
Algoritmi di Bioinformatica

Zsuzsanna Lipták

Laurea Magistrale Bioinformatica e Biotechnologie Mediche (LM9)

a.a. 2013/14, spring term

Computational e�ciency I

2 / 9

Computational E�ciency

As we will see later in more detail, the e�ciency of algorithms is measured
w.r.t.

• running time

• storage space

We will make these concepts more concrete later on, but for now want to
give some intuition, using an example.

3 / 9

Example: Computation of nth Fibonacci number

Fibonacci numbers: model for growth of populations (simplified model)

• Start with 1 pair of rabbits in a field

• each pair becomes mature at age of 1 month and mates

• after gestation period of 1 month, a female gives birth to 1 new pair

• rabbits never die1

Definition

F (n) = number of pairs of rabbits in field after n months.

1

This unrealistic assumption simplifies the mathematics; however, it turns out that

adding a certain age at which rabbits die does not significantly change the behaviour of

the sequence, so it makes sense to simplify.

4 / 9

Example: Computation of nth Fibonacci number

• month 1: there is 1 pair of rabbits in the field F (1) = 1

• month 2: there is still 1 pair of rabbits in the field F (2) = 1

• month 3: there is the old pair and 1 new pair F (3) = 1 + 1 = 2

• month 4: the 2 pairs from previous month, plus
the old pair has had another new pair F (4) = 2 + 1 = 3

• month 5: the 3 from previous month, plus
the 2 from month 3 have each had a new pair F (5) = 3 + 2 = 5

Recursion for Fibonacci numbers

F (1) = F (2) = 1
for n > 2: F (n) = F (n � 1) + F (n � 2).

5 / 9

Example: Computation of nth Fibonacci number

Algorithm 1 (let’s call it fib1) works exactly along the recursive definition:

Algorithm fib1(n)
1. if n = 1 or n = 2
2. then return 1
3. else

4. return fib1(n � 1) + fib1(n � 2)

Analysis

(sketch) Looking at the computation tree, we see that every node has two
children, and we go down n levels (in many branches); every node means
one addition, so looks like about 2n additions . . .
The algorithm has exponential running time.

6 / 9

Example: Computation of nth Fibonacci number

Algorithm 2 (let’s call it fib2) computes every F (k), for k = 1 . . . n,
iteratively (one after another), until we get to F (n).

Algorithm fib2(n)
1. array of int F [1 . . . n];
2. F [1] 1; F [2] 1;
3. for k = 3 . . . n
4. do F [k] F [k � 1] + F [k � 2];
5. return F [n];

Analysis

(sketch) One addition for every k = 1, . . . , n. Uses an array of integers of
length n.—The algorithm has linear running time and linear storage space.

7 / 9

Example: Computation of nth Fibonacci number

Algorithm 3 (let’s call it fib3) computes F (n) iteratively, like Algorithm 2,
but using only 3 units of storage space.

Algorithm fib3(n)
1. int a, b, c ;
2. a 1; b 1; c 1;
3. for k = 3 . . . n
4. do c a+ b;
5. a b; b c ;
6. return c ;

Analysis

(sketch) Time: same as Algo 2. Uses 3 units of storage (called a, b, and
c).—The algorithm has linear running time and constant storage space.

8 / 9

Example: Computation of nth Fibonacci number

Take-home message

• There may be more than one way of computing something.

• It is very important to use e�cient algorithms.

• E�ciency is measured in terms of running time and storage space.

• In computational biology, inputs are often very large, therefore storage
space is at least as important as running time.

9 / 9

