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Abstract. SGGS (Semantically-Guided Goal-Sensitive reasoning) is a
conflict-driven first-order theorem-proving method which is refutation-
ally complete and model complete in the limit. These features make it
attractive as a basis for decision procedures. In this paper we show that
SGGS decides the stratified fragment which generalizes EPR, the PVD
fragment, and a new fragment that we dub restrained. The new class has
the small model property, as the size of SGGS-generated models can be
upper-bounded, and is also decided by hyperresolution and ordered reso-
lution. We report on experiments with a termination tool implementing
a restrainedness test, and with an SGGS prototype named Koala.

1 Introduction

Many applications of automated reasoning require to combine the decidability
of satisfiability with an expressive logic. Since first-order theorem proving is only
semidecidable, the quest for decidable fragments of first-order logic is key in ad-
vancing the field, and many classes of formulæ were shown decidable. Without
claiming completeness (see [18,15,22] for surveys), we mention: the Bernays-
Schönfinkel class, also known as EPR for effectively propositional [8,39,37,3,19];
the Ackermann class [2,23]; the monadic class with and without equality [2,23,5];
the positive variable dominated (PVD) fragment [17]; the two-variable fragment
(FO2) [21]; the guarded fragment [4,20]; the modal fragment [31,9], which is in-
cluded in the EPR [22], FO2 [32], and guarded [4] fragments; and the strati-
fied fragment [1,25,36], which generalizes EPR. However, many theorem proving
problems from the practice fall in none of these classes.

Example 1. Problem HWV036-2 from TPTP 7.3.0 [41] specifies a full-adder in
51 clauses, including for instance:

¬andok(x) ∨ ¬1(in1(x)) ∨ ¬1(in2(x)) ∨ 1(out1(x)), ¬lor(x) ∨ orok(x) ∨ error(x),

¬halfadd(x) ∨ connection(in1(x), in1(or1(x))), ¬fulladd(x) ∨ halfadd(h1(x)).

This set is satisfiable, which means that termination of a theorem prover is
a priori not guaranteed. However, it is neither EPR (∃∗∀∗ϕ formulæ with ϕ
quantifier- and function-free), nor Ackermann (∃∗∀∃∗ϕ formulæ with ϕ as above)
nor FO2 (only two variables, no functions), nor monadic (only unary predicates,
no functions). One can also check that it is neither guarded nor stratified.
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As refutational completeness guarantees termination on unsatisfiable inputs, if
one can prove termination of an inference system on satisfiable inputs in a
certain class, any strategy given by that inference system and a fair search
plan is a decision procedure for satisfiability in that class. Here we consider
Semantically-Guided Goal-Sensitive reasoning (SGGS) [13,14], that is a refuta-
tionally complete instance-based theorem-proving method especially suitable for
decision procedures: SGGS is model-based (it searches for a model by building
candidates), semantically guided (the search is guided by a fixed initial interpre-
tation), conflict-driven (it applies inferences such as resolution only to explain
conflicts), proof confluent (it never needs to undo inferences), and model com-
plete in the limit (if the input is satisfiable, the limit of the derivation represents
a model), so that model generation is guaranteed if termination is.

This paper shows that SGGS decides the stratified fragment [1], which in-
cludes EPR and finds application in verification [1,25,36], and the PVD frag-
ment. Then, we discover a new decidable class named the restrained fragment,
and show that SGGS, ordered resolution, and hyperresolution all decide it. Since
it is possible to compute bounds on the size of SGGS-generated models, this new
class enjoys the small model property. We give a sufficient condition for member-
ship in the restrained fragment that can be tested automatically by termination
tools for rewriting. The relevance of this new class is evaluated empirically by ap-
plying this test to problems in TPTP. For instance, the axiomatization in Ex. 1,
as well as all the TPTP problems including it, turn out to be restrained. We
also summarize the outcomes of experiments with an SGGS prototype, named
Koala, built reusing code from Konstantin Korovin’s iProver [24,26].

The paper is structured as follows. Since the stratified fragment has sorts,
Sect. 2 presents SGGS for a language with sorts. Sect. 3 shows that SGGS decides
the stratified fragment. In Sect. 4 we define the restrained fragment, establish the
small model property, and prove that SGGS decides both this class and PVD.
Ordered resolution and hyperresolution also decide restrained sets (Sect. 5). The
experimental results are reported in Sect. 6, and Sect. 7 concludes the paper.

2 Preliminaries: SGGS for Many-Sorted Logic

Let S be a set of clauses in many-sorted logic with non-empty sorts (there is a
ground term for every sort). We use a, b for constants, P,Q for predicates, f, g for
functions, w, x, y, z for variables, t, u for terms, L,M for literals, at(L) for L’s
atom, C,D for clauses, Var(C) for the set of variables in C, α, σ for substitutions,
I, J for interpretations, and we extend the at notation to sets of literals, clauses,
and sets of clauses. C+ and C− are the disjunctions of the positive and negative
literals in C, respectively; C is positive if C = C+ and negative if C = C−.

In SGGS, a clause C may have a constraint A, written A B C. An atomic
SGGS constraint is true, false, t≡u, and top(t) = f , where ≡ is syntactic iden-
tity, and top(t) is the top symbol of term t. The negation, conjunction, and
disjunction of constraints is a constraint. Constraints in standard form are true,
false, and conjunctions of distinct atomic constraints x 6≡ y and top(x) 6= f .
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Substitutions are sort-preserving (xσ has the same sort as x) so that instantia-
tion respects sorts. The set Gr(A B C) of constrained ground instances (cgi) of
ABC is the set of ground instances of C that satisfy A. Literals ABL and BBM
intersect if at(Gr(AB L)) ∩ at(Gr(B BM)) 6= ∅, and are disjoint otherwise.

Example 2. In a signature with sorts {s1, s2} and symbols a : s1, b : s2, f : s1→ s2,
and P ⊆ s2× s2, the only term of sort s1 is a, and b and f(a) are the only terms
of sort s2. Thus, Gr(P(x, y)) = {P(b, b), P(f(a), b), P(b, f(a)), P(f(a), f(a))}.
For P(f(x), y), with x : s1 and y : s2, constraint top(x) 6= a is unsatisfiable, while
top(y) 6= a is valid. Then, top(x) 6= aBP(f(x), y) is equivalent to falseBP(f(x), y)
and has no cgi’s, while top(y) 6= a B P(f(x), y) is equivalent to true B P(f(x), y),
or simply P (f(x), y), and has all cgi’s, namely P (f(a), b) and P (f(a), f(a)).

SGGS is semantically guided by an initial interpretation I: unless I |= S,
SGGS seeks a model of S, by building candidate partial interpretations different
from I, and using I as default to complete them. If the empty clause ⊥ arises in
the process, unsatisfiability is reported. If I is the all-negative interpretation I−

that makes all negative literals true, SGGS tries to discover which positive literals
need to be true to satisfy S, and dually if I is the all-positive interpretation I+.
While I can be any Herbrand interpretation, I+ and I− suffice in this paper.

SGGS works with a trail of clauses Γ = A1BC1[L1], . . . , AnBCn[Ln], where
C[L] means that literal L ∈ C is selected in C. The length of Γ and its prefix
of length j are denoted |Γ | and Γ |j , respectively. An SGGS trail Γ represents
a partial interpretation Ip(Γ ): if Γ is empty, denoted ε, Ip(Γ )=∅; otherwise,
Ip(Γ )=Ip(Γ |n−1)∪pcgi(AnBLn, Γ ), where pcgi abbreviates proper constrained
ground instances. A pcgi of An B Cn[Ln] is a cgi C[L] that is not satisfied by
Ip(Γ |n−1) (i.e., Ip(Γ |n−1)∩C[L] = ∅) and can be satisfied by adding L as ¬L 6∈
Ip(Γ |n−1). For the selected literal, pcgi(An B Ln, Γ ) = {L : C[L] ∈ pcgi(An B
Cn[Ln], Γ )}. Ip(Γ ) is completed into an interpretation I[Γ ] by consulting I for
the truth value of any literal undefined in Ip(Γ ).

A literal L is uniformly false in an interpretation J , if all L′∈Gr(L) are false
in J . Then, L is said to be I-false if it is uniformly false in I, and I-true if it is
true in I. SGGS requires that if a clause in Γ has I-false literals, one is selected,
so as to differentiate I[Γ ] from I. A clause whose literals are all I-true is an
I-all-true clause, and only in such a clause an I-true literal is selected.

A conflict clause is one whose literals are all uniformly false in I[Γ ]. SGGS
ensures that every I-all-true clause C[L] in Γ is either a conflict clause or the
justification of its selected literal L, meaning that all literals of C[L] except L
are uniformly false in I[Γ ], so that L must be true in I[Γ ] to satisfy C[L]. In the
latter case C[L] is in the disjoint prefix of Γ , denoted dp(Γ ), which is the longest
prefix such that pcgi(AB C[L], Γ ) = Gr(AB C[L]) for all its clauses AB C[L].

An SGGS-derivation is a series of trails Γ0 ` Γ1 ` . . . Γj ` . . ., where Γ0=ε,
and ∀j, j>0, an SGGS-inference generates Γj from Γj−1 and S. If ⊥ 6∈ Γ and
I[Γ ] 6|= S, SGGS has two ways to make progress. If Γ=dp(Γ ), the trail is in
order, but I[Γ ] 6|= C ′ for some C ′∈Gr(C) and C∈S. Then, SGGS applies SGGS-
extension to generate from C and Γ a clause ABE, such that E is an instance
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of C and C ′∈Gr(A B E). If Γ 6=dp(Γ ), the trail needs repair: either there is
a conflict, or there are intersections between selected literals to be removed
by SGGS-splitting. The SGGS-extension rules specialize the SGGS-extension
scheme ([14, Def. 12]) of which we give here the instance for I based on sign:

Definition 1. Given input clause set S and trail Γ , if there is a clause C∈S
such that for all its I-true literals L1, . . . , Ln (n≥0) there are clauses B1 B
D1[M1], . . . , Bn B Dn[Mn] in dp(Γ ), such that literals M1, . . . ,Mn are I-false,
and ∀j, 16j6n, Ljα=¬Mjα with simultaneous most general unifier (mgu) α,
then SGGS-extension adds AB E = (

∧n
j=1Bjα) B Cα to Γ .

SGGS-splitting decomposes a clause into instances to isolate and remove in-
tersections between literals, and it is the only rule that introduces constraints.
Splitting a ground clause is trivial and never done. Let ABC[L] be a clause where
A is satisfiable. Roughly speaking (see [14, Sect. 3.2]), a partition of ABC[L] is a
set {Ai BCi[Li]}ni=1 such that Gr(ABC) =

⋃n
i=1{Gr(Ai BCi)} and the literals

Ai B Li are pairwise disjoint. Adding predicate symbol Q ⊆ s1 × s2 to Exam-
ple 2, a partition of [P(f(x), y)]∨Q(x, y) is {[P(f(x), b)]∨Q(x, b), [P(f(x), f(a))]∨
Q(x, f(a))}. Given trail clauses AB C[L] and B BD[M ], a splitting of C by D,
denoted split(C,D), is a partition of A B C[L] such that at(Gr(Aj B Lj)) for
some j is the intersection of ABL and BBM , and all other AiBLi are disjoint
from B BM . SGGS-splitting replaces ABC[L] with split(C,D). Not all clauses
in split(C,D) need to be kept for completeness (see [14, Sect. 4.2]).

Clause An B Cn[Ln] is disposable, if Ip(Γ |n−1) |= An B Cn[Ln], and SGGS-
deletion removes all disposable clauses from the trail. The following example
shows that SGGS halts, if applied to the EPR set used to show that another
semantically-guided method, hyperresolution, cannot decide EPR.

Example 3. The set S consists of four clauses ([18, Ex. 4.8] and [15, Ex. 3.17]):

P(x, x, a) (i), P(x, y, w) ∨ P(y, z, w) ∨ ¬P(x, z, w) (ii),

¬P(x, x, b) (iii), P(x, z, w) ∨ ¬P(x, y, w) ∨ ¬P(y, z, w) (iv).

SGGS with all-negative initial interpretation I− yields the following derivation:

Γ0 : ε ` Γ1 : [P(x, x, a)] extend (i)

` Γ2 : [P(x, x, a)], P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) extend (ii)

` Γ3 : [P(x, x, a)], P(x, x, a) ∨ [P(x, x, a)] ∨ ¬P(x, x, a),

y 6= xB P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) split

` Γ4 : [P(x, x, a)],

y 6= xB P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) delete

Since I− 6|= P (x, x, a), SGGS-extension puts it on the trail. As I[Γ1] satisfies
P (x, x, a), but no other positive literal, I[Γ1] 6|= (ii). Thus, SGGS-extension uni-
fies the third literal of clause (ii) with [P(x, x, a)] on the trail, producing Γ2,
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where an I−-false (i.e., positive) literal is selected in the added clause (choos-
ing the other makes no difference). As the selected literals intersect, the sec-
ond clause gets split, yielding Γ3. The second clause in Γ3 is disposable and
SGGS-deletion removes it. Since I[Γ4] |= S, the derivation halts reporting satis-
fiable. In contrast, hyperresolution generates infinitely many clauses of the form
P(x1, x2, a) ∨ P(x2, x3, a) ∨ · · · ∨ P(xn−1, xn, a) ∨ P(xn, x1, a).

If a clause A B C[L] added by SGGS-extension is in conflict with I[Γ ] and
C[L] contains I-false literals, SGGS-resolution explains the conflict by resolving
ABC[L] with a justification in dp(Γ ): the resolvent is also a conflict clause that
replaces ABC[L]. As SGGS-extension (see [14, Def. 19]) ensures that all I-false
literals of a conflict clause can be resolved away, conflict explanation generates
either ⊥ or an I-all-true conflict clause B BD[M ]. The conflict represented by
B BD[M ] is solved by moving (SGGS-move) B BD[M ] to the left of the clause
in dp(Γ ) whose selected literal makes M uniformly false in I[Γ ]: the effect is to
flip M from being uniformly false to being an implied literal.

Fairness of an SGGS-derivation involves several properties: SGGS-deletion
and other clause removals are applied eagerly; trivial splitting is avoided; progress
is made whenever possible; every SGGS-extension generating a conflict clause is
bundled with explanation and conflict-solving inferences to eliminate the conflict
before new extensions occur; and inferences applying to shorter prefixes of the
trail are never neglected in favor of others applying to longer prefixes (see [14,
Defs. 32, 37, and 39]). The limit of a fair derivation Γ0 ` Γ1 ` . . . Γj ` Γj+1 ` . . .
is the longest trail Γ∞ such that ∀i, i 6 |Γ∞|, there is an ni such that ∀j,
j > ni, if |Γj | ≥ i then Γj |i is equivalent to Γ∞|i (see [14, Def. 50]). In words, all
prefixes of the trail stabilize eventually. Both derivation and Γ∞ may be infinite,
but if the derivation halts at stage k, Γ∞ = Γk. The following results employ an
SGGS-suitable (i.e., total and extending the size ordering, hence well-founded)
ordering on ground atoms (see [14, Def. 16]) and a convergence ordering >c on
SGGS trails (see [14, Def. 46]):

– Completeness: For all input clause sets S, initial interpretations I, and fair
SGGS-derivations, if S is satisfiable, I[Γ∞] |= S, and if S is unsatisfiable,
⊥ ∈ Γk for some k (see [14, Thm. 9 and 11]).

– Descending chain theorem: A fair SGGS-derivation forms a descending chain
Γ0 >

c Γ1 >
c . . . >c Γj >

c Γj+1 . . . (see [14, Thm. 8]).
– Finiteness of descending chains of length-bounded trails: A chain Γ0 >

c Γ1 >
c

. . . Γj >
c Γj+1 . . . where ∀j, j ≥ 0, |Γj | 6 n, for some n ≥ 0, is finite (see

[14, Thm. 6 and Cor. 2]).

The gist of this paper is to find fragments where the length of SGGS trails is
bounded so that termination of fair derivations is guaranteed.

3 SGGS Decides the Stratified Fragment

A way to ensure termination is to restrict an inference engine to produce only
terms or atoms from a finite set B, usually called a basis. For SGGS, let B be a
finite subset of the Herbrand base A of the input clause set S.
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Definition 2. An SGGS trail Γ = A1 B C1[L1], . . . , An B Cn[Ln] is in B if for
all i, 16 i6n, at(Gr(Ai B Ci)) ⊆ B.

An SGGS-derivation is in B if all its trails are.

Lemma 1. If a fair SGGS-derivation Γ0 ` Γ1 ` . . . Γj ` Γj+1 ` . . . is in a finite
basis B, then for all j, j> 0, |Γj | 6 |B|+1, and if the derivation halts at stage
k, k> 0, then |Γk| 6 |B|.

Proof. SGGS cannot do worse than generating a ground trail where every atom
in B appears selected with either sign: any trail with non-ground clauses will
be shorter, because a non-ground clause covers many (possibly infinitely many)
ground instances. By fairness, if the trail contains an intersection given by clauses
C[L] and D[L], or C[L] and D[¬L] with L∈B, the clause on the right is ei-
ther deleted eagerly by SGGS-deletion, or replaced with a resolvent by SGGS-
resolution before SGGS-extension applies. Thus, there can be at most one such
intersection, and the first claim follows. The second claim holds, because the
intersection is removed by fairness prior to termination. ut

By the descending chain theorem and the finiteness of descending chains of
length-bounded trails, the following general result follows:

Theorem 1. A fair SGGS-derivation in a finite basis is finite.

In order to apply this result, we need to find fragments that admit a finite
basis. We begin with the stratified fragment. A signature is stratified, if there is
a well-founded ordering <s on sorts, and for all functions f : s1 × · · · × sn→ s,
it holds that s<s si for all 16i6n [1,25,36]. Thus, there are no cycles over sorts
when applying functions. The signature from Example 2 is stratified with order-
ing s1 >s s2. If a sentence over a stratified signature belongs to the ∃∗∀∗ frag-
ment, Skolemization only introduces constants and preserves stratification [25].
If there is only one sort, this fragment reduces to EPR, because stratification over
a single sort implies that there are no function symbols. However, also stratified
sentences with a prefix other than ∃∗∀∗ can yield stratified clauses [33].

Example 4. Assume a stratified signature with sorts s1 and s2 such that s1 <s s2,
and symbols f : s1→s2, and P ⊆ s2 × s2. The Skolemization of ∀x∃y.P(f(x), y)
preserves stratification, as clause P(f(x), g(x)) with Skolem symbol g : s1→s2 is
still stratified. On the other hand, the Skolemization of ∀x∃y.P(f(y), x) yields
P(f(g(x)), x) with Skolem symbol g : s2→s1, so that stratification is lost.

Given a set S of clauses whose signature is stratified, or stratified clause
set for short, the Herbrand universe H and the Herbrand base A are finite,
because stratification prevents building terms of unbounded depth [1]. Therefore,
it suffices to pick A itself as the finite basis for Theorem 1.

Theorem 2. Any fair SGGS-derivation from a stratified clause set S halts, is
a refutation if S is unsatisfiable, and constructs a model of S if S is satisfiable.
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However, SGGS-derivations can get exponentially long.

Example 5. Consider the following clause set Sk describing a k-digits binary
counter [38, Def. 2.4.10]. Let Q be a predicate symbol of arity k, and for all i,
16 i6 k, let 0i, 1i, and xi be i-tuples of 0’s, 1’s, and distinct variables x1, . . . , xi,
respectively. Sk consists of the k + 2 clauses, for 16m6 k,

C0 : Q(0k) Cm : ¬Q(xm, 0, 1k−m−1) ∨ Q(xm, 1, 0k−m−1) Ck+1 : ¬Q(1k)

so that it is in EPR. Guided by I−, SGGS generates a derivation

Γ0 : ε ` Γ1 : [Q(0k)] extend (C0)

` Γ2 : . . . ,¬Q(0k) ∨ [Q(0k−1, 1)] extend (Ck−1)

` Γ3 : . . . ,¬Q(0k−1, 1) ∨ [Q(0k−2, 1, 0)] extend (Ck−2)

` Γ4 : . . . ,¬Q(0k−2, 1, 0) ∨ [Q(0k−2, 1, 1)] extend (Ck−1)

. . . . . .

` Γ2k−1 : . . . ,¬Q(1k−2, 0, 1) ∨ [Q(1k−1, 0)] extend (Ck−2)

` Γ2k : . . . ,¬Q(1k−1, 0) ∨ [Q(1k)] extend (Ck−1)

` Γ2k+1 : . . . ,¬Q(1k−1, 0) ∨ [Q(1k)], [¬Q(1k)] extend (Ck+1)

that simulates binary counting by adding a clause in each of these 2k+1 steps till
a conflict emerges. Then it takes another 2k+1 steps to detect unsatisfiability:

` Γ2k+2 : . . . , [¬Q(1k)], ¬Q(1k−1, 0) ∨ [Q(1k)] move

` Γ2k+3 : . . . , [¬Q(1k)], [¬Q(1k−1, 0)] resolve

` Γ2k+2 : . . . , [¬Q(1k−1, 0)], ¬Q(1k−2, 0, 1) ∨ [Q(1k−1, 0)], [¬Q(1k)] move

` Γ2k+3 : . . . , [¬Q(1k−1, 0)], [¬Q(1k−2, 0, 1)], [¬Q(1k)] resolve

. . . . . .

` Γ2k+2 : [¬Q(0k)], [Q(0k)], . . . move

` Γ2k+2+1 : ⊥, . . . resolve

Similar to positive resolution1 [38, Thm. 2.4.12] or SCL [19], SGGS behaves expo-
nentially, whereas resolution offers a refutation in 2k+1 steps [38, Thm. 2.4.11],
which shows that in EPR ground resolution (same as positive resolution for Sk)
can do exponentially worse than resolution [34]. Encoding Sk in propositional
logic requires exponentially many clauses, as each clause Cm, 16m6 k, has 2m

ground instances that need to be modeled as distinct propositional clauses. This
indicates that generating instances is not good for this example.

4 SGGS Decides the Restrained Fragment

We begin with the notion of ground-preserving clause, which is convenient for
sign-based semantic guidance.

1 Every resolution step has a positive parent.
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Definition 3. A clause C is positively ground-preserving if Var(C) ⊆ Var(C−),
and negatively ground-preserving if Var(C) ⊆ Var(C+). A set of clauses is pos-
itively/negatively ground-preserving if all its clauses are, and ground-preserving
if it is positively or negatively ground-preserving.

For example, ¬P(x, y, z) ∨ Q(y) ∨ Q(f(z)) and ¬Q(x) ∨ ¬Q(y) are positively
ground-preserving, while the clauses in Ex. 5 are both positively and negatively
ground-preserving. We say that I is suitable for a ground-preserving set S if
either I is I− and S is positively ground-preserving, or I is I+ and S is negatively
ground-preserving. If S is positively ground-preserving, its positive clauses are
ground, positive hyperresolution only generates ground clauses ([12], Lem. 3),
and similarly for the negative variant. We show that this also holds for SGGS.

Lemma 2. If the input clause set S is ground-preserving and the initial inter-
pretation is suitable for S, any fair SGGS-derivation from S is ground.

Proof. We consider S positively ground-preserving and I− (for the dual case one
exchanges the signs). The proof is by induction on the length n of the derivation.
The base case (n = 0) is vacuously true. The induction hypothesis is that the
claim holds for a derivation of length n producing trail Γ . Let Γ ` Γ ′ be the
(n+1)-th step. Since Γ is ground, Γ ` Γ ′ cannot be a splitting step, because any
splitting of a ground clause yields the clause itself, and fairness excludes such
trivial splittings ([14, Defs. 32, 47, and 49]). If Γ ` Γ ′ is an SGGS-resolution
step, it is a ground resolution step, and also Γ ′ is ground. If Γ ` Γ ′ is an
SGGS-extension step, it adds an instance Cα of a clause C∈S, where α is the
simultaneous mgu of all I−-true (i.e., negative) literals L1, . . . , Ln in C with
as many I−-false (i.e., positive) selected literals M1, . . . ,Mn in Γ (see Def. 1).
Since Γ is ground by induction hypothesis, the clauses containing M1, . . . ,Mn

are ground and do not have constraints. Thus, L1α, . . . , Lnα are also ground.
The I−-false literals of Cα are ground, because C is positively ground-preserving
(i.e., Var(C) ⊆ Var(C−)), so that all its variables get grounded by α. Hence Cα
and Γ ′ are ground. ut

The next example illustrates Lemma 2 and gives the intuition for restrained-
ness.

Example 6. Assume a positively ground-preserving set S which includes:

P(s10(0), s9(0)) (i), ¬P(s(s(x)), y) ∨ P(x, s(y)) (ii), ¬P(s(0), 0) (iii),

and I− is the initial interpretation. SGGS starts with an extension that puts
the positive clause P(10, 9) on the trail, where we write n for sn(0). Subsequent
extensions unify the negative literal in clause (ii) with some positive ground
literal on the trail, so that new literals in added clauses are positive:

Γ0 : ε ` Γ1 : [P(10, 9)]

` Γ2 : [P(10, 9)], ¬P(10, 9) ∨ [P(8, 10)]

` Γ3 : [P(10, 9)], ¬P(10, 9) ∨ [P(8, 10)], ¬P(8, 10) ∨ [P(6, 11)].
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The positive literals have decreasing number of symbols, matching the fact that
P(s(s(x)), y) � P(x, s(y)) in (ii) for � any lexicographic path ordering (LPO).

This suggests to strengthen ground-preservingness with an ordering (unre-
lated to the SGGS-suitable ordering of Sect. 2) to get a finite basis.

Definition 4. A quasi-ordering � on terms and atoms is restraining, if (i) it
is stable under substitution, (ii) the strict ordering � = � \ � is well-founded,
and (iii) the equivalence ≈ = � ∩� has finite equivalence classes.

Note that Condition (i) implies that � and ≈ are stable under substitution.
From now on, � is a restraining quasi-ordering. Let AS be the set of ground
atoms occurring in S, and A�S the subset of the Herbrand base A of ground

atoms upper-bounded by AS , so A�S = {L : L ∈ A,∃M ∈ AS with M � L}.
By Conditions (ii) and (iii) in Def. 4, A�S is finite and thus can serve as basis.

Definition 5. A clause C is (strictly) positively restrained if it is positively
ground preserving, and for all non-ground literals L ∈ C+ there is a literal
M ∈ C− such that at(M) � at(L) (at(M) � at(L)). A set of clauses is positively
restrained if all its clauses are.

Negatively restrained clauses and clause sets are defined similarly, and a set
of clauses is restrained if it is positively or negatively restrained. The set in
Example 6 is strictly positively restrained. We see next the role of the quasi-
ordering.

Example 7. Problem PLA030-1 in TPTP is neither stratified, nor monadic, nor
guarded. Its clause differ(x, y)∨¬differ(y, x) cannot be shown strictly restrained.
Let �acrpo be an AC-compatible [40] recursive path ordering with differ as an AC-
symbol, meaning associative-commutative. The quasi-ordering �acrpo, built from
�acrpo and the AC-equivalence ≈AC that has finite equivalence classes, satisfies
differ(x, y)�acrpodiffer(y, x), and shows that PLA030-1 is negatively restrained.

Restrainedness is undecidable in general, but decidable for fixed, suitable
orderings. If S is restrained, a fair SGGS-derivation will be in A�S .

Lemma 3. If the input clause set S is restrained and the initial interpretation
is suitable for S, any fair SGGS-derivation from S is in A�S .

Proof. We consider S positively ground-preserving and I− (for the dual case one
exchanges the signs). Since the set is restrained hence ground-preserving, the
derivation is ground by Lemma 2 (†). The proof is by induction on the length
n of the derivation, and it follows the same pattern as that of Lemma 2. Let
Γ ` Γ ′ be the (n+1)-th step. By induction hypothesis, Γ is in A�S . If Γ ` Γ ′ is
an SGGS-resolution step, it is a ground resolution step which does not generate
new atoms, and also Γ ′ is in A�S . If Γ ` Γ ′ is an SGGS-extension step, it adds
an instance Cα of a clause C∈S, where α is the simultaneous mgu of all I−-true
(i.e., negative) literals ¬L1, . . . ,¬Ln in C with as many I−-false (i.e., positive)
selected literals M1, . . . ,Mn in Γ . The literals M1, . . . ,Mn are ground by (†),
and by induction hypothesis they are in A�S . We have to show at(Cα) ⊆ A�S .
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– For the negative literals ¬L1α, . . . ,¬Lnα we have Liα = Miα = Mi ∈ A�S .

– Let L be a literal in C+. If L is ground, then Lα = L ∈ AS ⊆ A�S . If L
is not ground, by positive restrainedness there exists a ¬Li, 16 i6n, such
that Li � L. By stability, Liα � Lα. Since for all i, 16 i6n, Mi ∈ A�S and

Mi = Miα = Liα � Lα, we have Lα ∈ A�S . ut

Therefore, as A�S is finite, Theorem 1 applies.

Theorem 3. Any fair SGGS-derivation from a restrained clause set S with a
suitable initial interpretation for S halts, is a refutation if S is unsatisfiable, and
constructs a model of S if S is satisfiable.

Restrainedness also makes it possible to derive an upper bound on the cardi-
nality of a single-sorted model, defined as the cardinality of its domain. Let H�S
be the set H�S = {t : t is a strict subterm of L for some L ∈ A�S }.

Theorem 4. A restrained satisfiable clause set S has a model of cardinality at
most |H�S |+ 1 that can be extracted from the limit of any fair SGGS-derivation
from S with suitable initial interpretation I.

Proof. By Thm. 3 the derivation halts with some trail Γ , and by Lems. 2 and 3, Γ
contains only ground clauses whose atoms are in A�S . Since SGGS is model com-
plete, I[Γ ] |= S. Consider the following interpretation J with domain H�S ]{u},
where u is a new constant symbol: for every constant symbol c we set cJ = c if
c ∈ H�S , and cJ = u otherwise. For every n-ary (n > 1) function symbol f , we set
fJ(t1, . . . , tn) = f(tJ1 , . . . , t

J
n) if f(t1, . . . , tn) ∈ H�S , and fJ(t1, . . . , tn) = u oth-

erwise. For every predicate symbol P , (t1, . . . , tn) ∈ P J if I[Γ ] |= P (t1, . . . , tn).
Note that J is well-defined because if f(t1, . . . , tn) ∈ H�S then t1, . . . , tn are also,
hence all terms are interpreted in H�S ]{u}. As J agrees with I[Γ ] on all atoms,
J |= S, and it has cardinality |H�S |+ 1 by construction. ut

Therefore the restrained fragment also enjoys the small model property.

Example 8. The satisfiable clause set S (PUZ054-1 in TPTP) extending Ex. 6:

P(s10(0), s9(0)), ¬P(s(s(x)), y) ∨ P(x, s(y)), ¬P(x, s(s(y))) ∨ P(x, s(y)),

¬P(s(0), 0), ¬P(s(x), s(y)) ∨ P(s(x), y),

is neither in EPR, nor in FO2, nor in the monadic class. However, it can be shown
strictly positively restrained by a Knuth-Bendix ordering (KBO) � with empty
precedence and weights w(P) = 0 and w0 = w(s) = w(0) = 1, where w0 is the
weight of variables. The largest atom in AS = {P(s10(0), s9(0)), P(s(0), 0)} has
weight w(P(s10(0), s9(0))) = 21. No atom L of the form P(sn(0), sm(0)) inA�S can
have a subterm sk(0) with k > 19, because otherwise w(L) > w(P(s10(0), s9(0))).
Therefore, we have H�S = {si(0) : 06i619} and there is a model of cardinality
at most 21 by Theorem 4.

We next consider PVD [17]. Let depth(C) be the maximum depth of an atom
in clause C, and depthx(C) the maximum occurrence depth in C of x ∈ Var(C).
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Definition 6. A clause set S is in PVD if every clause C ∈S is positively
ground-preserving and ∀x ∈ V ar(C+) it holds that depthx(C+) 6 depthx(C−).

Let Ad be the subset of the Herbrand base A containing all ground atoms whose
depth does not exceed d.

Lemma 4. If the input clause set S is in PVD and has maximal depth d then
any fair SGGS-derivation from S using I− is in Ad.

Proof. Since S is in PVD and hence ground-preserving, by Lemma 2 the deriva-
tion is ground (†). The proof is by induction on the length n of the derivation,
and follows that of Lemma 3 except for the extension case in the inductive step.
Let Γ ` Γ ′ be an SGGS-extension step as described in the proof of Lemma 3.
The positive literals M1, . . . ,Mn are ground by (†) and by induction hypothesis
in Ad. Since Liα = Miα = Mi for all i, 1 6 i 6 n, the atoms Liα in C−α are
ground and in Ad. Let L be a literal in C+. Since S is in PVD, every variable
in L occurs at a lower or equal depth in some Li (1 6 i 6 n). Therefore, Lα is
ground and its depth cannot exceed that of Liα, so that Lα ∈ Ad. ut

Since Ad is a finite basis, termination follows from Theorem 1.

Theorem 5. Any fair SGGS-derivation using I− from a PVD set S halts, is a
refutation if S is unsatisfiable, and constructs a model of S if S is satisfiable.

5 Ordered Resolution Decides the Restrained Fragment

In this section we work with the positively restrained fragment; the case for the
negatively restrained one is symmetric. Let > be a stable and well-founded or-
dering on literals, such that positive literals are maximal only in positive clauses,
so that ordered resolution is positive ordered resolution. In this way, the ordering
embeds the suitable sign-based semantic guidance for the positively restrained
fragment. The ordering > could be the extension of the restraining ordering �
(see Definition 5) to literals, but does not have to be. We use the following nota-
tions [18]: Res>(S) denotes the set of ordered resolvents generated from parents
in S; R0

>(S) = S, Rk+1
> (S) = Rk

>(S)∪Res>(Rk
>(S)), and R∗>(S) =

⋃
k>0R

k
>(S).

We begin with an auxiliary lemma.

Lemma 5. If S is positively restrained, then for all C ∈ R∗>(S), for all L ∈ C+

either (i) L ∈ A�S , or (ii) at(M) � at(L) for some M ∈ C−.

Proof. The proof is by induction on the stage k of the construction of R∗>(S). For
k=0, the clauses in R0

>(S) = S satisfy the claim by the definitions of restrained-

ness, AS , and A�S . The induction hypothesis is that all clauses in Rk
>(S) satisfy

the claim. For the inductive step, let Cσ ∨Dσ be a resolvent in Res>(Rk
>(S))

generated from parents ¬L∨C and L′ ∨D, where ¬Lσ and L′σ are >-maximal
literals, and Lσ = L′σ for mgu σ. The clause L′ ∨ D must be positive, other-
wise L′σ cannot be >-maximal. Since L′ ∨D ∈ Rk

>(S), by induction hypothesis
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at(L′ ∨D) ⊆ A�S (†), which means L′ ∨D is ground, (L′ ∨D)σ = L′ ∨D, and all

atoms in Dσ are in A�S . For the positive literals in Cσ, let Mσ be one of them, so

M ∈ C+. Since ¬L∨C is in Rk
>(S), by induction hypothesis, either (i) M ∈ A�S ,

or (ii) M ′ �M for some negative literal ¬M ′ in ¬L∨C. In case (i), M is ground,

Mσ = M , and Mσ ∈ A�S . In case (ii), if ¬M ′ occurs in C then ¬M ′σ ∈ Cσ,
and M ′σ � Mσ holds by stability, so that the claim holds. Otherwise, ¬M ′ is
the resolved-upon literal ¬L with Lσ = L′σ. Thus, L = M ′ �M , which implies
Lσ �Mσ by stability, and since L′ is ground, L′σ = L′. By (†), L′ ∈ A�S . Since

L′ = L′σ = Lσ �Mσ, we have Mσ ∈ A�S by definition of A�S . ut

Theorem 6. Any fair ordered resolution derivation using > from a restrained
clause set S terminates, and is a refutation if S is unsatisfiable.

Proof. Let S be positively restrained. We show that R∗>(S) is finite. The claim
then follows from refutational completeness of ordered resolution. We first show
the following (†): for every ordered resolvent Cσ ∨ Dσ in R∗>(S) from parents
¬L∨C and L′ ∨D and mgu σ, L′ ∨D is ground and positive, and Cσ ∨Dσ has
strictly fewer negative literals than ¬L∨C. Indeed, by the definition of ordered
resolution, ¬Lσ and L′σ are >-maximal in (¬L∨C)σ and (L′∨D)σ, respectively.
The clause L′ ∨ D must be positive, otherwise L′σ cannot be >-maximal. By
Lemma 5, every positive literal in a positive clause is in A�S , and therefore it is
ground. Thus, in the resolvent Cσ ∨ Dσ the literals in Dσ are positive, hence
Cσ ∨Dσ has fewer negative literals than ¬L ∨ C.

Now suppose that R∗>(S) is infinite. Observation (†) reveals that the number
of negative literals decreases with every resolution step. Hence, if R∗>(S) is infi-
nite, it must contain infinitely many positive clauses. By Lemma 5, these positive
clauses are ground, and all their atoms are in the finite basis A�S . As repeated
literals in ground clauses disappear by merging, the number of ground clauses
that can be built from A�S is finite. This contradicts R∗>(S) being infinite. ut

This result extends to other positive resolution strategies.

Corollary 1. Hyperresolution and >-ordered resolution with negative selection
decide the positively restrained fragment.

The next example shows that SGGS can be exponentially more efficient than
these saturation-based resolution strategies because it is model-based.

Example 9. Consider the following parametric clause set Sn consisting of n+ 1
clauses, using i+1-ary predicates Pi and constants ci, for all i, 06i6n:

P0(c0) ∨ P0(c1) ∨ · · · ∨ P0(cn) (C0),

¬P0(x1) ∨ P1(x1, c0) ∨ P1(x1, c1) ∨ · · · ∨ P1(x1, cn) (C1),

¬P1(x1, x2) ∨ P2(x1, x2, c0) ∨ · · · ∨ P2(x1, x2, cn) (C2),

. . . . . .

¬Pn−1(x1, . . . , xn) ∨ Pn(x1, . . . , xn, c0) ∨ · · · ∨ Pn(x1, . . . , xn, cn) (Cn).
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The set Sn is positively restrained by an LPO with precedence P0 > · · · >
Pn > ci for all i, 06i6n. SGGS with I− simply selects one positive literal per
clause and detects satisfiability after n + 1 SGGS-extension steps, producing
for instance the model where P0(c0),P1(c0, c0), . . . ,Pn(c0, . . . , c0) are true and
all other atoms are false. A saturation by any of the above positive resolution
strategies produces exponentially many clauses, because for all i, 06i6n, all n
positive literals in Ci unify with the negative literal in Ci+1, generating ni+1

positive clauses, so that the clause count is given by
∑n

k=1 n
k.

6 Experiments

We begin by reducing positive restrainedness (the negative case is similar) to ter-
mination of rewrite systems, so that termination tools can yield a partial practi-
cal test. Since restrainedness employs a quasi-ordering, we consider unsorted re-
write systems R and E , and rewriting modulo →R/E defined by↔∗E ◦ →R ◦ ↔∗E .

Definition 7. Given a clause set S, a pair of rewrite systems (RS , ES) is positi-
vely restraining for S if for all clauses C ∈S and all non-ground literals L ∈ C+,
there is a rule at(M)→ at(L) in RS ∪ ES for some literal M ∈ C−.

Let (RS , ES) be positively restraining for S. For instance, for Example 8,
RS will consist of P(s(s(x)), y) → P(x, s(y)), P(x, s(s(y))) → P(x, s(y)), and
P(s(x), s(y)) → P(s(x), y), while ES = ∅. A common situation is that ES has
permutative rules, as in Ex. 7 where differ(x, y)→ differ(y, x) will be in ES .

Lemma 6. (1) If →RS
is terminating and ES = ∅, clause set S is strictly posi-

tively restrained. (2) If →RS/ES is terminating, Var(t) = Var(u) for all t → u
in ES, and ↔∗E has finite equivalence classes, S is positively restrained.

Proof. (1) Since →RS
is terminating, for all t → u in RS , Var(u) ⊆ Var(t),

so that S is positively ground-preserving. S is strictly positively restrained by
the quasi-ordering →∗RS

: indeed, →∗RS
is stable, →+

RS
is well-founded, and the

equivalence classes of→∗RS
∩ ∗
RS
←, which is identity, are finite. (2) Since→RS/ES

is terminating, for all t → u in RS , Var(u) ⊆ Var(t), and for all t → u in ES ,
Var(u) = Var(t) by hypothesis, so that S is positively ground-preserving. S
is positively restrained by →∗RS/ES : indeed, →∗RS/ES is stable, →+

RS/ES is well-
founded, and the equivalence classes of ↔∗E are finite by hypothesis. ut

For the experiments, given a clause set S, a script named StoR generates
rewrite systems RS and ES that can be fed to a termination tool. The source
of clause sets is TPTP 7.2.0 and the termination tool is TTT2 [27]. All problems
in the FOF category are transformed into conjunctive normal form, excluding
those with equality (whether sets with equality can be restrained is a topic for
future work). Besides 1,539 inputs where either StoR or TTT2 timed out, out of
the remaining 3,462 problems, TTT2 found 313 restrained ones. For those still
undetermined, we tested whether it is sufficient to flip the sign of all literals with
a certain predicate to get a restrained problem, which succeeded in 36 cases, for
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a total of 349 restrained problems. Of these, 277 are positively restrained, 181
negatively restrained, and 109 are both; 74 are ground, 232 are PVD, 277 are
stratified, 252 are EPR, 169 are monadic, 204 are FO2, 209 are guarded, but 43
problems do not fall in any of these classes, and therefore, to the best of our
knowledge, they are proved decidable here for the first time. The average TPTP
rating of the 349 problems is 0.1, and that of the 43 problems is 0.015, where
0.1 means that the problem can be solved by most provers. However, the group
of 349 includes hard problems such as instances of the binary counter problem
in Example 5 (MSC015-1.n), and Rubik’s cube problems (e.g., PUZ052-1). For
example, MSC015-1.030 is restrained and has rating 1.00, that is, no theorem
prover could solve it so far within the timeout allowed in the CASC competition.

Example 10. Problem HWV036-2 (cf. Example 1) is a set of axioms with no
ground atoms, so thatH�S is empty, and the model constructed according to The-
orem 4 is trivial. Several other problems combine this set with ground clauses to
prove theorems from those axioms. For example, HWV008-2.002 adds 23 ground
clauses. As we found a terminating positively restraining rewrite system for
HWV008-2.002, this problem, as well as HWV036-2, is strictly restrained.

An SGGS prototype named Koala was built reusing code for basic data struc-
tures, term indexing, and type inference from iProver [24,26]. In Koala, the SGGS
trail is represented as a list of constrained clauses, with constraints maintained
in standardized form (see Sect. 2 and [14, Sect. 7]), and selected literals stored
in a discrimination tree, since SGGS-extension requires to find selected literals
that unify with literals in an input clause (cf. Definition 1). Koala takes sorts into
account when checking satisfiability of constraints (e.g., Example 2), and imple-
ments a fair search plan which ensures that all derivations are fair (see Sect. 2).
The SGGS-suitable ordering is a KBO with built-in precedence, w0 = 1, and
weight 1 for all function and predicate symbols in order to extend the size or-
dering. Koala also sorts by this ordering the clauses in a splitting, according to
the SGGS notion of preferred clause in a splitting [14, Def. 22]).

Koala picks either I− or I+ as initial interpretation, based on whether the
problem is positively or negatively ground-preserving, which overapproximates
positively or negatively restrained. Koala implements the above mentioned sign-
flipping test to obtain more ground-preserving sets. In order to recognize strati-
fied input problems, one can compute the sort dependency graph and check for
acyclicity [25], or let Koala apply type inference. For all experiments with Koala,
the time-out was 300 sec of wall clock time. Out of the above 349 restrained
problems, Koala shows that 50 are satisfiable and 283 unsatisfiable. Of 351 PVD
problems, not including the 232 ones in the set of 349 restrained problems, Koala
discovers 232 unsatisfiable and 76 satisfiable instances. Of the 1,246 stratified
problems found in the FOF category by the above acyclicity test, Koala solves
643 unsatisfiable and 277 satisfiable instances. The list of the 349 restrained sets
with their properties and restraining rewrite systems, as well as detailed results
of the experiments with Koala are available.2

2 http://profs.scienze.univr.it/winkler/sggsdp/

http://profs.scienze.univr.it/winkler/sggsdp/
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7 Discussion

SGGS [13,14] is an attractive candidate for decision procedures, because it is
conflict-driven and it builds models. In this paper, we showed that if the gen-
erated clauses are in a finite basis, SGGS is guaranteed to terminate, and we
instantiated this result to yield SGGS decision procedures for the stratified frag-
ment, PVD, and the newly introduced restrained fragment, all without equality.

While also Inst-Gen [24] and the model evolution calculus (MEC) [7] decide
the stratified fragment [25], this is not the case for the restrained fragment: for
instance, if Inst-Gen uses an unfortunate literal selection in Example 8, it does
not halt. SGGS avoids this phenomenon thanks to semantic guidance. Since
MEC starts with I+ as candidate model, it may not terminate on satisfiable
negatively restrained sets such as Example 7. Indeed, E-Darwin [6] does not halt
on this example that Koala solves in a few seconds.

However, it is generally difficult to tame a refutationally complete first-order
inference system to yield decision procedures. For instance, SGGS does not halt
given the following set of clauses that belongs to several decidable fragments.3

Example 11. The following set is in the Ackermann, monadic, and FO2 classes:

P(0) (i) P(x) ∨ P(f(x)) (ii) ¬P(x) ∨ ¬P(f(x)) (iii),

where membership in the Ackermann class stems from the Skolemization of
∃v∀x∃y.P (v)∧(P (x)∨P (y))∧(¬P (x)∨¬P (y)). It has the finite model property,
as witnessed by model I with domain {0, 1}, fI(x) = 1−x, 0I = 0, and PI = {0}.
With I−, SGGS performs an infinite series of non-conflicting extensions:

ε ` [P(0)] extend (i)

` [P(0)], ¬P(0) ∨ [¬P(f(0))] extend (iii)

` [P(0)], ¬P(0) ∨ [¬P(f(0))], P(f(0)) ∨ [P(f(f(0)))] extend (ii)

` . . .

It can be shown that SGGS does not terminate with I+ either. Inst-Gen may
terminate if appropriate candidate models are constructed, but not in general.
Ordered resolution terminates if the ordering satisfies ¬P(f(x)) > ¬P(x).

The stratified fragment was presented as the first of three fragments of in-
creasing expressivity, named St0, St1, and St2, and suitable to capture Al-
loy specifications [1]. If the generic predicate symbols P of Example 4 is re-
placed with equality for sort s2, the second sentence of Example 4 becomes
∀x∃y. f(y) ' x, which states that x is in the image of f : this formula separates
St0 and St1, since it is allowed in St1, but not in St0. The LISBQ logic for the
verification of unbounded data structures [29] can be translated into St0 with
equality [1].

3 Renate A. Schmidt and Marco Voigt suggested this example to the first author.
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The restrained fragment is defined starting from a notion of ground-preser-
vingness, which is convenient for positive or negative strategies. Negative ground-
preservingness was used for Horn theories with equality [28] and [10, Sect. 5.2].
Positive ground-preservingness, also named range restrictedness [15], is implicit
in PVD and recent extensions [30]. Unlike these settings, the restrained fragment
does not limit literal depth. Positive ground-preservingness was used to show that
DPLL(Γ+T ), where Γ is an inference system including hyperresolution, superpo-
sition with negative selection, and simplification, decides essentially finite (only
one monadic function f with finite range) and positively ground-preserving ax-
iomatizations, provided that speculative axioms f j(x)' fk(x) (j>k) are tried for
increasing values of j and k ([12], Thm. 7 and Lem. 3). Simplification applies the
speculative axioms to limit the depth of generated terms. Without this feature,
it is not surprising that SGGS does not halt.

Example 12. Consider a positively ground-preserving variant of Example 11:

P(0) (i) ¬P(x) ∨ P(f(f(x))) (ii) ¬P(x) ∨ ¬P(f(x)) (iii)

The finite model property implies that it is essentially finite. SGGS terminates
with neither I− nor I+ as initial interpretation. With I− it generates:

ε ` [P(0)] extend (i)

` [P(0)], ¬P(0) ∨ [P(f2(0))] extend (ii)

` [P(0)], ¬P(0) ∨ [P(f2(0))], ¬P(f2(0)) ∨ [P(f4(0))] extend (ii)

` . . .

Positive hyperresolution generates the series {P(f2k(0))}k≥0, which is essentially
the same behavior as SGGS. DPLL(Γ +T ) tries f(x) ' x, detects a conflict,
backtracks, tries f2(x) ' x, and halts reporting satisfiability.

Ensuring termination by restricting new (i.e., non-input) terms to come from
a finite basis is common for conflict-driven decision procedures [16,11]. A major
direction for future work towards decision procedures for richer languages is the
integration of SGGS with CDSAT [11], in order to endow SGGS with equality
and CDSAT with quantifiers. Speculative inferences and initial interpretations
not based on sign are additional leads. For the restrained fragment, one may
consider its relations with other decidable fragments and its relevance to ap-
plications beyond TPTP. While positive clauses in a restrained set are ground,
one may study the decidability of sets where positive clauses are not necessarily
ground, but admit a restraining rewrite system (Definition 7) such that narrow-
ing halts. Techniques to detect the termination of narrowing are known [35].

Although Koala is only a prototype, the experiments show potential and
allow us to identify critical issues for the performance of an SGGS prover. For
example, instance generation by SGGS-extension is a bottleneck for problems
with many input clauses, and forms of caching should be considered to avoid
repeating computations. Further development of Koala and more experiments
may contribute to discover classes of first-order problems where the conflict-
driven style of SGGS reasoning is especially rewarding.
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