De Bruijn Sequence Constructions

Joe Sawada
University of Guelph
CANADA

Universitì di Verona
June 18, 2019

Canada \Rightarrow Toronto \Rightarrow Guelph (Fun facts)

- Canada 2nd largest country by area, and has more lakes than the rest of the world
- Toronto is the 4th largest city in North America

Canada \Rightarrow Toronto \Rightarrow Guelph (Fun facts)

- Canada 2nd largest country by area, and has more lakes than the rest of the world
- Toronto is the 4th largest city in North America
- Home of NBA champion Toronto Raptors (basketball)

Canada \Rightarrow Toronto \Rightarrow Guelph (Fun facts)

- Canada 2nd largest country by area, and has more lakes than the rest of the world
- Toronto is the 4th largest city in North America
- Home of NBA champion Toronto Raptors (basketball)
- Championship parade held yesterday - expected up to 2 million people!

Canada \Rightarrow Toronto \Rightarrow Guelph (Fun facts)

- Canada 2nd largest country by area, and has more lakes than the rest of the world
- Toronto is the 4th largest city in North America
- Home of NBA champion Toronto Raptors (basketball)
- Championship parade held yesterday - expected up to 2 million people!
- University of Guelph is 1 hour from Toronto, 30 minutes from Waterloo

Combinatorial Generation

Primary Goal: Given a combinatorial object (permutations, trees, necklaces, graphs), find an efficient algorithm to exhaustively list each instance exactly once

Important considerations

- Representation
- Ordering: lexicographic, Gray code

Related issues

- Enumeration
- Random generation
- Ranking, unranking

Such algorithms are often very short but hard to locate and usually are surprisingly subtle

- Steven Skiena, The Stony Brook Algorithm Repository

The Combinatorial Object Server

Together with Torsten Mütze (UK) and Aaron Williams (USA), we recently began revitalizing Frank Ruskey's Combinatorial Object Server from the mid 1990s.

The revitalized Combinatorial Object Server:
http://combos.org

Consider an ATM that does not have an ENTER key. It accepts the last n digits as an attempted password.

To crack a 4 digit password, a brute force attack requires

- $4 \cdot 2^{4}=64$ key presses on a 2 digit keypad
- $4 \cdot 10^{4}=40,000$ key presses on a 10 digit keypad

Can we do better?

De Bruijn Sequences

A de Bruijn (DB) sequence is a circular string of length 2^{n} where every binary string of length n occurs as a substring (exactly once).

De Bruijn Sequences

A de Bruijn (DB) sequence is a circular string of length 2^{n} where every binary string of length n occurs as a substring (exactly once).

0000101101001111 is a DB sequence for $n=4$
The 16 unique substrings of length 4 are:
0000, 0001, 0010, 0101, 1011, 0110, 1101, 1010,
0100, 1001, 0011, 0111, 1111, 1110, 1100, 1000.

Back to Cracking the ATM Password

How can we crack the password more efficiently?
Enter a DB sequence then repeat the first $n-1$ symbols to get the wraparound.

- The binary keypad requires $16+3=19$ key presses instead of 64
- The 10 -digit keypad requires $10^{4}+3=10,003$ key presses instead of 40,000

PROBLEM: How to efficiently construct a DB sequence?

Outline of Seminar

1. DB sequence Construction Methods

- Greedy approaches
- Graph theoretic approach - de Bruijn graphs and Euler cycles
- (Linear) Feedback shift registers
- Successor-based approaches
- Concatenation approaches

2. Future Directions

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

000

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

0001

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

00011

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

000111

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

0001111

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

00011111

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

00011110

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

000111101

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

0001111011

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

00011110111

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

00011110110

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

0001111011001010000

Greedy Approaches - Prefer 1

- 6th century BCE: DB sequence examples appear in early Sanskrit prosody
- 1894: Rivière questioned the existence of a $D B$ sequence for arbitrary n. It was solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0^{n-1} (very important!)
2. Repeat: append the largest bit that does not create a duplicate length n substring
3. Remove the seed

Example $n=4$

1111011001010000

Proved to be the lex largest DB sequence (Fredricksen 1970)

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

$$
101
$$

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

1010

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

$$
10100
$$

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

101000

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

1010000

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

10100000

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

10100001

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

101000011

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

1010000111

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

$$
10100001111
$$

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

101000011111

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

101000011110

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

1010000111100

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

1010000111100101101

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

1010000111100101101

Greedy Approaches - Prefer Same

- 1958: Eldert et al. gives an alternative greedy construction (no proof)
- 1982: Fredricksen re-states the algorithm and outlines proof
- 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length $n-1$ string $\cdots 10101$ (very important!)
2. Append 0
3. Repeat: append the same bit as the last if it does not create a duplicate length n substring; otherwise try the opposite
4. Remove the seed

Example $n=4$

1010000111100101101

Note: Run length $=44211211$ is the lex largest amongst all DB sequences

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

0000

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

00001

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

000010

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

0000101

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

00001010

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

000010101

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

000010100

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

0000101001

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

000010100110111

Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0^{n} (very important!)
2. Repeat: append the opposite bit as the last if it does not create a duplicate length n substring; otherwise try the same until reaching 01^{n-1}
3. Append 1

Example $n=4$

0000101001101111

Implementing Greedy Approaches

For each greedy approach we need to either:

- Store the current sequence and search to see if a substring already exists - or -
- Keep track of which substrings have already been visited

Implementing Greedy Approaches

For each greedy approach we need to either:

- Store the current sequence and search to see if a substring already exists - or -
- Keep track of which substrings have already been visited

X Either approach requires exponential $O\left(2^{n}\right)$ space

The latter approach can generate each new bit in $O(n)$-time

Graph Theoretic Approach

- 1944: Posthumus conjectures the number of DB sequences
- 1946: de Bruijn proves the conjecture using ta graph model
- 1946: Good independently uses graphs to prove existence

A de Bruijn graph of order n is a directed graph

- the vertices are length $n-1$ binary strings
- each directed edge labeled y goes from $x b_{1} b_{2} \cdots b_{n-2}$ to $b_{1} b_{2} \cdots b_{n-2} y$

Each length n binary string corresponds to an edge, and is recovered by considering a vertex together with an outgoing edge label.

Euler Cycles in the de Bruijn Graph

An Euler cycle visits every edge exactly once.
A directed graph $G=(V, E)$ has an Euler cycle if and only if:

- for every vertex the in-degree equals the out-degree
- the graph is strongly connected (there is a path between every pair of vertices)

Euler Cycles in the de Bruijn Graph

An Euler cycle visits every edge exactly once.
A directed graph $G=(V, E)$ has an Euler cycle if and only if:

- for every vertex the in-degree equals the out-degree
- the graph is strongly connected (there is a path between every pair of vertices)

A DB sequence is in 1-1 correspondence with an Euler cycle in the de Bruijn graph. It is obtained by outputting the edge labels from tracing the cycle.

0111101011001000

How to Find Euler Cycles

Method 1: Hierholzer algorithm

(1) Start at random vertex v and traverse edges until returning to v, thus creating a cycle
(2) Start from a vertex already on the cycle to find a new disjoint cycle and then merge the 2 cycles together
(3) Repeat (2) until no edges are left

A cycle joining approach that we will see again.

How to Find Euler Cycles

Method 1: Hierholzer algorithm

(1) Start at random vertex v and traverse edges until returning to v, thus creating a cycle
(2) Start from a vertex already on the cycle to find a new disjoint cycle and then merge the 2 cycles together
(3) Repeat (2) until no edges are left

A cycle joining approach that we will see again.

How to Find Euler Cycles

Method 1: Hierholzer algorithm

(1) Start at random vertex v and traverse edges until returning to v, thus creating a cycle
(2) Start from a vertex already on the cycle to find a new disjoint cycle and then merge the 2 cycles together
(3) Repeat (2) until no edges are left

A cycle joining approach that we will see again.

How to Find Euler Cycles

Method 1: Hierholzer algorithm

(1) Start at random vertex v and traverse edges until returning to v, thus creating a cycle
(2) Start from a vertex already on the cycle to find a new disjoint cycle and then merge the 2 cycles together
(3) Repeat (2) until no edges are left

A cycle joining approach that we will see again.

How to Find Euler Cycles

Method 1: Hierholzer algorithm

(1) Start at random vertex v and traverse edges until returning to v, thus creating a cycle
(2) Start from a vertex already on the cycle to find a new disjoint cycle and then merge the 2 cycles together
(3) Repeat (2) until no edges are left

A cycle joining approach that we will see again.

How to Find Euler Cycles

Method 1: Hierholzer algorithm

(1) Start at random vertex v and traverse edges until returning to v, thus creating a cycle
(2) Start from a vertex already on the cycle to find a new disjoint cycle and then merge the 2 cycles together
(3) Repeat (2) until no edges are left

A cycle joining approach that we will see again.

How to Find Euler Cycles

Method 1: Hierholzer algorithm

(1) Start at random vertex v and traverse edges until returning to v, thus creating a cycle
(2) Start from a vertex already on the cycle to find a new disjoint cycle and then merge the 2 cycles together
(3) Repeat (2) until no edges are left

A cycle joining approach that we will see again.

How to Find Euler Cycles

Method 2: Fleury's Algo (don't burn bridges)
(1) Pick a root vertex and compute a spanning in-tree
(2) Make edges of spanning tree (the bridges) the last edge on the adjacency list of each vertex
(3) Traverse edges starting from root

How to Find Euler Cycles

Method 2: Fleury's Algo (don't burn bridges)
(1) Pick a root vertex and compute a spanning in-tree
(2) Make edges of spanning tree (the bridges) the last edge on the adjacency list of each vertex
(3) Traverse edges starting from root

How to Find Euler Cycles

Method 2: Fleury's Algo (don't burn bridges)

(1) Pick a root vertex and compute a spanning in-tree
(2) Make edges of spanning tree (the bridges) the last edge on the adjacency list of each vertex
(3) Traverse edges starting from root

$$
\# \text { of spanning in-trees }=\# \text { of } D B \text { sequences }=\frac{2^{2^{n-1}}}{2^{n}}
$$

Implementing Euler Cycle Algorithms

Each Euler cycle algorithm requires that the graph be stored in memory

X Either algorithm requires exponential $O\left(2^{n}\right)$ space
X Difficult to analyze the properties of any specific DB sequence

Euler cycle approaches can generate all $\frac{2^{2 n-1}}{2^{n}}$ DB sequences

Open question: Is there a direct counting argument for the number of spanning trees and DB sequences? The initial enumeration proof uses matrix analysis techniques.

Application: Pseudorandom Bit Generation

DB sequences have the following nice properties:

- Balanced: they contain the same number of 0 s as 1 s
- Run property: there are an equal number of runs of 0 s and 1 s of same length
- Span property: they contain every distinct length n binary string as a substring

Application: Pseudorandom Bit Generation

DB sequences have the following nice properties:

- Balanced: they contain the same number of 0 s as 1 s
- Run property: there are an equal number of runs of 0 s and 1 s of same length
- Span property: they contain every distinct length n binary string as a substring

The discrepancy of a sequence is the maximum difference in the number of 0 s as 1 s over all substrings.

0111000101010011 has discrepancy $|7-3|=4$
Some DB sequences have discrepancy $\leq 2 n$ or up to $\Theta\left(2^{n} \log n / n\right)$. What is best for a pseudo-random number generator?

Feedback Shift Registers

The construction methods up to this point have significant limitations

- 1967: Golomb publishes Shift Register Sequences focusing on a feedback shift register construction

- 1982: Fredricksen publishes A survey of full length nonlinear shift register cycle algorithms
- 2012-2016: Dubrova and Li et al. present non-linear feedback shift register constructions

Feedback Shift Registers

The construction methods up to this point have significant limitations

- 1967: Golomb publishes Shift Register Sequences focusing on a feedback shift register construction

- 1982: Fredricksen publishes A survey of full length nonlinear shift register cycle algorithms
- 2012-2016: Dubrova and Li et al. present non-linear feedback shift register constructions

A feedback shift register (FSR) is a shift register whose input bit is a function of its previous state (string of length n)

$$
f\left(b_{1} b_{2} \cdots b_{n}\right)=b_{2} b_{3} \cdots b_{n} g\left(b_{1} \cdots b_{n}\right)
$$

where $g\left(b_{1} \cdots b_{n}\right)$ is the feedback function.
Each primitive polynomial for a given n corresponds to a unique linear FSR that outputs a DB sequence less the 0^{n} string - called m-sequences

Feedback Shift Registers

A feedback function for a LFSR based on a primitive polynomial of degree $n=12$

$$
g\left(b_{1} b_{2} \cdots b_{12}\right)=b_{1}+b_{2}+b_{3}+b_{9}(\bmod 2)
$$

n	3	4	5	6	7
primitive polynomials	2	2	6	6	18
DB sequences	2	16	2048	67108864	144115188075855872

Feedback Shift Registers

A feedback function for a LFSR based on a primitive polynomial of degree $n=12$

$$
g\left(b_{1} b_{2} \cdots b_{12}\right)=b_{1}+b_{2}+b_{3}+b_{9}(\bmod 2)
$$

n	3	4	5	6	7
primitive polynomials	2	2	6	6	18
DB sequences	2	16	2048	67108864	144115188075855872

X Need a different primitive polynomial for each n

Efficient implementation - $O(n)$ per bit using $O(n)$ space

Suitable for implementing in hardware

Not ideal for psuedorandom bit generation - the LFSR can be determined after $2 n$ bits using the Berlekamp-Massey algorithm

Successor-based constructions

- 1972: Fredricksen gives an efficient successor rule for the prefer-1 (which is the complement of the prefer-0) greedy construction

Quote by Fredericksen (1982)

When the mathematician on the street is presented with the problem of generating a full cycle [DB sequence], one of the three things happens: he gives up, or produces a sequence based on a primitive polynomial, or produces the prefer-one sequence. Only rarely is a new algorithm proposed.

Successor-based constructions

- 1972: Fredricksen gives an efficient successor rule for the prefer-1 (which is the complement of the prefer-0) greedy construction

Quote by Fredericksen (1982)

When the mathematician on the street is presented with the problem of generating a full cycle [DB sequence], one of the three things happens: he gives up, or produces a sequence based on a primitive polynomial, or produces the prefer-one sequence. Only rarely is a new algorithm proposed.

- 1984, 1987: Etzion and Lempel present successor rules based on simple FSRs
- 1990: Huang presents a new successor rule construction using the CCR
- 1991: Jansen, Franx and Boekee present a generic FSR-based successor rule approach
- 2013, 2017: Dragon, Hernandez, S., Williams, Wong, present a simple successors for k-ary alphabet

Successor Rules

A DB successor for a given DB sequence is a (feedback) function

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}0 & \text { if conditions } \\ 1 & \text { otherwise }\end{cases}
$$

that returns the bit following the substring $b_{1} b_{2} \cdots b_{n}$

Successor Rules

A DB successor for a given DB sequence is a (feedback) function

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}0 & \text { if conditions } \\ 1 & \text { otherwise }\end{cases}
$$

that returns the bit following the substring $b_{1} b_{2} \cdots b_{n}$

Feedback functions based on primitive polynomials are "almost" DB successors

Successor Rules

A DB successor for a given DB sequence is a (feedback) function

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}0 & \text { if conditions } \\ 1 & \text { otherwise }\end{cases}
$$

that returns the bit following the substring $b_{1} b_{2} \cdots b_{n}$

Feedback functions based on primitive polynomials are "almost" DB successors

Most published successors are based on simple feedback functions

- $\operatorname{PCR}\left(b_{1} b_{2} \cdots b_{n}\right)=b_{1} \quad$ induces necklace equivalence classes
- $\operatorname{CCR}\left(b_{1} b_{2} \cdots b_{n}\right)=\bar{b}_{1}$
- $\operatorname{PSR}\left(b_{1} b_{2} \cdots b_{n}\right)=b_{1}+b_{2}+\cdots+b_{n}(\bmod 2)$
- $\operatorname{CSR}\left(b_{1} b_{2} \cdots b_{n}\right)=1+b_{1}+b_{2}+\cdots+b_{n}(\bmod 2)$

Necklaces

A necklace is the lexicographically least representative in an equivalence class of strings under rotation.

Testing whether or not a string is a necklace can be done in $O(n)$ time (Booth, 1980)

Simple DB Successors

Successor for the prefer-0 greedy construction (Fredricksen, 1972)
Let j be the smallest index of $b_{1} b_{2} \cdots b_{n}$ such that $b_{j}=0$ and $j>1$, or $j=n+1$ if no such index exists. Let $\gamma=b_{j} b_{j+1} \cdots b_{n} 01^{j-2}$.

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}\bar{b}_{1} & \text { if } \gamma \text { is a necklace } \\ b_{1} & \text { otherwise }\end{cases}
$$

Simple DB Successors

Successor for the prefer-0 greedy construction (Fredricksen, 1972)

Let j be the smallest index of $b_{1} b_{2} \cdots b_{n}$ such that $b_{j}=0$ and $j>1$, or $j=n+1$ if no such index exists. Let $\gamma=b_{j} b_{j+1} \cdots b_{n} 01^{j-2}$.

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}\bar{b}_{1} & \text { if } \gamma \text { is a necklace } \\ b_{1} & \text { otherwise }\end{cases}
$$

(Jansen, Franx, Boekee, 1991) and later by (Wong 2013)

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}\bar{b}_{1} & \text { if } b_{2} b_{3} \cdots b_{n} \mathbf{1} \text { is a necklace } \\ b_{1} & \text { otherwise }\end{cases}
$$

Simple DB Successors

Successor for the prefer-0 greedy construction (Fredricksen, 1972)

Let j be the smallest index of $b_{1} b_{2} \cdots b_{n}$ such that $b_{j}=0$ and $j>1$, or $j=n+1$ if no such index exists. Let $\gamma=b_{j} b_{j+1} \cdots b_{n} 01^{j-2}$.

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}\bar{b}_{1} & \text { if } \gamma \text { is a necklace } \\ b_{1} & \text { otherwise }\end{cases}
$$

(Jansen, Franx, Boekee, 1991) and later by (Wong 2013)

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}\bar{b}_{1} & \text { if } b_{2} b_{3} \cdots b_{n} \mathbf{1} \text { is a necklace } \\ b_{1} & \text { otherwise }\end{cases}
$$

(Gabric, S., Williams, Wong, 2018)

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}\bar{b}_{1} & \text { if } 0 b_{2} b_{3} \cdots b_{n} \text { is a necklace } \\ b_{1} & \text { otherwise }\end{cases}
$$

JFB and Wong successor rule (necklace spanning tree $n=5$)

JFB and Wong successor rule (necklace spanning tree $n=5$)

JFB and Wong successor rule (necklace spanning tree $n=5$)

JFB and Wong successor rule (necklace spanning tree $n=5$)

JFB and Wong successor rule (necklace spanning tree $n=5$)

JFB and Wong successor rule (necklace spanning tree $n=5$)

JFB and Wong successor rule (necklace spanning tree $n=5$)

JFB and Wong successor rule (necklace spanning tree $n=5$)

JFB and Wong successor rule (necklace spanning tree $n=5$)

Very Simple DB Successors

One based on the CCR (Gabric, S., Williams, Wong, 2018)

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}b_{1} & \text { if } b_{2} b_{3} \cdots b_{n} \mathbf{0} \neq 0^{n} \text { is a co-necklace } \\ \bar{b}_{1} & \text { otherwise }\end{cases}
$$

Note: α is a co-necklace if $\alpha \bar{\alpha}$ is a necklace.

Very Simple DB Successors

One based on the CCR (Gabric, S., Williams, Wong, 2018)

$$
N E X T\left(b_{1} b_{2} \cdots b_{n}\right)= \begin{cases}b_{1} & \text { if } b_{2} b_{3} \cdots b_{n} \mathbf{0} \neq 0^{n} \text { is a co-necklace } \\ \bar{b}_{1} & \text { otherwise }\end{cases}
$$

Note: α is a co-necklace if $\alpha \bar{\alpha}$ is a necklace.

Each bit can be generated in $O(n)$-time using $O(n)$-space for any n

Can we do better?

$\underline{\text { Concatenation Approaches }}$

1977-1978: Fredricksen, Kessler, and Maiorana (FKM) present the first concatenation construction

FKM Algorithm

1. List the necklaces of length n in lexicographic order
2. Concatenate together their periodic reductions

Concatenation Approaches

1977-1978: Fredricksen, Kessler, and Maiorana (FKM) present the first concatenation construction

FKM Algorithm

1. List the necklaces of length n in lexicographic order
2. Concatenate together their periodic reductions

Example for $n=6$

$$
\begin{aligned}
& 000000,000001,000011,000101,000111,001001,001011 \text {, } \\
& 001101,001111,010101,010111,011011,011111,111111
\end{aligned}
$$

Concatenation Approaches

1977-1978: Fredricksen, Kessler, and Maiorana (FKM) present the first concatenation construction

FKM Algorithm

1. List the necklaces of length n in lexicographic order
2. Concatenate together their periodic reductions

Example for $n=6$

$$
\begin{aligned}
& 000000,000001,000011,000101,000111,001001,001011, \\
& 001101,001111,010101,010111,011011,011111,111111
\end{aligned}
$$

Concatenation Approaches

1977-1978: Fredricksen, Kessler, and Maiorana (FKM) present the first concatenation construction

FKM Algorithm

1. List the necklaces of length n in lexicographic order
2. Concatenate together their periodic reductions

Example for $n=6$

$$
\begin{aligned}
& 000000,000001,000011,000101,000111,001001,001011, \\
& 001101,001111,010101,010111,011011,011111,111111
\end{aligned}
$$

DB seq: 0000001000011000101000111001001011001101001111010101110110111111

Concatenation Approaches

Amazingly, the FKM algorithm produces the lexicographically smallest DB sequence and it is equivalent to the prefer-0 greedy construction

Each bit can be generated in $O(1)$-amortized time using $O(n)$-space for any n (Ruskey, Savage, Wang, 1992)

Concatenation Approaches

Amazingly, the FKM algorithm produces the lexicographically smallest DB sequence and it is equivalent to the prefer-0 greedy construction

Each bit can be generated in $O(1)$-amortized time using $O(n)$-space for any n (Ruskey, Savage, Wang, 1992)

Equivalent construction

1. List the Lyndon words of length that divide n in lexicographic order
2. Concatenate them together

While equivalent for lexicographic ordering, the two constructions are not the same when we consider other necklace orderings! Try it with colex ordering.

Concatenation Approaches

- 2012: Ruskey, S., and Williams apply cool-lex ordering on necklaces
- 2013, 2017: Dragon, Hernandez, S., Williams, Wong use colex order on necklaces
- 2017: Gabric and S. find a co-necklace concatenation construction

Summary of Concatenation Approaches

1. Greedy approaches - exponential space
2. Graph theoretic, Euler cycles - exponential space
3. Linear feedback shift registers - require primitive polynomial for each n
4. Successor rules - very simple and efficient
5. Concatenation approaches very efficient, but only several known approaches

Generalization: Universal Cycles

Universal cycles are generalizations of DB sequences to other sets \mathbf{S} of objects.

A universal cycle for a set \mathbf{S} is a circular sequence of length $|S|$ such that each element $s \in \mathbf{S}$ is represented as a length n substring exactly once.

The notion of de Bruijn graphs can be generalized as well. Such a set \mathbf{S} will have a universal cycle if and only if its corresponding de Bruijn graph has an Euler cycle.

- The set of permutations of order n in one line notation does not have a universal cycle. However, they do exist for a shorthand representation.
- Combinations $C(n, k)$ do not have a universal cycle. The following de Bruijn graph for $C(4,2)$ is not connected.

debruijnsequence.org

A new resource with information on these constructions and more:
http://debruijnsequence.org

Contributors: JS, Aaron Williams, Dennis Wong, Daniel Gabric, Torsten Mütze

Future Directions

1. Find efficient successor rules for the prefer-same and prefer-opposite greedy approaches (recently solved!)
2. Find constructions for a 2-dimensional de Bruijn torus (existence questions)
3. Find universal cycles for other combinatorial objects (unlabeled necklaces)
4. Efficiently construct the lexicographically smallest shorthand permutation UC
5. Construct a DB sequence with discrepancy close to what is expected from a random sequence

Future Directions

1. Find efficient successor rules for the prefer-same and prefer-opposite greedy approaches (recently solved!)
2. Find constructions for a 2-dimensional de Bruijn torus (existence questions)
3. Find universal cycles for other combinatorial objects (unlabeled necklaces)
4. Efficiently construct the lexicographically smallest shorthand permutation UC
5. Construct a DB sequence with discrepancy close to what is expected from a random sequence

- Grazie -

