (M,W ) S. The following

statements are equivalent.

(1) M∗
S is noetherian.
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(2) For all finitely cogenerated indecomposable modules CR every family of

homomorphisms in
⋃

i∈I r (Mi, C) is finitely generated.

If R is a right Morita ring, then following statement is further equivalent.

(3) For all finitely generated indecomposable modules CR every family of ho-

momorphisms in
⋃

i∈I r (Mi, C) is finitely generated.

Proof : Since R is semilocal, there are only finitely many simple right

R-modules S1, · · · , Sn up to isomorphism. So, W ∼=
∐n
i=1Ci where Ci = E(Si)

is an injective envelope of Si.

(1)⇒(2) : If C is finitely cogenerated, then HomR (M,C)S is finitely

M∗-cogenerated, and the claim follows from Proposition 5.6.

(2)⇒(1) : By Proposition 5.6 we know that r (M,Ci)S is noetherian for all

1 ≤ i ≤ n, hence by the dual version of statement (3) in Lemma 5.1 also

HomR (M,Ci)S is noetherian for all 1 ≤ i ≤ n, and M∗
S is noetherian.

Assume now that R is a right Morita ring. Since R is right artinian, all finitely

generated modules are finitely cogenerated, which yields (2)⇒(3). Moreover,

since all Ci are finitely generated, we deduce (3)⇒(1) as above from 5.6 and

the dual version of statement (3) in Lemma 5.1. 2

Assume now that M consists of modules with local endomorphism ring

and let C be a module in M. Recall that a homomorphism b : X → C with

X ∈ addM is said to be right almost split in addM if b is not a split

epimorphism and any homomorphism h : Y → C where Y ∈ addM and h is

not a split epimorphism factors through b. We have seen in Proposition 5.5

that C has a right almost split morphism in addM if and only if the family

of all homomorphisms in
⋃

i∈I r (Mi, C) is finitely generated, see also [14, 1.9].

Inspired by Brune’s work [26], we will further say that C has generalized

right almost split morphisms in addM if every family of homomor-

phisms in
⋃

i∈I r (Mi, C) is finitely generated. Left almost split morphisms

and generalized left almost split morphisms in addM are defined du-

ally. Finally, we say that M has (generalized) right, respectively left,

almost split morphisms if (generalized) right, respectively left, almost split

morphisms in addM exist for every module belonging to M.

It is well known that these concepts can be interpreted in terms of the

functor category (Mop, Ab). More precisely, a module C ∈ M admits a right

almost split morphism in addM if and only if the radical of the functor HC =

HomR ( , C) | M : M→ Ab is finitely generated, see [14, §2]. Moreover, by

using an argument due to Brune [26, p. 444], we see that C has generalized right
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almost split morphisms in addM if and only if the functor HC is noetherian,

i. e. every subfunctor of HC is finitely generated. So,M has generalized right

(respectively, left) almost split morphisms if and only if it is a right (left)

noetherian category in the sense of [72, p. 19].

On the other hand, the above results enable us to interpret these notions in

terms of endoproperties. In particular, we have the following two Corollaries.

Observe that statement (3) in Corollary 5.8 has independently been obtained

by Dung [44, 2.3], [45, 3.11].

Corollary 5.8 Assume that the endomorphism ring of each Mi is local.

(1)M has generalized right almost split morphisms if and only if r (M,Mi) is

a noetherian right S-module for all i ∈ I.

(2)M has generalized left almost split morphisms if and only if r (Mi, N) is a

noetherian left T -module for all i ∈ I.

(3) If M consists of finitely generated modules, then M has (generalized)

left almost split morphisms if and only if r (Mi,M) is a finitely generated

(noetherian) left S-module for all i ∈ I. 2

Corollary 5.9 Assume that M is a finite subcategory consisting of modules

with local endomorphism ring.

(1)M has left (respectively, right) almost split morphisms if and only if J(S)

is a finitely generated left (respectively, right) S-module.

(2) M has generalized left (respectively, right) almost split morphisms if and

only if J(S) is a noetherian left (respectively, right) S-module.

(3) Assume that all Mi have finite length. ThenM has left (respectively, right)

almost split morphisms if and only if S is left (respectively, right) artinian if

and only ifM has generalized left (respectively, right) almost split morphisms.

Proof : Note first that we have M = N and S = T . Then (1) and (2) follow

from 5.2 and 5.3, or 5.5 and 5.6, respectively, and the fact observed in Lemma

5.1 that J(S) = r (M,M) ≃
⊕n
i=1 r (Mi,M) ≃

⊕n
i=1 r (M,Mi).

(3) If all Mi have finite length, then so does M , and S is therefore semiprimary.

Hence S is left artinian if and only if SJ(S) is finitely generated if and only

if SJ(S) is noetherian, and the symmetric statement holds on the right side.

This proves the claim. 2

We will see in 6.14 and 6.15 that there are categories with left and right

almost split morphisms where neither SS nor SM are noetherian. Moreover,
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we will see in section 6.4 that pure-semisimple rings can be interpreted in

terms of the existence of generalized left or right almost split morphisms.

5.2 Product-rigid subcategories

The fact that modules over artin algebras are finitely product-rigid was proven

by Auslander [13] using the existence of left almost split maps. A closer look

at his argument now yields a result describing when the property product-

rigid is inherited by subcategories. Note that M = {ZZp∞, IQ} ⊂ Mod ZZ is

an example of a product-rigid category with a subcategory {ZZp∞} which is

no longer product-rigid [66, 3.4], and another example for this phenomenon is

given in 6.16.

Theorem 5.10 The following statements are equivalent for an indecompos-

able module A.

(1) If M′ is subcategory of M and A ∈ ProdM′, then A is isomorphic to a

direct summand of a module in M′.

(2) There is a homomorphism f : A→ Y which is not a split monomorphism

and has the property that a homomorphism h : A→ X with X ∈ M factors

through f whenever A is not isomorphic to a direct summand of X .

Proof : We use Auslander’s arguments from [13, 2.3 and 2.4].

(2)⇒(1) : Consider a subcategory M′ of M and take a split monomorphism

h : A →
∏

k∈K Xk for some Xk ∈ M
′. Then there must be some k ∈ K such

that A is isomorphic to a direct summand of Xk, because otherwise h factors

through f , contradicting the fact that f is not a split monomorphism.

(1)⇒(2) : We put Hj = HomR (A,Mj) where j runs through the subset J ⊂ I

given by those Mi with no direct summand isomorphic to A. Then the product

map f : A →
∏

j∈JMj
Hj = Y defined by all homomorphisms in Hj , j ∈ J ,

has the required factorization property, and applying (1) to the subcategory

M′ = {Mj | j ∈ J} of M we see that f is not a split monomorphism. 2

So, all subcategories of M are (finitely) product-rigid if and only if any

(finitely presented) module A with local endomorphism ring admits a map

f : A→ Y as in condition (2) of the above Theorem 5.10. As a consequence,

if R is right artinian, then the property that all categories of finitely generated

indecomposables are finitely product-rigid is equivalent to the existence of

maps located between left almost split maps in ModR and left almost split

maps in modR. This answers question (1) of [13].



5.3 Endofinite modules 57

Corollary 5.11 The following statements are equivalent for a right artinian

ring R.

(1) If A and {Bk}k∈K are indecomposables in modR such that A is a direct

summand of
∏

k∈K Bk, then A ∼= Bk for some k ∈ K.

(2) Any indecomposable moduleA in modR admits a map f : A→ Y with Y ∈

ModR such that the map HomR(f,X) : HomR(Y,X)→ HomR(A,X) satisfies

Im HomR(f,X) = r (A,X) for each X ∈ modR.

Proof : Let M be the category of all indecomposables in modR and apply

Theorem 5.10. Then, if (1) is satisfied, any indecomposable module A in

modR admits a map f ∈ r (A, Y ) with the property that a homomorphism

h : A→ X where X ∈ modR is indecomposable, factors through f whenever

X is not isomorphic to A. Suppose now that h ∈ r (A,X) and X ∼= A. Then

by length arguments we infer that Imh =
⊕n

j=1Xj where X1, . . . , Xn are

indecomposable and not isomorphic to A, and so we conclude that h factors

through f also in this case. This shows (1)⇒(2). The implication (2)⇒(1)

follows immediately from the fact that HomR (A,X) = r (A,X) whenever A

and X are nonisomorphic indecomposables in modR. 2

Abrams has given in [1] an example of a one-sided artinian ring where

condition (1) in the above Corollary 5.11 fails. We will discuss his results in

Corollary 5.13.

Let us also point out that the relationship between the existence of left

almost split maps and the behaviour of products was already investigated

by Krause in [65, 3.3]. His point of view, however, is different. He fixes a

module A, which he assumes to be pure-injective, and shows that A satisfies

condition (1) of Theorem 5.10 for any skeletally small subcategoryM of ModR

consisting of indecomposable (pure-injective) modules if and only if there is a

left almost split map A→ Y in ModR.

5.3 Endofinite modules

Krause and Saoŕın have shown in [66, 4.1] that M is endofinite if and only if

every direct summand of M is product-complete. So, our results can also be

employed to characterize endofinite modules. We will focus on some equiva-

lent conditions which relate endofiniteness to the question of when the prop-

erty product-rigid is inherited by subcategories as well as to the existence of

preenvelopes and left almost split morphisms.
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Theorem 5.12 Assume that the endomorphism ring of each Mi is local.

Then the following statements are equivalent.

(1) M is endofinite.

(2) All subcategories of M are product-rigid and M is Σ-pure-injective.

(3) SM is coperfect, and for all subcategories M′ ⊂M and all finitely gener-

ated (finitely presented) modules AR, there exists an AddM′-preenvelope.

If all Mi are finitely generated, then (1) is further equivalent to

(4) SM is coperfect, and all direct summands of M are (π-)coherent over their

endomorphism ring.

(5)M has left almost split maps, SM is finitely generated, and S is a semipri-

mary ring.

On the other hand, if R is semilocal, then (1) is further equivalent to

(6) SM is coperfect, and for all subcategories M′ ⊂ M and all finitely gen-

erated (finitely presented) indecomposable modules AR, there exists a map

a ∈ r (A,X) such that X ∈ addM′ and all maps h ∈ r (A, Y ) where Y ∈

addM′ factor through a.

Proof : (1)⇔(2): As mentioned above, M is endofinite if and only if every

direct summand of M is product-complete. Observe that the direct summands

of the Σ-pure-injective module M have all the form M ′ ∼=
∐

i∈I′ Mi for some

subset I ′ ⊂ I. Hence condition (1) means that
∐

i∈I′ Mi is product-complete

for every subset I ′ ⊂ I, which is equivalent to (2) by Proposition 4.8.

(1)⇔(3): Assume that M is endofinite. Then M is Σ-pure-injective, and we

deduce as in 4.10 that SM is coperfect. Moreover, M is endonoetherian, and it

is well known that its direct summands are then endonoetherian as well. But

by Corollary 3.3, the second statement in condition (3) just means that for ev-

ery subset I ′ ⊂ I all matrix subgroups of M ′ =
∐

i∈I′ Mi of the form HA,x(M
′)

with AR finitely generated (respectively, finitely presented) are finitely gener-

ated over EndRM
′. Thus (1) implies (3). For the converse implication, we

note that coperfectness over the endomorphism ring is inherited to the mod-

ules M ′ by Proposition 2.7. So, from condition (3), we obtain for each M ′ that

EndRM ′M ′ is coperfect and all finite matrix subgroups of M ′ are finitely gener-

ated over EndRM
′, which means that M ′ is product-complete by Proposition

4.10. In particular, we obtain that M is Σ-pure-injective, and we complete the

proof as in (1)⇔(2).

(1)⇒(5) : Since the index set I has to be finite by [41, 4.5], the module M

is finitely generated and Σ-pure-injective. From [69] we then know that S is
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semiprimary. Moreover, SM is noetherian, and we deduce that SHomR (A,M)

and its submodule Sr (A,M) are finitely generated for all finitely generated

modules A. Since M consists of finitely generated modules, we thus obtain

from Proposition 5.2 the existence of left almost split maps.

(5)⇒(4) : Since S is semiprimary, hence semiperfect, the index set I has to be

finite and SJ(S) is therefore finitely generated by Corollary 5.9. This implies

that S is indeed left artinian, and so the finitely generated module SM is ar-

tinian and in particular coperfect. Moreover, MR and all its direct summands

are finitely generated endonoetherian modules and thus satisfy also the second

statement in condition (4).

(4)⇒(3) follows immediately from Theorem 3.17.

(1)⇔(6) is proven with similar arguments as (1)⇔(3), taking into account that

over a semilocal ring we can restrict to indecomposable finitely generated (or

finitely presented) modules AR and then apply Lemma 5.1 and Proposition

5.2 to verify that EndRM ′HomR (A,M ′) is finitely generated if and only if AR
admits a map as stated. 2

Observe that we cannot omit the second part of condition (5) in the above

Corollary. In fact, M can have left almost split maps though M is not even

product-rigid, see 6.14 and 6.15.

Moreover, if the Mi are not finitely generated, then (1) does no longer imply

(5). Indeed, in [79, p. 410] Ringel gives an example of an indecomposable

generic, i. e. endofinite and not finitely generated, module M such that S =

EndRM is semiprimary but not artinian, and hence the category M = {M}

does not have left almost split maps.

Following Abrams [1], we call a ring R (right) π-homogeneous if it has

following property: For any indecomposable projective right R-module P , all

indecomposable modules A ∈ ProdP are isomorphic to P . In [1], Abrams

gives an example of a (right) F-ring, i. e. a ring with all direct products of free

right R-modules being free, which is right artinian but not π-homogeneous.

For this purpose, he proves that certain F-rings are π-homogeneous if and only

if the category Pr of all indecomposable projective right R-modules has left

almost split maps. Observe that any F-ring is product-complete and therefore

Σ-pure-injective. On the other hand, a product-complete ring needs not be an

F-ring, see [43]. Employing Theorem 5.12, we can now extend Abrams’ result

to Σ-pure-injective rings, and moreover, we obtain that a Σ-pure-injective ring

is right π-homogeneous if and only if it is left artinian.
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Corollary 5.13 (cp. [1, Proposition 2 and Theorem 3]) The following state-

ments are equivalent for a Σ-pure-injective ring R.

(1) R is right π-homogeneous.

(2) All subcategories of Pr are product-rigid.

(3) Pr has left almost split maps.

(4) R is left artinian.

(5) The Jacobson radical J(R) is a finitely generated left R-module.

Proof : First of all, note that every indecomposable projective module P is

Σ-pure-injective by assumption, which implies that every indecomposable mod-

ule A ∈ ProdP has a local endomorphism ring. But then R is π-homogeneous

if and only if all indecomposable projective modules are product-rigid, or

by Proposition 4.8, if and only if all indecomposable projective modules are

product-complete. Using the fact that the class of product-complete modules

is closed under finite coproducts [66] together with Lemma 4.7, we then con-

clude that condition (1) is equivalent to (2).

Next, we know from [69] that every Σ-pure-injective ring R is semiprimary.

Thus there are local idempotents e1, . . . , en ∈ R such that {e1R, . . . , enR} is

a complete irredundant set of representatives of the isomorphism classes of

M = Pr. Then M =
∐n
i=1 eiR is endofinite if and only if so is RR [41, 4.5],

or in other words, if and only if R is left artinian. Moreover, M is a genera-

tor and is therefore finitely generated over S = EndRM . Furthermore, M is

Σ-pure-injective, and S is a semiprimary ring by [69]. So, Theorem 5.12 tells

us that the conditions (2), (3) and (4) are equivalent. Finally, the equivalence

of (4) and (5) follows from the fact that R is semiprimary. 2
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6 APPLICATIONS AND EXAMPLES

The aim of this chapter is twofold. On one hand, we exhibit some applications

of the results obtained in the previous chapters. On the other hand, we illus-

trate our investigations by studying some special cases, like hereditary artin

algebras or pure-semisimple rings.

6.1 Tilting theory

We begin by applying some of our results to tilting theory. We consider here

only classical, that is, finitely generated tilting or cotilting modules. An ex-

ample of an infinite-dimensional tilting module will be given in section 6.3.

According to Colpi [33], a right module MR over a ring R is said to be a

∗ -module if it induces an equivalence of categories in the sense of Menini-

Orsatti’s Representation Theorem [73]. This means that if we put S = EndMR

and M∗ = HomR (M,W ) for some injective cogenerator WR, then the functors

F = HomR (M, ) : ModR→ ModS and G = ⊗SM : ModS → ModR induce

mutually inverse equivalences between the category GenM of M-generated

R-modules and the category CogenM∗ of M∗-cogenerated S-modules. It was

established in [88] that ∗ -modules are always finitely generated.

Proposition 6.1 Let R be right noetherian, and assume that MR is a

∗ -module. Then the following statements hold true.

(1) M is contravariantly finite in modR.

(2) S is right π-coherent, and Y = {YS ∈ CogenM∗
S | Y is finitely generated }

consists of finitely presented modules.

(3) genM = presM ⊂ modR, and F and G induce mutually inverse equiva-

lences between genM and Y .

(4) M is covariantly finite in modR if and only if S is left (π-)coherent and
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SM is finitely generated.

(5) All matrix subgroups of MR are finitely generated over S if and only if S

is left strongly coherent and SM is finitely generated.

Proof : (1) MR is finitely generated and hence noetherian. By [90, 27.3] we

then know that the category σ[M ] of all M-subgenerated modules is locally

noetherian. From [35, 3.2 and 6.1] it then follows that F (X)S is finitely gener-

ated for all X ∈ genM . Since R is right noetherian, for every finitely generated

module XR we have τM(X) ∈ genM , and F (X)S ∼= F (τM(X))S is therefore

finitely generated. By Corollary 1.5 this means that M is contravariantly fi-

nite in modR.

(2) follows from (1) and Corollary 3.24.

(3) Since MR is a ∗ -module, we have GF (X) ∼= X for all X ∈ GenM . So,

the functor G maps a projective presentation of F (X) to an M-presentation

of X . Now, if X ∈ genM , then we know by the above that F (X)S is finitely

presented. This yields an M-presentation Mm →Mn → X → 0.

(4) IfM is covariantly finite in modR, then we know from Theorem 3.17 and

Proposition 3.26 that SM and SS are π-coherent. Conversely, we claim that

under the stated assumptions, all finite matrix subgroups of MR are finitely

generated over S. Covariantly finiteness will then follow from Corollary 3.3.

Recall that we have used in the proof of 3.27 a result of Zimmermann [101]

asserting that every matrix subgroup HY,y(SS) of SS is isomorphic as a left

S-module to the S-submodule HG(Y ),y(MR) of Mn defined in 3.2, where y =

(y⊗m1, . . . , y⊗mn) and m1, . . . , mn is a generating set of MR. For a ∗ -module

which is finitely generated over its endomorphism ring, there is also a sort of

converse relationship. More precisely, every matrix subgroup HA,a(M) of MR is

an S-epimorphic image of an S-submodule of Sn of the form HY,y(SS) for some

n ∈ IN , Y ∈ ModS and y ∈ Y n. In fact, since SM is finitely generated, we

know from [8, Proposition 1.2] that every module AR has a GenM -preenvelope

f : A→ X , where XR can be chosen in genM if AR is finitely generated. Ob-

viously, HA,a(M) then equals HX,x(M) with x = f(a). Further, the module

X ∈ GenM has the form X ∼= G(YS) with Y = F (X) ∈ ModS, and the map

ρX : Y ⊗SM = GF (X)→ X given by α⊗m 7→ α(m) is an isomorphism. So,

there are elements y = (y1, . . . , yn) ∈ Y n and m = (m1, . . . , mn) ∈ Mn such

that x = ρX(
∑n
j=1 yj ⊗ mj). We then obtain the desired result according to

the following commutative diagram with S-linear maps
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HomS (Y, S) ≃ HomR (Y ⊗S M,M) ≃ HomR (X,M)

↓εy εx↓

HY,y(SS) HX,x(M)
⋂ ⋂

Sn ≃ HomR (Mn,M)
εm

−−−−−−−−→ SM

where εy and εx are defined as in Proposition 3.2. Now, if we start with a

finitely generated module AR, then XR ∈ genM and YS is therefore finitely

presented. Moreover, since S is left coherent, we know from Corollary 3.5 that

all finite matrix subgroups of SS are finitely generated left ideals. Hence we

deduce from Proposition 3.2 that HY,y(SS) and HA,a(M) are finitely generated

over S, and our claim is proven.

(5) The only-if part follows from Proposition 3.27, the if part is shown as in

(4). 2

We now turn to tilting modules. A module MR is called a (classical)

tilting module if it satisfies

(i) pd(MR) ≤ 1;

(ii) Ext1R(M,M) = 0;

(iii) there is no nonzero module X such that HomR(M,X) = Ext1R(M,X) = 0;

(iv) MR is finitely presented;

or equivalently, if MR is a faithful ∗ -module such that SM is finitely generated

[34]. Note that SMR is then faithfully balanced and SM is a tilting module,

too. Condition (iii) can also be replaced by the more usual condition

(iii’) There is an exact sequence 0 −→ R −→ M0 −→ M1 −→ 0 with M0 and

M1 in addM .

If MR is a tilting module, then we have a further pair of mutually in-

verse equivalences which is given by the derived functors F ′ = Ext1R (M, ) :

ModR → ModS and G′ = TorS (M, ) : ModS → ModR. This was first

proven for finitely generated modules over artin algebras by Brenner and But-

ler [25] and later extended to the category of all modules over an arbitrary ring

by Colby and Fuller [31]. More precisely, the pair (GenM,KerF ) is a torsion

theory in ModR, the pair (KerG,CogenM∗) is a torsion theory in ModS,

and we have equivalences GenM
F,G
←→ CogenM∗, and KerF

F ′,G′

←→ KerG. In
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the artin algebra case, moreover, these equivalences can be restricted to the

categories of finitely presented modules.

We are now going to see that the above equivalences can be restricted to

the categories of finitely presented modules also when R is right noetherian.

Observe that S then need not be right noetherian, as shown by an example

of Tachikawa and Valenta [89, §1]. However, we know from Proposition 6.1

that S is right coherent and M∗
S is π-coherent, and this will be enough for our

purpose. But let us first comment on the assumption that R is noetherian.

Remark 6.2 The following statements are equivalent for a tilting module MR.

(1) R is right noetherian.

(2) MR is noetherian.

(3) Every finitely generated module has an addM-precover, and M∗
S is

π-coherent.

(4) F carries finitely generated modules to finitely presented modules.

Proof : (1)⇔(2) is clear since MR is finitely generated and R is finitely M-

cogenerated.

(1)⇒(3) is shown in Proposition 6.1.

(3)⇒(4) : From Corollary 1.5, we know that F carries finitely generated mod-

ules to finitely generated modules. But since M∗
S is π-coherent, this implies

(4).

(4)⇒(2) : Let 0 −→ A −→ M −→ L −→ 0 be an exact sequence. Take a

generating set f1, . . . , fn of the finitely presented module YS = F (L), construct

the coproduct map f : Mn → L and set K = Ker f . Of course, f is an addM -

precover of L ∈ genM , and so f and F (f) are epimorphisms. From the long

exact sequence 0 → F (K) → F (Mn)
F (f)
−→ Y → F ′(K) → F ′(Mn) = 0, we

then deduce that K lies in KerF ′ = GenM , see [31]. In the commutative

diagram

GF (K) −−−→GF (Mn)−−−→G(Y )−−−→0

↓ρK ↓ρMn ↓

0−−−→ K −−−→ Mn −−
f
−→ L −−−→0

we thus have that ρK and ρMn are isomorphisms, and we conclude that L ≃

G(YS) is finitely presented since so are YS and MR. But this means that AR

is finitely generated, and the proof is complete. 2

Let us now show the Brenner-Butler Theorem for the noetherian setting.
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Theorem 6.3 (Tilting Theorem) Let R be a right noetherian ring and

MR a tilting module. Denote T = genM , F = KerF ∩modR, X = KerG ∩

modS, and Y = CogenM∗
S∩modS. Then (T ,F) is a torsion theory in modR,

(X ,Y) is a torsion theory in modS, and there are equivalences T
F,G
←→ Y and

F
F ′,G′

←→ X .

Proof : We will explain the crucial points and only give a brief outline of

the rest of the proof. We start with a module Z ∈ modS, denote by t(Z) the

trace of the torsion class KerG in Z and consider the canonical exact sequence

0 −→ t(Z)
α
−→ Z −→ Z/t(Z) −→ 0. Recall that S is right coherent and that

the finitely generated modules in CogenM∗
S are finitely presented by Propo-

sition 6.1. Hence ZS is coherent and Z/t(Z) ∈ modS. Thus t(Z) is finitely

generated and even finitely presented, that is, t(Z) ∈ X .

As a first consequence, we obtain that every Z ∈ modS with HomS (X,Z) = 0

for all X ∈ X has α = 0 and therefore belongs to Y , from which we immedi-

ately conclude that (X ,Y) is a torsion theory in modS.

Next, we show that the functor G′ carries finitely presented modules to finitely

presented modules. In fact, if Z ∈ modS, then G′(Z)R ≃ G′(t(Z))R. More-

over, since the modules in KerF are generated by R/τM (R) where τM (R) de-

notes the trace of M in R, we have KerG = GenX with X = F ′(R/τM(R)).

So, we have an exact sequence 0 −→ K −→ Xn −→ t(Z) −→ 0 where

n ∈ IN and KS is finitely generated. This yields an exact sequence G′(Xn)→

G′(t(Z)) → G(K) → G(Xn) = 0. Since G′(Xn) and G(K) are finitely gener-

ated, we conclude that G′(Z)R is finitely generated.

Let us now turn to F ′. It is well known that F ′(R)S is finitely presented,

which can easily be verified by employing condition (ii) and (iii’). Moreover,

by condition (i), any exact sequence 0 −→ K −→ Rm −→ X −→ 0 yields

an exact sequence F ′(K)S → F ′(Rm)S → F ′(X)S → 0. So, F ′ carries finitely

generated modules to finitely generated modules. Further, if X is finitely pre-

sented, then KR and therefore also F ′(K)S are finitely generated, which shows

that F ′(X)S is finitely presented as well.

Finally, the noetherian assumption ensures that (T ,F) is a torsion theory in

modR. By the above considerations, the proof is now complete. 2

In the artin algebra case, the usual duality D : modR → Rmod provides

also a dual version of the Tilting Theorem, relating the dual notion of a cotilt-

ing module to Morita duality, just as tilting modules are related to Morita

equivalence.
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In the general case, however, the situation for cotilting modules seems to

be more complex. The first work aiming to a generalization of the cotilting

modules considered in the representation theory of artin algebras, was done by

Colby in [32]. He extended the notion of cotilting to modules which are finitely

generated over a noetherian ring and also noetherian over their endomorphism

ring, and proved a Cotilting Theorem for this setting.

Another generalization has later been studied by Colpi, D’Este, Tonolo and

Trlifaj in [37] and [39]. Their definition of a cotilting module is obtained by

dualizing the definition of a (possibly not finitely generated) tilting module

given in [40]. In recent work of Colpi, Fuller and Tonolo [36], [38] [86] it is

shown that also this kind of cotilting theory extends Morita duality. Observe,

however, that even in the noetherian situation, this concept of cotilting is quite

different from the one investigated by Colby in [32], see [4, Examples 2.1 and

2.4].

As an attempt to find a bridge between these two approaches, we have

discussed in [4] a notion of cotilting module endowed with certain finiteness

conditions. We call a module MR over an arbitrary ring R a finitely cotilting

module if it satisfies the following conditions:

(i) id(MR) ≤ 1;

(ii) Ext1R(M,M) = 0;

(iii) there is no nonzero module X such that HomR(X,M) = Ext1R(X,M) = 0;

(iv) MR is finitely generated;

(v) the functor ∆ = HomR( ,M) : ModR→ SMod carries finitely generated

modules to finitely generated modules.

Our concept coincides with Colby’s definition in [32] when we restrict our

attention to Morita rings [4, Theorem 3.3]. On the other hand, it coincides

with the definition given by Colpi, D’Este and Tonolo [37] in case the module

is finitely generated and product complete [4, Proposition 2.2]. In particular,

all three notions coincide with the usual cotilting modules when we are dealing

with finitely generated modules over artin algebras.

Condition (v) in the above definition means by Theorem 3.17 and Corollary

1.5 that SM is π-coherent, or in other words, that ∆ : ModR→ SMod carries

finitely generated modules to finitely presented modules. So, according to

Remark 6.2, finitely cotilting modules can be viewed as the dual counterparts
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of noetherian tilting modules, though they need not be noetherian, neither

over the ground ring nor over the endomorphism ring [4, Example 3.6].

This is essentially the reason why Colby’s Cotilting Theorem [32, 2.4] ex-

tends to our setting. We consider the functors ∆ = HomR( ,M) : ModR →

SMod and Γ = Ext1R( ,M) : ModR → SMod, and denote by ∆ and Γ also

the corresponding functors SMod→ ModR induced by SM .

Theorem 6.4 (Cotilting Theorem [4, 4.4]) Let R be an arbitrary ring

and SMR a faithfully balanced bimodule which is a finitely cotilting module

on both sides. Define subcategories of ModR, respectively of SMod, by set-

ting Y = {Y ∈ CogenM | Y is finitely generated }, X = {X ∈ Ker ∆ |

X is finitely generated }, and X ′ = {X ∈ Ker ∆ | X is finitely presented }.

Then (X ,Y) is a torsion theory in the category of all finitely generated right

R-modules, respectively left S-modules. Moreover, Y consists of finitely pre-

sented modules, and there are dualities ∆ : Y ←→ Y and Γ : X ′ ←→ X ′.

Remark 6.5 [4, 4.5] In the situation of Theorem 6.4, we have that X = X ′ if

and only if Γ carries finitely generated modules to finitely generated modules,

which is further equivalent to R being right noetherian, resp. S being left

noetherian.

We remark that this approach to cotilting theory has then been further

considered in [87].

6.2 Cofinendo modules

In this section, we describe the modules M such that every right R-module has

a ProdM -precover. We prove that every Σ-pure-injective module M has this

property (Proposition 6.10). Moreover, we compare the class of all modules

with this property with the class of product-complete modules. The relation-

ship between these two classes resembles the relationship between noetherian

and artinian rings.

Let us first observe that Rada’s and Saoŕın’s result 1.2(2) has the following

consequence.

Proposition 6.6 Let AR be a module and J = HomR (A,M). Then A has an

AddM -preenvelope if and only if the left EndRM
(J)-module HomR (A,M (J))

is finitely generated.
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Proof : Let a : A→ X be an AddM -preenvelope. From 1.2(2) we know that

a factors through a map a′ : A → M (J). But then also a′ is an AddM -

preenvelope, and in particular, the map HomR (a′,M (J)) : EndRM
(J) →

HomR (A,M (J)) is surjective. For the converse implication, let c1, . . . , cn be

a generating set of HomR (A,M (J)) over EndRM
(J). Using again 1.2(2), it

is easy to see that the product map c : A → M (J) n induced by the ck is an

AddM -preenvelope. 2

We will now give a dual version of Proposition 6.6.

Proposition 6.7 A module CR has a ProdM -precover if and only if there is

a cardinal β such that both of the following conditions are satisfied.

(i) The right EndRM
β-module HomR (Mβ , C) is finitely generated.

(ii) For every cardinal α, all maps Mα → C factor through some coproduct of

copies of Mβ .

Proof : Let b : Y → C be a ProdM -precover. Then there is a cardinal

β and a split epimorphism p : Mβ → Y , and for any cardinal α, all maps

Mα → C factor through b and thus through bp. So, condition (ii) is satisfied.

Moreover, if we take α = β, we see that the map HomR (Mβ, bp) : EndRM
β →

HomR (Mβ , C) is an epimorphism, which shows (i).

The converse implication is proven with arguments dual to those in 6.6. 2

Given a module CR, let us say that MR is C-cofinendo if the above condi-

tion (ii) is satisfied, that is, if there is a cardinal β such that for every cardinal

α, all maps Mα → C factor through some coproduct of copies of Mβ . Ob-

serve that if C is an injective cogenerator, then the definition of C-cofinendo

coincides with the notion of cofinendo introduced in [8]. We showed in [8, 1.6]

that a module M is cofinendo if and only if the injective cogenerator C has a

ProdM -precover. We now give a natural extension of this result.

Corollary 6.8 Let CR be pure-injective. Then C has a ProdM -precover if

and only if M is C-cofinendo.

Proof : By 6.7, we have only to prove the if-part. We use the same arguments

as in [8, 1.6]. Assume that M is C-cofinendo, and consider the coproduct map

b′ : M ′ = Mβ (I) → C induced by all maps in I = HomR (Mβ , C). Observe

that M ′ is a pure submodule of Y = Mβ I ∈ ProdM , and since C is pure-

injective, b′ can be lifted to a map b : Y → C. Take now a map h : X → C
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where X ∈ ProdM . Then there is a split epimorphism p : Mα → X , and

by assumption, the map hp : Mα → C, and therefore also the map h, factor

through b′, hence through b. Thus b is a ProdM -precover. 2

We are now ready to characterize when ProdM is a precover class.

Corollary 6.9 ProdM is a precover class if and only if M is C-cofinendo for

every module C, and ProdM is closed under coproducts.

Proof : By 6.7 and 1.1(II), we have only to prove the if-part. We know that

for every module C there is a cardinal β such that every map Y → C

where Y ∈ ProdM factors through AddMβ . But then, taking the sets

XC = {Mβ} ⊂ ProdM , we see that ProdM is locally finally small. Since

ProdM is also closed under coproducts, we obtain our claim from 1.1(II). 2

Proposition 6.10 If M is Σ-pure-injective, then ProdM is a precover class.

Proof : By a result of Jensen and Gruson [62], we know that there is a car-

dinal κ such that every product of copies of M is a direct sum of modules of

cardinality at most κ. Of course, the isomorphism classes of all κ-generated

modules lying in ProdM form a set K. Let K be the direct sum of all modules

in K, and P the direct product of all modules in K. By the above we then

have ProdM ⊂ AddK. Moreover, since ProdM is closed under products

and consists of Σ-pure-injective modules, P ∈ ProdM is Σ-pure-injective.

Hence the pure submodule K of P is also Σ-pure-injective and therefore a

direct summand of P . This proves K ∈ ProdM , so ProdK ⊂ ProdM ,

and further, by Σ-pure-injectivity, AddK ⊂ ProdK. We then conclude that

ProdM = AddK. This gives the claim, since all classes of the form AddK

are precover classes by 1.2 (1). 2

Modules such that ProdM is a precover class can be seen as the duals of

product-complete modules. We will now see that the relationship between

these two classes of modules resembles the relationship between noetherian

and artinian rings. Indeed, if M is product-complete, then M is Σ-pure-

injective and ProdM = AddM is a cover class by Proposition 2.2. However,

the converse is far from being true.
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Proposition 6.11 Let E be a minimal injective cogenerator of ModR.

(1) ER is product-complete if and only if R is right artinian.

(2) ProdE is a cover class if and only if R is right noetherian.

Proof : (2) is shown in [48, 2.1]. Let us prove (1). By the above observation

we know that ProdE is a cover class, hence R is right noetherian. So, E is

the coproduct of the injective envelopes E(Si) of a complete irredundant set of

simple right modules {Si | i ∈ I}. Moreover, every indecomposable injective

module is an object of ProdE having a local endomorphism ring, and there-

fore is isomorphic to some E(Si) since E is product-rigid by 4.8. This shows

that R is right artinian. Conversely, assume that R is right artinian. Then

every product of copies of E is injective, hence a coproduct of injective en-

velopes of simple right modules, in other words, a coproduct of indecomposable

summands of E. By 4.6 the module E is then product-complete. 2

Let us close this section with another example of a module M such that

ProdM is a cover class. It generalizes an example considered in [82, 3.4], [1],

and [37, 5.3], [43].

Example 6.12 Let F,G be two skew-fields and FVG a bimodule which is

infinite-dimensional over F . Then R =





F FVG
0 G



 is a hereditary semipri-

mary ring. In particular, R is left coherent and right perfect, and thus RR

is product-complete and all projectives are π-projective by [28]. However,

P = e1R is not finitely generated over EndR P and hence not product-rigid

by 4.9. This implies that ProdP contains an indecomposable module not iso-

morphic to P , and since the class ProdP is contained in the class Pr of all

projective modules, we conclude that ProdP must contain e2R.

We now claim that ProdP = Pr. In particular, ProdP will then be a cover

class. We have only to verify the inclusion ProdP ⊃ Pr. By the above consid-

erations we already know that all indecomposable projectives are in ProdP .

Moreover, R is semiperfect, and so every projective module X has the form

X =
∐

j∈J Xj for some indecomposable projective modules Xj. But then

X ≃ P1 ⊕ P2 where Pk is a coproduct of copies of ek R, k = 1, 2. Since RR is

product-complete, RR and its direct summands ek R are Σ-pure-injective, and

so is X . This shows that X is a direct summand in
∏

j∈J Xj ∈ ProdP , and

the claim is proven. 2
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6.3 Hereditary artin algebras

Throughout this section, we assume that R is an artin algebra with the usual

duality D : modR → Rmod. We denote by P = {Pj | j ∈ J}, respectively

I = {Ik | k ∈ K}, a complete irredundant set of representatives of the isomor-

phism classes of the indecomposable preprojective right modules, respectively

of the indecomposable preinjective left modules, and we set PR =
∐

j∈J Pj , and

RI =
∐

k∈K Ik. Observe that D(PR) ∼=
∏

j∈J D(Pj) ∼=
∏

k∈K Ik.

Let us start with the following observation.

Proposition 6.13 The following statements are equivalent.

(1) R is of finite representation type.

(2) RI is endonoetherian.

(3) RI is product-complete.

(4) PR is product-complete.

(5) PR is Σ-pure-injective.

(6) AddP is a cover class.

Proof : Of course, if R is of finite representation type, then every module is

endofinite [97, Theorem 6] and hence endonoetherian and product-complete.

So, (1) implies any of the other conditions. Moreover, (4) is equivalent to (3)

by Theorem 4.12, and, arguing as in [97, Corollary 12], we see that (5)⇔(2).

Now, we know from section 4.2 that (4) implies (5). Further, it follows from

Theorem 2.13 and Corollary 2.7 that (5) implies (6) and that (6) just means

that the family (Pj)j∈J is locally T-nilpotent, hence T-nilpotent. But the latter

implies by [14, 5.6] that R is of finite representation type. 2

From now on, let R be a finite-dimensional hereditary algebra over a field.

Proposition 6.14 (1) P is covariantly finite in modR and has right and left

almost split maps.

(2) PR is product-rigid.

(3) I is contravariantly finite in modR and has right and left almost split

maps.

(4) I is coperfect over its endomorphism ring.

Proof : (1) and (3) are well-known.

For (2), it is enough to show that every module AR with a nonzero map

A → P has a preprojective summand. This is proven as in [3, 4.1, step (4)]
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using the fact that the almost split sequences ending at the indecomposable

preprojective modules actually are almost split sequences in ModR.

To verify (4), we consider a chain X1 → X2 → X3 → . . . of non-zero non-

isomorphisms between indecomposable preinjective modules and let I0, . . . , I∞
be the preinjective partition [16]. Now, if X1 belongs to the layer In, then

X2, X3, . . . belong to the finite subcategory I0 ∪ . . . ∪ In, see [3, 4.1], [9]. So,

we conclude from the Lemma of Harada and Sai that the family (Ik)k∈K is

T-nilpotent, and Corollary 2.7 completes the proof. 2

Proposition 6.15 (1) The following statements are equivalent.

(a) I is finitely generated over its endomorphism ring.

(b) I is covariantly finite in modR.

(c) P is contravariantly finite in modR.

(d) R is of finite representation type.

(2) The following statements are equivalent.

(a) RI is Σ-pure-injective.

(b) PR is endonoetherian.

(c) R is tame.

In particular, RI is not product-rigid in general, though its dual always is.

Moreover, in general, EndR P is not left noetherian.

Proof : (1) (a)⇔(b) follows from [16, 4.5] since addI is closed under factors,

see also [8, 1.2].

(b)⇔(c) and (d)⇒(a) are clear.

(b)⇒(d) : Let I0, . . . , I∞ be the preinjective partition, and assume A ∈ I∞.

Then for each n ∈ IN there is a non-split monomorphism fn : A→ Yn where

Yn ∈ addIn. On the other hand, by assumption there is an addI-preenvelope

a : A → B, and there is an m ∈ IN such that all indecomposable summands

of B lie in
⋃

l≤m Il. But since all fn factor through a and any indecomposable

module Y with a nonzero map B → Y lies in
⋃

l≤m Il (see [3], [9]), we obtain a

contradiction. So, modR consists of preinjectives, and this means by [16, 6.1]

that R has finite representation type.

(2) (a)⇔(b) is shown as in 6.13, and (a)⇔(c) was proven by Lenzing in [70,

4.6].

In particular, we infer from Propositions 4.8 and 6.13 that I is not product-

rigid whenever R is representation-infinite tame. On the other hand, PR =
∐

k∈K D(Ik) is always product-rigid by 6.14, and then we know from Lemma
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4.7 that D(I) ∼=
∏

k∈K D(Ik) is product-rigid as well. Finally, when R is wild,

then P is not endonoetherian, and since P is a generator and is therefore

finitely generated over EndR P , we infer that EndR P is not left noetherian. 2

As mentioned on page 56, the direct sum of all Prüfer groups and IQ is

a product-complete ZZ-module, while the single Prüfer groups are not even

product-rigid. We now exhibit an analogous example over R. Consider the

direct sum T of a complete irredundant set of representatives of the isomor-

phism classes of the Prüfer modules and the (unique) generic R-module Q, see

[79]. As pointed out by Ringel, T is an infinite-dimensional tilting module in

the sense of [40], see [7, 1.4].

Proposition 6.16 T is product-complete, while the Prüfer modules are not

even product-rigid.

Proof : First of all, the Prüfer modules are infinite-dimensional indecompos-

able Σ-pure-injective but not endofinite, thus not product-rigid, see also [64].

Furthermore, since T is a tilting module, GenT is closed under products, see

[40] or [8]. Observe that T is a divisible module and that the class of all divis-

ible modules is closed under coproducts and epimorphic images by [79, 4.6].

So, we infer that every product of copies of T is divisible and therefore, by [79,

4.7], a coproduct of indecomposable preinjective modules, Prüfer modules and

copies of Q. Moreover, T (as every module over an artin algebra) is finitely

product-rigid. Hence we conclude that ProdT ⊂ AddT , which means that T

is product-complete by Theorem 4.6. 2

6.4 Pure-semisimple rings

We now illustrate some of the notions discussed in the previous chapters in

case that R is a left pure-semisimple ring. Recall that a ring R is said to

be left pure-semisimple if every left R-module is a direct sum of finitely

presented modules, or equivalently, if every left R-module is pure-injective.

It is well known that a ring has finite representation type if and only if it

is left and right pure semisimple, and it is conjectured that onesided pure

semisimplicity is sufficient, i. e. that every left (or right) pure semisimple ring

has finite representation type.

Proposition 6.17 The following hold true for a left pure-semisimple ring R.

(1) Every class M⊂ modR is covariantly finite in modR, product-rigid, and
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has (generalized) left almost split maps.

(2) A left module RC is product-complete if and only if it is finitely product-

rigid.

(3) By [95], [45] we know that Rmod has a preinjective partition. Let us

denote by I = {Ik | k ∈ K} a complete irredundant set of representatives of

the isomorphism classes of the indecomposable preinjective left modules and

set I =
∐

k∈K Ik. Then R is of finite representation type if and only if RI is

endocoherent.

Proof : (1) Since all pure-projective right R-modules are endonoetherian by

[97, Theorem 9], the claim follows immediately from Corollaries 3.3 and 4.2

and Proposition 5.4.

(2) By Proposition 4.8 we have only to prove the if-part. Now, every product

of copies of RC is a direct sum RC
I =

∐

k∈K Nk of finitely presented modules

Nk with local endomorphism ring, and since C is finitely product-rigid, each

Nk is isomorphic to an indecomposable direct summand of C. Then C is

product-complete by Theorem 4.6.

(3) By [95, Corollary B] we know that R is of finite representation type if

and only if I is finitely product-rigid. By Theorem 3.17 the latter condition is

verified whenever RI is endocoherent. Conversely, ifR is of finite type, then I is

a finitely generated endofinite module [97, Theorem 6], hence endocoherent. 2

Let us now turn to some characterizations of pure-semisimplicity. It is well

known that in the caseM = modR, closure under direct limits of the category

AddM means exactly that R is right pure-semisimple. From Theorem 2.13 we

then obtain a bunch of equivalent conditions which we collect in the following

corollary. Besides from (5) which seems to be new, these characterizations

were already given by Azumaya, Facchini and Simson [20, Proposition 5], [19,

Theorem 6], [83, Theorem 6.3].

Corollary 6.18 The following statements are equivalent.

(1) R is right pure-semisimple.

(2) Every right R-module has a pure-projective cover.

(3) Every right R-module is locally pure-projective.

(4) Every right R-module is a Mittag-Leffler module.

(5) Every pure-projective right R-module has a semiregular endomorphism

ring.

(6) Every finitely presented right R-module has a decomposition in modules
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with local endomorphism ring, and every family of indecomposable finitely

presented right R-modules is T-nilpotent.

(7) Every pure submodule (or every locally split submodule, or every local di-

rect summand) of a pure-projective right R-module is a direct summand. 2

We close the paper with a further result on pure-semisimple rings, which will

appear in [5]. Namely, by applying some results from section 5.1, we obtain a

new proof for a characterization of pure-semisimplicity in terms of generalized

right almost split morphisms given by Brune in [26] and later improved by

Zimmermann in [100]. Moreover, we give a dual characterization in terms of

generalized left almost split morphisms.

Theorem 6.19 (1) (cp. [26, §3, Corollary 1] and [100, p. 372]) A right ar-

tinian ring R is right pure-semisimple if and only if every finitely presented

indecomposable right R-module has generalized right almost split morphisms

in modR.

(2) A semilocal ring R is left pure-semisimple if and only if every finitely

presented indecomposable right R-module has generalized left almost split

morphisms in modR.

Proof : (1) Take M = modR and let WR be a minimal injective cogenerator

of ModR with E = EndRW . As observed by Zimmermann in [100, p. 372],

we can assume that R is a right Morita ring. In fact, by [100, Theorem

4], this property follows from the existence of right almost split morphisms

in modR for each simple non-projective module CR, and is therefore sat-

isfied whenever every finitely presented indecomposable right R-module has

generalized right almost split morphisms in modR or when R is right pure-

semisimple. So, the module WR induces a Morita-duality modR → E mod,

and we have that M∗ = E HomR (M,W ) S is an E-S-bimodule with E ∼=

HomR (HomR (M,W )⊗S M,W ) ∼= EndSM
∗ and S ∼= (EndEM

∗)op. More-

over, the EHomR (Mi,W ) form a complete irredundant set of representatives

of the isomorphism classes of the finitely presented left E-modules. Further,

we know from [61, Theorem 7] or [84] that R is right pure-semisimple if and

only if so is E, which means by [97, Theorem 6] that every pure-projective

left E-module is endonoetherian, or in other words, that the left E-module
∐

i∈I HomR (Mi,W ) is endonoetherian. But by Proposition 5.4 the latter is

equivalent to
∏

i∈I HomR (Mi,W ) ∼= EM
∗ being endonoetherian. So, we see
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that R is right pure-semisimple if and only if M∗
S is noetherian, and by Propo-

sition 5.7 the proof is complete.

(2) Take M as in (1). By 5.4 we know that every finitely presented indecom-

posable module AR has generalized left almost split morphisms in modR if and

only if M is endonoetherian. But the latter means that every pure-projective

module is endonoetherian, which by [97, Theorem 6] is equivalent to R being

left pure-semisimple. 2
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[66] H. Krause, M. Saoŕın, On minimal approximations of modules, In: Trends in the
representation theory of finite dimensional algebras (ed. by E. L. Green and B. Huisgen-
Zimmermann), Contemp. Math. 229 (1998) 227-236.

[67] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics 189,
Springer New York 1998.
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[85] J. Stock, Über die Austauscheigenschaft von Moduln, doctoral dissertation, Technis-
che Universität München, 1982.

[86] A. Tonolo, Generalizing Morita duality: a homological approach, to appear in J.
Algebra.

[87] A. Tonolo, On a finitistic cotilting-type duality, to appear in Comm. Algebra.

[88] J. Trlifaj, Every ∗-module is finitely generated, J. Algebra 169 (1994), 392-398.

[89] H. Valenta, Existence criteria and construction methods for certain classes of tilting
modules, Comm. Algebra 22 (1994), 6047-6072.

[90] R. Wisbauer, Grundlagen der Modul- und Ringtheorie, R. Fischer München 1988.

[91] J. Xu, Flat covers of modules, Springer Lecture Notes in Math. 1634 (1996).

[92] B. Zimmermann-Huisgen, Pure submodules of direct products of free modules, Math.
Ann. 224 (1976), 233-245.

[93] B. Zimmermann-Huisgen, Rings whose right modules are direct sums of indecom-
posables, Proc. Amer. Math. Soc. 77 (1979), 191-197.

[94] B. Zimmermann-Huisgen, Direct products of modules and algebraic compactness,
Habilitationsschrift, Technische Universität München 1980.

[95] B. Zimmermann-Huisgen, Strong preinjective partitions and representation type of
artinian rings, Proc. Amer. Math. Soc. 109 (1990), 309-322.

[96] B. Zimmermann-Huisgen, W. Zimmermann, Classes of modules with the exchange
property, J. Algebra 88 (1984), 416-434.

[97] B. Zimmermann-Huisgen, W. Zimmermann, On the sparsity of representations of
rings of pure global dimension zero, Trans. Amer. Math. Soc. 320 (1990), 695-711.

[98] W. Zimmermann, Rein injektive direkte Summanden von Moduln, Comm. Algebra 5

(1977), 1083-1117.

[99] W. Zimmermann, π-projektive Moduln, J. reine angew. Math. 292 (1977), 117-124.

[100] W. Zimmermann, Auslander-Reiten sequences over artinian rings, J. Algebra 119

(1988), 366-392.

[101] W. Zimmermann, lectures, University Munich 1998.

[102] W. Zimmermann, On locally pure-injective modules, preprint.

Address of the author:
Mathematisches Institut der Universität
Theresienstraße 39
D-80333 München
e-mail: angeleri@rz.mathematik.uni-muenchen.de


