
Algorithms for Computational Biology

Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology
a.a. 2015/16, fall term

String Distance Measures

Similarity vs. distance

Two ways of measuring the same thing:

1. How similar are two strings?

2. How different are two strings?

1. Similarity: the higher the value, the closer the two strings.

2. Distance: the lower the value, the closer the two strings.

2 / 21

Similarity vs. distance

Example

s = TATTACTATC
t = CATTAGTATC

• number of equal positions: |{i : si = ti}| = 8 (out of 10)
80% similarity (s = t if 100%, i.e. if high)

• number of different positions: |{i : si 6= ti}| = 2 (out of 10)
Hamming distance 2 (s = t if 0, i.e. if low)

(Note that both are defined only if |s| = |t|.)

3 / 21

Alignment score and edit distance

Edit operations

• substitution: a becomes b, where a 6= b

• deletion: delete character a

• insertion: insert character a

Often one views alignments in this way: thinking about the changes that
happened turning one string into the other, e.g.

ACCT

CACT

2 substitutions

ACCT--

--CACT

2 deletions,
1 substition,

2 insertions

-ACCT

CA-CT

1 insertion,

1 deletion

4 / 21

The edit distance

Edit distance, also called Levenshtein distance, or unit-cost edit distance
(Levenshtein, 1965)

Definition
The edit distance d(s, t) is the minimum number of edit operations
needed to transform s into t.

Example

s = TACAT, t = TGATAT

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT

4 edit op’s

• TACAT
ins→ TGACAT

subst→ TGATAT 2 edit op’s

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT 3 edit op’s

5 / 21

The edit distance

Edit distance, also called Levenshtein distance, or unit-cost edit distance
(Levenshtein, 1965)

Definition
The edit distance d(s, t) is the minimum number of edit operations
needed to transform s into t.

Example

s = TACAT, t = TGATAT

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT 4 edit op’s

• TACAT
ins→ TGACAT

subst→ TGATAT 2 edit op’s

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT 3 edit op’s

5 / 21

The edit distance

Edit distance, also called Levenshtein distance, or unit-cost edit distance
(Levenshtein, 1965)

Definition
The edit distance d(s, t) is the minimum number of edit operations
needed to transform s into t.

Example

s = TACAT, t = TGATAT

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT 4 edit op’s

• TACAT
ins→ TGACAT

subst→ TGATAT

2 edit op’s

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT 3 edit op’s

5 / 21

The edit distance

Edit distance, also called Levenshtein distance, or unit-cost edit distance
(Levenshtein, 1965)

Definition
The edit distance d(s, t) is the minimum number of edit operations
needed to transform s into t.

Example

s = TACAT, t = TGATAT

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT 4 edit op’s

• TACAT
ins→ TGACAT

subst→ TGATAT 2 edit op’s

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT 3 edit op’s

5 / 21

The edit distance

Edit distance, also called Levenshtein distance, or unit-cost edit distance
(Levenshtein, 1965)

Definition
The edit distance d(s, t) is the minimum number of edit operations
needed to transform s into t.

Example

s = TACAT, t = TGATAT

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT 4 edit op’s

• TACAT
ins→ TGACAT

subst→ TGATAT 2 edit op’s

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT

3 edit op’s

5 / 21

The edit distance

Edit distance, also called Levenshtein distance, or unit-cost edit distance
(Levenshtein, 1965)

Definition
The edit distance d(s, t) is the minimum number of edit operations
needed to transform s into t.

Example

s = TACAT, t = TGATAT

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT 4 edit op’s

• TACAT
ins→ TGACAT

subst→ TGATAT 2 edit op’s

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT 3 edit op’s

5 / 21

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT

-TAC-AT

TGA-TAT

• TACAT
ins→ TGACAT

subst→ TGATAT

T-ACAT

TGATAT

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT

???

6 / 21

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT
-TAC-AT

TGA-TAT

• TACAT
ins→ TGACAT

subst→ TGATAT

T-ACAT

TGATAT

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT

???

6 / 21

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT
-TAC-AT

TGA-TAT

• TACAT
ins→ TGACAT

subst→ TGATAT
T-ACAT

TGATAT

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT

???

6 / 21

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT
-TAC-AT

TGA-TAT

• TACAT
ins→ TGACAT

subst→ TGATAT
T-ACAT

TGATAT

• TACAT
ins→ TGACAT

subst→ TGAGAT
subst→ TGATAT ???

6 / 21

Alignments vs. edit operations

But every alignment corresponds to a series of operations:

• match 7→ do nothing

• mismatch 7→ substitution

• gap below 7→ deletion

• gap on top 7→ insertion

Example
T-ACAT-

TGAT-AT

TACAT
ins→ TGACAT

subst→ TGATAT
del→ TGATT

subst→ TGATA
ins→ TGATAT

7 / 21

Alignments vs. edit operations

But every alignment corresponds to a series of operations:

• match 7→ do nothing

• mismatch 7→ substitution

• gap below 7→ deletion

• gap on top 7→ insertion

Example
T-ACAT-

TGAT-AT

TACAT
ins→ TGACAT

subst→ TGATAT
del→ TGATT

subst→ TGATA
ins→ TGATAT

7 / 21

Alignments vs. edit operations

Take the following scoring function: match = 0, mismatch = -1, gap = -1.
If alignment A corresponds to the series of operations S, then:

score(A) = −|S|

where |S| = no. of operations in S.

Example

• TACAT
subst→ GACAT

del→ GAAT
ins→ TGAAT

ins→ TGATAT
-TAC-AT

TGA-TAT

• TACAT
ins→ TGACAT

subst→ TGATAT
T-ACAT

TGATAT

8 / 21

Minimum length series of edit operations

We are looking for a series of operations of minimum length (= shortest):

dist(s, t) = min{|S| : S is a series of operations transforming s into t}

N.B.
There may be more than one series of op’s of minimum length, but the
length is unique.

9 / 21

Exercises on edit distance

Exercises

• If t is a substring of s, then what is dist(s, t)?

• What is dist(s, ε)?

• If we can transform s into t by using only deletions, then what can we
say about s and t?

• If we can transform s into t by using only substitutions, then what
can we say about s and t?

10 / 21

What is a distance?

A distance function (metric) on a set X is a function d : X × X → R s.t.
for all x , y , z ∈ X :

1. d(x , y) ≥ 0, and (d(x , y) = 0⇔ x = y) (non-negative,

identity of indiscernibles)

2. d(x , y) = d(y , x) (symmetric)

3. d(x , y) ≤ d(x , z) + d(z , y) (triangle inequality)

Examples

• Euclidean distance on R2: d(x , y) =
√

(x1 − y1)2 + (x2 − y2)2

where x = (x1, x2), y = (y1, y2)

• Manhattan distance on R2: d(x , y) = |x1 − y1|+ |x2 − y2|
• Hamming distance on Σn: dH(s, t) = {i : si 6= ti}.

11 / 21

What is a distance?

A distance function (metric) on a set X is a function d : X × X → R s.t.
for all x , y , z ∈ X :

1. d(x , y) ≥ 0, and (d(x , y) = 0⇔ x = y) (non-negative,

identity of indiscernibles)

2. d(x , y) = d(y , x) (symmetric)

3. d(x , y) ≤ d(x , z) + d(z , y) (triangle inequality)

Examples

• Euclidean distance on R2: d(x , y) =
√

(x1 − y1)2 + (x2 − y2)2

where x = (x1, x2), y = (y1, y2)

• Manhattan distance on R2: d(x , y) = |x1 − y1|+ |x2 − y2|
• Hamming distance on Σn: dH(s, t) = {i : si 6= ti}.

11 / 21

The edit distance is a metric

Claim: The edit distance is a metric (distance function).

Proof: Let s, t, u ∈ Σ∗ (strings over Σ):

1. dist(s, t) ≥ 0: to transform s to t, we need 0 or more edit op’s. Also,
we can transform s into t with 0 edit op’s if and only if s = t.

2. Since every edit operation can be inverted, we get
dist(s, t) = dist(t, s).

3. (by contradiction) Assume that dist(s, u) + dist(u, t) < dist(s, t), and
S transforms s into u in dist(s, u) steps, and S ′ transforms u into t in
dist(u, t) steps. Then the series of op’s S ′ ◦ S (first S, then S ′)
transforms s into t, but is shorter than dist(s, t), a contradiction to
the definition of dist.

(Exercise: Show that the Hamming distance is a metric.)

12 / 21

Computing the edit distance

Note first that we can assume that edit operations happen left-to-right. As
for computing an optimal alignment, we look at what happens to the last
characters. Transforming s into t can be done in one of 3 ways:

1. transform s1 . . . sn−1 into t and then delete last character of s

2. if sn = tm: transform s1 . . . sn−1 into t1 . . . tm−1
if sn 6= tm:
transform s1 . . . sn−1 into 11 . . . tm−1 and substitute sn with tm

3. transform s into t1 . . . tm−1 and insert tm

So again we can use Dynamic Programming!

13 / 21

Computing the edit distance

We will need a DP-table (matrix) E of size (n + 1)× (m + 1)
(where n = |s| and m = |t|).

Definition: E (i , j) = dist(s1 . . . si , t1 . . . tj)

Computation of E (i , j):

• Fill in first row and column: E (0, j) = j and E (i , 0) = i

• for i , j > 0: now E (i , j) is the minimum of 3 entries plus 1 (top and
left) or plus 0/plus 1, depending on whether current chars are the
same or different

• return entry on bottom right E (n,m)

• backtrace for shortest series of edit operations

14 / 21

Algorithm for computing the edit distance

Algorithm DP algorithm for edit distance
Input: strings s, t, with |s| = n, |t| = m
Output: value dist(s, t)
1. for j = 0 to m do E (0, j)← j ;
2. for i = 1 to n do E (i , 0)← i ;
3. for i = 1 to n do
4. for j = 1 to m do

E (i , j)← min

E (i − 1, j) + 1{
E (i − 1, j − 1) if si = tj

E (i − 1, j − 1) + 1 if si 6= tj

E (i , j − 1) + 1

5. return E (n,m);

15 / 21

Analysis

• Space: O(nm) for the DP-table

• Time:
• computing dist(s, t): 3nm + n + m + 1 ∈ O(nm)

(resp. O(n2) if n = m)
• finding an optimal series of edit op’s: O(n + m)

(resp. O(n) if n = m)

16 / 21

Again alignment vs. edit distance

sim(s, t) vs. dist(s, t)

Recall the scoring function from before:
match = 0, mismatch = -1, gap = -1. Then we have:

sim(s, t) = −dist(s, t)

(This seems obvious but it actually needs to be proved. Formal proof see Setubal &

Meidanis book, Sec. 3.6.1.)

General cost functions
General cost edit distance: different edit operations can have different cost
(but some conditions must hold, e.g. cost(insert) = cost(delete), why?).
Also computable with same algorithm in same time and space.

17 / 21

Again alignment vs. edit distance

sim(s, t) vs. dist(s, t)

Recall the scoring function from before:
match = 0, mismatch = -1, gap = -1. Then we have:

sim(s, t) = −dist(s, t)

(This seems obvious but it actually needs to be proved. Formal proof see Setubal &

Meidanis book, Sec. 3.6.1.)

General cost functions
General cost edit distance: different edit operations can have different cost
(but some conditions must hold, e.g. cost(insert) = cost(delete), why?).
Also computable with same algorithm in same time and space.

17 / 21

LCS distance

Given two strings s and t,

LCS(s, t) = max{|u| : u is a subsequence of s and t}

is the length of a longest common subsequence of s and t.

Example

Let s = TACAT and t = TGATAT

, then we have LCS(s, t) = 4.
s = TACAT, t = TGATAT

LCS-distance

dLCS(s, t) = |s|+ |t| − 2LCS(s, t)

Example

We have dLCS(s, t) = 5 + 6− 2 · 4 = 3.

18 / 21

LCS distance

Given two strings s and t,

LCS(s, t) = max{|u| : u is a subsequence of s and t}

is the length of a longest common subsequence of s and t.

Example

Let s = TACAT and t = TGATAT, then we have LCS(s, t) = 4.
s = TACAT, t = TGATAT

LCS-distance

dLCS(s, t) = |s|+ |t| − 2LCS(s, t)

Example

We have dLCS(s, t) = 5 + 6− 2 · 4 = 3.

18 / 21

LCS distance

Given two strings s and t,

LCS(s, t) = max{|u| : u is a subsequence of s and t}

is the length of a longest common subsequence of s and t.

Example

Let s = TACAT and t = TGATAT, then we have LCS(s, t) = 4.
s = TACAT, t = TGATAT

LCS-distance

dLCS(s, t) = |s|+ |t| − 2LCS(s, t)

Example

We have dLCS(s, t) = 5 + 6− 2 · 4 = 3.

18 / 21

LCS distance

Given two strings s and t,

LCS(s, t) = max{|u| : u is a subsequence of s and t}

is the length of a longest common subsequence of s and t.

Example

Let s = TACAT and t = TGATAT, then we have LCS(s, t) = 4.
s = TACAT, t = TGATAT

LCS-distance

dLCS(s, t) = |s|+ |t| − 2LCS(s, t)

Example

We have dLCS(s, t) = 5 + 6− 2 · 4 = 3.

18 / 21

LCS distance

dLCS(s, t) = |s|+ |t| − 2LCS(s, t)

N.B.
There may be more than one longest common subsequence, but the length
LCS(s, t) is unique! E.g. s ′ = TAACAT, t ′ = ATCTA, then
LCS(s ′, t ′) = 3, and ACA, TCA, TCT, ACT are all longest common
subsequences.

LCS distance
In the examples above, we have dLCS(s, t) = 5 + 6− 2 · 4 = 3, and
dLCS(s ′, t ′) = 6 + 5− 2 · 3 = 5.

Exercise (*)

(1) Prove that dLCS is a metric. (2) Find a DP-algorithm that computes
LCS(s, t).

(*) means: for particularly motivated students

19 / 21

Summary: Similarity and distance

Similarity measures for strings

• sim(s, t) - score of an optimal alignment of s, t

• percent similarity (only for equal length strings!)

Distance measures for strings

• edit distance (Levenshtein distance) - minimum no. of edit operations
to transform s into t

• Hamming distance (only for equal length strings!)

• LCS distance

• (q-gram distance)

20 / 21

Summary: Similarity and distance

• two ways of expressing the same thing (similarity vs. distance)

• similarity: the higher the value, the more similar the strings

• distance: the lower the value, the more similar the strings

• optimal alignment ∼= minimum length edit transformation

• both computable in quadratic time and quadratic space

21 / 21

