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Abstract. We show that every tilting module of projective dimen-
sion one over a ring R is associated in a natural way to the universal
localization R → RU at a set U of finitely presented modules of pro-
jective dimension one. We then investigate tilting modules of the form
RU ⊕ RU/R. Furthermore, we discuss the relationship between univer-
sal localization and the localization R→ QG given by a perfect Gabriel
topology G. Finally, we give some applications to Artin algebras and to
Prüfer domains.

Introduction

Tilting modules of projective dimension one are often constructed via a
localization. For example, if Σ is a left Ore set of regular elements in a ring
R with the property that the localization Σ−1R is an R-module of projective
dimension at most one, then Σ−1R⊕Σ−1R/R is a tilting right R-module, see
[1, 20, 21]. More generally, it was recently shown in [2] that every injective
homological ring epimorphism R→ S such that SR has projective dimension
at most one gives rise to a tilting R-module S ⊕ S/R.

Note, however, that in general not all tilting modules arise as above from
an injective homological ring epimorphism. For example, if R is a commu-
tative domain whose ring of fractions has projective dimension at least two,
then the Fuchs’ divisible module δ is a tilting R-module which is not of the
form S ⊕ S/R, cf. Example 3.10.

On the other hand, every tilting module T of projective dimension one
is associated in a natural way to a reflective and coreflective subcategory of
ModR, which is obtained as perpendicular category

XT1 = {MR | HomR(T1,M) = 0 = Ext1
R(T1,M)}

of a certain module T1 in the additive closure AddT . By a result of Gabriel
and de la Peña [13, 1.2], the category XT1 is then associated to a ring epi-
morphism λ : R→ S. We show that, choosing T1 appropriately, one can find
a set U of finitely presented modules of projective dimension one such that
λ is the universal localization R → RU of R at U in the sense of Schofield
[22]. More precisely, we prove the following result.
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Theorem 2.2 Let T be a tilting module of projective dimension one.
Then there are an exact sequence 0 → R → T0 → T1 → 0 and a set U of
finitely presented modules of projective dimension one such that

(1) T0, T1 ∈ AddT ,
(2) GenT = {M ∈ ModR | Ext1

R(U,M) = 0 for every U ∈ U},
(3) XT1 is equivalent to the category of right RU -modules via the restric-

tion of scalars along λ : R→ RU .

As a consequence, we see for instance that over an Artin algebra every
finitely generated tilting module T which is of the form S ⊕ S/R for some
injective homological ring epimorphism λ : R→ S even arises from universal
localization R→ RU at a set of finitely presented modules (Corollary 2.7).

We also study tilting modules arising from perfect localization. In partic-
ular, we describe which tilting modules of the form S ⊕ S/R arise from the
localization R→ QG given by a perfect Gabriel topology G.

Theorem 3.9. Let R be a ring and let TR be a tilting module of projective
dimension one. The following conditions are equivalent:

(1) There is a perfect Gabriel topology G such that R embeds in QG and
QG ⊕QG/R is a tilting module equivalent to T .

(2) There is an exact sequence 0 → R → T0 → T1 → 0 such that
T0, T1 ∈ AddT , HomR(T1, T0) = 0, and XT1 is a Giraud subcategory
of ModR.

Observe that if R is semihereditary, then every perfect localization R →
QG arises from universal localization at a set of finitely presented modules
(Proposition 4.3). Over a Prüfer domain, there is a converse result: every
universal localization at a set of finitely presented cyclic modules can be
viewed as the localization given by a perfect Gabriel topology (Proposition
4.8).

We apply these results to investigate tilting modules over Prüfer domains.
Here the tilting classes are in one-one-correspondence with perfect Gabriel
topologies, as shown by Bazzoni, Eklof and Trlifaj in [4]. More precisely,
every tilting module T is associated to a perfect Gabriel topology L such
that the tilting class GenT coincides with the class of L-divisible modules.
Moreover, if the localization QL has projective dimension at most one over
R, then it was shown by Salce [21] that T is equivalent to QL ⊕QL/R. We
recover Salce’s result as a consequence of Theorem 3.9. Moreover, we obtain
that over a Prüfer domain every tilting module of the form S ⊕ S/R arises
from a universal localization R→ RU , as well as from a perfect localization
R→ QG , see Theorem 4.10.

Acknowldgements: We thank Simion Breaz and Septimiu Crivei for
drawing our attention on perfect Gabriel topologies.

1. Preliminaries

I. Notation. Let R be a ring, and let ModR be the category of all right
R-modules. By a subcategory of ModR we always mean a full subcategory
which is closed under isomorphic images and direct summands.
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We denote by modR the subcategory of modules possessing a projective
resolution consisting of finitely generated modules.

Given a class of modules C, we denote

Co = {M ∈ ModR | HomR(C,M) = 0 for all C ∈ C},

C⊥ = {M ∈ ModR | ExtiR(C,M) = 0 for all C ∈ C and all i > 0}.

The classes oC, and ⊥C are defined similarly. The (right) perpendicular
category of C is denoted by

XC = Co ∩ C⊥

Finally, we denote by Add C the class consisting of all modules isomorphic
to direct summands of direct sums of modules of C and by Gen C the class
of modules generated by modules of C.

II. Reflections. We start by recalling the notion of a reflective subcategory.

Definition 1.1. Let M be a right R-module and C a subcategory of ModR.
A morphism f ∈ HomR(M,C) with C ∈ C is said to be a C-preenvelope of

M provided the morphism of abelian groups HomR(f, C ′) : HomR(C,C ′)→
HomR(M,C ′) is surjective for each C ′ ∈ C, that is, for each morphism
f ′ : M → C ′ there is a morphism g : C → C ′ such that the following diagram
is commutative.

M
f
//

f ′   BBBBBBB C

g

��
�
�
�

C ′

Furthermore, a C-preenvelope f ∈ HomR(M,C) is said to be a C-reflection
ofM provided the morphism of abelian groups HomR(f, C ′) : HomR(C,C ′)→
HomR(M,C ′) is bijective for each C ′ ∈ C, that is, the morphism g : C → C ′

in the diagram above is always uniquely determined. In this case f is also a
C-envelope, that is, a C-preenvelope with the additional property that every
g ∈ EndR(C) such that f = gf is an automorphism.

Finally, C is said to be a reflective subcategory of ModR if every R-module
admits a C-reflection. Coreflective subcategories are defined dually. A full
subcategory C of ModR which is both reflective and coreflective is called
bireflective.

Remark 1.2. It is well known that a subcategory C is a reflective subcat-
egory of ModR if and only if the inclusion functor ι : C ↪→ ModR has a left
adjoint functor ` : ModR→ C. In this case a C-reflection of M is given as

ηM : M → ι`(M)

by the unit of the adjunction η : 1ModR → ι `, see [23, Chapter X, §1].

Bireflective subcategories are closely related to ring epimorphisms.
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Definition 1.3. A ring homomorphism λ : R → S is called a ring epimor-
phism if it is an epimorphism in the category of rings, that is, for every pair
of morphisms of rings δi : S → T, i = 1, 2, the condition δ1λ = δ2λ implies
δ1 = δ2. Note that this holds true if and only if the restriction functor

λ∗ : ModS → ModR

induced by λ is full, see [23, Chapter XI, Proposition 1.2].
Two ring epimorphisms λ : R → S and λ′ : R → S′ are said to be

equivalent if there is a ring isomorphism ϕ : S → S′ such that λ′ = ϕλ. The
epiclasses of R are the equivalence classes with respect to the equivalence
relation defined above.

Theorem 1.4. [13, 1.2], [14], [17, 1.6.3] The following assertions are equiv-
alent for a subcategory X of ModR.

(1) X is a bireflective subcategory of ModR.
(2) X is closed under isomorphic images, direct sums, direct products,

kernels and cokernels.
(3) There is a ring epimorphism λ : R→ S such that X is the essential

image of the restriction functor λ∗ : ModS → ModR.

More precisely, there is a bijection between the epiclasses of the ring R and
the bireflective subcategories of ModR. Moreover, the map λ : R → S in
condition (3), viewed as an R-homomorphism, is an X -reflection of R.

III. Universal localization. Next, let us recall Schofield’s notion of uni-
versal localization.

Theorem 1.5 ([22, Theorem 4.1]). Let Σ be a set of morphisms between
finitely generated projective right R-modules. Then there are a ring RΣ and
a morphism of rings λ : R→ RΣ such that

(1) λ is Σ-inverting, i.e. if α : P → Q belongs to Σ, then α⊗R1RΣ
: P⊗R

RΣ → Q⊗R RΣ is an isomorphism of right RΣ-modules, and
(2) λ is universal Σ-inverting, i.e. if S is a ring such that there ex-

ists a Σ-inverting morphism ψ : R → S, then there exists a unique
morphism of rings ψ̄ : RΣ → S such that ψ̄λ = ψ.

The morphism λ : R→ RΣ is a ring epimorphism with TorR1 (RΣ, RΣ) = 0.
It is called the universal localization of R at Σ.

Let now U be a set of finitely presented right R-modules of projective
dimension at most one. For each U ∈ U , consider a morphism αU between
finitely generated projective right R-modules such that

0→ P
αU→ Q→ U → 0

We will denote by λU : R → RU the universal localization of R at the set
Σ = {αU | U ∈ U}. In fact, RU does not depend on the class Σ chosen, cf. [8,
Theorem 0.6.2], and we will also call it the universal localization of R at U .

We now show that XU is the bireflective subcategory of ModR corre-
sponding to the ring epimorphism λU .
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Lemma 1.6. Let U be a set of finitely presented right R-modules of projec-
tive dimension at most one, and let RU be the universal localization of R at
U . Then every right RU -module belongs to XU .

Proof. For each U ∈ U , consider a sequence 0 → P
αU→ Q → U → 0 as

above. Since αU ⊗RU is an isomorphism, we have U ⊗RU = Tor1
R(U,RU ) =

0.
Let nowM be a rightRU -module. Note that the canonical map ρM : M →

M⊗RRU is an RU -isomorphism, because λ : R→ RU is a ring epimorphism.
For any f ∈ HomR(U,M) we then have a commutative diagram

U
f

//

ρU
��

M

ρM
��

0 = U ⊗R RU
f⊗RU

// M ⊗R RU
where ρMf = 0 implies f = 0. Hence M ∈ U0.

Next, let 0→ M
f→ N → U → 0 be an exact sequence in ModR. Then we

have the following commutative diagram with exact rows

0 // M
f

//

ρM

��

N //

ρN

��

U // 0

0 = Tor1
R(U,RU ) // M ⊗R RU

f⊗RU
// N ⊗R RU // U ⊗R RU = 0

where f ⊗RU is an isomorphism. This implies that ρNf is an isomorphism
as well. Hence f is a split monomorphism, and we deduce that M ∈ U⊥.

Proposition 1.7. Let U be a set of finitely presented right R-modules of
projective dimension at most one. Then the following statements hold true.

(1) The perpendicular category XU is bireflective.
(2) XU coincides with the essential image of the restriction functor

ModRU → ModR induced by the universal localization at U .

Proof. (1) Clearly, XU is closed under direct products, and U0 is closed
under direct products and submodules, hence also under direct sums. Fur-
thermore, the assumptions on U imply that U⊥ is closed under epimorphic
images and direct sums. So, we deduce that XU is closed under direct sums.

We now verify that XU is closed under kernels. Consider

0 // Ker f // Y
f

//

!! !!CCCCCCCC Z

Im f
. �

=={{{{{{{{

with Y, Z ∈ XU . Since U0 is closed under submodules and U⊥ is closed under
epimorphic images, we have Im f ∈ U0∩U⊥ = XU . Now, for U ∈ U , applying
HomR(U,−) to the short exact sequence 0 → Ker f → Y → Im f → 0, we
get Ext1

R(U,Ker f) = 0. This shows that Ker f ∈ XU .
The closure under cokernels is proved by similar arguments.
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So, we conclude from Theorem 1.4 that XU is bireflective.
(2) We know from Theorem 1.4 that there is a ring epimorphism λ : R→

S such that XU is the essential image of the restriction functor λ∗ : ModS →
ModR induced by λ. We claim that λ is equivalent to the universal local-
ization λU : R → RU at U . First of all, we choose a set Σ = {αU | U ∈ U}
where the

0→ P1
αU→ P0 → U → 0

are exact sequences with finitely generated projective modules P0, P1, and
we claim that λ is Σ-inverting.

Take U ∈ U and set α = αU . We have to show that α ⊗R S is an
isomorphism. For any S-module M we have MR ∈ XU , and thus we get the
exact sequence

0 = HomR(U,M) // HomR(P0,M)
HomR(α,M)

// HomR(P1,M) // Ext1
R(U,M) = 0

showing that HomR(α,M) is an isomorphism. Moreover, sinceM ∼= HomS(S,M)
as R-modules, we have the following isomorphisms

0 = HomR(U,M) ∼= HomR(U,HomS(S,M)) ∼= HomS(U ⊗R S,M).

In particular, choosing M = U ⊗R S, we see HomS(U ⊗R S,U ⊗R S) = 0,
hence U ⊗R S = Coker(α⊗R S) = 0.

Similarly, we see that

HomS(α⊗R S,M) : HomS(P0 ⊗R S,M)→ HomS(P1 ⊗R S,M)

is an isomorphism. In particular, choosing M = P1 ⊗R S, we obtain that
HomS(α⊗R S, P1 ⊗R S) is an isomorphism and hence α ⊗R S is a split
monomorphism. Thus α⊗R S is an isomorphism.

Now, by the definition of universal localization, there is a (unique) map
ψ such that the following diagram commutes

R
λU //

λ
��

RU

ψ
~~|

|
|

|

S

Further, since RU ∈ XU by Lemma 1.6, and λ is an XU -reflection by Theo-
rem 1.4, there is a (unique) map ϕ such that the following diagram commutes

R
λU //

λ
��

RU

S

ϕ

>>|
|

|
|

Now ψϕλ = ψλU = λ, hence ψϕ = idR. Moreover ϕψλU = ϕλ = λU and
this implies ϕψ = idRU . Hence we deduce that ψ and ϕ are isomorphisms,
and the proof is complete.

Remark 1.8. [7, 18] The map λ : R → RU can also be described as ring

of definable scalars for Σ̃ = {P1 ⊕ U
(α,0)→ P0| α ∈ Σ, U = Cokerα}, or as

biendomorphism ring of a module M which is constructed as follows: take
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N as the direct product of a representative set of the indecomposable pure-
injective modules in XU , set κ = cardN , and M = Nκ. For details, see [18,
12.13, 12.16 and 11.7].

IV. Tilting modules. Finally, let us review the notion of a tilting module
and its relationship with ring epimorphisms.

Definition 1.9. A module T is said to be a tilting module (of projective
dimension at most one) if GenT = T⊥, or equivalently, if the following
conditions are satisfied:

(T1) proj.dim(T ) ≤ 1;

(T2) Ext1
R(T, T (I)) = 0 for each set I; and

(T3) there is an exact sequence 0 → R → T0 → T1 → 0 where T0, T1

belong to AddT .

The class T⊥ is then called a tilting class. We say that two tilting modules
T and T ′ are equivalent if their tilting classes coincide.

Here is a typical pattern for constructing tilting modules.

Proposition 1.10. [2, 2.5] Let λ : R→ S be an injective ring epimorphism
with TorR1 (S, S) = 0. Then pdSR ≤ 1 if and only if S ⊕ S/R is a tilting
right R-module.

The following statements, relying on Theorem 1.4 and results from [9],
are shown in [2, proof of Theorem 2.10].

Lemma 1.11. [2] Let T be a tilting module of projective dimension one,
and let 0 → R → T0 → T1 → 0 be an exact sequence with T0, T1 ∈ AddT .
Then

(1) GenT = GenT0 = T1
⊥.

(2) T0 ⊕ T1 is a tilting module equivalent to T .
(3) XT1 is a bireflective subcategory of ModR, so there is a ring epimor-

phism λ : R→ S such that XT1 coincides with the essential image of
the restriction functor λ∗ : ModS → ModR induced by λ.

In fact, the observations above are used to prove the following result.

Theorem 1.12. [2, 2.10] Let TR be a tilting module of projective dimension
one. The following assertions are equivalent:

(1) There is an injective ring epimorphism λ : R→ S such that TorR1 (S, S) =
0 and S ⊕ S/R is a tilting module equivalent to TR.

(2) There is an exact sequence 0 → R
a→ T0 → T1 → 0 with T0, T1 ∈

AddT and HomR(T1, T0) = 0.

Moreover, under these conditions, a : R → T0 is a T⊥-envelope of R,
and XT1 coincides with the essential image of the restriction functor λ∗ :
ModS → ModR induced by λ.
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2. Tilting modules arising from universal localization

Aim of this section is to show that every tilting module of projective
dimension one is associated in a natural way to a ring epimorphism which,
moreover, can be interpreted as a universal localization at a set of finitely
presented modules of projective dimension one.

The following result by Bazzoni and Herbera will play an important role.

Theorem 2.1. [5] Let T be a tilting module of projective dimension one.
Then there is a set S of modules in modR of projective dimension one such
that T⊥ = S⊥. More precisely, S can be chosen as a set of representatives
of the isomorphism classes of non-projective modules from ⊥(T⊥) ∩modR.

Recall that, given a module M , an increasing chain of submodules M =
(Mα | α ≤ σ) of M , indexed by an ordinal σ, is called a filtration of M
provided that M0 = 0, Mα =

⋃
β<αMβ for all limit ordinals α ≤ σ, and

Mσ = M . Moreover, if all consecutive factors Mα+1/Mα, α < σ, belong to
a given subcategory C of ModR, we say that M is C–filtered.

Let us now fix a tilting module T of projective dimension one, and let S
be a set of representatives of the isomorphism classes of the non-projective
modules in ⊥(T⊥)∩modR. Then T⊥ = S⊥ by Theorem 2.1. Hence by [15,
3.2.1] there exists an exact sequence 0→ R→ T0 → T1 → 0 where T0 ∈ T⊥
and T1 is S-filtered.

Theorem 2.2. There exist an exact sequence

0→ R→ T0 → T1 → 0

and a set U ⊆ modR of modules of projective dimension one such that

(1) T0, T1 ∈ AddT and T1 is U-filtered.
(2) GenT = U⊥.
(3) XT1 = XU coincides with the essential image of the restriction func-

tor ModRU → ModR induced by the universal localization at U .

Proof. (1) From the discussion above we know that there is an exact
sequence 0→ R→ T0 → T1 → 0 where T0 ∈ T⊥ and T1 is S-filtered.

The module T1 then belongs to ⊥(T⊥) by [15, 3.1.2]. Since T⊥ = GenT is
closed under quotients, T1 also belongs to T⊥. So T1 ∈ T⊥∩⊥(T⊥) = AddT .

Moreover, T0 ∈ T⊥∩⊥(T⊥) = AddT , because R belongs to ⊥(T⊥) which
is closed under extensions.

Take now an S-filtration (Mα | α ≤ σ) of T1 and set

U = {Mα+1/Mα | α < σ}.
Note that U consists of modules of projective dimension one by [15, 5.1.8],
and T1 is obviously U-filtered.

(2) From U ⊆ ⊥(T⊥) we infer GenT = T⊥ ⊆ U⊥ .
For the reverse inclusion, recall from Lemma 1.11 that GenT = T1

⊥.
Since T1 is U-filtered and U ⊆ ⊥(U⊥), we deduce from [15, 3.1.2] that T1 ∈
⊥(U⊥), hence U⊥ ⊆ T1

⊥.

(3) We start by showing XT1 ⊆ XU . Let X ∈ XT1 . Then X ∈ T1
⊥ =

GenT = U⊥. Assume X /∈ U0. Then there exists 0 6= f : U → X for some
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U = Mα+1/Mα ∈ U . This implies that also g : Mα+1 � U → X is different
from zero.

Indeed, for all β > α there exists 0 6= gβ : Mβ → X, as we are going to
show. For β = α+ 1, we take gβ = g. Given gβ, we consider

0 // Mβ //

gβ
  BBBBBBBB

Mβ+1 //

gβ+1
||y

y
y

y
Mβ+1/Mβ

// 0

X

and we use that the map gβ extends to gβ+1 since X ∈ U⊥. Further, for a
limit ordinal β, we have that the gγ : Mγ → X with γ < β form a direct
system inducing a non-zero map gβ : Mβ = ∪γ<βMγ → X.

In particular, we obtain HomR(Mσ, X) 6= 0. But Mσ = T1, so X /∈ T 0
1 , a

contradiction. Thus we conclude that X ∈ U⊥ ∩ U0 = XU .
We now show XU ⊆ XT1 . Let X ∈ XU = U⊥ ∩ U0. We already know

that X then belongs to GenT = T1
⊥, so it remains to verify that X ∈ T 0

1 .
Since T1 = Mσ, this will follow once we show that HomR(Mβ, X) = 0 for all
β ≤ σ.
The claim is clear for β = 0 since M0 = 0, and for β = 1 since M1 ∈ U . If
β = α+ 1 for some α, then we have an exact sequence 0→Mα →Mα+1 →
Mα+1/Mα → 0 where Mα+1/Mα ∈ U ⊆ 0X, and Mα belongs to 0X by
inductive assumption. Since the class 0X is closed under extensions, we
infer that also Mα+1 belongs to 0X.
Finally, if β is a limit ordinal, then Mβ = lim−→α<β

Mα, and again by inductive

assumption HomR(Mβ, X) ∼= lim←−HomR(Mα, X) = 0.
So the first claim is verified, and Proposition 1.7 completes the proof.

Definition 2.3. We will say that a tilting module T arises from universal
localization if there is a set U ⊂ modR of modules of projective dimension
at most one such that R embeds in RU and RU⊕RU/R is a tilting R-module
equivalent to T .

Corollary 2.4. Let 0 → R → T0 → T1 → 0 and U be as in Theorem 2.2.
If λU is a U⊥-preenvelope of R, then T arises from universal localization.

Proof. Since U⊥ contains all injective modules, λU is injective. More-
over, if λU is a U⊥-preenvelope, then GenRU = U⊥ = GenT , cf. [2, 3.12].

We claim that pdRU ≤ 1. By assumption, there are R-epimorphisms

f : T (I) � RU and g : RU
(J) � T (I).

The composition fg : RU
(J) � RU is an R-epimorphism, and also an

RU -epimorphism since ModRU is a full subcategory of ModR. There-
fore fg is a split RU -epimorphism, so there is h ∈ HomRU (RU , RU

(J)) =

HomR(RU , RU
(J)) such that fgh = idRU . Thus f is a split R-epimorphism,

showing that pdRU ≤ pdT (I) ≤ 1.
Since TorR1 (RU , RU ) = 0, we conclude from Proposition 1.10 that RU ⊕

RU/R is a tilting module equivalent to T .
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Corollary 2.5. Assume that there is an exact sequence 0 → R → T0 →
T1 → 0 such that T0, T1 ∈ AddT , T1 is S-filtered, and HomR(T1, T0) = 0.
Then T arises from universal localization.

Proof. By Theorem 1.12 there is an injective ring epimorphism λ : R→
S such that the R-module S ⊕ S/R is a tilting module equivalent to T , and
moreover, XT1 coincides with the essential image of the restriction functor
λ∗ : ModS → ModR induced by λ. On the other hand, we have seen in
Theorem 2.2 that XT1 coincides with the essential image of the restriction
functor ModRU → ModR induced by the universal localization at a set U of
finitely presented modules of projective dimension one. Then it follows from
Theorem 1.4 that λ : R→ S and λU : R→ RU are in the same epiclass. So,
λU is injective and RU ⊕RU/R is a tilting module equivalent to T .

Example 2.6. Assume that T ∈ modR and that the category T⊥∩modR is
covariantly finite in modR, that is, every module in modR has a T⊥∩modR-

preenvelope. Assume further that there is an exact sequence 0→ R
a→ T0 →

T1 → 0 such that T0, T1 ∈ AddT , and HomR(T1, T0) = 0. Then T arises
from universal localization.
In fact, this will follow immediately from Corollary 2.5 once we prove that
T1 belongs to modR (and is therefore trivially S-filtered).
Let us start by considering a T⊥ ∩ modR-preenvelope f : R → B. We
claim that f is even a T⊥-preenvelope. Indeed, if h : R → X with X ∈
T⊥ = GenT , then there exists an epimorphism g : T (α) � X, and h factors
through g via a homomorphism h′ : R → T (α). Since the image of h′ is
contained in a finite subsum T (α0) of T (α), we can even factor h = g′ h′′

where h′′ : R → T (α0) and g : T (α0) � X. Now T (α0) ∈ T⊥ ∩ modR, so
there is a map h̃ : B → T (α0) such that h′′ = h̃f , hence h = g′h̃f . This
proves our claim.
On the other hand, we know from Theorem 1.12 that a is a T⊥-envelope.
Thus T0 is isomorphic to a direct summand of B, and since B ∈ modR, we
infer that T0, T1 belong to modR.

In particular, we deduce the following result from [3].

Corollary 2.7. Let R be an Artin algebra, and let T be a finitely generated
tilting right R-module of projective dimension one. The following assertions
are equivalent:

(1) There is a set of finitely generated modules U of projective dimension
one such that RU ⊕RU/R is a tilting module equivalent to TR.

(2) There is an exact sequence 0 → R
a→ T0 → T1 → 0 with T0, T1 ∈

AddT and HomR(T1, T0) = 0.

In the last section, we will see that a similar result holds true over Prüfer
domains.

3. Tilting modules arising from perfect localization

In this section we investigate tilting modules arising from perfect local-
ization. We start by recalling some basic notions and results. For details we
refer to [12, 19, 23].
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Definition 3.1. (1) A (full) subcategory X of ModR is called a Giraud
subcategory if the canonical inclusion ι : X → ModR has a left adjoint
` : ModR→ X which is an exact functor. The composition functor L = ι ◦ `
is then called localization functor.

(2) A non-empty set of right R-ideals G is said to be a Gabriel topology
on R if satisfies the following conditions:

(a) If I ∈ G and a right ideal K contains I, then K belongs to G.
(b) If I and K belong to G then also I ∩K belongs to G.
(c) If I ∈ G and x ∈ R then (I : x) = {r ∈ R| xr ∈ I} belongs to G.
(d) If K is a right ideal and if there is some I ∈ G such that (K : x) ∈ G

for any x ∈ I, then also K belongs to G.

Further, a Gabriel topology G is of finite type if it has a basis of finitely
generated ideals, that is, every I ∈ G contains a finitely generated right
ideal I ′ ∈ G.

(3) Let G be a Gabriel topology on R. A right R-module C is said to be
G-closed if for any short exact sequence 0→ I → R→ R/I → 0 with I ∈ G
the morphism of abelian groups HomR(R,C)→ HomR(I, C) is bijective.
A left R-module RX is said to be G-divisible if IX = X for all I ∈ G.

(4) A pair of subcategories (T ,F) is said to be a torsion pair if T = oF
and T o = F . In this case, T is a torsion class, that is, it is closed under
epimorphic images, extensions, and direct sums. If, in addition, T is closed
under submodules, then (T ,F) is called a hereditary torsion pair.

Theorem 3.2. [23, VI, 5.1 and X, 2.1] There are bijective correspondences
between the hereditary torsion pairs in ModR, the Gabriel topologies on R,
and the Giraud subcategories of ModR.

More precisely, under these bijections, a hereditary torsion pair (T ,F) in
ModR corresponds to the Gabriel topology

G = {I ≤ R | R/I ∈ T }
as well as to the Giraud subcategory XT . Conversely, a Giraud subcategory
X with localization functor L is associated to the hereditary torsion pair with
torsion class

T := {M ∈ ModR| L(M) = 0}
Finally, if G is a Gabriel topology, then the category X (G) of all G-closed
modules is the corresponding Giraud subcategory.

Let now G be a Gabriel topology. Consider the adjoint pair (`, ι) cor-
responding to the Giraud subcategory X (G) of all G-closed modules, and
the localization functor L = ι ◦ `. Recall from Remark 1.2 that the unit of
the adjunction ηM : M → L(M) defines an X (G)-reflection. In particular,
ηR : R → L(R) induces a ring structure on QG = L(R), and we obtain a
ring homomorphism λG : R→ QG .

Theorem 3.3 ([23, XI, 3.4]). Let G be a Gabriel topology on R, and let
X (G) be the corresponding Giraud subcategory of all G-closed modules. The
following assertions are equivalent.

(1) X (G) is a coreflective subcategory of ModR.
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(2) X (G) coincides with the essential image of the restriction functor
ModQG → ModR induced by λG.

(3) The left R-module QG is G-divisible.

Definition 3.4. A Gabriel topology G that satisfies the equivalent condi-
tions of Theorem 3.3 is called a perfect Gabriel topology.

Remark 3.5. Let G be a Gabriel topology on R, and let (T ,F) be the
corresponding hereditary torsion pair. The torsion class T consists of all
modules X such that every x ∈ X has annihilator annR(x) ∈ G, and the
torsion-free class F is given by the modules M for which the X (G)-reflection
ηM : M → L(M) is injective [23, VI, 5.1, and X, 1.5].

Assume now that G is perfect. Then λG : R→ QG is a ring epimorphism,
QG is a flat left R-module, and G is a Gabriel topology of finite type [23, XI,
3.4]. Moreover, F = Co where C is the class of all finitely presented cyclic
modules in T . This follows easily from [23, VI, 3.6] by using that G has
finite type.

We now fix a tilting module T of projective dimension one together with
an exact sequence

0→ R→ T0 → T1 → 0

where Ti ∈ AddT . We know from Lemma 1.11 that XT1 is a bireflective
subcategory of ModR. We denote by ` the left adjoint of the inclusion
functor ι : XT1 ↪→ ModR. In [9], the functor ` is constructed explicitly by
using Bongartz preenvelopes. More precisely, if MR is a right R-module,
and c is the minimal number of generators of Ext1

R(T1,M) as a module over
EndR(T1), then there exists an exact sequence

0→M
i→M0 → T

(c)
1 → 0

with M0 ∈ T⊥1 . In particular, i is a special GenT -preenvelope of M , called
the Bongartz preenvelope of M . It is shown in [9, 1.3] that `(M) can be
computed as

`(M) := M0/trT1M0

where trT1M0 = Σ{Im f | f ∈ HomR(T1,M0)} denotes the T1-trace of M0.
We use this description in order to determine the kernel of the functor `.

Lemma 3.6. For each M ∈ ModR fix a Bongartz preenvelope M0. Then
the following statements are equivalent.

(1) M ∈ 0XT1

(2) `(M) = 0
(3) M0 ∈ GenT1

Moreover, these conditions are satisfied whenever M ∈ GenT1.

Proof. (1)⇒ (2): Recall that ηM : M → ι`(M) is the XT1-reflection of
M , which is uniquely determined up to isomorphism. So, if M ∈ 0XT1 , we
must have `(M) = 0.

(2)⇒ (3) is clear.
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(3)⇒ (1): Assume that M0 ∈ GenT1 and M /∈ 0XT1 . Then there exists a
map 0 6= f ∈ HomR(M,X) for some X ∈ XT1 ⊆ T⊥1 . Then

0 // M
i //

f

��

M0
//

h
~~}

}
}

}
T

(c)
1

// 0

X

there is a map 0 6= h ∈ HomR(M0, X). Since M0 ∈ GenT1 there exists a
map 0 6= h′ ∈ HomR(T1, X). But X ∈ XT1 ⊆ T 0

1 , a contradiction.

Finally, if M ∈ GenT1 ⊆ GenT = T⊥1 , then Ext1
R(T

(c)
1 ,M) = 0, so

M0
∼= M ⊕ T (c)

1 ∈ GenT1.

Proposition 3.7. Let λ : R → S be a ring epimorphism such that the
essential image of the restriction functor λ∗ : ModS → ModR coincides
with XT1. Then the following assertions are equivalent:

(1) RS is a flat left R-module.
(2) XT1 is a Giraud subcategory of ModR.
(3) All submodules of modules in GenT1 belong to 0XT1.
(4) (0XT1 , (

0XT1)0) is a hereditary torsion pair.
(5) There is a perfect Gabriel topology G such that λ : R→ S is equiva-

lent to λG : R→ QG.

Proof. The equivalence of (1)− (3) is proved in [9, 2.1].
(2) ⇒ (5): By Theorem 3.2 we have that the Giraud subcategory XT1 is
the category X (G) of G-closed modules for some Gabriel topology G. Since
XT1 is a coreflective subcategory of ModR by Lemma 1.11, we infer from
Theorem 3.3 that G is a perfect Gabriel topology. Then λ and λG are in the
same epiclass by Theorem 1.4.
(5)⇒ (4): Since λ and λG are in the same epiclass, the perpendicular cate-
gory XT1 and the category X (G) of all G-closed modules coincide. In particu-
lar, XT1 is a Giraud subcategory, and combining Theorem 3.2 and Lemma 3.6
we know that the corresponding hereditary torsion pair is (0XT1 , (

0XT1)0).
(4) ⇒ (3): Since (0XT1 , (

0XT1)0) is a hereditary torsion pair, 0XT1 is closed
under submodules. Thus (3) is a consequence of Lemma 3.6.

Definition 3.8. We will say that a tilting module arises from perfect local-
ization if there is a perfect Gabriel topology G such that R embeds in QG
and QG ⊕QG/R is a tilting module equivalent to T .

Theorem 3.9. Let TR be a tilting module of projective dimension one. The
following conditions are equivalent.

(1) There is an exact sequence 0 → R → T0 → T1 → 0 such that Ti ∈
AddT , HomR(T1, T0) = 0 and XT1 Giraud subcategory of ModR.

(2) T arises from perfect localization.

Proof. (1) ⇒ (2): By Theorem 1.12 there is an injective ring epimor-
phism λ : R → S such that S ⊕ S/R is a tilting module equivalent to
T , and XT1 coincides with the essential image of the restriction functor
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λ∗ : ModS → ModR induced by λ. Now, since XT1 is a Giraud sub-
category, we infer from Proposition 3.7 that there exists a perfect Gabriel
topology G such that λG : R→ QG and λ are in the same epiclass. So, λG is
injective, and QG ⊕QG/R is a tilting module equivalent to T .
(2) ⇒ (1): Let G be a perfect Gabriel topology such that R embeds in
QG and QG ⊕QG/R is a tilting module equivalent to T . Then the sequence
0→ R→ QG → QG/R→ 0 has the stated properties. In fact, if T1 = QG/R,
then we know from Theorem 1.12 that λG : R→ QG induces an equivalence
between XT1 and ModQG . Then XT1 coincides with X (G) by Theorem 3.3,
and it is therefore a Giraud subcategory.

Example 3.10. Exact sequences 0 → R → T0 → T1 → 0 such that Ti ∈
AddT and XT1 is a Giraud subcategory of ModR may exist even when T is
a tilting module which is not of the form S ⊕ S/R.

Let R be a commutative domain, and Q its quotient field. Denote by
D the class of all divisible modules. It was shown by Facchini that there
is a tilting module of projective dimension one generating D, namely the
Fuchs’ divisible module δ, cf. [11, §VII.1]. Recall further that D = U⊥
where U = {R/rR | r ∈ R} denotes a set of representatives of all cyclically
presented modules. Moreover, the module T1 = δ/R in the exact sequence
0 → R → δ → δ/R → 0 is U-filtered, and the perpendicular category
XT1 = XU is the class of all divisible torsion-free modules.

Note that the universal localization of R at U is exactly Q, see [2, 3.7]. So
the XT1-reflection of R is given by the injective flat epimorphism λ : R→ Q,
and XT1 is a Giraud subcategory of Mod-R. On the other hand, δ has not
the form described in Theorem 1.12, unless pdQR ≤ 1, that is, R is a Matlis
domain, see [2, 2.11 (4)].

4. Tilting modules over semihereditary rings

As we have seen in Remark 3.5, the hereditary torsion pair (T ,F) corre-
sponding to a perfect Gabriel topology G is always generated by some set
of finitely presented modules C. If the ring R is right coherent, we have a
further useful information.

Proposition 4.1. [16, 2.8],[18] Let R be a right coherent ring, and let G
be a perfect Gabriel topology on R with associated hereditary torsion pair
(T ,F). Let S be the class of all finitely presented modules from T . Then
F = So and T = lim−→S.

We will use this result for comparing perfect localization with universal
localization.

Lemma 4.2. Let R be right coherent, and let (T ,F) be a hereditary torsion
pair. Let S be the class of all finitely presented modules from T , and assume
that T = lim−→S. Denote further by C the class of all cyclic modules in S. If

U ⊆ S satisfies XU ⊆ F ∩ C⊥, then XU = XT .

Proof. The inclusion ” ⊇ ” follows immediately from the fact that U ⊆
T . For the reverse inclusion, let M ∈ XU . Then M ∈ F , so we know from
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[16, p. 518-519] that there is an exact sequence

0→M
fM→ EM

gM→ CM → 0

where EM ∈ XT and CM ∈ T . Then CM = lim−→Si for some direct sys-

tem (Si) in S. We claim that all HomR(Si, CM ) = 0. In fact, if Y is a
cyclic submodule of Si, then also Y belongs to S, hence to C, and therefore
Ext1

R(Si,M) = 0. This shows that every map h ∈ HomR(Si, CM ) factors
through gM , thus h = gMh

′ with h′ ∈ HomR(Si, EM ), and since EM ∈ XT ,
we deduce h′ = h = 0.

So we conclude that CM = 0 and M ∼= EM ∈ XT .

Recall that a ring R is said to be right semihereditary if every finitely
generated right ideal is projective. Then, by a classical result of Kaplansky,
all finitely generated submodules of a right projective module are projective,
hence all finitely presented modules have projective dimension at most one.

Proposition 4.3. Let R be a right semihereditary ring. Let G be a perfect
Gabriel topology on R, and let (T ,F) be the hereditary torsion pair asso-
ciated to G. Then the ring epimorphism λG : R → QG is equivalent to the
universal localization at the set U of all finitely presented modules from T .

Proof. By Proposition 4.1 we have F = Uo, and T = lim−→U . Denote

by C the class of all cyclic modules in U . Of course XU ⊆ F ∩ C⊥, hence
XU = XT by Lemma 4.2.

Note that the Giraud subcategory XT coincides with the category of G-
closed modules, see Theorem 3.2. Thus we infer from Theorem 3.3 that XT
is the essential image of the restriction functor ModQG → ModR induced
by λG . So, it follows from Proposition 1.7 and Theorem 1.4 that λG and λU
are in the same epiclass.

Corollary 4.4. Over a semihereditary ring, every tilting module arising
from perfect localization also arises from universal localization.

Example 4.5. The converse implication in 4.3 or 4.4 does not hold true.
Indeed, [9, 2.2] provides an example of a finitely generated tilting module T
over a finite dimensional hereditary algebra R admitting an exact sequence
0 → R → T0 → T1 → 0 such that Ti ∈ AddT and HomR(T1, T0) = 0, but
XT1 is not a Giraud subcategory of ModR, see also [2, 2.11]. Note that T
arises from universal localization at T1, cf. Example 2.6.

Let us now focus on the case where R is a Prüfer domain, that is, a
commutative semihereditary domain. First of all, we recall the classification
of tilting modules due to Bazzoni, Eklof and Trlifaj [4].

Theorem 4.6. [15, 6.2.15] Let R be a Prüfer domain. There is a bijective
correspondence between Gabriel topologies of finite type and tilting classes.

The correspondence associates to a Gabriel topology of finite type L the
tilting class of all L-divisible modules. Conversely, if T is a tilting module,
then the non-zero finitely generated ideals I such that R/I ∈ ⊥(T⊥) form a
basis of the corresponding Gabriel topology.

Over a Prüfer domain, every Gabriel topology of finite type is perfect.
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Lemma 4.7. Let R be a Prüfer domain. Let further L be a Gabriel topology
of finite type, and let (T ,F) be the corresponding hereditary torsion pair.
The following statements hold true.

(1) L is a perfect Gabriel topology, λL : R → QL is an injective ring
epimorphism, and QL/R ∈ T .

(2) If QL ⊕QL/R is a tilting module, then the tilting class GenQL coin-
cides with the class of L-divisible modules.

Proof. (1) Either use [23, XI, 3.5], or proceed as follows. By Remark 3.5
the torsion class T consists of all modules X such that every x ∈ X has
annihilator annR(x) ∈ L. In particular annR(x) 6= 0, hence T is contained
in the class of all torsion modules. Thus R ∈ (T )0 = F , which shows that
the X (L)-reflection λL : R→ QL is injective.

Moreover, from the construction of the X (L)-reflection in [23, IX, 2.2] or
[16, p. 518-519] we know that QL = {x ∈ E(R)| (R : x) ∈ L} where E(R)
denotes the injective envelope of R, and QL/R ∈ T . In particular, QL is an
overring of R, hence QL is flat and L-divisible by [10, 1.1.1, 5.1.15, 5.1.11].
So L is a perfect Gabriel topology.

(2) If QL⊕QL/R is a tilting module, then QL/R has projective dimension
at most one, and therefore it has a filtration where the consecutive factors
are finitely presented cyclic, see [11, VI, 6.5]. Denoting by C the class of all
cyclic finitely presented modules from T , we infer that QL/R is C-filtered.
Moreover, QL is L-closed and therefore obviously contained in C⊥. Then we
deduce as in [2, 3.12] that GenQL = C⊥.

So, it remains to verify that C⊥ is the class of L-divisibles. Now, let
M be an L-divisible module, and let C = R/I ∈ C. Then I ∈ L is
finitely generated, and M is I-divisible, so we infer from [15, 6.2.7] that
Ext1

R(R/I,X) = 0. Conversely, if M ∈ C⊥ and J ∈ L, then J contains a
finitely generated ideal I ∈ L. Since R/I ∈ C, we infer again from [15, 6.2.7]
that M is I-divisible, which implies that M is also J-divisible.

Next, we prove a converse of Proposition 4.3.

Proposition 4.8. Let R be a Prüfer domain, and let U be a set of finitely
presented cyclic modules. Let further L be the Gabriel topology having as
basis the set B of all non-zero finitely generated ideals I such that R/I ∈ U .
Then the universal localization at U is equivalent to λL : R→ QL.

Proof. The Gabriel topology L is obviously of finite type, hence perfect
by Lemma 4.7. Let (T ,F) be the hereditary torsion pair associated to L, and
let S be the class of all finitely presented modules from T . By Proposition
4.1 we have F = So, and T = lim−→S.

We verify that U satisfies the assumptions of Lemma 4.2.
(i) U ⊆ S. In fact, U consists of modules of the form R/I where the ideal

I belongs to the basis B, so the annihilator of any element of R/I belongs
to L since it contains I. From Remark 3.5 we infer U ⊆ T , hence U ⊆ S.

(ii) If J ∈ L and X ∈ XU , then HomR(R/J,X) = 0. This is because J
contains an ideal I such that R/I ∈ U and therefore HomR(R/I,X) = 0.
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(iii) XU ⊆ F . Indeed, if X ∈ XU and Y is a cyclic module in T , then
Y = R/J with J ∈ L, hence HomR(Y,X) = 0 by (ii). But this implies
HomR(M,X) = 0 for all M ∈ T , that is, X ∈ F .

(iv) Let C be the class of all cyclic modules in S, and let X ∈ XU . We
verify that X ∈ C⊥. If C ∈ C, then C = R/J for some finitely generated
ideal J ∈ L, and J must contain an element from the basis B, that is, a non-
zero finitely generated ideal I such that R/I ∈ U . Then Ext1

R(R/I,X) = 0,
which means by [15, 6.2.7] that X is I-divisible. But then X is also J-
divisible, and again by [15, 6.2.7] we infer Ext1

R(R/J,X) = 0.
Now Lemma 4.2 yields that XU = XT , and we complete the proof as in

Proposition 4.3.

Corollary 4.9. Let R be a Prüfer domain. Let T be a tilting module of
projective dimension one, and let 0 → R → T0 → T1 → 0 be an exact
sequence where T0, T1 ∈ AddT . Then XT1 is a Giraud subcategory of ModR.

Proof. By [15, 6.2.10] there is a class U of finitely presented cyclic mod-
ules in ⊥(T⊥) such that T1 is U-filtered. By Theorem 2.2 it follows that
XT1 is the essential image of the restriction functor induced by the universal
localization λU . But λU is equivalent to a perfect localization by Proposi-
tion 4.8. So, Theorem 3.3 yields that XT1 is a Giraud subcategory.

If L is a Gabriel topology of finite type such that the localization QL has
projective dimension at most one over R, then it was shown by Salce [21]
that the corresponding tilting module T is equivalent to QL ⊕ QL/R. We
recover Salce’s result as a consequence of Theorem 3.9. Moreover, we obtain
that every tilting module of the form S⊕S/R studied in Theorem 1.12 arises
from perfect localization and from universal localization.

Theorem 4.10. Let R be a Prüfer domain. Let T be a tilting module,
and let L be the associated Gabriel topology of finite type. The following
statements are equivalent.

(1) pdQL ≤ 1.
(2) T arises from perfect localization.
(3) T arises from universal localization.
(4) There is an exact sequence 0 → R → T0 → T1 → 0 where T0, T1 ∈

AddT and HomR(T1, T0) = 0.

Moreover, under these conditions, T is equivalent to QL ⊕QL/R.

Proof. First of all, recall that the tilting class GenT is the class of all
L-divisible modules.

(1) ⇒ (2): We know from Lemma 4.7(1) and Remark 3.5 that λL : R →
QL is an injective ring epimorphism, and that QL is a flat R-module. If
pdQL ≤ 1, then it follows from Proposition 1.10 that QL⊕QL/R is a tilting
module. Since its tilting class GenQL coincides with the class of L-divisible
modules by Lemma 4.7(2), we conclude that QL⊕QL/R is equivalent to T .

(2)⇒ (3) follows immediately from Corollary 4.4.
(3)⇒ (4) holds true by Theorem 1.12.
(4)⇒ (2) follows by combining Theorem 3.9 and Corollary 4.9.
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(2) ⇒ (1): Let G be a perfect Gabriel topology such that λG : R → QG
is injective and QG ⊕ QG/R is a tilting module whose tilting class GenQG
coincides with GenT . On the other hand, GenQG coincides with the class of
G-divisible modules by Lemma 4.7(2), and GenT coincides with the class of
L-divisible modules. So, we infer by Theorem 4.6 that the Gabriel topologies
G and L coincide. Hence T is equivalent to QL⊕QL/R, and pdQL ≤ 1.
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[1] L. Angeleri Hügel, D. Herbera, J. Trlifaj. Divisibles modules and localization. J. Al-
gebra 294 (2005), 519-551.
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