Algorithms for Computational Biology

Zsuzsanna Liptak

Masters in Molecular and Medical Biotechnology
a.a. 2015/16, fall term

Computational efficiency Il

Computational efficiency of an algorithm is measured in terms of running
time and storage space.

To abstract from
e specific computers (processor speed, computer architecture, ...)
e specific programming languages
[] PR

we measure

e running time in number of (basic) operations
(e.g. additions, multiplications, comparisons, ...),

e storage space in number of storage units
(e.g. 1 unit = 1 integer, 1 character, 1 byte, ...).

2/ 22

Example DP algorithm for global alignment (Needleman-Wunsch), variant
which outputs only sim(s, t).

Algorithm DP algorithm for global alignment

Input: strings s, t, with |s| = n, [t| = m; scoring function (p, g)
Output: value sim(s, t)

1. for j=0to mdo D(0,j) +j-g;

2. fori=1tondo D(i,0) <« i-g;

3. fori=1tondo

4 for j =1 to mdo

5. D(i,j) <— max D(I —-1,j—].) —i—p(s,-,tj)

6. return D(n, m);

3/ 22

Analysis of DP algorithm for global alignment:

Time
e for first row: m + 1 operations (line 1)
e for first column: n operations (line 2)

for each entry D(i,j), where 1 </ < n,1<j < m: 3 operations;
there are n- m such entries: 3nm operations (lines 3-5)

Altogether: 3nm + n+ m + 1 operations

4/ 22

Analysis of DP algorithm for global alignment:

Time
e for first row: m + 1 operations (line 1)
e for first column: n operations (line 2)

for each entry D(i,j), where 1 </ < n,1<j < m: 3 operations;
there are n- m such entries: 3nm operations (lines 3-5)

Altogether: 3nm + n+ m + 1 operations

Space

e matrix of size (n+ 1)(m +1) = nm + n+ m + 1 entries (units)

4/ 22

Analysis of DP algorithm for global alignment:

Time
e for first row: m + 1 operations (line 1)
e for first column: n operations (line 2)

for each entry D(i,j), where 1 </ < n,1<j < m: 3 operations;
there are n- m such entries: 3nm operations (lines 3-5)

Altogether: 3nm + n+ m + 1 operations

Space

e matrix of size (n+ 1)(m +1) = nm + n+ m + 1 entries (units)

Equal length strings
If n = m then time = 3n® +2n+ 1, space = n° + 2n+ 1

4/ 22

Let's compare this with the other algorithm we saw for global alignment:

Exhaustive search

1. consider every possible alignment of s and t
2. for each of these, compute its score

3. output the maximum of these

5/ 22

Algorithm Exhaustive search for global alignment

Input: strings s, t, with |s| = n,|t| = m; scoring function (p, g)
Output: value sim(s, t)

1. int max = (n+ m)g;

2. for each alignment A of s and t (in some order)

3. do if score(A) > max

4. then max < score(A);

5 return max;

Note:
1. The variable max is needed for storing the highest score so far seen.

2. The initial value of max is the score of some alignment of s, t (which one?)

6/ 22

Analysis of Exhaustive search:
Space
e Store one alignment at a time (overwrite with next one)
Recall: if A al. of two strings of length n and m, then
max(n, m) < |A| < (n+ m).

< 2(n+ m) units of storage (in each fits one integer or character)

(2 bec. there are two rows)

e one storage unit for the variable max, the maximum seen so far: 1
unit of storage

e Equal length strings: space < 4n units of storage

722

Analysis of Exhaustive search:
Time
e for every alignment (line 2.)

e compute its score (line 3.)

8/ 22

Analysis of Exhaustive search:
Time
e for every alignment (line 2.) no. of al's

e compute its score (line 3.)

8/ 22

Analysis of Exhaustive search:

Time
e for every alignment (line 2.) no. of al's
e compute its score (line 3.) length of al.

8/ 22

Analysis of Exhaustive search:

Time
e for every alignment (line 2.) no. of al's
e compute its score (line 3.) length of al.

For any al. A, we have max(n, m) < |A| < (n+ m), thus:

N(n, m) - max(n, m) < no. of steps < N(n,m) - (n+ m)

8/ 22

Analysis of Exhaustive search:

Time
e for every alignment (line 2.) no. of al's
e compute its score (line 3.) length of al.

For any al. A, we have max(n, m) < |A| < (n+ m), thus:

N(n, m) - max(n, m) < no. of steps < N(n,m) - (n+ m)

Simplify analysis: Let's look at two equal length strings |s| = |t| = n:

N(n,n)-n < no. of steps < N(n,n)-2n

We have seen: N(n,n) > 2", so no. of steps > 2" n.

8/ 22

Time comparison of the two algorithms

So we have, for [s| = |t| = n:

e DP algo: 3n? + 2n + 1 operations

e Exhaustive search: at least N(n, n) - n operations

Let's compare the two functions for increasing n:

n]1 2 3 4 5 ... 10 100 1000
3n”+2n+1(6 17 34 57 86 ... 321 30201 3002001
N(n,n)-n || 3 26 189 1284 8415 ... ~80-10° =~2-1077 =107

The DP algorithm is much faster than the exhaustive search algorithm,
because its running time increases much slower as the input size increases.
But how much?

9/ 22

Algorithm analysis

e We measure running time and storage space, measured in no. of
operations and no. of storage units.

10 /22

Algorithm analysis

e We measure running time and storage space, measured in no. of
operations and no. of storage units.

e We want to know how our algo performs depending on the size of the
input (bigger input = more time/space), i.e. as functions of the input
size (usually denoted n, m).

10 / 22

Algorithm analysis

e We measure running time and storage space, measured in no. of
operations and no. of storage units.

e We want to know how our algo performs depending on the size of the
input (bigger input = more time/space), i.e. as functions of the input
size (usually denoted n, m).

e We are interested in the algorithm's behaviour for large inputs.

10 / 22

Algorithm analysis

We measure running time and storage space, measured in no. of
operations and no. of storage units.

We want to know how our algo performs depending on the size of the
input (bigger input = more time/space), i.e. as functions of the input
size (usually denoted n, m).

We are interested in the algorithm's behaviour for large inputs.

We want to know the growth behaviour, i.e. how time/space
requirements change as input increases.

10 / 22

Algorithm analysis

We measure running time and storage space, measured in no. of
operations and no. of storage units.

We want to know how our algo performs depending on the size of the
input (bigger input = more time/space), i.e. as functions of the input
size (usually denoted n, m).

We are interested in the algorithm's behaviour for large inputs.

We want to know the growth behaviour, i.e. how time/space
requirements change as input increases.

We want an upper bound, i.e. on any input how much time/space
needed at most? (worst-case analysis)

10 /22

Consider 3 algorithms A, B, C:

input size n
running t. 10 20 | What happened when input doubled?
A n 10
B n? 100
C 2" 1024

11/ 22

Consider 3 algorithms A, B, C:

input size n
running t. 10 20 | What happened when input doubled?
A n 10 20
B n? 100 400
C 2" 1024 1048576

11/ 22

Consider 3 algorithms A, B, C:

input size n
running t. 10 20 | What happened when input doubled?
A n 10 20 | doubled
B n? 100 400
C 2" 1024 1048576

11/ 22

Consider 3 algorithms A, B, C:

input size n
running t. 10 20 | What happened when input doubled?
A n 10 20 | doubled
B n? 100 400 | quadrupled
C 2" 1024 1048576

11/ 22

Consider 3 algorithms A, B, C:

input size n
running t. 10 20 | What happened when input doubled?
A n 10 20 | doubled
B n? 100 400 | quadrupled
C 2" 1024 1048576 | squared

11/ 22

Consider 3 algorithms A, B, C:

input size n
running t. 10 20 | What happened when input doubled?
A n 10 20 | doubled
B n? 100 400 | quadrupled
C 2" 1024 1048576 | squared

Now 3 algorithms A", B/, (C":

input size n
running t. 10 20 | What happened when input doubled?
A’ 3n 30 60
B’ 3n? 300 1200

c’ 3.2" 3072 3145728

11/ 22

Consider 3 algorithms A, B, C:

input size n
running t. 10 20 | What happened when input doubled?
A n 10 20 | doubled
B n? 100 400 | quadrupled
C 2" 1024 1048576 | squared

Now 3 algorithms A", B/, (C":

input size n
running t. 10 20 | What happened when input doubled?
A’ 3n 30 60 | doubled
B 3n? 300 1200 | quadrupled

C'| 3-2" 3072 3145728 | 1/3 of squared

11/ 22

The O-notation allows us to abstract from constants (3n vs. n) and other
details which are not important for the growth behaviour of functions.

Definition (O-classes)
Given a function f : N — R, then O(f(n)) is the class (set) of functions
g(n) s.t.:

There exists a ¢ > 0 and an ngp € N s.t. for all n > ng: g(n) < c-f(n).

12 /22

The O-notation allows us to abstract from constants (3n vs. n) and other
details which are not important for the growth behaviour of functions.

Definition (O-classes)
Given a function f : N — R, then O(f(n)) is the class (set) of functions
g(n) s.t.:

There exists a ¢ > 0 and an ng € N s.t. for all n > ng: g(n) < c-f(n).
We then say that

g(n) € O(f(n)) or g(n) = O(f(n))

Careful, this is not an "equality”!

12 /22

The O-notation allows us to abstract from constants (3n vs. n) and other
details which are not important for the growth behaviour of functions.

Definition (O-classes)
Given a function f : N — R, then O(f(n)) is the class (set) of functions
g(n) s.t.:

There exists a ¢ > 0 and an ng € N s.t. for all n > ng: g(n) < c-f(n).
We then say that

g(n) € O(f(n)) or g(n) = O(f(n))

Careful, this is not an "equality”!

Meaning: “g is smaller or equal than f (w.r.t. growth behaviour)”
“g does not grow faster than "

12 /22

Example
3n* +2n+1€ O(n?)

13 /22

Example
32 +2n+1€ O(n?)

Recall definition

g(n) € O(f(n)) if
there exists a ¢ > 0 and an np € N s.t. for all n > ng: g(n) < c- f(n).

13 /22

Example
32 +2n+1€ O(n?)

Recall definition

g(n) € O(f(n)) if
there exists a ¢ > 0 and an np € N s.t. for all n > ng: g(n) < c- f(n).

Proof

n|1 2 3 4 5
3n”24+2n+1]6 17 34 57 86
4n% |4 16 36 64 100

13 /22

Example
32 +2n+1€ O(n?)

Recall definition

g(n) € O(f(n)) if
there exists a ¢ > 0 and an np € N s.t. for all n > ng: g(n) < c- f(n).

Proof
Choose ¢ = 4 and ny = 3. We have: Yn>3: 3n2+2n+1<4n?

n|1 2 3 4 5
3n”24+2n+1]6 17 34 57 86
4n% |4 16 36 64 100

13 /22

Example
32 +2n+1€ O(n?)

Recall definition

g(n) € O(f(n)) if
there exists a ¢ > 0 and an np € N s.t. for all n > ng: g(n) < c- f(n).

Proof
Choose ¢ = 4 and ny = 3. We have: Yn>3: 3n2+2n+1<4n?

32 +2n+1 < 4n?

n|1 2 3 4 5 & n-2—1>0
3’ +2n+1|6 17 34 57 86 & (n=12-2>0
4n° |4 16 36 64 100 - (n—1)2>2

= n>3

13 /22

3n° +2n+1 € O(n?): Yn>3: 3n?+2n+1<4n?
100 F

20F

14 /22

3n° +2n+1 € O(n?): Yn>3: 3n?+2n+1<4n?

100 b
80
60
a0}

20F

40000 |
30000 F
20000 F

10000 |

- 4n2

. . . R
20 40 &0 80 100 3n"+2n+1

plot: WolframAlpha 14 /22

T0000
G0 000
50 000
400000
230 000
200000
10000

plot: WolframAlpha

n

A2
+2n+1

15 /22

w107

5107
4x107
3

2107 =n
2w 1nv —_—Inc+2n+1
1107 — 702

' : — |'|-\I

200 400 GO0 800 1000

plot: WolframAlpha

16 / 22

In practice:

e identify which input parameters are important: no. months n for
Fibonacci numbers; length of strings n, m for pairwise al.

e order additive terms according to these in decreasing growth order:
3’ +2n +n+7,
3nm+n+m+1

o take largest without multiplicative constant:
3n5 +2n 4+ n+7 € 0(nd),
3nm+n+m+1¢e O(nm)

17 /22

Important O-classes

The most important functions, ordered by increasing O—classes: each function f;
is in the O—class of the next function fiy1, but fiy1(n) & O(f(n)).

1 loglogn | logn|+/n n nlogn]| n? n3 .. o 2" 1 nl | n"
cons- loga- linear quad- | cubic expo-
tant rith- ratic nen-
mic tial
polynomial (of the form n° for some constant c)
(all except nlog n are polynomials)
EFFICIENT!? inefficient
function grows slower — function grows faster
faster algorithm slower algorithm

lalso called feasible vs. infeasible
18/ 22

Amount of time an algorithm of time complexity f(n) would need on a

computer that performs one million operations per second:

f(n)| n=50 n =100 n =200
n [5-107°s 107% s

n? | 0.0025 s 0.01s

n’ 0.125 s 1s

1.1" | 0.0001 s 0.014 s

2" | 35.7 years | 4 - 10%° years

19 /22

Amount of time an algorithm of time complexity f(n) would need on a
computer that performs one million operations per second:

f(n)| n=50 n =100 n =200
n [5-107°s 107% s

n? | 0.0025 s 0.01s

n’ 0.125 s 1s

1.1" | 0.0001 s 0.014 s

2" | 35.7 years | 4 - 10%° years

Compare to:
Age of the universe ~ 4.3-10' s ~ 1.4 - 10'° years
(source: WolframAlpha)

19 /22

Amount of time an algorithm of time complexity f(n) would need on a
computer that performs one million operations per second:

f(n)| n=50 n =100 n =200
n [5-107°s 107*s 2-107*s
n? | 0.0025 s 0.01s 0.04 s
n’ 0.125 s 1s 8s
1.1" | 0.0001 s 0.014 s 190 s
2" | 35.7 years | 4 - 100 years | 5 - 10% years

Compare to:

Age of the universe ~ 4.3-10' s ~ 1.4 - 10'° years
(source: WolframAlpha)

19 /22

On a 1000 times faster computer:

f(n) n=>50 n =100 n =200

n 5-1078 s 10" s 210" s
n> | 25-107%s 107° s 4.107%s
n® |1.25-107%s 10735 8-1073 s
1.1" | 1.1-107"s | 1.4-10°s 0.19 s

2" 13 days 4.10" years | 5-10*3 years

20 / 22

On a 1000 times faster computer:

f(n) n=>50 n =100 n =200

n 5-1078 s 10" s 210" s
n> | 25-107%s 107° s 4.107%s
n® |1.25-107%s 10735 8-1073 s
1.1" | 1.1-107"s | 1.4-10°s 0.19 s

2" 13 days 4.10" years | 5-10*3 years

Age of the universe ~ 4.3 - 10" s ~ 1.4 - 10*° years

20 / 22

Looking at it in a different way ...

1 23 4 5 10 20 100 1000 10°
nll1 23 4 5 10 20 100 1000 10°
|1 4 9 16 25 100 400 10000 100
27112 4 8 16 32 1024 ~10° ~ 1030 =~ 10301

21/ 22

Looking at it in a different way ...

1 23 4 5 .. 10 20 100 1000 10°
nll1 23 4 5 .. 10 20 100 1000 10°
|1 4 9 16 25 ... 100 400 10000 100
2712 4 8 16 32 ... 1024 ~10° ~ 1030 =~ 103

On a computer that can perform one million operations per second, in a
second,

e a linear-time algorithm can solve a problem instance of size 10° (one
million) (e.g. fib2, fib3),

e a quadratic-time algorithm one of size 1000 (one thousand),

e an exponential-time algorithm one of size 20 (e.g. fibl).

In fact, on any computer, these algorithms need always the same amount
of time for problem instances of such different sizes!

21/ 22

Back to the global alignment algorithms:
e A(n) :=3n? +2n+ 1 running time of DP algo
e B(n) :=n- N(n,n) running time of exhaustive search algo

1 2 3 4 5 ... 10 20 100 1000

An) |6 17 34 57 86 ... 321 1241 30201 3002001
B(n) || 3 26 189 1284 8415 ... ~80-10° ~5.10® =~2.1077 =~ 107
n|[1 2 3 4 5 ... 10 20 100 1000
nPl1 4 9 16 25 ... 100 400 10000 106
2n 112 4 8 16 32 ... 1024 ~ 100 ~ 1030 =~ 10301

e A(n) € O(n?) a quadratic time algorithm

e B(n) is super-exponential time

Age of the universe ~ 4.3-10" s ~ 1.4 - 10'° years
e.g. 5-10' op’s = 5-10"s =~ 575 days, if we have 1 billion (10°) ops/s

22 /22

