
Algorithms for Computational Biology

Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology
a.a. 2015/16, fall term

Strings and Sequences in Computer Science

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ

N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn

= Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1)

• Σ a finite set called alphabet

• its elements are called characters or letters

• with |Σ| we denote the size of the alphabet (number of different
characters)

• a string over Σ is a finite sequence of characters from Σ

• we write strings as s = s1s2 . . . sn, where the si (for i = 1, . . . , n) are
characters from Σ N.B.: We number strings from 1, not from 0

• |s| is the length of string s

• ε is the empty string, the (unique) string of length 0

• Σn is the set of strings of length n

• Σ∗ =
⋃∞

n=0 Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . is the set of all strings over Σ

2 / 17

Some formalism on strings (1): Examples

Examples

• DNA: Σ = {A,C,G,T}, alphabet size |Σ| = 4,
a string of length 5 is s = ACCTG, s1 = A, s2 = s3 = C, s4 = T, s5 = G.

• RNA: Σ = {A,C,G,U}, again alphabet size is 4

• protein: Σ = {A,C,D,E,F,. . . ,W,Y}, alphabet size is 20,
ANRFYWNL is a string over Σ of length 8

• English alphabet: Σ = {a,b,c,. . . ,x,y,z} of size 26

3 / 17

Some formalism on strings (1): Examples

Examples

• DNA: Σ = {A,C,G,T}, alphabet size |Σ| = 4,
a string of length 5 is s = ACCTG, s1 = A, s2 = s3 = C, s4 = T, s5 = G.

• RNA: Σ = {A,C,G,U}, again alphabet size is 4

• protein: Σ = {A,C,D,E,F,. . . ,W,Y}, alphabet size is 20,
ANRFYWNL is a string over Σ of length 8

• English alphabet: Σ = {a,b,c,. . . ,x,y,z} of size 26

3 / 17

Some formalism on strings (1): Examples

Examples

• DNA: Σ = {A,C,G,T}, alphabet size |Σ| = 4,
a string of length 5 is s = ACCTG, s1 = A, s2 = s3 = C, s4 = T, s5 = G.

• RNA: Σ = {A,C,G,U}, again alphabet size is 4

• protein: Σ = {A,C,D,E,F,. . . ,W,Y}, alphabet size is 20,
ANRFYWNL is a string over Σ of length 8

• English alphabet: Σ = {a,b,c,. . . ,x,y,z} of size 26

3 / 17

Some formalism on strings (1): Examples

Examples

• DNA: Σ = {A,C,G,T}, alphabet size |Σ| = 4,
a string of length 5 is s = ACCTG, s1 = A, s2 = s3 = C, s4 = T, s5 = G.

• RNA: Σ = {A,C,G,U}, again alphabet size is 4

• protein: Σ = {A,C,D,E,F,. . . ,W,Y}, alphabet size is 20,
ANRFYWNL is a string over Σ of length 8

• English alphabet: Σ = {a,b,c,. . . ,x,y,z} of size 26

3 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s) CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s) AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s) CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s)

CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s) AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s) CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s) CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s) AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s) CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s) CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s)

AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s) CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s) CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s) AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s) CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s) CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s) AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s)

CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s) CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s) AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s) CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s) CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s) AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s) CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s

ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s) CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s) AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s) CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Some formalism on strings (2)

Let s = s1 . . . sn be a string over Σ. ex. s = ACCTG

• t is a substring of s if t = ε or t = si . . . sj for some 1 ≤ i ≤ j ≤ n
(i.e., a ”contiguous piece” of s) CCT, AC, . . .

• t is a prefix of s if t = ε or t = s1 . . . sj for some 1 ≤ j ≤ n
(i.e., a ”beginning” of s) AC, ACCTG, . . .

• t is a suffix of s if t = ε or t = si . . . sn for some 1 ≤ i ≤ n
(i.e., an ”end” of s) CCTG, G, . . .

• t is a subsequence of s if t can be obtained from s by deleting some
(possibly 0, possibly all) characters from s ACT, CCT, . . .

N.B.
string = sequence, but substring 6= subsequence!

4 / 17

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a
substring!

Ex.: Let s = ACCTG, then ACT is a subsequence but not a substring.

2. Every prefix is a substring, every suffix is a substring.

3. t is substring of s ⇔ t is prefix of a suffix of s ⇔ t is suffix of a prefix
of s

5 / 17

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a
substring!
Ex.: Let s = ACCTG, then ACT is a subsequence but not a substring.

2. Every prefix is a substring, every suffix is a substring.

3. t is substring of s ⇔ t is prefix of a suffix of s ⇔ t is suffix of a prefix
of s

5 / 17

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a
substring!
Ex.: Let s = ACCTG, then ACT is a subsequence but not a substring.

2. Every prefix is a substring, every suffix is a substring.

3. t is substring of s ⇔ t is prefix of a suffix of s ⇔ t is suffix of a prefix
of s

5 / 17

Substrings etc.

N.B.

1. Every substring is a subsequence, but not every subsequence is a
substring!
Ex.: Let s = ACCTG, then ACT is a subsequence but not a substring.

2. Every prefix is a substring, every suffix is a substring.

3. t is substring of s ⇔ t is prefix of a suffix of s ⇔ t is suffix of a prefix
of s

5 / 17

Counting strings

Question
How big is Σn, i.e., how many strings of length n are there?

Answer
|Σn| = |Σ|n. E.g. there is |Σ|0 = 1 string of length 0, there are 4 strings of
length 1 over the DNA alphabet, 16 of length 2, 64 of length 3, etc. (We
already saw this argument in connection with the degeneracy of the
genetic code.)

6 / 17

Counting strings

Question
How big is Σn, i.e., how many strings of length n are there?

Answer
|Σn| = |Σ|n. E.g. there is |Σ|0 = 1 string of length 0, there are 4 strings of
length 1 over the DNA alphabet, 16 of length 2, 64 of length 3, etc. (We
already saw this argument in connection with the degeneracy of the
genetic code.)

6 / 17

Counting substrings, subsequences etc.

Question
Given s = s1 . . . sn. How many

• prefixes,

• suffixes,

• substrings,

• subsequences

does s have (exactly, at most, at least)?

7 / 17

Formalizing alignments

Informal definition
Given s, t ∈ Σ∗ (i.e., s, t are two strings over the same alphabet Σ, not
necessarily of the same length), an alignment of s and t is a way of writing
one above the other, possibly inserting gaps (denoted ”−”), in such a way
that (a) both have the same length, and (b) no two gaps are above each
other.

Ex: five different alignments of s = ACCT and t = CAT

-ACCT ACCT ACCT -ACCT ---ACCT

CA--T -CAT CAT- CA--T CAT----

8 / 17

Formalizing alignments

Formal definition
An alignment A of s, t ∈ Σ∗ is a matrix with two rows and entries from
Σ ∪ {−}, where

1. deleting all gaps from the first row yields s

2. deleting all gaps from the second row yields t

3. no column consists of two gaps

Ex:

-ACCT ACCT ACCT -ACCT ---ACCT

CA--T -CAT CAT- CA--T CAT----

9 / 17

Formalizing alignments

Alignment A has length |A|, and the columns of A are called A(i), for
i = 1, . . . , |A|.

Ex:

-ACCT ACCT ACCT -ACCT ---ACCT

CA--T -CAT CAT- CA--T CAT----

E.g. for the first alignment above, A(1) =
(−
C

)
and A(2) =

(
A

A

)
.

10 / 17

Length of alignments

Given s, t ∈ Σ∗ and an alignment A of s and t, how long is A at most?
At least?

11 / 17

Scoring alignments

Informal definition
The score of an alignment is the sum of the scores of its columns. A
scoring function scores each column according to whether it is a match
(two characters which are the same), a mismatch (two different
characters), or a gap (gap+character or character+gap).

Example
match mismatch gap

f1 2 −1 −1
f2 1 −1 −2

Usually match ≥ 0 and mismatch, gap ≤ 0.

12 / 17

Scoring alignments

match mismatch gap

f1 2 −1 −1

Formal definition
A scoring function f is a pair (p, g), where p : Σ×Σ→ R and g ∈ R, and
for a column A(i) =

(x
y

)
, we have

f

(
x

y

)
=

{
p(x , y) if x , y ∈ Σ

g if x = − or y = −.

E.g. for f1 :

• g = −1, and

• p(a, b) =

{
2 if a = b

−1 if a 6= b.

This will allow us to define more general scoring functions later.

13 / 17

Scoring alignments

So now we have: Given a scoring function f = (p, g) and an alignment A,
the score of A is

score(A) =

|A|∑
i=1

f (A(i)),

the sum of the scores of the alignment columns.

14 / 17

Optimal alignments

Def.
Given s, t ∈ Σ∗ and scoring function f , the similarity of s and t, is defined
as

sim(s, t) = max{score(A) : A is an alignment of s and t.}

Def.
An optimal alignment of s and t is an alignment A with maximum score,
i.e. an alignment A s.t.

score(A) = sim(s, t).

Equivalently:
score(A) = max{score(A′) : A′ is an alignment of s and t.}

15 / 17

Optimal alignments

Def.
Given s, t ∈ Σ∗ and scoring function f , the similarity of s and t, is defined
as

sim(s, t) = max{score(A) : A is an alignment of s and t.}

Def.
An optimal alignment of s and t is an alignment A with maximum score,
i.e. an alignment A s.t.

score(A) = sim(s, t).

Equivalently:
score(A) = max{score(A′) : A′ is an alignment of s and t.}

15 / 17

Optimal alignments

N.B.

• Whether an alignment is optimal, depends on the scoring function!

• If A is an optimal alignment of s, t, then, given any alignment A′ of
s, t,

score(A) ≥ score(A′)

(obviously using the same scoring function).

• There may be more than one optimal alignment of two strings s and t.

16 / 17

Our computational problem: Global alignment

Now we can formally state our computational problem:

Problem variant 1

Input: Two strings s, t over alphabet Σ, scoring function f .

Output: An optimal alignment of s and t.

Problem variant 2

Input: Two strings s, t over alphabet Σ, scoring function f .

Output: sim(s, t).

Note that in Variant 2, we want to output a number, we are not interested
in an optimal alignment itself.

17 / 17

Our computational problem: Global alignment

Now we can formally state our computational problem:

Problem variant 1

Input: Two strings s, t over alphabet Σ, scoring function f .

Output: An optimal alignment of s and t.

Problem variant 2

Input: Two strings s, t over alphabet Σ, scoring function f .

Output: sim(s, t).

Note that in Variant 2, we want to output a number, we are not interested
in an optimal alignment itself.

17 / 17

