60 Chapter5

or NP-hard is equivalent to a proof that it cannot be solved in polynomial time,
and that our algorithms will run in exponential time, or worse.

The shortest Hamiltonian path problem is one of those that has been proven to
be NP-hard. An associated decision problem (Yes or no — Is there a solution to this
SHP that has length less than X?) is known to be NP-complete, So no algorithm
that we can reasonably expect to discover can run in polynomial time. Of course
that does not prevent us from discovering one that runs in exponential time but
runs rather rapidly on moderate-sized cases. We might, for example, find one
that runs in 0.0000001e™ seconds. Tt would run quickly on small and moderate-
sized cases, but it too would ultimately be defeated by the exponential growth of
execution time as the problem size grew.

Branch and bound methods

In spite of its being NP-hard, there are ways to considerably speed up the SHP. The
simplest is branch and bound. We have already seen that we can search exhaus-
tively by traversing the search tree of solutions. But we need not actually traverse
all of it. As we go up the tree, building up a solution, we can keep track of the to-
tal length of that part of the solution so far. We also will be keeping track of the
best solution found so far, and how long it is. Suppose that the best solution so far
has length 2.932. As we go up a branch on the search tree, before we reach the end
of the branch, we notice that the total length of this partial solution has reached
3.193. Any further points that we add to the solution can do nothing but increase
that length. We therefore know that no solution in that subtree of the search tree
can be any better. This is the “hound” in the branch and bound method. We can
cut our losses by ceasing further movement into that subtree and backing out. If
we have backed out when there are still a considerable number of points left to be
added to the solution, we have saved a lot of work.

The result is an algorithm that branches (searching all parts of the search tree)
but also uses its bound to greatly economize on the amount of work. Implement-
ing this branch-and-bound search, we find that for the numerical example it does
indeed arrive at the correct solution, and much faster than straight exhaustive
search. It takes 0.46 seconds instead of 10.85, a better than 20-fold improvement.

Phylogenies: Despair and hope

Branch and bound has speeded up the solution greatly, but it has not actually es-
caped from the constraints of the NP-hardness proof. In fact, branch and bound
algorithms too have a complexity that is exponential — it’s just that they have im-
proved the coefficient in front of the formula and maybe on the size of the expo-
nent. (For example, they might in some case have computation time Hh.oﬁo_.mo,zm_
to 798" jnstead of £9-57) :

The parsimony problem for nucleotide sequences is one of a number of phy-
logeny problems that are known to be NP-hard. (Finding the best tree or trees is

Finding the best tree by branch and bound 61

NP-hard, knowing what is the number of changes on the best tree is NP-complete.)
The proof of these was given by Foulds and Graham (1982; Graham and Foulds,
1982). These phylogeny problems are examples of finding a Steiner free in a graph.
The set of all sequences is a graph, where adjacent points are connected if the se-
quences differ at one site. A Steiner tree is a tree of minimal length connecting
a given set of points in a graph. Many Steiner tree problems are known to be
NP-complete or NP-hard. (Generally, the problem of knowing the length of the
tree is NP-complete, and the problem of finding the tree is NP-hard.) W. H. E.
Day and co-workers have provided NP-completeness proofs for a variety of phy-
logeny criteria, most of which we introduce in later chapters. These include Wag-
ner parsimony on a linear scale (Day, 1983), Camin-Sokal and Dollo parsimony
{Day, Johnson, and Sankoff, 1986), compatibility (Day and Sankoff, 1986), least
squares distance matrix methods (Day, 1986), a variant on the minimum evolu-
tion distance matrix method (Day, 1983), and polymorphism parsimony (Day and
Sankoff, 1987).

There would seem to be reason for pessimism. But it is important to recall that
exponential run time is not necessarily typical. The NP-hardness proof shows only
that, given that no algorithm achieves polynomial time, for any problem size there
are instances of it that will take exponential time. But these need not be biologicalty
reasonable cases. The worst-case complexity of the problem is exponential. But
what is the biological-average-case complexity?

In fact, it seems that some NP-hard problems (such as finding trees by compat-
ibility, a method we consider later in this book]} are very rapidly solved by branch
and bound methods for typical biclogical cases. Other problems (such as parsi-
mony) do not have such fortunate behavior.

Branch and bound for parsimony

The use of branch and bound algorithms to speed up exhaustive search for most
parsimonious frees is closely analogous to the algorithm that we have just de-
scribed for the shortest Hamiltonian path problem. The search tree is the tree of
trees that we have already described in Chapter 4 (see also Figure 3.3). It is the tree
of possibilities that results from adding the species to a tree in their numerical or- :
der, at each stage choosing one of the possible places to add that species. Thus we
start with species 1 and 2 in a two-species tree, add species 3 in one of the 3 pos-
sible places, then add species 4 in one of the 5 possible places, and so on. Figure
5.3 shows this tree of trees, for a five-species case where the species are labeled A,
B, C, D, and E. There are 15 possible tips, the 15 bifurcating trees, plus the interior
nodes of the search trees which are 8 other incomplete trees.

We can imagine traversing this search tree. At each point on it, we have a par-
tial (or a complete) tree. We can evaluate the number of changes that this tree re-
quires on our data. This could be used in a branch and bound method, as was done
in the SHP example. In their paper introducing the branch and bound method for
phylogenies, Hendy and Penny (1982) have made seme useful suggestions for

62 Chapter 5

nV_/Am V\FAU >V\U_1Am

E p ©

C E
C
S >vHAw
B § J © E
S >v\ern
P B E D
A B A
S B c
D E V_lA
E D
A 8o A B ¢
n/
B

Sy

UV\WAm\UVlAn mVIAD/>Un
>V\FA0 VIn : >V_IAU

Figure 5.3: Search tree for most parsimonious tree in a five-species case.

improving the bound. Figure 5.3 shows the search tree, with all 15 unrooted bifur-
cating trees for 5 species, These are Hed together by interior nodes that show al 3
four-species frees, and at the root is the single possible three-species tree. Figure
54 shows the same search tree with the trees themselves replaced by the number
of changes of state that they require for the data in Table 1.1. The branch-and-
bound traversal starts from the bottom of the search free. In order to rule out as
many trees as possible, as quickly as possible, it is helpful to find good trees soon.
One strategy would be to search the nodes of the next level in the tree in order
of the number of changes that their frees require. So we statt at the bottom noede
(which requires 5 changes). At the next level we have nodes that require 8, 7, and
9 changes, respectively. If we make a preliminary visit to all-three of them and

= \\ bt

Finding the best tree by branch and bound 63

Figure 5.4: Search tree for most parsimonious tree for five species, us-
ing the data of Table 1.1, Trees are shown in Figure 5.3. Dashed lines
are those not traversed by a branch and bound method. The species
names in the data set correspond to labels A through E in Figure 5.3.

discover this, then we can plan to fraverse the tree starting with the one that re-
quires 7 changes. Proceeding up to it, we discover at the next level that there are 5
five-species trees, requiring 9,9,9, 9, and 11 changes, respectively.

Now we have candidate trees (the ones requiring 9 changes). We will be inter-
ested in any region of the tree whose bound is 9 or less. We will be uninterested in
searching any region of the search tree that has all of its members requiring more
than 9 changes. We proceed on to the next subtree, the one whose interior node
requires 8 changes, so that its bound is 8. This has 5 five-species trees attached
to it, and those require 10, 8, 10, 11, and 11 changes. Now we have a new candi-
date tree, requiring only 8 changes (and we discard the earlier ones that required
9).. We ate now interested in bounds of 8 or less. Finally, we start to examine the
last of the three subtrees, whose interior node requires 9 changes. Its bound is 9.
Immediately we know that none of the 5 trees attached to that interior node are of
interest. All must require at least 9 changes, and we have already found a tree that
requires only 8 changes. Hence we never travel along the branches of the search
tree that lead beyond there (and they are therefore shown in Figure 5.4 as dashed
lines). We are done, having examined only 10 of the 15 possible five-species trees.

64 Chapter 5

The saving is not great in this example, but it can become enormous in larger
cases. The saving is greater the less homoplasy there is in the data. In cases in
which there are many conflicts between information from different characters and

much parallelism and convergence, the branch-and-bound strategy does not per-
form particularly well.

Improving the bound

In the search tree of Figure 5.4, the bound is calculated simply by asking how
marny changes the partial tree at that node requires. This is a lower bound in the
sense that it cannot be higher than the number of changes on any of the trees found
farther out in the search tree. If we have found full trees that have as few as (say) 58
changes, then finding a partial tree that has 60 of them is sufficient reason to stop
there and back out of that part of the search tree. None of the trees beyond that
partial tree can have less than 60 changes, so none are candidates for being most
parsimonious trees. We would Jike to calculate this lower bound on the number of
changes so that it is as large as possible, and thus eliminate subtrees of the search
tree as soon as we can, saving effort. There are further methods that help do this.

Using still-absent states

In many cases, we will be examining an interior node of the search tree corte-
sponding to a partially constructed tree, Suppose that this tree has species A, B,
D, and F on it. But species C and E have not yet been added to the tree. Suppose
that the partial tree requires 48 changes. This will come from some of the charac-
ters that vary among species A, B, D, and F. But some of the characters will not
vary until species C and E are added. We may be able to look at those species and
see that, after they are added, there will be at least 11 more characters varying. In
that case, no matter where they are added to the tree, the bound will be at least
48 + 11 = 59. We can thus improve the bound considerably.

If we are dealing with 0/1 characters, that calculation is correct, but if the char-
acters have multiple states, the bound can be made betfer by taking the multiple
states into account. If a character has two states among species A, B, D, and F, but
two more among C and E, then adding it will increase the number of changes by
atleast 2, not 1. Thus what we want to add to caleulate the bound is the number of
absent states, summed over all characters. This method of improving the bound
is based on the paper by Foulds, Hendy, and Penny (1979). It has long been in
use in branch and bound programs for inferring phylogentes, but this use was not
described in print until the paper by Purdom et al. (2000),

Using compatibility

Another method of increasing the bound is t6 use not only the states in the indi-
vidual characters but also the conflict between different characters. For two-state
(0/1) characters, one can easily judge whether or not they can both have evolved

Finding the best tree by branch and bound 65

on the same phylogeny with only one change each. We will cover this in EOHM
detail in Chapter 8. For now, we need only note w%mw. the two characters nﬂaw SMHMMH .
ible if they can evolve on the same phylogeny sﬁr.oﬁq one change eal Hw an, g a
there is a simple test for this. If among all the species, all four of the combina ﬁ%w
of states (0,0, (0,1), (1,0}, and (1,1) are monww& the characters are not compatible,
fewer are found, they are compatible.)
. m»%MMonWmmbm that, when we Mobmﬁmm the characters that are not yet varying om
our partial tree, we can improve our lower vomb@ on wrm number of nwmbmmm 0
state, If we add all species to that partial tree, and in doing so now have varia OHM
in two incompatible characters that did not vary w@noam.\ Eo.mm nrmumn”nmﬁ ﬁﬁ.ﬂm
bring atleast 3 changes of state with them. Each nﬁmwmnw.ﬂ. individually wi Mm@%ﬁm
one more change of state, and the pair will conflict, which means ﬁmw oneof t mﬁm
must have at least one additional change of state. If there are disjoint pairs o
incompatible characters, each pair must bring with it 3 changes of state. N
This method of computing the lower bound was developed by Foulds, mmmﬁ v
and Penny (1979; see also Hendy, Foulds, and Penny, 1980). Tt was 5001 m.ma mmw.ﬂ
plied to speeding up branch and bound methods, .WEW the ﬂ%rnw_uwﬂ wov Ju:n
and bound search for most parsimonious phylogenies was first mm.mnﬂwma v Mb.[
dom et al. (2000). If the species that remain to be added have & pairs of charac wmw
that are incompatible, and that do not now vary among the species on our partia
tree, we must add 3% changes to the bound. Organizing the characters into pairs
so that & is as large as possible can be done mmEu.\ quickly. . . hand
Increasing the bound as much as possible is important in getting a branc m%
bound method to run quickly. Hendy and Penny Qmmmv &mno<mn.ma that MM m:.
of species was important, in particular that the most .%mwdma species mw.,oﬁ M
added as scon as possible. Purdom et al. Awooo.v Qmmnsvm improvements in mwmmm
by continually re-evaluating the order of addition during ﬂum search. %M:MM arn !
Hendy (1987) describe a different branch and bound algorithm that adds charac

ters one at a time rather than species.

Rules limiting the search

r approach that has considerable promise is to rule out regions of the search
MWM—mo Mw Mmmw.ﬂnm. Estabrook (1968) gave a rule which nobmqmw:mm. the ancestral nww?
acters for the particular case of Camin-Sokal parsimony, a parsimony Emﬂw.wu@ mM
will be explained in Chapter 7. This might be used to speed branch and boun
search, Estabrook’s rule was rediscovered by Nastansky, mmwwo? and m»m%m_m
(1973). They later (1974) presented an improved Bmw&o& that restricted the mmmwn
further. However, these methods cannot be used with more general types of par-
EBMMM%% Zharkikh (1977; see also Ratner et al., H,mmmv has discovered momﬁm EM
triguing rules that allow us to determine that certain groups must be on Mvgow
parsimonious trees. Using them, we can reduce the size of the branch and boun

