Algoritmi di Bioinformatica

Zsuzsanna Liptak

Laurea Magistrale Bioinformatica e Biotechnologie Mediche (LM9)
a.a. 2013/14, spring term

Computational efficiency |

MATH GEEKS SHOULDN'T BE ALLOWED
ANYWHERE NEAR CERTAIN FooDS,

WHAT'S WRONG WiTH THERE'RE ONLY 12
FIBONACHOS ? LEFT...NOW WHAT ?
Q
: SEAY ' ®

e B

€000 T Amand | Diat. By Uriversal Pross Siyiome www foxtrot com

2/9



Computational Efficiency

As we will see later in more detail, the efficiency of algorithms is measured
w.r.t.

® running time

e storage space

We will make these concepts more concrete later on, but for now want to
give some intuition, using an example.

3/9

Example: Computation of nth Fibonacci number

Fibonacci numbers: model for growth of populations (simplified model)

Start with 1 pair of rabbits in a field

each pair becomes mature at age of 1 month and mates

after gestation period of 1 month, a female gives birth to 1 new pair

rabbits never diel

Definition
F(n) = number of pairs of rabbits in field after n months.

'This unrealistic assumption simplifies the mathematics; however, it turns out that
adding a certain age at which rabbits die does not significantly change the behaviour of

the sequence, so it makes sense to simplify.
4/9



Example: Computation of nth Fibonacci number

e month 1: there is 1 pair of rabbits in the field F(1)=1
e month 2: there is still 1 pair of rabbits in the field F(2)=1
e month 3: there is the old pair and 1 new pair F3)=1+1=2

e month 4: the 2 pairs from previous month, plus
the old pair has had another new pair F(4)=2+1=3

e month 5: the 3 from previous month, plus
the 2 from month 3 have each had a new pair F(5)=3+2=5

Recursion for Fibonacci numbers
F(1)=F(2) =1
forn>2: F(n)=F(n—1)+ F(n—2).

5/9

Example: Computation of nth Fibonacci number

Algorithm 1 (let’s call it fibl) works exactly along the recursive definition:

Algorithm fib1(n)
1. ifn=1orn=2

2. then return 1

3. else

4. return fibl(n — 1) + fibl(n — 2)
Analysis

(sketch) Looking at the computation tree, we see that every node has two
children, and we go down n levels (in many branches); every node means
one addition, so looks like about 2" additions . ..

The algorithm has exponential running time.

6/9



Example: Computation of nth Fibonacci number

Algorithm 2 (let’s call it fib2) computes every F(k), for k =1...n,
iteratively (one after another), until we get to F(n).

Algorithm fib2(n)
1. array of int F[1...n];

2. F[1]«+ 1, F[2] « 1,

3. fork=3...n

4 do F[k] < F[k — 1]+ F[k — 2];
5. return F[n];

Analysis

(sketch) One addition for every k =1,...,n. Uses an array of integers of
length n.—The algorithm has linear running time and linear storage space.

7/9

Example: Computation of nth Fibonacci number

Algorithm 3 (let’s call it fib3) computes F(n) iteratively, like Algorithm 2,
but using only 3 units of storage space.

Algorithm fib3(n)

1. int a, b,c;

2. a<+ 1, b+ 1;c+ 1,
3. fork=3...n

4. do c < a+ b;

5 a< b, b+ c;
6 return c;

Analysis

(sketch) Time: same as Algo 2. Uses 3 units of storage (called a, b, and
c).—The algorithm has linear running time and constant storage space.

8/9



Example: Computation of nth Fibonacci number

Take-home message

There may be more than one way of computing something.

It is very important to use efficient algorithms.

Efficiency is measured in terms of running time and storage space.

In computational biology, inputs are often very large, therefore storage
space is at least as important as running time.

9/9



