Algorithms for Computational Biology

Zsuzsanna Lipták

Masters in Molecular and Medical Biotechnology a.a. 2015/16, fall term

String Distance Measures

Similarity vs. distance

Two ways of measuring the same thing:

- 1. How similar are two strings?
- 2. How different are two strings?
- 1. Similarity: the higher the value, the closer the two strings.
- 2. Distance: the lower the value, the closer the two strings.

Similarity vs. distance

Example

- s = TATTACTATC
- t = CATTAGTATC

- number of equal positions: $|\{i : s_i = t_i\}| = 8$ (out of 10) 80% similarity (s = t if 100%, i.e. if high)
- number of different positions: $|\{i : s_i \neq t_i\}| = 2$ (out of 10) Hamming distance 2 (s = t if 0, i.e. if low)

(Note that both are defined only if |s| = |t|.)

Alignment score and edit distance

Edit operations

- substitution: a becomes b, where $a \neq b$
- deletion: delete character a
- insertion: insert character a

Often one views alignments in this way: thinking about the changes that happened turning one string into the other, e.g.

ACCT	ACCT	-ACCT
CACT	CACT	CA-CT
2 substitutions	2 deletions,	1 insertion,
	1 substition,	1 deletion
	2 insertions	

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)

Definition

The edit distance d(s, t) is the minimum number of edit operations needed to transform s into t.

Example

s = TACAT, t = TGATAT

• TACAT \xrightarrow{subst} GACAT \xrightarrow{del} GAAT \xrightarrow{ins} TGAAT \xrightarrow{ins} TGATAT

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)

Definition

The edit distance d(s, t) is the minimum number of edit operations needed to transform s into t.

Example

s = TACAT, t = TGATAT

• TACAT \xrightarrow{subst} GACAT \xrightarrow{del} GAAT \xrightarrow{ins} TGAAT \xrightarrow{ins} TGATAT 4 edit op's

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)

Definition

The edit distance d(s, t) is the minimum number of edit operations needed to transform s into t.

- s = TACAT, t = TGATAT
 - TACAT \xrightarrow{subst} GACAT \xrightarrow{del} GAAT \xrightarrow{ins} TGAAT \xrightarrow{ins} TGATAT 4 edit op's
 - TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGATAT

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)

Definition

The edit distance d(s, t) is the minimum number of edit operations needed to transform s into t.

- s = TACAT, t = TGATAT
 - TACAT \xrightarrow{subst} GACAT \xrightarrow{del} GAAT \xrightarrow{ins} TGAAT \xrightarrow{ins} TGATAT 4 edit op's
 - TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGATAT 2 edit op's

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)

Definition

The edit distance d(s, t) is the minimum number of edit operations needed to transform s into t.

- s = TACAT, t = TGATAT
 - TACAT \xrightarrow{subst} GACAT \xrightarrow{del} GAAT \xrightarrow{ins} TGAAT \xrightarrow{ins} TGATAT 4 edit op's
 - TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGATAT 2 edit op's
 - TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGAGAT $\xrightarrow{\text{subst}}$ TGATAT

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)

Definition

The edit distance d(s, t) is the minimum number of edit operations needed to transform s into t.

- s = TACAT, t = TGATAT
 - TACAT \xrightarrow{subst} GACAT \xrightarrow{del} GAAT \xrightarrow{ins} TGAAT \xrightarrow{ins} TGATAT 4 edit op's
 - TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGATAT 2 edit op's
 - TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGAGAT $\xrightarrow{\text{subst}}$ TGATAT 3 edit op's

Not every series of operations corresponds to an alignment:

• TACAT $\stackrel{\text{subst}}{\rightarrow}$ GACAT $\stackrel{\text{del}}{\rightarrow}$ GAAT $\stackrel{\text{ins}}{\rightarrow}$ TGAAT $\stackrel{\text{ins}}{\rightarrow}$ TGATAT

• TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGATAT

• TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGAGAT $\xrightarrow{\text{subst}}$ TGATAT

Not every series of operations corresponds to an alignment:

• TACAT
$$\stackrel{\text{subst}}{\rightarrow}$$
 GACAT $\stackrel{\text{del}}{\rightarrow}$ GAAT $\stackrel{\text{ins}}{\rightarrow}$ TGAAT $\stackrel{\text{ins}}{\rightarrow}$ TGATAT $\begin{array}{c} -\text{TAC-AT} \\ \text{TGA-TAT} \end{array}$

• TACAT
$$\xrightarrow{\text{ins}}$$
 TGACAT $\xrightarrow{\text{subst}}$ TGATAT

• TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGAGAT $\xrightarrow{\text{subst}}$ TGATAT

Not every series of operations corresponds to an alignment:

• TACAT
$$\stackrel{\text{subst}}{\rightarrow}$$
 GACAT $\stackrel{\text{del}}{\rightarrow}$ GAAT $\stackrel{\text{ins}}{\rightarrow}$ TGAAT $\stackrel{\text{ins}}{\rightarrow}$ TGATAT $\begin{array}{c} -\text{TAC-AT} \\ \text{TGA-TAT} \end{array}$

• TACAT
$$\xrightarrow{\text{ins}}$$
 TGACAT $\xrightarrow{\text{subst}}$ TGATAT TGATAT TGATAT

• TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGAGAT $\xrightarrow{\text{subst}}$ TGATAT

Not every series of operations corresponds to an alignment:

• TACAT
$$\stackrel{\text{subst}}{\rightarrow}$$
 GACAT $\stackrel{\text{del}}{\rightarrow}$ GAAT $\stackrel{\text{ins}}{\rightarrow}$ TGAAT $\stackrel{\text{ins}}{\rightarrow}$ TGATAT $\begin{array}{c} -\text{TAC-AT} \\ \text{TGA-TAT} \end{array}$

• TACAT
$$\xrightarrow{\text{ins}}$$
 TGACAT $\xrightarrow{\text{subst}}$ TGATAT TGATAT TGATAT

• TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGAGAT $\xrightarrow{\text{subst}}$ TGATAT ???

But every alignment corresponds to a series of operations:

- match \mapsto do nothing
- mismatch \mapsto substitution
- gap below \mapsto deletion
- gap on top \mapsto insertion

Example

T-ACAT-

TGAT-AT

But every alignment corresponds to a series of operations:

- match \mapsto do nothing
- mismatch \mapsto substitution
- gap below \mapsto deletion
- gap on top \mapsto insertion

Example

T-ACAT-

TGAT-AT

 $\mathsf{TACAT} \xrightarrow{\mathsf{ins}} \mathsf{TGACAT} \xrightarrow{\mathsf{subst}} \mathsf{TGATAT} \xrightarrow{\mathsf{del}} \mathsf{TGATT} \xrightarrow{\mathsf{subst}} \mathsf{TGATA} \xrightarrow{\mathsf{ins}} \mathsf{TGATAT}$

Take the following scoring function: match = 0, mismatch = -1, gap = -1. If alignment A corresponds to the series of operations S, then:

$$\mathsf{score}(\mathcal{A}) = -|\mathcal{S}|$$

where $|\mathcal{S}| = no.$ of operations in \mathcal{S} .

Example

• TACAT $\stackrel{\text{subst}}{\rightarrow}$ GACAT $\stackrel{\text{del}}{\rightarrow}$ GAAT $\stackrel{\text{ins}}{\rightarrow}$ TGAAT $\stackrel{\text{ins}}{\rightarrow}$ TGATAT -TAC-AT TGA-TAT

• TACAT
$$\xrightarrow{\text{ins}}$$
 TGACAT $\xrightarrow{\text{subst}}$ TGATAT

T-ACAT TGATAT

Minimum length series of edit operations

We are looking for a series of operations of minimum length (= shortest):

 $dist(s, t) = \min\{|S| : S \text{ is a series of operations transforming } s \text{ into } t\}$

N.B.

There may be more than one series of op's of minimum length, but the length is unique.

Exercises on edit distance

Exercises

- If t is a substring of s, then what is dist(s, t)?
- What is $dist(s, \epsilon)$?
- If we can transform s into t by using only deletions, then what can we say about s and t?
- If we can transform *s* into *t* by using only substitutions, then what can we say about *s* and *t*?

What is a distance?

A distance function (metric) on a set X is a function $d : X \times X \to \mathbb{R}$ s.t. for all $x, y, z \in X$:

1. $d(x, y) \ge 0$, and $(d(x, y) = 0 \Leftrightarrow x = y)$ (non-negative, identity of indiscernibles)

2.
$$d(x, y) = d(y, x)$$

3. $d(x, y) \le d(x, z) + d(z, y)$

(symmetric)

(triangle inequality)

What is a distance?

A distance function (metric) on a set X is a function $d : X \times X \to \mathbb{R}$ s.t. for all $x, y, z \in X$:

- 1. $d(x, y) \ge 0$, and $(d(x, y) = 0 \Leftrightarrow x = y)$ (non-negative, identity of indiscernibles) 2. d(x, y) = d(y, x) (symmetric)
- 3. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality)

- Euclidean distance on \mathbb{R}^2 : $d(x, y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$ where $x = (x_1, x_2), y = (y_1, y_2)$
- Manhattan distance on \mathbb{R}^2 : $d(x,y) = |x_1 y_1| + |x_2 y_2|$
- Hamming distance on Σ^n : $d_H(s,t) = \{i : s_i \neq t_i\}$.

The edit distance is a metric

Claim: The edit distance is a metric (distance function).

Proof: Let $s, t, u \in \Sigma^*$ (strings over Σ):

- 1. $dist(s, t) \ge 0$: to transform s to t, we need 0 or more edit op's. Also, we can transform s into t with 0 edit op's if and only if s = t.
- 2. Since every edit operation can be inverted, we get dist(s, t) = dist(t, s).
- 3. (by contradiction) Assume that dist(s, u) + dist(u, t) < dist(s, t), and S transforms s into u in dist(s, u) steps, and S' transforms u into t in dist(u, t) steps. Then the series of op's $S' \circ S$ (first S, then S') transforms s into t, but is shorter than dist(s, t), a contradiction to the definition of dist.

(Exercise: Show that the Hamming distance is a metric.)

Computing the edit distance

Note first that we can assume that edit operations happen left-to-right. As for computing an optimal alignment, we look at what happens to the last characters. Transforming s into t can be done in one of 3 ways:

- 1. transform $s_1 \dots s_{n-1}$ into t and then delete last character of s
- 2. if $s_n = t_m$: transform $s_1 \dots s_{n-1}$ into $t_1 \dots t_{m-1}$ if $s_n \neq t_m$: transform $s_1 \dots s_{n-1}$ into $1_1 \dots t_{m-1}$ and substitute s_n with t_m
- 3. transform s into $t_1 \ldots t_{m-1}$ and insert t_m

So again we can use Dynamic Programming!

Computing the edit distance

We will need a DP-table (matrix) E of size $(n + 1) \times (m + 1)$ (where n = |s| and m = |t|).

Definition:
$$E(i,j) = dist(s_1 \dots s_i, t_1 \dots t_j)$$

Computation of E(i, j):

- Fill in first row and column: E(0,j) = j and E(i,0) = i
- for i, j > 0: now E(i, j) is the minimum of 3 entries plus 1 (top and left) or plus 0/plus 1, depending on whether current chars are the same or different
- return entry on bottom right E(n, m)
- backtrace for shortest series of edit operations

Algorithm for computing the edit distance

Algorithm DP algorithm for edit distance
Input: strings s, t, with
$$|s| = n, |t| = m$$

Output: value $dist(s, t)$
1. for $j = 0$ to m do $E(0, j) \leftarrow j$;
2. for $i = 1$ to n do $E(i, 0) \leftarrow i$;
3. for $i = 1$ to n do
4. for $j = 1$ to m do
4. for $j = 1$ to m do
5. return $E(n, m)$;

Analysis

- Space: O(nm) for the DP-table
- Time:
 - computing dist(s, t): $3nm + n + m + 1 \in O(nm)$ (resp. $O(n^2)$ if n = m)
 - finding an optimal series of edit op's: O(n + m) (resp. O(n) if n = m)

Again alignment vs. edit distance

sim(s, t) vs. dist(s, t)

Recall the scoring function from before: match = 0, mismatch = -1, gap = -1. Then we have:

```
sim(s, t) = -dist(s, t)
```

(This seems obvious but it actually needs to be proved. Formal proof see Setubal & Meidanis book, Sec. 3.6.1.)

Again alignment vs. edit distance

sim(s, t) vs. dist(s, t)

Recall the scoring function from before: match = 0, mismatch = -1, gap = -1. Then we have:

```
sim(s,t) = -dist(s,t)
```

(This seems obvious but it actually needs to be proved. Formal proof see Setubal & Meidanis book, Sec. 3.6.1.)

General cost functions

General cost edit distance: different edit operations can have different cost (but some conditions must hold, e.g. cost(insert) = cost(delete), why?). Also computable with same algorithm in same time and space.

Given two strings s and t,

```
LCS(s, t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}
is the length of a longest common subsequence of s and t.
Example
```

Let s = TACAT and t = TGATAT

Given two strings s and t,

 $LCS(s, t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$

is the length of a longest common subsequence of s and t.

Example

Let s = TACAT and t = TGATAT, then we have LCS(s, t) = 4. s = TACAT, t = TGATAT

Given two strings s and t,

 $LCS(s, t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$

is the length of a longest common subsequence of s and t.

Example

Let s = TACAT and t = TGATAT, then we have LCS(s, t) = 4. s = TACAT, t = TGATAT

LCS-distance

$$d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$$

Given two strings s and t,

 $LCS(s, t) = \max\{|u| : u \text{ is a subsequence of } s \text{ and } t\}$

is the length of a longest common subsequence of s and t.

Example

Let s = TACAT and t = TGATAT, then we have LCS(s, t) = 4. s = TACAT, t = TGATAT

LCS-distance

$$d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$$

Example

We have $d_{LCS}(s, t) = 5 + 6 - 2 \cdot 4 = 3$.

 $d_{LCS}(s,t) = |s| + |t| - 2LCS(s,t)$

N.B.

There may be more than one longest common subsequence, but the *length* LCS(s, t) is unique! E.g. s' = TAACAT, t' = ATCTA, then LCS(s', t') = 3, and ACA, TCA, TCT, ACT are all longest common subsequences.

LCS distance

In the examples above, we have $d_{LCS}(s, t) = 5 + 6 - 2 \cdot 4 = 3$, and $d_{LCS}(s', t') = 6 + 5 - 2 \cdot 3 = 5$.

Exercise (*)

(1) Prove that d_{LCS} is a metric. (2) Find a DP-algorithm that computes LCS(s, t).

(*) means: for particularly motivated students

Summary: Similarity and distance

Similarity measures for strings

- sim(s, t) score of an optimal alignment of s, t
- percent similarity (only for equal length strings!)

Distance measures for strings

- edit distance (Levenshtein distance) minimum no. of edit operations to transform s into t
- Hamming distance (only for equal length strings!)
- LCS distance
- (q-gram distance)

Summary: Similarity and distance

- two ways of expressing the same thing (similarity vs. distance)
- similarity: the higher the value, the more similar the strings
- distance: the lower the value, the more similar the strings
- optimal alignment \cong minimum length edit transformation
- both computable in quadratic time and quadratic space