Algorithms for Computational Biology

Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology a.a. 2015/16, fall term

String Distance Measures

Similarity vs. distance

Two ways of measuring the same thing:

- 1. How similar are two strings?
- 2. How different are two strings?
- 1. Similarity: the higher the value, the closer the two strings.
- 2. Distance: the lower the value, the closer the two strings.

2 / 21

Similarity vs. distance

Example

- s = TATTACTATC t = CATTAGTATC
 - number of equal positions: $|\{i: s_i = t_i\}| = 8$ (out of 10) 80% similarity (s = t if 100%, i.e. if high)
 - number of different positions: $|\{i: s_i \neq t_i\}| = 2$ (out of 10) Hamming distance 2 (s = t if 0, i.e. if low)

(Note that both are defined only if |s| = |t|.)

Alignment score and edit distance

Edit operations

3 / 21

• substitution: a becomes b, where $a \neq b$

• deletion: delete character a

• insertion: insert character a

Often one views alignments in this way: thinking about the changes that happened turning one string into the other, e.g.

ACCT	ACCT	-ACCT
CACT	CACT	CA-CT
2 substitutions	2 deletions, 1 substition.	1 insertion,
	2 insertions	1 deletion

4 / 21

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)

The edit distance

Definition

The edit distance d(s,t) is the minimum number of edit operations needed to transform s into t.

Example

 $s = \mathsf{TACAT},\, t = \mathsf{TGATAT}$

- $\bullet \ \ \mathsf{TACAT} \stackrel{\mathsf{subst}}{\to} \ \mathsf{GACAT} \stackrel{\mathsf{del}}{\to} \ \mathsf{GAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGATAT} \quad \ \ \mathsf{4} \ \mathsf{edit} \ \mathsf{op's}$
- TACAT $\stackrel{\text{ins}}{\rightarrow}$ TGACAT $\stackrel{\text{subst}}{\rightarrow}$ TGATAT 2 edit op's
- TACAT $\overset{\text{ins}}{\to}$ TGACAT $\overset{\text{subst}}{\to}$ TGAGAT $\overset{\text{subst}}{\to}$ TGATAT 3 edit op's

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

- $\bullet \ \mathsf{TACAT} \overset{\mathsf{subst}}{\to} \ \mathsf{GACAT} \overset{\mathsf{del}}{\to} \ \mathsf{GAAT} \overset{\mathsf{ins}}{\to} \ \mathsf{TGAAT} \overset{\mathsf{ins}}{\to} \ \mathsf{TGATAT}$
- $\bullet \ \mathsf{TACAT} \xrightarrow{\mathsf{ins}} \mathsf{TGA} \xrightarrow{\mathsf{CAT}} \xrightarrow{\mathsf{subst}} \mathsf{TGA} \xrightarrow{\mathsf{TAT}}$
- TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGAGAT $\overset{\text{subst}}{\rightarrow}$ TGATAT

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

 $\bullet \ \ \, \mathsf{TACAT} \stackrel{\mathsf{subst}}{\to} \ \, \mathsf{GACAT} \stackrel{\mathsf{del}}{\to} \ \, \mathsf{GAAT} \stackrel{\mathsf{ins}}{\to} \ \, \mathsf{TGAAT} \stackrel{\mathsf{ins}}{\to} \ \, \mathsf{TGATAT} \qquad \stackrel{\mathsf{-TAC-AT}}{\mathsf{TGA-TAT}}$

 $\bullet \ \ \mathsf{TACAT} \xrightarrow{\mathsf{ins}} \ \mathsf{TGACAT} \xrightarrow{\mathsf{subst}} \ \mathsf{TGATAT}$

• TACAT $\overset{\text{ins}}{\to}$ TGACAT $\overset{\text{subst}}{\to}$ TGAGAT $\overset{\text{subst}}{\to}$ TGATAT ????

6 / 21

Alignments vs. edit operations

But every alignment corresponds to a series of operations:

- $\bullet \ \mathsf{match} \mapsto \mathsf{do} \ \mathsf{nothing}$
- $\bullet \ \mathsf{mismatch} \mapsto \mathsf{substitution}$
- $\bullet \ \mathsf{gap} \ \mathsf{below} \mapsto \mathsf{deletion}$
- ullet gap on top \mapsto insertion

Example

T-ACAT-

TGAT-AT

 $\mathsf{TACAT} \overset{\mathsf{ins}}{\to} \mathsf{TGACAT} \overset{\mathsf{subst}}{\to} \mathsf{TGATAT} \overset{\mathsf{del}}{\to} \mathsf{TGATAT} \overset{\mathsf{subst}}{\to} \mathsf{TGATAT}$

7 / 21

Alignments vs. edit operations

Take the following scoring function: match=0, mismatch=-1, gap=-1. If alignment $\mathcal A$ corresponds to the series of operations $\mathcal S$, then:

$$\mathsf{score}(\mathcal{A}) = -|\mathcal{S}|$$

where $|\mathcal{S}| = \text{no. of operations in } \mathcal{S}$.

Example

 $\bullet \ \mathsf{TACAT} \stackrel{\mathsf{subst}}{\to} \ \mathsf{GACAT} \stackrel{\mathsf{del}}{\to} \ \mathsf{GAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGAAT} \stackrel{\mathsf{ins}}{\to} \ \mathsf{TGATAT}$

-TAC-AT TGA-TAT

• TACAT $\overset{\text{ins}}{\rightarrow}$ TGACAT $\overset{\text{subst}}{\rightarrow}$ TGATAT

T-ACAT

8 / 21

Minimum length series of edit operations

We are looking for a series of operations of $minimum\ length\ (=shortest)$:

 $dist(s, t) = min\{|S| : S \text{ is a series of operations transforming } s \text{ into } t\}$

N.B.

There may be more than one series of op's of minimum length, but the length is unique.

9 / 21

Exercises on edit distance

Exercises

- If t is a substring of s, then what is dist(s, t)?
- What is $dist(s, \epsilon)$?
- If we can transform s into t by using only deletions, then what can we say about s and t?
- If we can transform s into t by using only substitutions, then what can we say about s and t?

What is a distance?

A distance function (metric) on a set X is a function $d: X \times X \to \mathbb{R}$ s.t. for all $x, y, z \in X$:

1. $d(x,y) \ge 0$, and $(d(x,y) = 0 \Leftrightarrow x = y)$

(non-negative, identity of indiscernibles)

2. d(x, y) = d(y, x)

(symmetric)

3. $d(x,y) \le d(x,z) + d(z,y)$

(triangle inequality)

What is a distance?

A distance function (metric) on a set X is a function $d: X \times X \to \mathbb{R}$ s.t. for all $x,y,z \in X$:

1. $d(x,y) \ge 0$, and $(d(x,y) = 0 \Leftrightarrow x = y)$

(non-negative, identity of indiscernibles)

2. d(x, y) = d(y, x)

(symmetric)

3. $d(x,y) \le d(x,z) + d(z,y)$

(triangle inequality)

Examples

- Euclidean distance on \mathbb{R}^2 : $d(x,y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$ where $x = (x_1, x_2), y = (y_1, y_2)$
- Manhattan distance on \mathbb{R}^2 : $d(x,y) = |x_1 y_1| + |x_2 y_2|$
- Hamming distance on Σ^n : $d_H(s,t) = \{i : s_i \neq t_i\}$.

11 / 2

13 / 21

The edit distance is a metric

Claim: The edit distance is a metric (distance function).

Proof: Let $s, t, u \in \Sigma^*$ (strings over Σ):

- 1. $dist(s,t) \geq 0$: to transform s to t, we need 0 or more edit op's. Also, we can transform s into t with 0 edit op's if and only if s=t.
- 2. Since every edit operation can be inverted, we get dist(s,t) = dist(t,s).
- 3. (by contradiction) Assume that dist(s,u) + dist(u,t) < dist(s,t), and $\mathcal S$ transforms s into u in dist(s,u) steps, and $\mathcal S'$ transforms u into t in dist(u,t) steps. Then the series of op's $\mathcal S' \circ \mathcal S$ (first $\mathcal S$, then $\mathcal S'$) transforms s into t, but is shorter than dist(s,t), a contradiction to the definition of dist.

(Exercise: Show that the Hamming distance is a metric.)

12 / 21

14 / 21

Computing the edit distance

Note first that we can assume that edit operations happen left-to-right. As for computing an optimal alignment, we look at what happens to the last characters. Transforming s into t can be done in one of 3 ways:

- 1. transform $s_1 \dots s_{n-1}$ into t and then delete last character of s
- 2. if $s_n=t_m$: transform $s_1\dots s_{n-1}$ into $t_1\dots t_{m-1}$ if $s_n\neq t_m$:

transform $s_1 \dots s_{n-1}$ into $1_1 \dots t_{m-1}$ and substitute s_n with t_m

3. transform s into $t_1 \dots t_{m-1}$ and insert t_m

So again we can use Dynamic Programming!

Computing the edit distance

We will need a DP-table (matrix) $\it E$ of size $(n+1) \times (m+1)$ (where n=|s| and m=|t|).

Definition: $E(i,j) = dist(s_1 \dots s_i, t_1 \dots t_i)$

Computation of E(i, j):

- Fill in first row and column: E(0,j) = j and E(i,0) = i
- for i,j>0: now E(i,j) is the minimum of 3 entries plus 1 (top and left) or plus 0/plus 1, depending on whether current chars are the same or different
- return entry on bottom right E(n, m)
- backtrace for shortest series of edit operations

Algorithm for computing the edit distance

Algorithm DP algorithm for edit distance

Input: strings s, t, with |s| = n, |t| = m

Output: value dist(s, t)

- 1. **for** j = 0 to m **do** $E(0,j) \leftarrow j$;
- 2. **for** i = 1 to n **do** $E(i, 0) \leftarrow i$;
- 3. **for** i = 1 to n **do**
- 4. **for** j = 1 to m **do**

$$E(i,j) \leftarrow \min egin{dcases} E(i-1,j)+1 \ E(i-1,j-1) & ext{if } s_i = t_j \ E(i-1,j-1)+1 & ext{if } s_i
eq t_j \ E(i,j-1)+1 \end{cases}$$

5. return E(n, m);

Analysis

- Space: O(nm) for the DP-table
- Time
 - computing dist(s,t): $3nm + n + m + 1 \in O(nm)$ (resp. $O(n^2)$ if n = m)
 - finding an optimal series of edit op's: O(n + m) (resp. O(n) if n = m)

Again alignment vs. edit distance

sim(s, t) vs. dist(s, t)

Recall the scoring function from before: match = 0, mismatch = -1, gap = -1. Then we have:

$$sim(s, t) = -dist(s, t)$$

(This seems obvious but it actually needs to be proved. Formal proof see Setubal & Meidanis book, Sec. 3.6.1.)

Again alignment vs. edit distance

sim(s, t) vs. dist(s, t)

Recall the scoring function from before: match = 0, mismatch = -1, gap = -1. Then we have:

$$sim(s, t) = -dist(s, t)$$

(This seems obvious but it actually needs to be proved. Formal proof see Setubal & Meidanis book, Sec. 3.6.1.)

General cost functions

General cost edit distance: different edit operations can have different cost (but some conditions must hold, e.g. cost(insert) = cost(delete), why?). Also computable with same algorithm in same time and space.

17 / 21

LCS distance

Given two strings s and t,

 $LCS(s,t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$

is the length of a longest common subsequence of s and t.

Example

Let $s = \mathsf{TACAT}$ and $t = \mathsf{TGATAT}$, then we have $\mathit{LCS}(s,t) = 4$. $s = \mathsf{TACAT}$, $t = \mathsf{TGATAT}$

LCS-distance

$$d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$$

Example

We have $d_{LCS}(s,t) = 5 + 6 - 2 \cdot 4 = 3$.

18 / 21

LCS distance

 $d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$

N.B.

There may be more than one longest common subsequence, but the *length LCS*(s,t) is unique! E.g. s'= TAACAT, t'= ATCTA, then LCS(s',t')=3, and ACA, TCA, TCT, ACT are all longest common subsequences.

LCS distance

In the examples above, we have $d_{LCS}(s,t)=5+6-2\cdot 4=3$, and $d_{LCS}(s',t')=6+5-2\cdot 3=5$.

Exercise (*)

(1) Prove that d_{LCS} is a metric. (2) Find a DP-algorithm that computes LCS(s,t).

 $(\ensuremath{^*})$ means: for particularly motivated students

19 / 21

Summary: Similarity and distance

Similarity measures for strings

- $\mathit{sim}(s,t)$ score of an optimal alignment of s,t
- percent similarity (only for equal length strings!)

Distance measures for strings

- edit distance (Levenshtein distance) minimum no. of edit operations to transform \boldsymbol{s} into \boldsymbol{t}
- · Hamming distance (only for equal length strings!)
- LCS distance
- (q-gram distance)

Summary: Similarity and distance

- two ways of expressing the same thing (similarity vs. distance)
- similarity: the higher the value, the more similar the strings
- distance: the lower the value, the more similar the strings
- \bullet optimal alignment \cong minimum length edit transformation
- both computable in quadratic time and quadratic space