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Abstract

We describe in homological terms the direct limit closure of a class C of modules over
aring R. We also determine the closure of the cotorsion pair € = (A, B) cogenerated by
C. As an application, we solve a problem of Fuchs and Salce on the structure of direct
limits of modules of projective dimension at most one over commutative domains. Then
we consider the case when R is a right coherent ring and C = P<%, the class of all
finitely presented modules of finite projective dimension. If findim R < oo then € is a
tilting cotorsion pair induced by a tilting module T'. We characterize closure properties
of A in terms of properties of T'. Finally, we discuss an example where A4 is not closed
under direct limits.

Let R be aring. Denote by P the class of all modules of finite projective dimension,
and by P<* the class of all finitely presented modules in P. For n < w let P,, be
the class of all modules of projective dimension at most n, and let P5* be the
corresponding subclass of P<*.

In this paper, we study the categories I'Q”Pn and HQ’PEOO of all direct limits of
modules in P, and P>, respectively. To this end, we consider the complete cotorsion
pair (A,, B,) cogenerated by P> and investigate the class A,.

Our main tool is a homological description of lig.An. We show that in many cases
the limit closure 1i_n>1.A of the first component in a cotorsion pair € = (A, B) consists
of all modules X satisfying Ext}, (X, B) = 0 for each pure-injective module B € B;
there is also a characterization of li_n)l.A in terms of vanishing of Tor (see Section 2).

This result allows us to discuss a more general question: What is the smallest
complete cotorsion pair € = (A, B) containing ¢ with A being closed under direct
limits? The question is of particular interest because of a classical result of Enochs
saying that in this case A is a covering class, and B an enveloping class, in ModR.
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In Corollary 2.4, we answer the question for cotorsion pairs cogenerated by classes of
finitely presented modules over right coherent rings.

Section 3 deals with an application to the particular case when n =1 and R is a
commutative domain. In Theorem 3.5, we solve a problem of Fuchs and Salce ([15,
Problem 22 on p.246]) by showing that a module belongs to lim Py if and only if it
has flat dimension at most one. Furthermore, we investigate the divisible modules of
projective dimension at most one and answer a question related to the Fuchs’ divisible
module ¢ ([14, Problem 6 in Chapter VI]).

In Section 4, we consider right coherent rings and continue our investigation
started in [4] of the complete cotorsion pair (A,B) cogenerated by P<®. If
findimR < oo, then we know from [4] that there is a tilting module 7" such that
B = T*. Furthermore, A = P if and only if the category AddT is closed under cok-
ernels of monomorphisms, and in this case the little and the big finitistic dimensions
of R coincide: findim R = Findim R.

Our focus here is on the category lig’P@o. Note that A is always contained in
ligp@o. Moreover, if P is closed under direct limits, e. g. if R is right perfect and
FindimR < oo, then A C li_1>n'P<°° C P. Using the tilting module T from [4], we
investigate closure properties of A. We characterize the cases A = lig”P«’o and
lig’lx‘>o = P in Theorems 4.2 and 4.7. In Theorem 4.3, we determine when A is a
definable class.

Finally, in Section 5, we study an important example in detail, namely the artin
algebra introduced by Igusa, Smalg, and Todorov [19]. In this case, we show that
A= l'ﬂ”P<oo fails while l'ﬂ”P<oo = P holds true.

1 Preliminaries

First, we fix our terminology and notation.

Let R be an arbitrary ring, ModR be the category of all (right) R-modules, and
modR the subcategory of all finitely presented modules. For a subcategory M of
Mod R, we denote by AddM (respectively add M) the subcategory of all modules
isomorphic to a direct summand of a (finite) direct sum of modules of M.

Following [24, p.210], we will say that a module M is FP, provided that M has a
projective resolution

o= Py —+P—---—>P—>F—>M-=0

where all P; with 7 < n are finitely generated. So FPg stands for finitely generated,



FP, for finitely presented, and a module M is FP, if and only if there are n < w, a
finitely presented module K, and a short exact sequence 0 - K — R — M — 0.
Notice that P;~*° coincides with the class of all FPy, modules of projective dimension
< 1. If R is right coherent and M is finitely presented then M is FP,, for all n > 1.

A. PRECOVERS AND PREENVELOPES. Let M be a subcategory of Mod R, and let A
be a right R-module. A morphism f € Hompg(A, X) with X € M is an M-preenvelope
(or a left M-approximation) of A provided that the abelian group homomorphism
Hompg(f, M): Hompg(X, M) — Hompg(A, M) is surjective for each M € M. An M-
preenvelope f € Hompg(A, X) of A is said to be special if f is a monomorphism and
Ext},(Coker f, M) = 0 for all M € M. An M-envelope of A is an M-preenvelope f €
Hompg (A, X) which is left minimal, that is, A is an automorphism of X whenever h €

Endg(X) satisfies hf = f. If it exists, an M-envelope is unique up to isomorphism.
The notions of an M-cover and a (special) M-precover are defined dually.
Finally, a subcategory C of modR is said to be covariantly (respectively, con-

travariantly) finite in modR if every finitely presented module has a C-preenvelope

(respectively, a C-precover).

B. CLOSURE UNDER DIRECT LIMITS. Let C be a class of modules. Denote by lim C
the class of all modules D such that D = lim,  C; where {C; | i € I} is a direct
system of modules from C.

In general, the class limC is not closed under direct limits:

Example 1.1 Let R = Z and let C = {A} where A is an indecomposable torsion-
free abelian group of rank r > 2 such that End(A) = Z. (There is a proper class of
such groups: by [10, XII.3.5], there exist arbitrarily large indecomposable torsion-free
abelian groups such that End(A) = Z.)

Consider the direct system {C, | n < oo} where C, = A for all n < oo and
fn + Cp — Chyq is the multiplication by n. Then hﬂn@o C,, coincides with the
injective envelope E(A) = Q™ of A.

Now, consider the direct system {D,, | n < oo} where D,, = E(A) for all n <
oo and g, : D, — D, is the projection on a fixed copy of Q in E(A). Then
liﬂn@o Dn=Q

On the other hand, Q ¢ lim C. Namely, let (C; | i € I} be a direct system with
Ci = Aforall s € I, and let D = limg, _ Cj. Since End(A) = Z and A is torsion-free,
all maps in the direct system are either monomorphisms or zero. It follows that either
D contains a copy of A, or else D = 0. Anyway, D has rank # 1, s0 D 2 Q. O



There is an important case when limC is always closed under direct limits. The
characterization goes back to Lenzing:

Lemma 1.2 [23] Let R be a ring, and let C be a full additive subcategory of mod R
which is closed under isomorphisms and direct summands. The following statements
are equivalent for a module A.

(1) A€ li_I>nC :

(2) There is a pure epimorphism [ ], ., X; — A for a sequence (X; |7 € I) of modules
from C.

(3) Every homomorphism h : F — A where F is finitely presented factors through a
module in C.

In particular, liglC is closed under direct limits, and liglC N modR = C.

Crawley-Boevey and Krause observed that Lenzing’s result implies a characteri-
zation of when ligc is a definable class of modules. Recall that a subcategory M of
Mod R is definable provided it is closed under direct limits, direct products and pure
submodules.

Theorem 1.3 [9, 4.2] [21, 3.11] Let R be a ring, and let C be a full additive sub-
category of modR which is closed under isomorphisms and direct summands. The
following statements are equivalent.

(1) C is covariantly finite in mod R.

(2) lim C is closed under products.

(3) Every right R-module has a ligngC—preenvelope.

(4) lim C is definable.

For example, if R is a left coherent and right perfect ring, then lig'Pfo" =P is
closed under products, so P;~*° is covariantly finite in modR, cf. [4], [18].

C. CoOTORSION PAIRS. Next, we recall the notion of a cotorsion pair. This is the
analog of the classical (non-hereditary) torsion pair where Hom is replaced by Ext!.
For a class of modules M C ModR, we set M** = {X € ModR | ExthL(M,X) =0
for all M € M} and 1* M = {X € ModR |ExtL(X, M) = 0 for all M € M}.
By the well-known properties of Ext collected below in Lemma, 1.4, the class Mt
is definable if M consists of finitely presented modules over a right coherent ring, and
the class 1t M is closed under direct limits if M consists of pure-injective modules.



Lemma 1.4 [13, Lemma 10.2.4], [5, Chap 1, Proposition 10.1] Let R be a ring, M
an R-module, and {(N,, fog) | @« < B € I} an arbitrary direct system of modules.
Then the following hold true for each n < w.

(1) Ext’y, (M, lim Ny) = lim . Extp (M, N,) provided that M is FP,, ;.

(2) Ext’, (liﬂael Ny, M) & Im  Extp (Nu, M) provided that M is pure-injective.

Let A, B C ModR be classes of modules. Then (A, B) is said to be a cotorsion
pair if A =118 and B = A*'. The class AN B is called the kernel of the cotorsion
pair (A, B).

The basic relation between cotorsion pairs and approximations goes back to Salce
[27]. It may be viewed as a substitute for the non-existence of a duality for arbitrary
modules:

Lemma 1.5 [27, Corollary 2.4.] Let R be a ring and (.4, B) be a cotorsion pair. The
following are equivalent:

(1) Every module has a special A-precover.

(2) Every module has a special B-preenvelope.

In this case, the cotorsion pair (A, B) is called complete.

Moreover, we say that a cotorsion pair (A, B) is closed if A is closed under direct
limits. The importance of this notion comes from the following result of Enochs: If
(A, B) is a complete and closed cotorsion pair, then every module has an 4-cover and
a B-envelope [13, 7.2.6].

Complete and/or closed cotorsion pairs occur quite frequently. For a class of

modules C, let (A, B) be the cotorsion pair cogenerated by C, that is, let B = C1
and A = 11(C11). Then we know from [11] that (A, B) is complete provided that the
isomorphism classes of modules in C form a set.
In this case, there is a useful description of the modules in A. Recall that for an
ordinal o, a chain of modules (M,, | @ < o) is said to be continuous provided that
M, C M, forall @ < o0 and M, = Uﬂm Mgp for all limit ordinals o < 0. Moreover,
if S is a class of modules, a module M is S-filtered provided that there is a continuous
chain (M, | @ < o) consisting of submodules of M such that M = M,, and each
of the modules My, M,41/M, (o < o), is isomorphic to an element of S. Now, if
the isomorphism classes of C form a set S, then A = 11(C1!) consists of all direct
summands of S U { R}-filtered modules, [28, Theorem 2.2].



Dually, let (A, B) be the cotorsion pair generated by C, that is, let A = +'C and
B = (+'C)1'. Then we know from [12] that (A, B) is complete and closed provided
that C consists of pure injective modules.

D. EXAMPLES OF COMPLETE COTORSION PAIRS. Let n < w. Denote by P, (Z,)

the class of all modules of projective (injective) dimension at most n, and by F,
the class of all modules of flat (= weak) dimension at most n. Then (P,, (P,)*!)
and (11Z,,7,) are complete cotorsion pairs, cf. [13, 7.4.6] and [28, 2.1]. Moreover,
(Fns (Fpn)*1) is complete and closed, [12].

For N € Mod-R, let N¢ = Homgz(N, Q/Z) be the dual module of N. Denote by H
the class of all dual modules of all left R-modules. It is well-known that the class PZ
of all pure-injective modules consists of all direct summands of modules in H, and
that the cotorsion pair (Fy, (Fy)™*) is generated by H (and by PI), cf. [13].

Next, we give a criterion for equality of two cotorsion pairs. Recall that a class
M C ModR is resolving (coresolving) if it is closed under extensions, kernels of
epimorphisms (cokernels of monomorphisms), and it contains all projective (injective)
modules. For example, the class tM = {X € ModR |Ext% (X, M) =0 forall M € M
and all 7 > 0} is resolving, while M+ = {X € ModR | Ext%(M, X) = 0 for all M € M
and all ¢ > 0} is coresolving.

Lemma 1.6 Let (£,D) be a complete cotorsion pair such that £ is resolving. Let
further (X, Y) be a cotorsion pair with £ C X'. Then the two cotorsion pairs coincide
ifand only it ¥ ND C £END.

Proof: It is enough to verify X C £ in case X ND C END. Take X € X and
consider a special D-preenvelope 0 — X — D — EF — 0. Since F € £ C X
and X is closed under extensions, we have D € XN'D C £ND. Thus X € £ because
€ is resolving. O

Finally, we consider cotorsion pairs induced by a tilting module. Recall from [3]
that a module T is a tilting module provided that

(T1) pdT < o0
(T2) Exty,(T,TM) = 0 for each i > 0 and all sets I;

(T3) There is r > 0 and a long exact sequence 0 — Rg — Ty — --- — T, — 0
with T; € AddT for each 0 <7 <.

In this case (+(T+),T+) is a complete cotorsion pair with the kernel AddT, and
L(T+) C P, where n =pdT, see [3, Section 2].
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2 The closure of a cotorsion pair

We now consider the natural partial order < on the class of all cotorsion pairs induced
by inclusion of the first components. Observe that < is a complete lattice order, the
least element being & = (Py, Mod-R), the largest £ = (Mod-R,Z,), and the meet of
the cotorsion pairs {(Aa, Ba) | @ € I} being (Nyer Aar (Naer Aa)™)-

Since £ is closed, and meets of closed cotorsion pairs are likewise closed, each
cotorsion pair € is contained in the smallest closed one, the closure of €.

The interesting case is when the closure is complete, hence provides for envelopes
and covers of modules. We will show that this always occurs when € is cogenerated
by a class of finitely presented modules over a right coherent ring (see Corollary 2.4
below).

For a class of modules C we denote by C the class of all pure epimorphic images of
elements of C. Clearly, CNmodR = C NmodR provided that C is closed under direct
summands.

For example, if (A, B) is a complete cotorsion pair, then the class A is easily
seen to coincide with the class of all modules M such that each (or some) special
A-precover of M is a pure epimorphism.

Define CT = Ker Tor(C, —) for a class C CModR, and 7D = Ker Tor?(—, D) for
a class D C RMod. For a class C CModR, we define C = T(CT).

Note that liﬂC C é\, and C C 5, since C is obviously closed under direct limits
and pure epimorphic images. Moreover, we have

Lemma 2.1 Let R be a ring, C be a class of modules, and (A, B) be the cotorsion
pair cogenerated by C.

1.C=1(BnH)=A
2. Assume that C is closed under arbitrary direct sums. Then li_ngC - C - C.

3. Assume that C consists of FP, modules. Then M € B if and only if M € B
for any module M. In particular, C= (BN PI).

Proof: 1. Let M € ModR. The well-known Ext-Tor relations yield M € C iff
M € *1(N¢) for all N € CT. Moreover, N € CT iff N¢€ Ct* NH = BN H. Taking
C = A, we get in particular 4 = 11(BNH).

2. This is clear since C is closed under direct limits in this case.

3. Let M € ModR. In this setting, the Ext-Tor relations yield M € B iff M°¢ e CT



iff M € B. Since each pure-injective module M is a direct summand in M,
L (BNH) =1 (BNPI), and the assertion follows by part 1. O

Lemma 2.2 Let R be a ring. Let € = (A, B) be a complete cotorsion pair such that
B is closed under taking double dual modules. Then A = A.

Proof: Let M € A. By Lemma 2.1.1, M € L1(BN#). Let 0 — B -5 A —
M — 0 be an exact sequence with A € A and B € B. Consider the canonical pure
embedding v : B — B, and take the push-out of ; and v:

0 s B " 4 s M —— 0

Lol

0 y B« —~ 3 N s M —— 0

By assumption, B € BN H, so the bottom row splits. It follows that v factors
through u, hence p is pure, and M € A. O

By Lemma 2.1, each cotorsion pair € = (A, B) is contained in the complete and
closed cotorsion pair (A, A1) generated by the class BN H. We now investigate
whether the latter is the closure of €.

Theorem 2.3 Let R be aring. Let C be a class consisting of FP, modules such that
C is closed under extensions and direct summands and R € C. Then lig(,’ =C.
If (A, B) denotes the cotorsion pair cogenerated by C then limC =lim A = A = A.

Proof: From Lemmas 2.1.1, 2.1.3 and 2.2 we get that A=A=C.

Next, we show that A C li_n;C . The proof is a generalization of a particular case
considered in [4, 2.1]. First, the isomorphism classes of C form a set, so A consists
of all direct summands of C-filtered modules. By Lemma 1.2, 113(1 is closed under
direct limits, hence under direct summands. So it suffices to prove that lig(,’ contains
all C-filtered modules.

We proceed by induction on the length, d, of the filtration. The cases when § =0
and § is a limit ordinal are clear (the latter by Lemma 1.2). Let § be non-limit, so
we have an exact sequence 0 — A B 40— 0owithAe lig(,’ and C € C.
We will apply Lemma 1.2 to prove that B € li_H;C.

Let h : FF — B be a homomorphism with F' finitely presented. Since C' is FPy,
there is a presentation 0 — G — P £+ C — 0 with P finitely generated



projective and G finitely presented. There is also ¢ : P — B such that p = gq. We

have the commutative diagram

0—>F’L>F@P (gh)®p> s 0
v el |
0——s A 5 B ' 0 —— 0

Considering the pull-back of p and (gh) @ p, we see that the pull-back module U is an
extension of G by F'® P, and F' is isomorphic to a direct summand in U. So U, and
F', are finitely presented. Since A € li_n>1(3 , Lemma 1.2 provides for a module C’ € C
and maps ¢’ : F' — C', 7' : C" — A such that A’ = 7'¢’. Consider the push-out of f’
and o’:

0 , " L pep 2% ¢ > 0

S |
0 »y ' L~ D s C > 0
By assumption, D € C. By the push-out property, there is 7 : D — B such that
7o = h @ q, hence 70 | F' = h. So h factors through D, and B € li_ngc.
NOXV, since li_ngc is closed~under pure epimorphic images by Lemma 1.2, we infer

thatAQli_ngC. SolingAzliﬂA. a

Corollary 2.4 Let R be a ring and € = (A, B) be a cotorsion pair cogenerated by
a class of FPy modules. (For example, let R be right coherent and € be cogenerated
by a subclass of modR.) Then the closure € = (A, B) of € is generated by the class
BN PI. In particular, € is complete, and A = li_n>1A = A.

Proof': If € is cogenerated by a class of FP, modules D, we let C be the smallest class
of modules closed under extensions and direct summands which contains D U {R}.
Then C also consists of FPy modules, and it cogenerates €, so Lemma 2.1.3 and
Theorem 2.3 apply. O

Corollary 2.5 Let R be a ring and C be a class consisting of FP, modules. Assume
R € C. Then the class +1(C11) consists of all direct summands of C-filtered modules

while T(CT) consists of all pure-epimorphic images of C-filtered modules.

One of the ingredients in the proof of Theorem 2.3 was Lemma 1.4.1. Part 2 of
that Lemma yields another case of coincidence of the classes HQ.A and A:



Proposition 2.6 Let R be a ring and € = (A, B) be a cotorsion pair generated by a
class of dual modules. Then A = lim A = A.

Proof: By Lemma 1.4.2, A = l'ﬂA. By Lemma 2.1.2, it suffices to prove that AcC
A. But A =1 (BNH) by Lemma 2.1.1. Since C C BNH, we have A C 11C = A. O

As an application, we consider the classes of modules of bounded flat dimension:

Corollary 2.7 Let R be a ring and n < co. Let H,, = {Q™"(M) | M € H} where

—~

Q~"(M) denotes an n-th cosyzygy of M. Then F, = 11 H, = F,.

Proof: First, Fy = T(RMod) = 1'H,. Let n > 0. For a module N, denote by 2,(N)
the n-th syzygy (in a projective resolution) of N. We have N € F,, iff Q,(N) € F,
iff Exty (Q(N),Ho) = 0 iff Ext’s™ (N, Ho) = 0 iff Exty (N, H,) = 0. This proves
that F, = Y1H,,. Finally, all cosyzygies of a dual module can be taken to be dual
modules as well, so Proposition 2.6 applies. O

3 Modules of projective dimension at most one over commu-

tative domains

In this section, R will denote a commutative domain and () its quotient field.

We start by reviewing some properties of the class DZ of all divisible modules.
Recall that DI = CP*" where CP = {R/rR | r € R} denotes a set of representatives
of all cyclically presented modules. 1t is well-known that the complete cotorsion pair
(11DZ, DI) is cogenerated by a tilting module of projective dimension one, namely
the Fuchs’ divisible module 6, cf. [15, §VIIL.1], [28].

Denote by HD the class of all h-divisible modules, that is, of all modules that
are homomorphic images of direct sums of copies of (). Clearly, HD C DZ, and the
equality holds true if and only if R is a Matlis domain, that is, pd@Q = 1, cf. [15,
§VIL.2].

For any domain R, we have P, = 114D by [15, VI.2.5], so the complete cotorsion
pair (P, (P1)*!) is generated by the class of all h-divisible modules.

Let us look more closely at the case when R is a Priifer domain.

Example 3.1 Assume R is Priifer. Then (+*DZ,DZ) coincides with (Py, (P1)*)
and also with the cotorsion pair (A, B) cogenerated by P<*, so the Fuchs’ divisible
module § is just the tilting module considered in [4].
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Indeed, in this case we have P<® = P:* = mod R, hence A C Py, cf. [4, Section 2].
So, we have a chain of complete cotorsion pairs (1 DZ, DT) < (A, B) < (P, (P1)1).
On the other hand, P; C 1*DT by [14, V1.3.9], and the claim follows.

Note that, in contrast to the artin algebra case [4, 4.2], the fact that P<* is
contravariantly finite in mod R does not force A to coincide with li_n>173<°°. Indeed,
A is not closed under direct limits unless R is a Dedekind domain. O

In particular, the above observations show that for all Matlis and all Priifer do-
mains, all divisible modules of projective dimension at most one belong to Addd, cf.
[14, VL.3.10]. Problem 6 of [14, Chapter VI] asks whether this is true for any domain.
The following result provides for an answer.

Proposition 3.2 The following are equivalent for a commutative domain R.

(1) All divisible modules of projective dimension at most one belong to AddJ.

(2) The cotorsion pairs (1*DZ, DZ) and (P1, (P1)*) coincide.

(3) DI = (“'HD)*.

(4) A module has projective dimension at most one if and only if it is a direct summand
of a C’P-filtered module.

Proof: We always have ® = (1'DZ, DI) < (Py, (P1)*) = P. Condition (1) states
that P, N DZ =Addé = 1*DZ NDZI. This is equivalent to condition (2) by Lemma
1.6. Further, (2) is equivalent to (3), since the cotorsion pair ‘P is generated by
‘HD. On the other hand, the cotorsion pair ® is cogenerated by the set C'P, hence
11DT consists of all direct summands of CP-filtered modules, cf. section 1.C. So (2)
is equivalent to (4). O

Next, we consider the class TF of all torsion-free modules, that is, TF = (CP)T.
There is a duality between torsion-free and divisible modules: a module N is torsion-
free iff N¢is divisible, [28, §4]. By a result of Warfield, (7F, Q' NZ;) is a closed
cotorsion pair, cf. [28, §2].

First, we show that (7F, Q' NT;) is generated by the class of all pure-injective

modules of injective dimension at most one:

Lemma 3.3 Let R be a commutative domain. Then 7F = 11(Z; N PZL) = (F)T.

Proof: Since Q is a flat module, Q' contains all pure-injective modules, so Q! N
I,NPI =T,NPIT and TF C (T, N PI). Consider M € (T, N PI). Let
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N € Fi. Then N¢ € T, so 0 = Ext,(M,N¢) = (Torf (M, N)). Tt follows that
L1(Z; "n'PI) C (F,)7. Finally, since R/rR € F, we get (F,)T C TF. O

Similarly, the cotorsion pair (F;, (F;)+!) is generated by the class of all divisible
pure-injective modules. In fact, there is a more general result (where, for a class of
modules C, 1»C denotes the class {M € ModR |Ext%(M,C) = 0 for all C € C}):

Lemma 3.4 Let R be a commutative domain and n > 0. Then F, = *»(DZ N PI).
In particular, 7, = CP = *1(DZ N PI).

Proof: First, F; = CP by Corollary 2.7 and Lemma 3.3. Let n > 0. By Corollary
2.7, Fn = 1'"H, = 1*H,. Since H; C DI, we have F, D 1»(DI NPI).

Conversely, let M € F,, and let N be a module such that N¢ € DZ. Then
N € TF = (F1)7 by Lemma 3.3. So 0 = Tor{(Q"*M, N) = Tor¥(M, N). This
shows that M € 1»(DZNH). Finally, by Lemma 2.1.3, 1»(DINH) = +»(DINPI). O

Altogether, we have the following chain of complete cotorsion pairs
("DL,DI) < (Py, (P)™) < (F, (F)™) = (CP, (CP)M).

By Corollary 2.4 and Lemma 3.4, (Fy, (F;)**) is the closure of (**DZ, DZ) and hence
of (Pr, (P1)*).

Problem 22 in [15, p.246] asks for the structure of the modules which are direct
limits of modules in P;. The answer has already been known for Priifer domains:
liﬂpl = ModR, cf. Example 3.1. Since Priifer domains are characterized as the
domains of weak global dimension at most one, li_n>1731 then coincides with the class
of all modules of flat dimension at most one. The latter description extends to any
commutative domain:

Theorem 3.5 Let R be a commutative domain. Then

ling P = lim P, = .

Proof: Theorem 2.3 applied to the cotorsion pair (A;, B1) cogenerated by P> and
combined with Lemma 2.1.3 yields lim P> = ”Ff?o =11(B,NPI).

We now claim that +1(B; N PZ) = F;. By Lemma 3.4, it suffices to show that
By NH = DINH. Now, for a module N € R-Mod, we have N¢ € B; = (P7>)1
iff N € (P°°)T. By Lemma 3.3, the latter is equivalent to N € TF, and hence to
N¢ e DI.
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So, the claim is proven, and we obtain F; = @Pf“ - lig’Pl. On the other
hand, P; C F;, and 1i4n>1731<°° is closed under direct limits by Lemma 1.2. Thus
]iﬂ'Pl = .7:1. O

We don’t know whether this result can be extended to higher dimensions, that is,
whether the limit closure of P,, always coincides with F,.

4 Direct limits of finitely presented modules of finite projec-

tive dimension

Throughout this section, R will denote a right coherent ring, and (A, B) will be the
(complete) cotorsion pair cogenerated by P<*°. From Section 2 we obtain

(A, B) < (limg P<, (lim P<=)*)
where the right-hand term is the closure. In general, (A, B) is not closed.

Example 4.1 Let R be a von-Neumann-regular ring. Then P<* consists of the
finitely generated projective modules, so A = Py, while 1i_n>1”P<°° = ModR. O

In order to investigate when (A, B) is a closed cotorsion pair, we will assume
findimR < oo and use the tilting module 7" from [4] satisfying B = T.
Moreover, we will deal with the property that all pure submodules of a given module
M are direct summands. Modules M with such property are called pure-split in
[7]. We will say that M is Y _-pure-split if all modules in AddM are pure-split. For
example, every » -pure-injective module is » -pure-split.

Theorem 4.2 Let R be a right coherent ring with findimR < oo, and let T be a
tilting module with B = T*. Then the following statements are equivalent.

(1) A is closed under direct limits (that is, A = I'E”P“’o).

(2) T is >_-pure-split.

Proof: (1)=(2): If A is closed under direct limits then it is closed under pure-
epimorphic images by Theorem 2.3. Recall further that B is always closed under pure
submodules as it is definable. So, if 0 — X — 7" — Y — 0 is a pure-exact
sequence with 7" € Add T, we have Y € A and X € B, which shows that the sequence
splits.

For the implication (2)=-(1), we first observe that (lim P==, (lim P<e°)L1) is a cotor-
sion pair such that li_n>l73<°° = A contains the resolving class A, cf. Theorem 2.3 and

13



Corollary 2.4. So, by Lemma, 1.6, it suffices to prove that ligP“’O NBCANB =
AddT. For this purpose, consider M € 114n>173<°° NBandlet0 > B—A— M —0
be an exact sequence with A € A and B € B. Then A € AddT. Further, since

M € A, the exact sequence above is pure-exact. Hence it splits by assumption, and
M € AddT. O

Closure under direct limits of A can thus be interpreted as a pure-injectivity
property of the module 7. We now exhibit a further closure property of .4 that can
be tested on 7. Recall that a module M with AddM being closed under products is
said to be product-complete, see [22].

Theorem 4.3 Let R be a right coherent ring with findimR < oo, and let 7" be a
tilting module with B = T. The following statements are equivalent.

(1) A is definable.

(2) A is closed under direct products.

(3) T is product-complete.

(4) A is closed under direct limits, and P<* is covariantly finite in mod R.

Proof: (1)=(2) is clear. Further, (2) implies (3) because AddT = AN B, see Section
1.D. The implication (4)=-(1) holds by Theorems 1.3 and 2.3.

(3)=-(4): Observe that a module A belongs to A if and only if there is a long exact
sequence 0 > A - Ty — 11 — ... > T, — 0 with n = findim R and 7; € Add T for
all 0 < i < n. In fact, the if-part holds since A is resolving, and the only-if-part is
shown as for the special case A = R in the proof of [3, 4.1].

This shows that A is closed under direct products if so is Add7T. Moreover, T is
Y-pure-injective by [22] and thus Y-pure-split, hence A = lignp@" by Theorem
4.2. From Theorem 1.3 it now follows that the category P<* is covariantly finite in
mod R. O

Note that with the results above we can refine [4, 3.4 and 3.7]:

Corollary 4.4 Let R be a right coherent ring with findim R < oo, and let 7" be a
tilting module with B = T*. Assume that P<* is covariantly finite (this happens
when R is a two-sided coherent and right perfect ring with FindimR = 1, or more
generally, with P = lim P<, sce [4]). Then A is definable if and only if it is closed
under direct limits. In other words, T is product-complete if and only if 7" is » -pure-
split.
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Recall that a family (M;);e; is called locally (right) t-nilpotent if for each sequence
of non-isomorphisms M;, LN M;, LN M;, ... with indices (i,)nev from I, and each
element x € M;,, there exists m = m, € IN such that f,, fr_1... fi1(z) =0.

Corollary 4.5 Let R be a right coherent ring with findim R < oo, and assume that
A is closed under direct limits. If T is a tilting module with B = T, then there
is a locally t-nilpotent family (7;);c; of modules with local endomorphism ring such
that T = @,;
indecomposable modules from A N B is a tilting module with B = M*.

T;. In particular, the direct sum M of a representative set of all

Proof: Recall that a submodule X of a module Y is called a local direct summand
of V' if there is a decomposition X = [[,x X; with the property that ][, cx, X is
a direct summand of Y for every finite subset Ky C K. Of course, X then is a pure
submodule of Y. So, we can now conclude from Theorem 4.2 that all local direct
summands of modules in Add7T are direct summands. By [16, 2.3] this implies that
T has a decomposition T = €,.; T; in modules with local endomorphism ring. By
[17, 7.3.5] and [1, 2.7] we further know that the family (7;);cs is locally t-nilpotent.
The statement on M then follows from Azumaya’s Decomposition Theorem. O

The next result shows that we can test contravariant finiteness of P<* on the
indecomposable modules in P<* N B. Note however that in general P<* N B can be
zero, see Remark 5.6.

Corollary 4.6 The following statements are equivalent for an artin algebra R with
findim R < oc.

(a) P<* is contravariantly finite in mod R.

(b) P<= is covariantly finite in mod R, and the direct sum U of a representative set
of all indecomposable modules from P<* N B is a Y -pure-split tilting module with
Ut =B.

Proof: Of course, if P<* N B # 0, then U € ANB = AddT. Now, we know
from [4, 4.2 and 4.3] that P<* is contravariantly finite if and only if 7" is finitely
presented, and that in this case A = P is closed under direct limits. This proves that
(a) implies the second statement in (b), while the first is shown in [18]. Conversely, if
(b) is satisfied, then we know from Theorems 4.2 and 4.3 that U is product-complete,
which implies by [2, 5.2] that U is finitely presented, hence (a) holds true. O
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If Findim R < oo and P is closed under direct limits (e. g. if R is right perfect),
we also have
(lim P, (liy P<<)") < (P, P).
Our next aim is a criterion for P = 11373@0. More generally, for an integer n > 0,
we will consider the cotorsion pair (A, B,,) cogenerated by P> and describe when
P = @Pﬁ“. Our criterion is in terms of properties of pure-injective modules:

Theorem 4.7 Let R be a right perfect and right coherent ring.

1. Let n < co. Then P, = 11(Pr NH).
Moreover, P, = @’Pﬁ‘” iff B,NPI= 7DnL NPIL iff P,T = (PIo)T.

2. Assume Findim R < co. Then P = “1(P+ NH).
Moreover, P = imP<> iff BNPL =P NPIL iff PT=(P<).

Proof: 1. By assumption, P, = F,, so Corollary 2.7 and Lemma 2.1.1 give the first
assertion.

Assume P, = li_n>1’[3n<°°. Then B,NPZ = PLNPZ by Lemma 1.4.2. Furthermore,
if B, NPT = P;-NPI, then B, NH = Py NH, so P, T = (P®)T. The latter implies
Pn=T(P,T) =T(P )T = @P,f"o by Corollary 2.7 and Theorem 2.3.

2. By assumption, P = P, and P<*® = P<® for some n < oo, and part 1.
applies. O

5 On an example of Igusa, Smalg, and Todorov

Examples 3.1 and 4.1 already yield cases where P = @’P@o and A = L1(P<e i)
is not closed under direct limits. We now show that the same can happen over an
artin algebra. To this end, we study the following example from [19].

Let k£ be an algebraically closed field and R the finite-dimensional algebra given
by the quiver

al
15 V2

with the relations ay = By = ya = 0.

It was shown in [19] that FindimR = findimR = 1, but P<% is not contravariantly

finite in modR. We then know from [4] that there is a P<>-filtered tilting module
T of projective dimension 1 which is not finitely generated and satisfies T+ = B.
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Moreover, each module of finite projective dimension is a direct limit of elements of
Ppee.

We are now going to show that A is not closed under direct limits. Let us start
by collecting further information on the algebra R.

Conventions: We write R-modules by specifying the vector space V; corresponding
to the vertex , ¢ = 1, 2, together with three maps f,, f3, f, corresponding to the three
arrows.

For each of the two vertices 7 = 1, 2, we denote by F;, I;, and S; the corresponding
projective, injective or simple module respectively, and set I = I; & I>.

R has a factor algebra isomorphic to the Kronecker algebra which we will denote
by A. The R-modules where the map f, corresponding to the arrow vy is zero are also
A-modules and will be called Kronecker modules.

Note that every R-module X admits a canonical short exact sequence 0 —
Pl(I) — X — X — 0 where I is a set and X is a Kronecker module.

Recall the classification of the indecomposable finite length Kronecker modules:

i) The preprojectives D,, n € INp: Set Vi = k"™ Vo = k™, fz = (FE,0) and
fa = (0, E) where E denotes the unit in K"*";

ii) The preinjectives M,, n € INy: Set Vi = k", Vo = k"', f3 = (E,0)" and
fo=1(0,E);

iii) The simple regulars: A family R, indexed by A € k defined as V; = V5, =k, f3
the multiplication with A € k, f, the identity, and further a module R, defined as
Vi = Vo =k, fg the identity, and f, = 0;

iv) Every simple regular module Ry with A € k U {oo} moreover defines a tube 7y,
that is a chain of indecomposable modules X; starting in the simple regular X linked
by non-split exact sequences 0 — X; — X, ;1 & X;,; — X; —> 0 which are
almost split in modA. Any finite length indecomposable regular module occurs in
this way.

The following is implicitly proven in [19].
Proposition 5.1 An indecomposable finite length Kronecker module X has finite

projective dimension if and only if it lies in [, 75. In particular, P<* consists of
the finitely {P1} U U, T -filtered modules.

Proof: Since preprojectives and preinjectives have odd dimension, they are not in
P<>® see [19]. So X € P<* must be regular, and taking into account the shape of
the regular components (see iv), we see that all other modules in the tube X belongs
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to will be in P<* too. But since the simple regular Ry, is isomorphic to P»/Soc P,
where Soc P, ¢ P<®, we have Ry ¢ P<>, hence X belongs to one of the other
tubes. For the if-part, note that Ry = P,/ P, for each A € k. Again, we have that all
modules in the correponding tube are then in P<*. O

Lemma 5.2 [6] The finitely generated modules in B are precisely the finitely genl-
filtered modules. In particular, S;, and all the finite length indecomposable regular
modules in 7, are in B.

Proof: S, = I,/Radl, and Ry = I,/Ss belong to genl, hence to B. Since B is
extension-closed, all the tube 7T, lies in B. O

Lemma 5.3 Let X,Y be Kronecker modules. Assume that either Y € A, or
Homp(S,, X) = 0. Then Ext} (Y, X) = 0 if and only if Exty (¥, X) = 0.

Proof: The if-part is always true. For the only-if-part, observe that Sy, = M, is
a simple injective A-module, and write X = X' @ Sé‘]) with Hompg(Ss, X') = 0.
If Y € A, then Extpy (Y, Sé‘])) = 0 by 5.2, so we can assume that we are in the
second case, that is X = X’. To verify Exty (Y, X) = 0, we now show that every
extension Eg of X by Y is actually a Kronecker module. In fact, consider a short
exact sequence 0 — Xp i) Er L Yy — 0, and assume that Ey contains a
submodule isomorphic to P;. Since P; is uniserial and its socle Ss is not contained in
Imf, we deduce that g |p, is a monomorphism. But this is not possible because Y is
a Kronecker module. O

For each tube T, with A € kU {oco}, we denote by Y, the corresponding Priifer
module, that is, the direct limit of the chain of inclusions Xy C X ... in the tube. It
follows from 5.1 that the Y, with A € k are P<*-filtered and therefore belong to A.

Proposition 5.4 (1) Let Y = @, ., Y». Then B=Y +.
(2) A Kronecker module X belongs to B if and only if Ext} (R, X) = 0 for all A € k.

Proof: (1) The inclusion C is clear. For the other inclusion, let X be a module in Y'*.
For any A € k and any A € T, we have an exact sequence 0 — A — Y — (C — 0
where C' must belong to P and thus must have projective dimension at most one.
This shows that Extp (4,X) = 0. Then we infer from 5.1 that Exty ( ,X) = 0
vanishes on all modules in P<%, that is X € B.
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(2) The only-if-part is clear since Ry € P<*° C A for all A € k. For the if-part, we
deduce from 5.3 that Ext}, (Ry, X) = 0. Then Ext}, (—, X) = 0 vanishes also on all
modules in 7, and on the Ty-filtered module Y, see [13, 7.3.4]. Hence Ext}, (Y, X) = 0,
and even X € Y1 since Y € P = P,. The claim now follows from (1). O

We will need some further notions from [25]. For a A-module X, we denote by
7 X the sum of its finitely generated submodules without nonzero preprojective direct
summand. If X =7 X, then X is said to be torsion, and if 7 X = 0, or equivalently,
if Homy (Ry, X) = 0 for all A € k U {oo}, then X is said to be torsionfree.
Moreover, X is called divisible if Ext} (Ry, X) = 0 for all A\ € kU {oc}. It is shown in
[25] that the divisible modules are precisely the direct sums of preinjectives, Priifer
modules and copies of a module () which is the unique indecomposable torsionfree
divisible module.
Finally, X is called regular if it does not have any preprojective, nor any preinjective

summand.

We have the following immediate consequence of 5.4.

Corollary 5.5 All Kronecker modules X which are divisible over A belong to B. In
particular, this shows that Y belongs to ANB = AddT.

Remark 5.6 (1) The finite length indecomposable Kronecker modules in B are pre-
cisely the preinjectives and the regular modules in 7,. Indeed, if X is a finite length
indecomposable Kronecker modules in B, then we know from 5.2 that there is a
nonzero map f : I; - X with 7 = 1 or ¢ = 2. In case ¢ = 1, the module X is
preinjective since Iy = M;. In case 1 = 2, the map f cannot be a monomorphism
and therefore factors through I5/Soc Iy ~ R, which shows that X is preinjective or
regular in 7.

In particular, this shows that there are no non-zero modules in P<* N B. For Kro-
necker modules, this follows immediately from 5.1. But then no other module X
can belong to P<* N B, because otherwise we would obtain a contradiction from the
canonical exact sequence 0 — P, — X — X — 0 where n > 0 and X is a
Kronecker module.

(2) Tt is well known that @ is a direct summand of a product of copies of Y.
Hence @) belongs to P and is a direct limit of modules in P<*°. Note however that
Q@ is not P<>-filtered. In fact, it follows from 5.1 that a Kronecker module which
is P<c°-filtered is always filtered by finite length regular modules and is therefore
torsion.
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Let us draw a further consequence from Proposition 5.4. For each tube 7, with
A € kU {oco}, we denote by Z) the corresponding adic module, that is, the inverse
limit of the chain of epimorphisms ... X; — Xj in the tube.

Corollary 5.7 The adic module Z) belongs to B if and only if A = co.

Proof: We know from [20, proof of 9.3] that for each A there is a universal exact
sequence 0 — 7, — @, — Y, — 0 where @), is a direct sum of copies of Q).
This shows that the Z, with A € k do not belong to Y+ = B. On the other hand,
applying Hompg(Y, ) on the sequence for A = oo, we deduce from long exact sequence
...0=Homg(Y,Yy) = Ext} (Y, Zoo) — Exty (Y, Qo) = 0... that Z,, € B. O

We are now in a position to decide whether A is closed under direct limits.

Theorem 5.8 T is not product-complete, hence A # P, and A is not closed under
direct limits.

Proof: Assume that 7" is product-complete. Recall that @) is a direct summand of a
product of copies of Y, and Y lies in AddT by Corollary 5.5. So, we infer that () must
belong to .A. On the other hand, we have just seen that the adic module Z, is in B,
and it is well-known that Z,, is pure-injective but not »-pure-injective. Then there
is a cardinal 3 such that Z,, (%) is not pure-injective, but still is a torsionfree regular
module in B. Now since Q € A, we have Ext} (Q, Zo *)) = 0. But it was shown by
Okoh in [26, Prop.1 and Remark on p.265] that a torsionfree regular module belongs
to Ker Ext}y (Q, —) if and only if it is pure-injective. So, we obtain a contradiction.
Thus T is not product-complete. From Corollary 4.4 we then conclude that A is not
closed under direct limits, and in particular A # P. O
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