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Abstract. We propose an idea to solve the Gross–Pitaevskii equation for dark struc-
tures inside an infinite constant background density ρ∞= |ψ∞|2, without the introduc-
tion of artificial boundary conditions. We map the unbounded physical domain R3

into the bounded domain (−1,1)3 and discretize the rescaled equation by equispaced
4th-order finite differences. This results in a free boundary approach, which can be
solved in time by the Strang splitting method. The linear part is solved by a new, fast
approximation of the action of the matrix exponential at machine precision accuracy,
while the nonlinear part can be solved exactly. Numerical results confirm existing
ones based on the Fourier pseudospectral method and point out some weaknesses of
the latter such as the need of a quite large computational domain, and thus a conse-
quent critical computational effort, in order to provide reliable time evolution of the
vortical structures, of their reconnections, and of integral quantities like mass, energy,
and momentum. The free boundary approach reproduces them correctly, also in finite
subdomains, at low computational cost. We show the versatility of this method by
carrying out one- and three-dimensional simulations and by using it also in the case of
Bose–Einstein condensates, for which ψ→0 as the spatial variables tend to infinity.
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1 Introduction

The nonlinear (cubic) Schrödinger equation with external potential

i
∂ψ

∂t
(x,t)+a∇2ψ(x,t)−V(x)ψ(x,t)+s|ψ(x,t)|2ψ(x,t), x∈R

3, (1.1)
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where ψ is the complex wavefunction, a>0 and s∈R, is commonly used as a model for the
dynamics of Bose–Einstein condensates (BECs, see [3] for a review of the mathematical
theory and numerical methods) and of superfluids (see [6,21] for the derivation of such an
equation). In both cases, it is also known as Gross–Pitaevskii equation (GPE). From the
mathematical point of view, one of the main differences between BECs and superfluid
simulations is in the boundary conditions satisfied by the wavefunction ψ. In the first
case they are vanishing, that is ψ → 0 as |x| → ∞, whereas for superfluids the interest
is in the dynamics of dark structures, such as solitons, vortex lines, and vortex rings,
which are objects with a core of (near) zero density ρ = |ψ|2 inside an infinite constant
background density ρ∞. In order to impose the boundary conditions in the former case,
the unbounded domain R3 is usually truncated and homogeneous Dirichlet or periodic
boundary conditions are set. Hence, sine or Fourier pseudospectral discretizations in
space can be used. In the latter case, common simple techniques are quite artificial and
consist in homogeneous Neumann boundary conditions (see [13]) or periodic boundary
conditions, after a proper mirroring of the truncated computational domain (see [13, 17,
23]). Even though the domain has to be doubled in the directions lacking periodicity,
the pseudospectral Fourier discretization in space is commonly used because it fits well
with the time splitting Fourier pseudospectral (TSFP) method which, in the context of
BECs, is the method of choice, due to its simplicity, efficiency (thanks to the Fast Fourier
Transform), spectral accuracy in space, and the properties of unconditional stability, time
reversibility, gauge invariance, and mass preservation (see [3, § 4.1]). Quite recently, it
was proposed in [15] a new simple method, called Modulus Square Dirichlet (MSD), for
the treatment of boundary conditions in the form

ρ|b =
∣

∣ψ|b
∣

∣

2
=B, B>0, (1.2)

where ψ|b denotes the restriction of ψ at the boundaries of a bounded domain and B is the
value of the modulus square which must be constant both in space and time at the bound-
aries. For this reason, MSD boundary conditions cannot be used for straight vortices as
their density ρ= |ψ|2 is not constant at boundaries that intersect their cores. Overall, the
method introduced in [15] is a Runge–Kutta finite difference scheme of order four both
in space and time. Other approaches to the solution of the Gross–Pitaevskii equation
with non-vanishing boundary conditions are based on the far field asymptotic behav-
ior (see [4]), or on the imposition of inhomogeneous Dirichlet boundary conditions in a
truncated domain (see [26,27]). In this paper we propose another simple way to treat this
type of boundary conditions. We are concerned with superfluid simulations, for which
the GPE takes the form

ψt=
i

2
∇2ψ+

i

2

(

1−|ψ|2
)

ψ. (1.3)

It is usually understood to have ρ= |ψ|2=1 at infinity (see [6]), although straight vortices
are an exception. First of all, we explicitly compute in Section 2 mass, energy and mo-
mentum variations over a bounded domain Ω, taking into account the peculiarity of the
boundary conditions. In Section 3 we perform a change of variable η(y,t)=ψ(x,t), so as
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to map x∈R3 to y∈(−1,1)3, and then discretize in space with 4th-order finite differences.
The resulting system of ordinary differential equations becomes

z′(t)=Az(t)+
i

2

(

1−|z(t)|2
)

z(t), (1.4)

where z(t) is a vector of dimension (degree of freedom) M=m1×m2×m3 and mi is the
number of discretization points along the i-th direction. We apply in Section 4 the Strang
time splitting to the system above, thus yielding the new method that we call Free Bound-
ary Time Splitting Finite Difference (FBTSFD) method. In particular, we solve the linear
part of (1.4) by an efficient approximation of the action of the matrix exponential. Finally,
we present in Section 5 several numerical experiments which confirm the flexibility and
the reliability of the new proposed method.

2 Time derivatives of mass, energy, and momentum

In this section we state the time derivatives of mass, energy and momentum in a bounded
domain Ω in terms of boundary integrals, without any particular assumption on the
wavefunction ψ and its derivatives at ∂Ω. We relegate to Appendix A the explicit com-
putations.

2.1 Mass

Mass in a bounded domain Ω⊂R3 is defined by

mΩ(t)=
∫

Ω
|ψ|2dV. (2.1)

As shown in Appendix A.1, it is easy to derive

m′
Ω(t)=ℑ

[

∫

∂Ω
ψ
(

∇ψ ·n̂
)

dS

]

, (2.2)

where the symbol ℑ denotes the imaginary part of a complex quantity. From this we
conclude what follows.

If ψ→0 at the boundary ∂Ω, then mass is conserved. This is typically the case in which
Eq. (1.1) models Bose–Einstein condensates and a spectral Hermite discretization is em-
ployed in the unbounded domain Ω (see [25], for instance) or homogeneous Dirichlet
boundary conditions are used in a truncated domain.

If ∇ψ is orthogonal to n̂ or vanishing, i.e. ∇ψ·n̂
∣

∣

∂Ω
=0, then mass is conserved. This

is usually the case in which homogeneous Neumann boundary conditions are set in a
truncated domain Ω.

If Ω is a computational box and ψ is periodic at opposite boundaries then the right
hand side of Eq. (2.2) is zero and mass is conserved. This is the case of the Fourier pseu-
dospectral method in a truncated domain Ω (used to approximate vanishing boundary
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conditions) or in a mirrored truncated domain Ω (for non-vanishing boundary condi-
tions).

2.2 Energy

The Hamiltonian energy is defined by

EΩ(t)=
1

2

∫

Ω
|∇ψ|2dV+

1

4

∫

Ω

(

1−|ψ|2
)2

dV. (2.3)

As shown in Appendix A.2, the time derivative of the Hamiltonian is

E′
Ω(t)=ℑ

[

1

2

∫

∂Ω

(

∇2ψ+(1−|ψ|2)ψ
)

∇ψ·n̂dS

]

(2.4)

and therefore we have the following cases.
If ∇ψ is orthogonal to n̂ or vanishing, i.e. ∇ψ·n̂

∣

∣

∂Ω
=0, then energy is conserved.

If Ω is a computational box and ψ is periodic at opposite boundaries then the right
hand side of Eq. (2.4) is zero and energy is conserved.

If ψ is constant in time on ∂Ω, energy is conserved because ∇2ψ+(1−|ψ|2)ψ=2iψt.

2.3 Momentum

The linear momentum is defined by

pΩ(t)=
∫

Ω
ρudV, (2.5)

where ρ and u are the Madelung variables related to the wavefunction by

ψ=
√

ρeiS, ρ= |ψ|2, u=∇S. (2.6)

As reported in Appendix A.3, the linear momentum can be written in terms of the wave-
function as

pΩ(t)=ℑ
[

∫

Ω
ψ∇ψdV

]

(2.7)

and the time derivative of its ℓ-th component as

pℓ
′
Ω(t)=−1

2
ℜ
[

∫

∂Ω

(

ψxℓ∇ψ−ψ∇(ψxℓ)+Fℓ

)

·n̂dS

]

, (2.8)

where ℜ denotes the real part of a complex quantity and Fℓ= |ψ|4 êℓ/2, êℓ being the unit
vector along the ℓ-th direction. Similarly to mass and energy, we have the following cases.

If ψ and its gradient tend to zero at ∂Ω then the linear momentum is conserved.
If Ω is a computational box and ψ is periodic at opposite boundaries then the right

hand side of Eq. (2.8) is zero and momentum is conserved.
If |ψ|2 →B and ∇ψ→0 at ∂Ω, then the linear momentum is conserved.
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3 Space scaling and discretization

When the Gross–Pitaevskii equation (1.3) models the time evolution of dark structures
then background density ρ∞ typically tends to 1 at infinity. In contrast to other ap-
proaches which try to move the conditions from infinity to the boundaries of a truncated
computational domain (see Section 1 and references therein), we prefer to use a mapping
method [7, § 17.6] to rescale the space variable and leave away the boundary constraints.

Let x=(x1,x2,x3). We wish to rewrite the GPE (1.3) in terms of η(y,t)=ψ(x,t), where
y = (y1,y2,y3) and yi : (−∞,+∞)→ (−1,1) for i = 1,2,3. The Laplacian operator then
becomes

∇2ψ=
3

∑
ℓ=1

∂2ψ

∂x2
ℓ

=
3

∑
ℓ=1

(

y′2
ℓ

∂2η

∂y2
ℓ

+y′′
ℓ

∂η

∂yℓ

)

,

and the GPE (1.3) can be rewritten as

ηt =
i

2

(

3

∑
ℓ=1

y′2ℓ
∂2η

∂y2
ℓ

+y′′ℓ
∂η

∂yℓ

)

+
i

2
(1−|η|2)η. (3.1)

A possible choice of the function yℓ is

yℓ(xℓ)=
2

π
arctan

(

xℓ
αℓ

)

⇐⇒ xℓ(yℓ)=αℓ tan
(π

2
yℓ

)

, αℓ>0 (3.2)

from which we get

y′ℓ(xℓ)=
2αℓ

π(x2
ℓ
+α2

ℓ
)
=

2

παℓ

(

tan2
(

π
2 yℓ
)

+1
) ,

y′′
ℓ
(xℓ)=− 4αℓxℓ

π(x2
ℓ
+α2

ℓ
)2

=− 4tan
(

π
2 yℓ
)

πα2
ℓ

(

tan2
(

π
2 yℓ
)

+1
)2

.

Other choices are possible, in particular we tested the so-called logarithmic map [7, for-
mula (17.33)]

yℓ(xℓ)= tanh

(

xℓ
αℓ

)

⇐⇒ xℓ(yℓ)=αℓarctanh(yℓ), (3.3)

from which we get

y′ℓ(xℓ)=
1

αℓ

(

1−tanh2

(

xℓ
αl

))

=
1−y2

ℓ

αℓ

,

y′′ℓ (xℓ)=− 2

α2
ℓ

tanh

(

xℓ
αℓ

)(

1−tanh2

(

xℓ
αl

))

=− 2

α2
ℓ

yℓ(1−y2
ℓ
),

but we obtained overall better numerical results with (3.2), see for instance the experi-
ments in Section 5.4.1. We notice that for a given parametrized mapping, the accuracy of
the solution might depend on the choice of the parameter itself.



M. Caliari and S. Zuccher / Commun. Comput. Phys., 29 (2021), pp. 1336-1364 1341

3.1 Discretization by fourth order finite differences

We consider an inner discretization of the space with one-sided finite differences close to
the boundaries. This approach is similar to the one denominated 1SD in [15], but it is
here employed in the bounded transformed domain, not in a truncated domain. For the
convenience of the reader, we describe the discretization in one dimension. The interval
(−1,1) is discretized with mℓ points Y

j
ℓ
, j= 1,2,··· ,mℓ, where Y

j
ℓ
=−1+2j/(mℓ+1). The

first and second derivative operators are discretized with central finite differences of the
fourth order if enough surrounding points are available, with one-sided finite differences
otherwise. We report here the corresponding one-dimensional discretization matrix for
the first derivative

δyℓ =
1

Kℓ























− 25
12 4 −3 4

3 − 1
4

− 1
4 − 5

6
3
2 − 1

2
1

12

− 1
12

2
3 0 − 2

3
1

12
. . .

. . .
. . .

. . .
. . .

− 1
12

2
3 0 − 2

3
1
12

− 1
12

1
2 − 3

2
5
6

1
4

1
4 − 4

3 3 −4 25
12























,

and for the second derivative

δy2
ℓ

=
1

K2
ℓ























− 15
4 − 77

6
107
6 −13 61

12 − 5
6

5
6 − 5

4 − 1
3

7
6 − 1

2
1

12

− 1
12

4
3 − 5

2
4
3 − 1

12
. . .

. . .
. . .

. . .
. . .

− 1
12

4
3 − 5

2
4
3 − 1

12
1

12 − 1
2

7
6 − 1

3 − 5
4

5
6

− 5
6

61
12 −13 107

6 − 77
6

15
4























,

where Kℓ = 2/(mℓ+1) is the spatial grid size in the rescaled domain. Point Y
j
ℓ

corre-

sponds, through Eq. (3.2), to a point X
j
ℓ

in the physical unbounded domain, where the

discretization is non-uniform and the grid step size in the ℓ-th direction is H
j
ℓ
=X

j+1
ℓ

−X
j
ℓ
.

The set of discretization points in the rescaled domain is denoted by Y ⊂ (−1,1)3. The fi-
nal matrix corresponding to the discretization of the linear part of Eq. (3.1) is A∈iRM×M,
M=m1×m2×m3 and it is obtained by simple Kronecker products of the one-dimensional
matrices. In fact, we have

A= Im3⊗ Im2⊗A1+ Im3⊗A2⊗ Im1
+A3⊗ Im2⊗ Im1

, (3.4)

where Imℓ
is the identity matrix of dimension mℓ,

Aℓ=
i

2

(

diag([y′
ℓ
(X

j
ℓ
)2]j)δy2

ℓ

+diag([y′′
ℓ
(X

j
ℓ
)]j)δyℓ

)

,

and diag([wj]j) denotes the diagonal matrix with the vector [wj]j in its diagonal.
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4 Numerical time integration

The time splitting finite difference (TSFD) method is well established for the time inte-
gration of (1.4). It relies on the composition of the solutions of the two parts

u′(t)=Au(t), (4.1a)

v′(t)=
i

2

(

1−|v(t)|2
)

v(t). (4.1b)

For the solution of the linear equation (4.1a), we directly approximate the exact solution

un+1=exp(τA)un, un ≈u(tn).

Taking into account the particular structure of the matrix, it is possible to write

exp(τA)u=exp(τA3)⊗exp(τA2)⊗exp(τA1)u,

where u is a general complex column vector of length M. Although the problem of com-
puting the exponential of a large matrix τA is reduced to the approximation of much
smaller matrix exponentials exp(τAℓ), the formula above cannot be used because the
Kronecker product of the three matrix exponentials is a full matrix of dimension M×M.
We consider instead the three-dimensional tensor U=(ui1,i2,i3)∈Cm1×m2×m3 which corre-
sponds to the vector u through the relation

ui1,i2,i3 =ui1+m1(i2−1)+m1m2(i3−1).

The relation above is denoted by vec(U)= u, too. By setting Eℓ= exp(τAℓ), Eℓ=(eℓiℓ,jℓ),

and performing elementary calculations it is possible to write

exp(τA)u=vec(V)=vec((vi1 ,i2,i3))=vec

(

∑
j1 ,j2,j3

uj1,j2 ,j3 e1
i1,j1

e2
i2,j2

e3
i3,j3

)

,

but the direct implementation requires three nested loops which are quite inefficient in
interpreted languages like MATLAB†. The routine ndcovlt‡ (available in the package
described in [12]) performs the same three-dimensional covariant linear transform avoid-
ing the loops. Moreover, the three small matrices Eℓ can be computed once and for all by
standard methods like Padé or Taylor approximations. The MATLAB function expm, for
instance, guarantees an approximation of exp(τAℓ) in a backward stable way, indepen-
dently of the norm (and thus of the stiffness) of the matrix. This is made possible by an
optimal choice of the order of the Padé approximation in combination with the number
of steps in the underlying scaling and squaring algorithm, see [2]. The same is true for the

†We refer to MATLAB as the language interpreted by softwares like Matlab R© and GNU Octave.
‡Originally written by Jaroslav Hajek for the linear-algebra package of GNU Octave.
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Taylor method described in [11], which computes the matrix exponential up to machine
precision, as well.

The solution of the nonlinear equation (4.1b) is trivial, since |v(t)| is preserved by the
equation. Therefore

v(tn+1)=vn+1=exp(diag{τdn})vn, vn ≈v(tn),

where diag{τdn} denotes the diagonal matrix with diagonal

τdn =τ
i

2

(

1−|vn |2
)

.

From the implementation point of view, no matrix has to be created, since it is enough
to perform the component-wise exponentiation exp(τdn) and multiplication by vn. This
property can be used to work directly with the tensor V n such that

vec(V n)=vn.

The solution of the whole equation (1.4) is eventually recovered by the so-called Strang
splitting (see, for instance, [3]), which is a method of order two with respect to τ. Higher
order splitting methods would be possible (we refer to [25] for numerical experiments in
BECs), as well as other time integrators.

Time splitting methods are usually preferred to classical explicit methods, such as
Runge–Kutta type, since in general they preserve the mass, are time-reversible, gauge
invariant, and unconditionally stable. In our case, the matrix A is not skew-Hermitian
and therefore ‖un+1‖2=‖exp(τA)un‖2 6=‖un‖2. This means that the discrete mass, related
to ‖un‖2

2, is not conserved by this step, and the error depends on the space discretization
(being the time integration exact).

Remark 4.1. In the time splitting Fourier pseudospectral method, the first part (4.1a) is
written as

∂u

∂t
(x,t)= i

∇2

2
u(x,t),

the solution is approximated by a truncated Fourier series and solved thanks to the Fast
Fourier Transform (FFT). If the initial solution ψ0(x) is not periodic along to one or more
directions in the bounded domain Ω=[x1min,x1max)×[x2min,x2max)×[x3min,x3max), then
it is mirrored along those directions, in order to take at least the same values at opposite
boundaries. This implies a higher computational effort and larger memory requirements.

5 Numerical experiments

5.1 Initial conditions

The only nontrivial time-independent solution of Gross–Pitaevskii equation (1.3) is the
straight vortex, whose two-dimensional numerical approximation can be computed quite
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easily and for which high-order Padé approximations exist [13]. Thus, the straight vortex
can be used as the initial condition to test the correctness of a new code (see Section 5.2).
However, any other type of vortex line such as vortex rings or torus knots [23, 31] re-
quire ad hoc techniques [19]. In general, if more than a vortex is present, each complex
wavefunction ψi corresponding to the i-th vortex line is computed separately and then
the global initial wavefunction ψ is obtained by multiplying all ψi as first done in [17].

For the single straight vortex we use the 4th-order Padé approximation introduced
in [13] and make the phase S change by 2π in a plane orthogonal to the vortex.

For any other configuration made of a single closed loop or multiple vortices we first
employ the Biot–Savart integral to compute the velocity field u(x) induced by the system
of vortices at each position x of the domain Ω⊆R3 and then we integrate the equation u=
∇S (see (2.6)) to get the phase S(x). Once a reference value S0 is given at a certain point
x0∈Ω, integration can be performed along any direction. This idea was used in [23]. We
tried to apply it as described in the paper, but we encountered many numerical problems
when integrating close to the vortex centerline because phase is not defined on the vortex
centerline as quantum vortices are phase defects [5]. In order to overcome this issue, we
first choose a point in the bulk of the domain, sufficiently far from any vortex, where we
set S=0. From that point we extend the integration sufficiently far from the vortex tangle,
avoiding points whose distance from the vortex centerline is below a certain reference
value. Once S has been computed away from vortex centerlines, we extend the integrals
moving closer to the vortex lines and moving away toward the boundaries. A posteriori
checks of ∇S show very good agreement with the velocity field u generated using Biot–
Savart integral. As far as the absolute value of the initial wavefunction is concerned,
|ψ|=√

ρ, we choose to assign the density ρ at each point of the domain according to the
4th-order Padé approximation of the steady straight vortex. This is the correct value of
density only for the case of a single straight vortex, thus it is not guaranteed the to be the
correct one for any other case. Nevertheless, it is commonly accepted by authors [19, 23,
31] in this field of research. Since ρ=ρ(r), for each grid point we chose r as the minimum
distance from the closest vortex centerlines.

This approach is very time consuming because of the Biot–Savart integral. In the
case of a single vortex ring, whose dynamics is very well known in different classical
fluids (viscous or inviscid, incompressible or compressible flows) [1, 24] and in quantum
fluids [20, 22], one can resort to a more naive and fast approach as done in [30].

Table 1 compares the “measured” velocity Um of vortex rings of different radii R
deduced from the numerical simulations with the theoretical values in a Bose condensate
computed according to [22]

U=
κ

4πR

[

ln

(

8R

a

)

−0.615

]

, (5.1)

where κ is the quantum of circulation and a=ξ is the healing length, whose values in our
case are respectively κ=2π and ξ=1. From the relative errors reported in the last column
of Table 1 we conclude that the velocity of the vortex rings generated according to the
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Table 1: Speed of a moving vortex ring, comparison with theoretical values in a Bose condensate as reported
in [22] for different radii R. The first three lines refer to the initial condition here described and based on the
Biot–Savart integral, the last three lines refer to the initial condition used in [30].

Um U |Um/U−1|
R=8 2.20·10−1 2.21·10−1 8.71·10−3

R=16 1.31·10−1 1.32·10−1 1.29·10−2

R=24 9.41·10−2 9.67·10−2 2.71·10−2

R=8, Ref. [30] 1.78·10−1 2.21·10−1 1.97·10−1

R=16, Ref. [30] 8.39·10−2 1.32·10−1 3.66·10−1

R=24, Ref. [30] 5.55·10−2 9.67·10−2 4.26·10−1

approach here described are in remarkable agreement with the theoretical predictions
with errors below 2%, whereas more naive approaches to the initial condition lead to
quite poor results. For more details on self-preserving vortex rings see [28].

5.2 Preservation of the stationary straight vortex

In the first set of numerical experiments we check the preservation of the stationary
straight vortex centered in (0,0) in the plane x1Ox2 and parallel to x3. The corresponding
wavefunction (constant along x3) is

ψ0(x1,x2,x3)=ρ(r)1/2eiθ,

where r=
√

x2
1+x2

2, θ=arg(x1+ix2) and ρ(r) is the 4-th order Padé approximation of the

solution of the differential equation

ρ′′+
ρ′

r
− (ρ′)2

2ρ
− 2ρ

r2
+2(1−ρ)ρ=0,

with ρ(0) = 0 and ρ(r → ∞) = 1 (see [13]). Although it is a stationary solution of (1.3),
there are three sources of perturbation when it comes to the numerical integration: the
approximation by a rational function of ρ(r), the discretization of the space derivatives
and the time splitting method. We check the correctness of the convergence rate of the
finite differences and the time integrator. First of all, we fix the time step size τ=1/35 and
consider different spatial discretizations in the transformed domain (−1,1)3 according
to (3.2) with α = (5,5,5), using M = m1×m2×11 discretization points, where m1 = m2

ranges from 23 to 63. We compute the maximum pointwise relative error

max
y∈Y0

|ηn(y)−η0(y)|
|η0(y)|

, Y0=Y \{0}, ηn(y)≈ψ(x,tn) (5.2)

at tn=1. In Fig. 1, left, we observe the correct fourth order spatial convergence rate. Then,
we fix M=87×87×11 and let the time step τ to range from 1/10 to 1/25. We observe in
Fig. 1, right, the correct second order time convergence rate.



1346 M. Caliari and S. Zuccher / Commun. Comput. Phys., 29 (2021), pp. 1336-1364

Figure 1: Maximum pointwise relative error (5.2) at tn =1 with τ=1/35 and varying number of discretization
points M=m1×m2×11 (left), and M=87×87×11 and varying number of time steps 1/τ (right).

Figure 2: Behavior of the relative error in maximum norm (5.2) for the TSFP (red lines) and the FBTSFD
method (blue line).

We perform then an experiment similar to that described in [13, § 4.1], by considering
a spatial discretization in the transformed domain (−1,1)3 with M= 87×87×11 points
with α=(5,5,5). This corresponds to a discretization in the physical domain (−∞,+∞)3

in which the smallest spatial grid size is about 1.8·10−1 and the average spatial grid size
in (−20,20) is about 5.3·10−1 in directions x1 and x2. The rough discretization in x3

direction does not affect the results, since the straight vortex is constant (both in space and
time) along x3. The time step size is τ=0.002 and we measure the maximum pointwise
relative error (5.2) at tn =1,2,··· ,10, respectively. In Fig. 2 we compare the result with the
standard time splitting Fourier pseudospectral (TSFP) method, as implemented in [12].
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Table 2: Degrees of freedom and elapsed computational times for the experiment on the preservation of the
stationary straight vortex.

method d.o.f. CPU time (s.)

FBTSFD 87×87×11 14.39

TSFP 2·80×2·80×10 20.27

TSFP 2·160×2·160×10 113.81

TSFP 2·320×2·320×10 606.73

The domain is [−20,20)3, with mirrored x1 and x2 directions and discretized with M=
2·80×2·80×10 points. We also consider the same method in the domain [−40,40)3 and
M=2·160×2·160×10 discretization points and domain [−80,80)3 with M=2·320×2·320×
10 discretization points. The errors are measured in the interior of the corresponding
domains.

We observe in Fig. 2 that the Free Boundary Conditions Time Splitting Finite Dif-
ference (FBTSFD) method is far more accurate than TSFP method in which the errors
clearly depends on the artificial periodic boundary conditions imposed in the mirrored
domain. In fact, when the size of the physical domain is increased by preserving the same
space discretization quality, the error becomes smaller. We report in Table 2 the elapsed
computational times on a laptop with 12 cores running Matlab R© R2019a. As already
mentioned in Section 1, MSD boundary conditions cannot be used in this experiment,
since the absolute value of the wavefunction is not constant at the boundaries of type
|x3|= const. However, they could be applied in the x1Ox2 domain, coupled with other
boundary conditions in the x3 direction (periodic, for instance). This simple idea cannot
be implemented in the case of orthogonal straight vortices (see Section 5.3.3).

5.2.1 Stationary straight vortex preservation over long time integration

While performing the tests described above, we observed that for a given spatial dis-
cretization there exists a maximum time step τ for which the stationary vortex is numer-
ically preserved. We decided to make an extensive simulation, both for the FBTSFD and
the TSFP method in the domain [−20,20)3. The results are collected in Fig. 3. For different
values of spatial grid sizes (corresponding to the different lines) we run the simulation
up to the final time T=50 with different time steps (corresponding to the point markers)
and checked the maximum pointwise relative error (5.2). In order to make the plot easier
to compare with the corresponding case for the TSFP method, we reported the average
spatial grid sizes (denoted by H̄1 and H̄2) in the x1 and x2 dimensions of the unbounded
domain for the FBTSFD method and the uniform spatial grid sizes (simply denoted by
H1 and H2) for the TSFP one. For both methods (top plots), we clearly observe that the
straight vortex is well preserved up to a maximum time step τ which decreases with the
decreasing of the (average) spatial grid size. Thereafter, the error line immediately jumps.
In these cases, the density and the phase of the wavefunction do not resemble anymore



1348 M. Caliari and S. Zuccher / Commun. Comput. Phys., 29 (2021), pp. 1336-1364

Figure 3: Stationary straight vortex preservation up to T=50 with the FBTSFD method (top left), TSFP (top
right), and the free boundary condition approach and 4th-order Runge–Kutta time integrator (bottom).

those of a vortical structure. For the FBTSFD method it is also clear that the preservation
error depends on the space discretization and, when it is below 10−2, it decreases with
the size of the spatial grid size (top left plot). For the TSFP method, since the preserva-
tion error mostly depends on the artificial boundary conditions, we see that it does not
decrease with the spatial grid size H1=H2 (top right plot).

For this experiment we consider also the classical 4th-order Runge–Kutta method
(see [15]). In this case the method is conditionally stable and there is a maximum allowed
time step. Exceeding it makes the solution to diverge to infinity. The errors corresponding
to working time steps are shown in Fig. 3 (bottom plot). The maximum allowed time
steps are smaller than those in the Strang splitting scheme. To give an example, the
maximum allowed time step for the discretization corresponding to H̄1 = H̄2 = 1.7·10−1

(M=279×279×11) is 1.7·10−3 for the Runge–Kutta method and it is 3.6·10−2 when using
the Strang splitting scheme. The normalized (with respect to FBTSFD) elapsed time for
the Runge–Kutta method is 2.6.
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5.3 Full three-dimensional simulations

5.3.1 Comparison with some available results

In Figs. 4–7 we present the dynamics of two rings linked together as done in [30] and
compare vortex tubes (isosurfaces at ρ = 0.02) obtained with the Fourier approach [30]
(left) versus the present one (center). The plot on the left refers to a spatial domain
Ω = [−20,30)×[−25,25)×[−20,30) with a spatial resolution ξ/3 (ξ being the healing
length), i.e. there are 1503 degrees of freedom in the physical domain, which become
8×1503 in the computational domain due to mirroring in each spatial direction. The time
step is τ = 1/80= 0.0125. At t= 0 the two rings of radius R= 8 are placed on mutually
orthogonal planes centered at (0.5,4.5,0) in the plane x3=0, and at (0,−4,0) in the plane
x1 =0. Present results, shown in the central plot, are obtained with an average spatial res-
olution H̄i =0.4 within the box [−20,20)3 (moving towards infinity the spatial resolution
decreases). This is achieved with αi = 15 in each direction and 1713 degrees of freedom.
The time step is τ = 0.02. These parameters are comparable to those used in [30]. In
Figs. 4–7 there is also a plot on the right, which refers to the Fourier approach (as the plot

Figure 4: Initial condition as in [30], comparison between TSFP in Ω=[−20,30)× [−25,25)× [−20,30) (left),
FBTSFD (center) and TSFP in 2Ω (right) at t=0, ρ=0.02.

Figure 5: Initial condition as in [30], comparison between TSFP in Ω=[−20,30)× [−25,25)× [−20,30) (left),
FBTSFD (center) and TSFP in 2Ω (right) at t=20, ρ=0.02.
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Figure 6: Initial condition as in [30], comparison between TSFP in Ω=[−20,30)× [−25,25)× [−20,30) (left),
FBTSFD (center) and TSFP in 2Ω (right) at t=40, ρ=0.02.

Figure 7: Initial condition as in [30], comparison between TSFP in Ω=[−20,30)× [−25,25)× [−20,30) (left),
FBTSFD (center) and TSFP in 2Ω (right) at t=60, ρ=0.02.

on the left) but within a doubled domain Ω = [−40,60)×[−50,50)×[−40,60), with the
same spatial resolution ξ/3 and the same time step τ=1/80 as in [30]. This comparison
is carried out in order to evaluate the effect of the size of the computational domain on
the Fourier approach. These parameters imply 3003 degrees of freedom in the physical
domain and a total of 8×3003 in the computational domain. The initial condition at t=0
is the same for all cases, as shown in Fig. 4. As the simulation proceeds, the dynamics
of the two rings is qualitatively very similar between the three cases (see Fig. 5, which
refers to t=20) however for t≥40 differences emerge. In particular, an attentive inspec-
tion of the vortex tubes presented in Fig. 6 reveals that the Fourier approach in a limited
domain (plot on the left) somehow slows down the ejection process of reconnected loops.
This is due to the presence of “mirror” vortices necessary to make the initial condition
(almost) periodic, as first done in [17]. In fact, it is well known that as two rings approach
each other in a sort of head-on collision, they slow down considerably and increase their
radius [18]. The effect of a truncated computational domain is clearly visible in Fig. 7.
The plot on the left, when compared with the ones in the center and on the right, shows
two small vortex rings moving slower than their counterparts in the other plots due to
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a shorter distance from their mirror images. On the other hand, in a larger domain (plot
on the right) the distance from the mirror rings is much larger and the effect is almost
imperceptible. The present approach (central plot) does not suffer from this limitation as
the physical domain extends to infinity. In order to achieve insensitivity to the domain
size while keeping a reasonable spatial resolution (ξ/3), the number of degrees of free-
dom required by TSFP should increase considerably and may become critical, due to the
mirroring needed in all three directions.

5.3.2 Mass, energy, and momentum variations

In Section 2 we have shown that under certain hypothesis (∇ψ(x,t)→0 and |ψ(x,t)|2→1
for |x| → ∞) which are verified for closed vortex loops as those presented in Figs. 4–7,
time derivatives of mass (2.2), energy (2.4), and momentum (2.8) go to zero.

Fig. 8 summarizes mass (2.1), energy (2.3), and momentum (2.7) variations in the case
of two linked vortex rings starting from the same initial condition as in [30]. Red symbols
identify time splitting Fourier pseudospectral approach (TSFP). It should be noted that
the integrals referring to TSFP are computed in the physical domain because in the mir-
rored domain their values should be zero for the reasons mentioned in Section 2. Empty
circles refer to the simulation studied in [30], whereas stars denote the same simulation
in a doubled domain, i.e. in Ω=[−40,60)×[−50,50)×[−40,60) with the same spatial res-
olution ξ/3, and the same time step τ = 1/80= 0.0125. Since in this case there are 3003

degrees of freedom in the physical domain, which become 8×3003 in the computational
domain due to mirroring in each spatial direction, the output file is very large and only
few outputs were saved (t=0,t=20,t=40 and t=60). Blue symbols denote the present
approach based on free boundary conditions time splitting finite-differences (FBTSFD).
In this case, the integrals are computed in the whole transformed computational domain
(−1,1)3 or in a subdomain corresponding to Ω=[−L,L]3 in the physical domain. In Fig. 8
we report the relative variations with respect of the initial values of mass and energy (top
row) and momentum (bottom row).

As known, the TSFP conserves discrete mass exactly [3], up to machine precision,
whereas the FBTSFD approach does not. However, the relative variation shown in Fig. 8
for FBTSFD, top-left, as L→∞ at t=60, after 3000 time steps, is 9.49·10−9, thus extremely
small. We also investigated how mass, energy, and momentum change in a finite cube.
From the top-left plot of Fig. 8 it is clear that mass is by no means conserved in a small
cube (L<70), and indeed there are no physical reasons for conservation to occur as mass
can increase or decrease due to the motion of vortices. On a very large domain, as L→∞,
which is insensitive to vortices motion, the relative variation goes to zero. For these
reasons, the fact that TSFP conserves mass exactly on any computational domain is not
necessarily a good feature, being conservation of mass unphysical in a domain too small.

The top-right plot of Fig. 8 shows that for none of the approaches the relative variation
of energy goes to zero, however FBTSFD seems to perform a little better than TSFP as
L → ∞. The curves that grow very fast with time refer to the computation of energy
on finite domains, where there are no physical reasons for energy to be conserved. The
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Figure 8: Computed relative variation of mass m(t)/m(0)−1 (top left), of energy E(t)/E(0)−1 (top right),
and of momentum along x1 p1(t)/p1(0)−1 (bottom).

two simulations available for TSFP show that conservation of energy gets better as the
computational domain increases.

As far as momentum is concerned, the bottom plot of Fig. 8 reports only the first
component of p (which is the largest together with the third component) and shows that
the FBTSFD approach guarantees a much smaller relative variation than TSFP in [−L,L]3

as L→∞.

The large variations in energy and momentum that characterize the TSFP approach
decrease as the computational domain enlarges. Thus one might think that conservation
of these quantities can be restored by using very large domains. However, in order to en-
sure reasonable spatial and time steps, employing large domains would result in memory
requirements easily unbearable and in possible unaffordable computational times.

We can conclude that the new approach FBTSFD mimics the physics of GPE in a much
easier way than TSFP thanks to the change of coordinates presented in Section 3 which
maps the infinite domain (−∞,∞)3 into the finite domain (−1,1)3.
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5.3.3 Dynamics of orthogonal straight vortices

The reconnection between two orthogonal quantum vortices has been one of the first
configurations studied [17]. In Fig. 9 we compare new results with those available for
TSFP [29]. Qualitatively they look very similar, however there are two main differences.
The first one is the dependence of TSFP on the simulation domain. Due to the pres-
ence of mirror vortices, straight vortex lines always hit the boundaries normally, there-
fore if the computational domain is relatively small, like in Fig. 9, top row, where it is
[−20,20)3, vortex lines are limited in their dynamics. On the contrary, the new free
boundary method (bottom row) allows vortex lines to move freely. The discretization
for the TSFP approach is made of 1003 points in the physical domain and a total of 8·1003

degrees of freedom in the mirrored computational domain. The number of discretization
points for the new approach is 1673. Together with the choice α=(15,15,15), we have an
average spatial grid size in [−20,20)3 equivalent to the one in the Fourier pseudospec-
tral method, that is 0.4. The time step was fixed to 0.1. We report in Table 3 the results.
The new method requires a much smaller total number of discretization points and it is
slightly faster than TSFP which, for this particular experiment, needs the mirroring along

t=0 t=20 t=40

Figure 9: Orthogonal straight vortices, comparison between TSFP (top, see Fig. 6 in [29]) and FBTSFD
(bottom) at different simulation time, ρ=0.02.
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Table 3: Degrees of freedom and elapsed computational times for the experiment with two orthogonal vortices.

method d.o.f. CPU time (s.)

FBTSFD 1673 81.24

FFT 8·1003 88.69

each space direction.

The second difference is the conservation of momentum (plots not reported). As seen
in Fig. 8 for the case of linked rings, TSFP does not conserve momentum at all, whereas
FBTSFD does it quite well.

5.3.4 Dynamics of torus knots

We have carried out tests for more complex vortex lines such as the torus knots presented
in [31]. Fig. 10 collects three snapshots at different simulation time t for the initial condi-
tion described in Section 5.1 in the case of the torus knot T23. In Fig. 11 we report the time
evolution of the torus knot T25, which reconnects earlier than T23 as already observed in
previous works [31].

t=0 t=24 t=28

Figure 10: Dynamics of the torus knot T23 at different simulation time, ρ=0.02.

5.4 Simulations in one dimension

We report two one-dimensional cases to show the flexibility of the new approach, which
is not limited to vortical structures but can be extended to more general dynamics.

5.4.1 One-dimensional dark solitons

We reproduce with our code the experiments described in [15, § 4.1], in which MSD
boundary conditions are used. The one-dimensional nonlinear Schrödinger equation (1.1)



M. Caliari and S. Zuccher / Commun. Comput. Phys., 29 (2021), pp. 1336-1364 1355

t=0 t=16 t=20

Figure 11: Dynamics of the torus knot T25 at different simulation time, ρ=0.02.

is written in the form
iψt+ψxx−|ψ|2ψ=0

for which

ψ(x,t)= tanh

[√
2

2
(x−ct)

]

exp

(

i

[

c

2
x−
(

1+
c2

4

)

t

])

(5.3)

is a comoving dark soliton solution. Clearly, |ψ(x,t)| tends to 1 as |x|→∞.
The first experiment is with the “stationary” soliton corresponding to c= 0. Despite

the name, the phase of the solution changes in time. We discretize the transformed do-
main (−1,1) with M=503 inner points. By choosing α=5, the average spatial grid size
in the physical domain (−25,25) is about 0.11. We run the numerical integration up to
the final time T=50 with 10000 time steps and measure the maximum errors in the real
and imaginary parts of ψ after each time step over the length of the simulation. We find
an average error of about 1.2·10−6 for both the real and the imaginary parts. For this
experiment, we tested the logarithmic map (3.3) with α=10. We obtained similar results,
with average errors for the real and the imaginary parts around 1.3·10−6. These are very
much comparable with the error shown in [15, Fig. 4.1], where for a domain (−25,25),
a spatial grid size 0.1 and 10000 time steps, the error denoted by “average max error of
ℜ(ψ) and ℑ(ψ)” is between 10−6 and 10−5.

In the second experiment the soliton travels with velocity c= 0.5. We discretize the
transformed domain (−1,1) with M = 755 inner points. By choosing α = 50 we obtain
an average spatial grid size in the physical domain (−25,50) of about 0.25. The aver-
age errors for the real and the imaginary parts at time T = 50 after 10000 time steps are
around 1.2·10−4. For this experiment, we tested the logarithmic map (3.3) with the same
value of α = 50. The average errors for the real and the imaginary parts were below
8.31·10−4. These are slightly larger than the error shown in [15, Fig. 4.2] for a very similar
setting, which is below 10−5. We can conclude that the present method can be satisfacto-
rily employed for this type of simulations, after that the MSD was claimed to be “the only
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Figure 12: Behavior of the numerical |ψn(x)|2 and exact (5.3) densities, and the real and imaginary parts of
ψn(x) at tn =20,30,40,50, respectively.

simple-to-implement boundary condition that can handle such a comoving backflow”.
Plots of the behavior of ψn(x) are reported in Fig. 12. It is clear that, in this case, homo-
geneous Neumann conditions for ψ(x,t) (that is for its real and imaginary part) at the
boundaries of (−25,50) would have been completely unnatural.

5.4.2 Breathing of the ground state of a BEC

The method here proposed works very well also for the particular case of vanishing
boundary conditions, used to simulate the dynamics of bright structures in Bose–Einstein
condensates. We consider the following one-dimensional equation with a harmonic trap
potential







iψt =−1

2
ψxx+

V(x)

2
ψ+|ψ|2ψ, V(x)=

x2

2
,

ψ(x,0)=ψ0(x).
(5.4)

The initial solution ψ0(x) is taken as the ground state of a similar equation, with a differ-
ent frequency in the potential, namely

iψt=−1

2
ψxx+V(x)ψ+|ψ|2ψ, ‖ψ(·,t)‖2

L2 =1. (5.5)
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We recall that the ground state is the solution in the form ψ(x,t) = φ(x)e−iℓt, where
φ : (−∞,+∞)→R, ℓ∈R, with minimal energy

E(ψ)=E(φ)=
∫ +∞

−∞

[

1

2
φ2

x(x)+V(x)φ2(x)+
1

2
φ4(x)

]

dx.

The dynamics of a ground state which is left to evolve with a different trap potential is
called breathing (see [16]).

The most common technique to solve Eq. (5.4) is the TSFP method. In fact, due to the
vanishing boundary conditions, the truncation of the domain with the imposition of the
artificial periodic boundary conditions does not perturb the dynamics too much.

For the computation of the ground state several possibilities are available (see, again,
[3]). The most common is probably the imaginary time method. Time t in Eq. (5.5) is
substituted with it and the resulting parabolic equation is discretized in space, by Fourier
decomposition, and integrated in time. After each time step, the wavefunction ψn(x) is
normalized. Here we prefer to consider the direct minimization of the energy functional
performed in [10], after a decomposition into Hermite functions of the wavefunction. In
fact, for the present method it is necessary to evaluate the initial solution at points X j ∈
(−∞,∞) which correspond to the discretization point Y j∈(−1,1) through relations (3.2).
If we used the imaginary time method with the TSFP method, the initial solution would
have been affected from the beginning by an artificial periodicity in a truncated domain.

For the comparison with the classical TSFP method, the domain is truncated to
[−20,20) and discretized with M = 200 points. A total amount of 10000 time steps are
performed up to a final time T=46.3, chosen in order to simulate ten recurrences of the
density (see Fig. 13). For this experiment, the initial mass is equal to one and we can nu-
merically verify its conservation (2.2). By using the trapezoidal rule (which is a Gaussian
formula for trigonometric polynomials), we find that the average of the errors

|‖ψ(·,tn)‖2
L2−‖ψ(·,t0)‖2

L2 |

measured after each time step tn is 4.60·10−13. When comparing the final density ρ= |ψ|2
at x=−20 to its initial value, we found 4.30·10−30 instead of 6.61·10−142.

With the FBTSFD method, we use M = 203 inner points and α = 5, which give an
average spatial grid size of 0.23 in the physical domain (−20,20). For the computation of
the mass, we use the three-point open composite Milne’s rule for

∫ ∞

−∞
|ψ(x,tn)|2dx=

∫ 1

−1
|η(y,tn)|2

πα

1+cos(πy)
dy,

whose precision is O(h5). We find an average error of 5.14·10−9. The final value of |ψ|2 at
−1.99·10 (the point X j closest to −20) is 4.75·10−45 . The larger error in the mass preserva-
tion is due to the fact that the discrete mass is conserved up to an error depending on the
space discretization error, as already observed in Section 4. On the other hand, the TSFP
method would preserve the initial mass by construction also in extremely small domain,
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Figure 13: Absolute value of the solution of Eq. (5.4) (truncated in x∈ [−10,10]) with initial solution given by
the ground state of Eq. (5.5) (breathing).

such as [−1,1), where the physical experiment would exhibit an oscillatory behavior of
the mass. The new method, however, preserves the vanishing boundary conditions much
better than TSFP.

We also tested the MSD code§ as implemented in [14]. For comparable values of the
spatial grid size ranging from 0.25 to 0.1 it was not possible to perform the simulation,
because very soon the code returned a vector of NaNs as solution. For a step size of
0.05 (and time step size automatically chosen equal to 2.1·10−3 by the code), the method
shows a very good conservation of the discrete mass computed by Simpson’s rule, with
an average error of 5.50·10−14. The value of the density at x =−20 is 6.93·10−122. For
values of the spatial grid size smaller or equal to 0.025 the solution shows the problem
already highlighted.

6 Conclusions

We have tackled the problem of simulating the behavior of a boundary condition of type
|ψ|2 = B, B > 0, for the Gross–Pitaevskii equation in an unbounded domain. This is a
critical concern when dealing with the dynamics of dark structures and their possible re-
connections in a background density whose value at infinity goes to one. We have solved
the issue by rescaling the spatial variables and mapping the unbounded physical space
R3 into the bounded domain (−1,1)3. The governing equation is then discretized by 4th-
order finite differences. As far as time integration is concerned, we have implemented
both splitting and Runge–Kutta schemes and described their advantages and disadvan-
tages. For the linear part in splitting methods, in particular, we have developed a very

§NLSEmagic1D version 020 available at http://www.nlsemagic.com/.
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fast and accurate approximation of the action of the matrix exponential, taking into ac-
count the special Kronecker structure of the matrix.

Tests on the preservation of the single straight vortex show a relative error smaller
than that observed using a classical Fourier pseudospectral approach on a finite domain,
and at a much cheaper computational cost. In both cases, when performing a long time
integration, we observe huge errors when the time steps are larger than a certain thresh-
old related to the spatial discretization. In these situations, the solution does not diverge
(as it happens with the Runge–Kutta), but the vortical structure is completely lost.

Previous results have been reproduced in both one- and three-dimensional cases.
Comparisons with the pseudospectral approach on a finite three-dimensional domain
made clear that the domain size plays a critical rôle in the correct dynamics of vortical
structures and in the time evolution of global quantities such as mass, energy and mo-
mentum, whereas the new approach, for which the spatial variables extend up to infin-
ity, is insensitive to this issue. After rewriting the time derivatives of these quantities in
terms of boundary integrals of the wavefunction or of its spatial derivatives, we checked
their numerical variations (in time) relative to their initial values. We observed that the
fact that mass is always preserved in the pseudospectral context is not always a good
feature, especially if the computational domain is too small. Moreover, for initial con-
ditions that should preserve momentum, such as two linked rings, the pseudospectral
approach needs a very large computational domain to show acceptable time variations,
which could result in memory requirements easily unbearable and in possible unafford-
able computational times. On the other hand, the free boundary approach confirms the
theoretical expectation without any particular computational effort.

Other numerical tests in the one-dimensional case reproduce known results and
prove the versatility of the free boundary approach. Numerical simulations of dark
solitons, for which Modulus Square Dirichlet was claimed to be “the only simple-to-
implement boundary condition that can handle such a comoving backflow”, provide er-
rors comparable to existing results as well as breathing of the ground state of a BEC, for
which vanishing boundary conditions are typically employed, does.

Like in the NLSEmagic code, the computational efficiency of the time integration by
the splitting method could be further improved, for instance, by GPU-accelerated MEX
files for the implementation of the action of the matrix exponential. Furthermore, we plan
to use the FBTSFD method for more complicate equations, such as the linear or nonlinear
Schrödinger equation with vorticity (see [8, 9]).
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A Derivation of time derivatives of mass, energy and

momentum

From GPE (1.3) and its complex conjugate we have

ψt =
i

2
∇2ψ+

i

2
(1−|ψ|2)ψ, (A.1a)

ψt=− i

2
∇2ψ− i

2
(1−|ψ|2)ψ, (A.1b)

∇ψt =
i

2
∇(∇2ψ)− i

2
∇(|ψ|2)ψ+

i

2
(1−|ψ|2)∇ψ, (A.1c)

∇ψt=− i

2
∇(∇2ψ)+

i

2
∇(|ψ|2)ψ− i

2
(1−|ψ|2)∇ψ. (A.1d)

From the wavefunction written as ψ=
√

ρeiS, we have

∇ψ=
∇ρ

2
√

ρ
eiS+

√
ρeiSiu,

where u=∇S, and thus

ψ∇ψ=
√

ρeiS

[

∇ρ

2
√

ρ
e−iS−√

ρe−iSiu

]

=
∇ρ

2
−ρiu, ψ∇ψ=

∇ρ

2
+ρiu.

Therefore

ψ∇ψ−ψ∇ψ=−2ρiu =⇒ ρu=
i

2

(

ψ∇ψ−ψ∇ψ
)

=ℑ
(

ψ∇ψ
)

. (A.2)

A.1 Mass

The total mass on a bounded domain Ω⊂R3 is defined by

mΩ(t)=
∫

Ω
|ψ|2dV.

By considering Eqs. (A.1a) and (A.1b), it is easy to derive

m′
Ω(t)=

d

dt

(

∫

Ω
ψψdV

)

=
∫

Ω
ψtψ+ψψtdV

=
i

2

∫

Ω

[

∇·(ψ∇ψ−ψ∇ψ)
]

dV=
∫

Ω
ℑ
[

∇·(ψ∇ψ)
]

dV. (A.3)

By employing the divergence theorem, we finally have

m′
Ω(t)=ℑ

(

∫

∂Ω
ψ
(

∇ψ ·n̂
)

dS

)

. (A.4)
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A.2 Energy

Let us define FΩ(t) as

FΩ(t)=EΩ(t)−
1

4

∫

Ω
dV.

We have

E′
Ω(t)=F′

Ω(t)=
1

2

∫

Ω
∇ψt ·∇ψdV+

1

2

∫

Ω
∇ψ·∇ψtdV

− 1

2

∫

Ω
ψtψdV− 1

2

∫

Ω
ψψtdV

+
1

2

∫

Ω
|ψ|2ψtψdV+

1

2

∫

Ω
|ψ|2ψψtdV

=ℜ
[

∫

Ω
∇ψ·∇ψtdV−

∫

Ω
(1−|ψ|2)ψψtdV

]

. (A.5)

Now, we take Eq. (A.1a) written in the form

iψt=−1

2
∇2ψ− 1

2
(1−|ψ|2)ψ,

we multiply by ψt, integrate, and apply the first Green’s identity. We have

i
∫

Ω
|ψt|2=−1

2

∫

Ω
∇2ψψtdV− 1

2

∫

Ω
(1−|ψ|2)ψψtdV

=−1

2

∫

∂Ω
∇ψ·n̂ψtdS+

1

2

∫

Ω
∇ψ·∇ψtdV

− 1

2

∫

Ω
(1−|ψ|2)ψψtdV.

Hence, by comparing with (A.5), we get

2ℜ
[

i
∫

Ω
|ψt|2+

1

2

∫

∂Ω
∇ψ·n̂ψtdS

]

=ℜ
[

∫

∂Ω
∇ψ·n̂ψtdS

]

=E′
Ω(t).

We insert ψt to get

E′
Ω(t)=ℜ

[

− i

2

∫

∂Ω
∇ψ·n̂∇2ψdS− i

2

∫

∂Ω
∇ψ·n̂(1−|ψ|2)ψdS

]

=ℑ
[

1

2

∫

∂Ω
∇ψ·n̂∇2ψdS+

1

2

∫

∂Ω
∇ψ·n̂(1−|ψ|2)ψdS

]

. (A.6)
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A.3 Momentum

The linear momentum is defined by

PΩ(t)=
∫

Ω
ρudV,

which can be recast in terms of the wavefunctions (see (A.2)) as

PΩ(t)=ℑ
(

∫

Ω
ψ∇ψdV

)

.

We wish to compute the change of linear momentum in time, i.e.

P′
Ω(t)=ℑ

(

∫

Ω

(

ψt∇ψ+ψ∇ψt

)

dV

)

.

By taking (A.1b) and (A.1c), we have

P′
Ω(t)=ℑ

(

∫

Ω

(

ψt∇ψ+ψ∇ψt

)

dV

)

=−1

2
ℜ
(

∫

Ω

(

∇2ψ∇ψ+(1−|ψ|2)ψ∇ψ

−ψ∇(∇2ψ)+|ψ|2∇(|ψ|2)−(1−|ψ|2)ψ∇ψ
)

dV

)

=−1

2
ℜ
(

∫

Ω

(

∇2ψ∇ψ−ψ∇(∇2ψ)+∇

(

1

2
|ψ|4

))

dV

)

.

We observe that, by exchanging the order of differentiation, we have

∇(∇2ψ)=





(ψx1x1
)x1

+(ψx2x2)x1
+(ψx3x3)x1

(ψx1x1
)x2

+(ψx2x2)x2
+(ψx3x3)x2

(ψx1x1
)x3

+(ψx2x2)x3
+(ψx3x3)x3



=





∇2(ψx1)
∇2(ψx2)
∇2(ψx3)



=∇2(∇ψ),

thus the integral
∫

Ω

(

∇2ψ∇ψ−ψ∇(∇2ψ)
)

dV

can be written component-wise as

∫

Ω

(

ψxℓ∇2ψ−ψ∇2(ψxℓ)
)

dV, ℓ=1,2,3.

By applying Green’s second identity

∫

Ω

(

f∇2g−g∇2 f
)

dV=
∫

∂Ω
( f∇g−g∇ f )·n̂dS
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to each of this integrals, where n̂ denotes the outward unit normal, we get

∫

Ω

(

ψxℓ∇2ψ−ψ∇2(ψxℓ)
)

dV=
∫

∂Ω

(

ψxℓ∇ψ−ψ∇(ψxℓ)
)

·n̂dS, ℓ=1,2,3.

By recalling that, in general,
∫

Ω
∇ f dV=

∫

∂Ω
f n̂dS, (A.7)

we also obtain
∫

Ω
∇

(

1

2
|ψ|4

)

dV=
∫

∂Ω

1

2
|ψ|4n̂dS.

In conclusion, since the last integral is certainly real (|ψ|4∈R), we can recast the derivative
of ℓ-th component of the momentum with respect to time as

pℓ
′
Ω(t)=−1

2
ℜ
[

∫

∂Ω

(

ψxℓ∇ψ−ψ∇(ψxℓ)+Fℓ

)

·n̂dS

]

, (A.8)

where ℜ denotes the real part of a complex quantity and Fℓ= |ψ|4 êℓ/2, êℓ being the unit
vector along the ℓ-th direction.
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