Algorithms for Computational Biology

Zsuzsanna Liptak

Masters in Molecular and Medical Biotechnology
a.a. 2015/16, fall term

Strings and Sequences in Computer Science

Some formalism on strings (1)

e 3 a finite set called alphabet

2/17

Some formalism on strings (1)

e Y a finite set called alphabet

e its elements are called characters or letters

2/ 17

Some formalism on strings (1)

e Y a finite set called alphabet
e its elements are called characters or letters

e with |X| we denote the size of the alphabet (number of different
characters)

2/ 17

Some formalism on strings (1)

Y a finite set called alphabet
its elements are called characters or letters

with |X| we denote the size of the alphabet (number of different
characters)

a string over X is a finite sequence of characters from &

2/ 17

Some formalism on strings (1)

Y a finite set called alphabet
its elements are called characters or letters

with |X| we denote the size of the alphabet (number of different
characters)

a string over X is a finite sequence of characters from &

we write strings as s = s15;...s,, where the s; (for i =1,...,n) are

characters from X

2/ 17

Some formalism on strings (1)

Y a finite set called alphabet
its elements are called characters or letters

with |X| we denote the size of the alphabet (number of different
characters)

a string over X is a finite sequence of characters from &

we write strings as s = s15;...s,, where the s; (for i =1,...,n) are
characters from & N.B.: We number strings from 1, not from 0

2/ 17

Some formalism on strings (1)

Y a finite set called alphabet
its elements are called characters or letters

with |X| we denote the size of the alphabet (number of different
characters)

a string over X is a finite sequence of characters from &

we write strings as s = s15;...s,, where the s; (for i =1,...,n) are
characters from & N.B.: We number strings from 1, not from 0

|s| is the length of string s

2/ 17

Some formalism on strings (1)

Y a finite set called alphabet
its elements are called characters or letters

with |X| we denote the size of the alphabet (number of different
characters)

a string over X is a finite sequence of characters from &

we write strings as s = s15;...s,, where the s; (for i =1,...,n) are
characters from & N.B.: We number strings from 1, not from 0

|s| is the length of string s
€ is the empty string, the (unique) string of length 0

2/ 17

Some formalism on strings (1)

Y a finite set called alphabet
its elements are called characters or letters

with |X| we denote the size of the alphabet (number of different
characters)

a string over X is a finite sequence of characters from &

we write strings as s = s15;...s,, where the s; (for i =1,...,n) are
characters from & N.B.: We number strings from 1, not from 0

|s| is the length of string s
€ is the empty string, the (unique) string of length 0
> " is the set of strings of length n

2/ 17

Some formalism on strings (1)

Y a finite set called alphabet
its elements are called characters or letters

with |X| we denote the size of the alphabet (number of different
characters)

a string over X is a finite sequence of characters from &

we write strings as s = s15;...s,, where the s; (for i =1,...,n) are
characters from & N.B.: We number strings from 1, not from 0

|s| is the length of string s

€ is the empty string, the (unique) string of length 0
> " is the set of strings of length n

Y= X"

2/ 17

Some formalism on strings (1)

Y a finite set called alphabet
its elements are called characters or letters

with |X| we denote the size of the alphabet (number of different
characters)

a string over X is a finite sequence of characters from &

we write strings as s = s15;...s,, where the s; (for i =1,...,n) are
characters from & N.B.: We number strings from 1, not from 0

|s| is the length of string s

€ is the empty string, the (unique) string of length 0

> " is the set of strings of length n

Y= X" = YOUXtUX2U... is the set of all strings over ¥

2/ 17

Some formalism on strings (1): Examples

Examples

e DNA: X ={A,C,G,T}, alphabet size |X| = 4,
a string of length 5 is s = ACCTG, s; = A,sp =53 =C,s4 =T,s5 =G.

317

Some formalism on strings (1): Examples

Examples

e DNA: X ={A,C,G,T}, alphabet size |X| = 4,
a string of length 5 is s = ACCTG, s; = A,sp =53 =C,s4 =T,s5 =G.
e RNA: ¥ = {A,C,G,U}, again alphabet size is 4

317

Some formalism on strings (1): Examples

Examples
e DNA: X ={A,C,G,T}, alphabet size |X| = 4,
a string of length 5 is s = ACCTG, s; = A,sp =53 =C,s4 =T,s5 =G.
e RNA: ¥ = {A,C,G,U}, again alphabet size is 4

e protein: ¥ = {A,C,D,EF,... W,Y}, alphabet size is 20,
ANRFYWNL is a string over ¥ of length 8

317

Some formalism on strings (1): Examples

Examples
e DNA: X ={A,C,G,T}, alphabet size |X| = 4,
a string of length 5 is s = ACCTG, s; = A,sp =53 =C,s4 =T,s5 =G.
e RNA: ¥ = {A,C,G,U}, again alphabet size is 4

e protein: ¥ = {A,C,D,EF,... W,Y}, alphabet size is 20,
ANRFYWNL is a string over ¥ of length 8

e English alphabet: ¥ = {a,b,c,... x,y,z} of size 26

317

Some formalism on strings (2)

Let s =s;...5s, be a string over X. ex. s = ACCTG

4/17

Some formalism on strings (2)

Let s =s;...5s, be a string over X. ex. s = ACCTG

e tisasubstringof sift=cort=s;...s5;forsomel </<;<n
(i.e., a "contiguous piece” of s)

4 /17

Some formalism on strings (2)

Let s =s;...5s, be a string over X.

e tisasubstringofsift=cort=s;..

(i.e., a "contiguous piece” of s)

ex. s = ACCTG

.sjforsome1 </ <;j<n

CCT, AC, . ..

4 /17

Some formalism on strings (2)

Let s =s;...5s, be a string over ¥. ex. s = ACCTG

e tisasubstringof sift=cort=s;...s5;forsomel </<;<n
(i.e., a "contiguous piece” of s) CCT, AC, ...
e tisaprefixof sift=cort=s1...5 forsomel <;<n
(i.e., a "beginning” of s)

4/17

Some formalism on strings (2)

Let s =s;...5s, be a string over ¥. ex. s = ACCTG

e tisasubstringof sift=cort=s;...s5;forsomel </<;<n

(i.e., a "contiguous piece” of s) CCT, AC, ...
e tisaprefixof sift=cort=s1...5 forsomel <;<n
(i.e., a "beginning” of s) AC, ACCTG, ...

4/17

Some formalism on strings (2)

Let s =s;...5s, be a string over ¥. ex. s = ACCTG

e tisasubstringof sift=cort=s;...s5;forsomel </<;<n

(i.e., a "contiguous piece” of s) CCT, AC, ...
e tisaprefixof sift=cort=s1...5 forsomel <;<n
(i.e., a "beginning” of s) AC, ACCTG, ...

e tisasuffixofsift=cort=s;...5,forsomel<;<n
(i.e., an "end” of s)

4/17

Some formalism on strings (2)

Let s =s;...5s, be a string over ¥. ex. s = ACCTG

e tisasubstringof sift=cort=s;...s5;forsomel </<;<n

(i.e., a "contiguous piece” of s) CCT, AC, ...
e tisaprefixof sift=cort=s1...5 forsomel <;<n

(i.e., a "beginning” of s) AC, ACCTG, ...
e tisasuffixofsift=cort=s;...5,forsomel<;<n

(i.e., an "end” of s) CCTG, G, . ..

4/17

Some formalism on strings (2)

Let s =s;...5s, be a string over ¥. ex. s = ACCTG

e tisasubstringof sift=cort=s;...s5;forsomel </<;<n

(i.e., a "contiguous piece” of s) CCT, AC, ...
e tisaprefixof sift=cort=s1...5 forsomel <;<n

(i.e., a "beginning” of s) AC, ACCTG, ...
e tisasuffixofsift=cort=s;...5,forsomel<;<n

(i.e., an "end” of s) CCTG, G, . ..

t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s

4/17

Some formalism on strings (2)

Let s =s;...5s, be a string over ¥. ex. s = ACCTG

e tisasubstringof sift=cort=s;...s5;forsomel </<;<n

(i.e., a "contiguous piece” of s) CCT, AC, ...
e tisaprefixof sift=cort=s1...5 forsomel <;<n

(i.e., a "beginning” of s) AC, ACCTG, ...
e tisasuffixofsift=cort=s;...5,forsomel<;<n

(i.e., an "end” of s) CCTG, G, . ..
e tis a subsequence of s if t can be obtained from s by deleting some

(possibly 0, possibly all) characters from s ACT, CCT,...

4/17

Some formalism on strings (2)

Let s =s;...5s, be a string over ¥. ex. s = ACCTG

e tisasubstringof sift=cort=s;...s5;forsomel </<;<n

(i.e., a "contiguous piece” of s) CCT, AC, ...
e tisaprefixof sift=cort=s1...5 forsomel <;<n

(i.e., a "beginning” of s) AC, ACCTG, ...
e tisasuffixof sift=cort=s;...5,forsomel <i<n

(i.e., an "end” of s) CCTG, G, . ..
e tis a subsequence of s if t can be obtained from s by deleting some

(possibly 0, possibly all) characters from s ACT, CCT,...

N.B.

string = sequence, but substring # subsequence!

4 /17

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a
substring!

5/ 17

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a
substring!
Ex.: Let s = ACCTG, then ACT is a subsequence but not a substring.

5/ 17

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a
substring!
Ex.: Let s = ACCTG, then ACT is a subsequence but not a substring.

2. Every prefix is a substring, every suffix is a substring.

5/ 17

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a
substring!
Ex.: Let s = ACCTG, then ACT is a subsequence but not a substring.

2. Every prefix is a substring, every suffix is a substring.

3. t is substring of s < t is prefix of a suffix of s < t is suffix of a prefix
of s

5/ 17

Counting strings

Question
How big is &7, i.e., how many strings of length n are there?

6/ 17

Counting strings

Question
How big is &7, i.e., how many strings of length n are there?

Answer

|X"| = |X|". E.g. thereis |£|° = 1 string of length 0, there are 4 strings of
length 1 over the DNA alphabet, 16 of length 2, 64 of length 3, etc. (We
already saw this argument in connection with the degeneracy of the
genetic code.)

6/ 17

Counting substrings, subsequences etc.

Question
Given s = s1...s,. How many

prefixes,

suffixes,

substrings,

subsequences
does s have (exactly, at most, at least)?

7/17

Formalizing alignments

Informal definition

Given s, t € X* (i.e., s, t are two strings over the same alphabet ¥, not
necessarily of the same length), an alignment of s and t is a way of writing
one above the other, possibly inserting gaps (denoted " —"), in such a way
that (a) both have the same length, and (b) no two gaps are above each
other.

Ex: five different alignments of s = ACCT and t = CAT

-ACCT ACCT ACCT —-ACCT -——ACCT
CA--T —-CAT CAT- CA--T CAT----

8 /17

Formalizing alignments

Formal definition
An alignment A of s,t € * is a matrix with two rows and entries from

Y U{—}, where
1. deleting all gaps from the first row yields s
2. deleting all gaps from the second row yields t

3. no column consists of two gaps

Ex:

—-ACCT ACCT ACCT —-ACCT --—-ACCT
CA--T —-CAT CAT- CA--T CAT--—-

9/ 17

Formalizing alignments

Alignment A has length |.A|, and the columns of A are called A, for
i=1,...,]A.

Ex:

-ACCT ACCT ACCT —-ACCT ---ACCT
CA--T —-CAT CAT- CA--T CAT----

E.g. for the first alignment above, A = (;) and A® = (2).

10 /17

Length of alignments

Given s, t € ¥* and an alignment A of s and t, how long is A at most?
At least?

11 /17

Scoring alignments

Informal definition
The score of an alignment is the sum of the scores of its columns. A

scoring function scores each column according to whether it is a match
(two characters which are the same), a mismatch (two different
characters), or a gap (gap-+character or character+gap).

Example
‘ match mismatch gap
fi 2 -1 -1
> 1 -1 -2

Usually match > 0 and mismatch, gap < 0.

12 /17

Scoring alignments

‘match mismatch gap

Al 2 —1

Formal definition

-1

A scoring function f is a pair (p,g), where p: ¥ X ¥ — R and g € R, and

for a column A() = (;) we have

f(X>_ p(x,y) ifx,y€ex
7 g fx=—ory=—.

E.g. for 1 :
e g=-1, and
2 ifa=>b
* p(a’b)_{—l if 2 b

This will allow us to define more general scoring functions later.

13 /17

Scoring alignments

So now we have: Given a scoring function f = (p, g) and an alignment A,
the score of A is

lA|
score(A) = Z fFAD),
i=1

the sum of the scores of the alignment columns.

14 /17

Optimal alignments

Def.
Given s, t € ¥* and scoring function f, the similarity of s and t, is defined
as

sim(s, t) = max{score(A) : A is an alignment of s and t.}

15 /17

Optimal alignments

Def.

Given s, t € ¥* and scoring function f, the similarity of s and t, is defined
as

sim(s, t) = max{score(A) : A is an alignment of s and t.}

Def.
An optimal alignment of s and t is an alignment 4 with maximum score,

i.e. an alignment A s.t.

score(A) = sim(s, t).

Equivalently:
score(A) = max{score(A’) : A’ is an alignment of s and t.}

15 /17

Optimal alignments

N.B.

e Whether an alignment is optimal, depends on the scoring function!

e If A is an optimal alignment of s, t, then, given any alignment A’ of
s, t,
score(A) > score(A')

(obviously using the same scoring function).

e There may be more than one optimal alignment of two strings s and t.

16 / 17

Our computational problem: Global alignment

Now we can formally state our computational problem:
Problem variant 1

Input: Two strings s, t over alphabet X, scoring function f.

Output: An optimal alignment of s and t.

17 /17

Our computational problem: Global alignment

Now we can formally state our computational problem:
Problem variant 1

Input: Two strings s, t over alphabet X, scoring function f.

Output: An optimal alignment of s and t.

Problem variant 2

Input: Two strings s, t over alphabet ¥, scoring function f.
Output: sim(s, t).

Note that in Variant 2, we want to output a number, we are not interested
in an optimal alignment itself.

17 /17

