Strings in molecular biology

Algorithms for Computational Biology

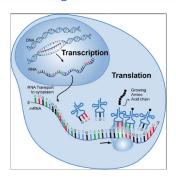
Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology a.a. 2015/16, fall term

Strings and Sequences in Biology

Strings are finite sequences over an alphabet Σ (also called *sequences*).

 $\begin{array}{ll} \text{DNA (characters: nucleotides)} & \Sigma = \{\texttt{A,C,G,T}\} \\ \text{e RNA (characters: nucleotides)} & \Sigma = \{\texttt{A,C,G,U}\} \\ \text{e proteins (characters: peptides)} & \Sigma = \{\texttt{A,C,D,E,F},\ldots,W,Y} \\ \end{array}$


 many other problems in molecular biology can be modelled by strings (e.g. gene order, SNPs, haplotypes, ...)

2 / 10

DNA: nucleotides

- 5' ...AACAGTACCATGCTAGGTCAATCGA...3' 3' ...TTGTCATGGTACGATCCAGTTAGCT...5'
- 4 characters: A C G T: adenine, cytosine, guanine, thymine (bases, nucleotides)
- orientation (read from 5' to 3' end)
- length measured in bp (base pairs)
- double stranded, the two strands are antiparallel
- A T and C G complementary (Watson-Crick pairs)
- $\bullet \ \ \text{reverse complement:} \ \ (\texttt{ACCTG})^\textit{rc} = \texttt{CAGGT} \\$

The central dogma of molecular biology

source: Wonderwikikids.com

4

DNA: nucleotides

- 5' ...AACAGTACCATGCTAGGTCAATCGA...3' 3' ...TTGTCATGGTACGATCCAGTTAGCT...5'
- during transcription, one strand is copied into mRNA (messenger RNA), except all T's are replaced by U's
- the strand which is identical to the mRNA is called *coding* strand
- the other strand (the one which is used for the transcription) is called *template* strand
- Both strands can be used as coding strands (for different genes).
- Some DNA strings are circular: bacterial DNA, mitochondrial DNA.

RNA: nucleotides

• like DNA, except:

3 / 10

- 4 characters: A C U G: adenine, cytosine, uracil, guanine (U instead of T)
- RNA is single-stranded
- builds double stranded hybrids with DNA
- RNA folds upon itself (makes complex 3-dim structures), using the Watson-Crick pairs and other bonds (RNA folding)

5 / 10

Protein: Amino acids

There are 20 common amino acids (aa's); two systems of abbreviations are used: 3-letter-code and 1-letter-code. We usually use the 1-letter-code.

alanine	Ala	Α	leucine	Leu	1
	Ala	А	leucine	Leu	L
arginine	Arg	R	lysine	Lys	K
asparagine	Asn	N	methionine	Met	Μ
aspartic acid	Asp	D	phenylalanine	Phe	F
cysteine	Cys	C	proline	Pro	Ρ
glutamine	Gln	Q	serine	Ser	S
glutamic acid	Glu	E	threonine	Thr	Т
glycine	Gly	G	tryptophan	Trp	W
histidine	His	Н	tyrosine	Tyr	Υ
isoleucine	lle	1	valine	Val	V

The genetic code

Second letter

		U	С	Α	G		
First letter	U	UUU } Phe UUC } Leu UUG } Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	UCAG	Third letter
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC Gin CAG Gin	CGU CGC CGA CGG	UCAG	
	Α	AUU AUC AUA Met	ACU ACC ACA ACG	AAU }Asn AAC }Lys AAG }Lys	AGU Ser AGC AGA Arg	UCAG	Third
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG Glu	GGU GGC GGA GGG	UCAG	

.....

8 / 10

7 / 10

The genetic code

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

5' ...TATTCGAATCGGC...3'

can be translated in 3 different ways, leading to different aa sequences.

- degeneracy of the genetic code
- silent mutations

The genetic code

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

5' ...TATTCGAATCGGC...3'

can be translated in 3 different ways, leading to different aa sequences.

- degeneracy of the genetic code: 64 codons but only 20 aa's plus stop codon
- silent mutations

9 / 10

9 / 10

The genetic code

- standard genetic code (some organisms use a different one)
- 3 different reading frames for translation: The DNA sequence

5' ...TATTCGAATCGGC...3'

can be translated in 3 different ways, leading to different aa sequences.

- degeneracy of the genetic code: 64 codons but only 20 aa's plus stop codon
- silent mutations: if third position mutates, this often does not alter the aa

The genetic code

Exercise

Translate this DNA sequence according to the 3 different reading frames:

5'...TATTCGAATCGGC...3'

9 / 10