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A binary word is called prefix normal if no substring has more 1s than the prefix of the same length. For
example, 1101010110 is prefix normal but 1100110110 is not, because, for instance, the substring 1101 has
too many 1s. These words are the sequences of the first differences of the function F (w, k) = max{d(u) |
u is a substring of w of length k}, where d(u) denotes the number of 1s in the binary word u. For example,
for the word w = 1100110110, we get:

k 0 1 2 3 4 5 6 7 8 9 10
F (w, k) 0 1 2 2 3 4 4 4 5 6 6

The sequence of the first differences is w′ = 1101100110 =: PNF(w). We call this (necessarily binary)
word the prefix normal form of w. It is prefix normal by construction, and it is the only prefix normal word
in the equivalence class of w w.r.t. the equivalence w ≡ v iff F (w, ·) = F (v, ·).

Prefix normal words, fist introduced in [10], are motivated by Binary Jumbled Pattern Matching (BJPM) [7]:
Given a binary string T and a query (x, y), does T contain a substring with x zeros and y ones? BJPM
can be solved by a linear scan of T in time O(n). For the indexing variant (IBJPM), define f(w, k) as the
minimum number of 1s in a substring of w of length k. Then the answer to query (x, y) is YES if and only
if f(T, x + y) ≤ y ≤ F (T, x + y). Thus the problem can be solved by storing F (w, ·) and f(w, ·) in O(n)
space; this is a linear size index, with O(1) query time. The current fastest computation of these functions
F and f is given by Chan and Lewenstein, in O(n1.864) time [6].

1. Enumeration of prefix normal words (counting).

Let pnw(n) denote the number of prefix normal words of length n. It is easy to see that pnw grows
exponentially. It was conjectured in [5], and recently proved by Balister and Gerke [2] that pnw(n) =

2n−Θ(log2 n).

No closed form is known for pnw(n); OEIS sequence number A194850 [13] lists pnw(n) up to n = 50.
Generating functions for some (few) subsets exist [5], but not for pnw(n).

The question can be rephrased as: How many different functions F can exist, where a necessary and
sufficient condition for a 0-1 step function F to be the F (w, ·) of some word w is that F (w, 0) = 0 and
for all i < j, F (i + j) ≤ F (i) + F (j) [10, 5].

2. Equivalence class sizes.

Some equivalence classes are singletons (e.g. 1n, 0n, 1001, . . .; this implies that the word is a palindrome,
since F (w, ·) = F (wrev, ·)), some are much larger. Balister and Gerke proved that the size of the largest

equivalence class is 2n−O(
√
n log n) [2].

1



However, no closed form is known. The OEIS sequence A238110 [13] lists the size of the largest
equivalence class for n up to 50. This question is the same as asking how many distinct words can
have the same function F .

3. Generation of equivalence classes.

Given a prefix normal word w, list all words v s.t. PNF(v) = w. Some attempts in this direction were
made recently in [11].

4. Testing.

The best algorithm to decide whether a string w is prefix normal is: Compute PNF(w); w is prefix
normal iff PNF(w) = w. The fastest algorithm for doing this is given in [6]. However, it is not clear
that recognition is as hard as computing the F -function.

5. Which prefix normal forms w.r.t. 1 can be combined with which prefix normal forms
w.r.t. 0?

Define F0(w, ·) and PNF0(w) analogously to above, but w.r.t. 0 instead of 1. (For constructing
PNF0(w), we put a 0 when F0 increases, and a 1 otherwise.) Then the two prefix normal forms
of w encode the index for BJPM. These can be used to answer BJPM queries as follows:

(x, y) is a YES-query⇔ rank1(PNF0(w), x + y) ≤ y ≤ rank1(PNF1(w), x + y).

Prefix normal words w.r.t. 0 are defined analogously to prefix normal words w.r.t. 1. Given w, a prefix
normal word w.r.t. 1, and w′, a prefix normal word w.r.t. 0, we call w and w′ compatible if there exists
a binary word v s.t. w = PNF1(v) and w′ = PNF0(v).

The open problem is: Which prefix normal words w.r.t. 1 are compatible with which prefix normal
words w.r.t. 0?

6. How big are the Parikh-equivalence classes?

Another equivalence relation is given by: w Parikh-equivalent to v iff PNF1(w) = PNF1(v) and
PNF0(w) = PNF0(v). Note that this holds iff the Parikh sets of w and v are the same, where the
Parikh set of a string is the set of Parikh vectors of its substrings. How big are these equivalence
classes? I.e. how many different strings can have the same Parikh set?

Similar results about the multiset (not set) of Parikh vectors of substrings can be found in [1].

7. (Expected critical prefix length of a random prefix normal word of length n. - Solved )

Let the critical prefix of a binary word be defined as the sum of the lengths of the first run of 1s (possibly
empty) plus the first run of 0s, and cr(w) be the length of w’s critical prefix. E.g. cr(1110001010) = 6,
cr(0001100101) = 3, cr(1110000000) = 10, cr(1n) = cr(0n) = n.

The expected critical prefix length of a prefix normal word was conjectured to be O(log n) in [5], and
recently proved to be O(log2 n) [4]. We do not expect further advance here.

Further relevant literature includes:

• generating algorithms for prefix normal words: (a) in worst-case O(n) time per word [8] (exploiting
connections to lexicographic order); (b) in amortized O(log2 n) time per word [4] (exploiting that prefix
normal words form a bubble language);

• infinite prefix normal words and forms [9];

• prefix normal forms applied to a certain class of graphs [3],

• generalization of prefix normal words to larger alphabets [12].
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