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Bandung 2011, setting a joint project following Yoshino’s
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DG-algebras

A differential graded K algebra A is given by

K a commutative ring (field)

A a Z-graded K -algebra

d : A −→ A K -linear of degree 1 with d2 = 0

with d(a · b) = d(a) · b + (−1)|a|a · d(b) for all a, b ∈ A,
|a| := degree of a.

A dg-module (M, δ) over (A, d) is a

Z-graded A-module M with K -linear δ : M → M of degree 1
and δ2 = 0

satisfying δ(a ·m) = d(a) ·m + (−1)|a|a · δ(m),

likewise for right modules, bimodules.
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dg-algebra as an algebra

A is a ring.
What are ring and module invariants in this setting ?
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dg-simplicity versus dg-semisimplicity

What about semisimplicity ?

Theorem (Aldrich and Garcia-Rozas 2002)

Let (A, d) be a differential graded K -algebra. Then the category of
dg-left modules is semisimple if and only if

(A, d) is acyclic and

ker(d) is gr-semisimple.

What about simplicity ?

Definition

(A, d) is dg-simple if the only twosided dg-ideal of A is 0 and A.

Of course, if A is simple as an algebra, then (A, d) is dg-simple
(Orlov: formally simple) Example: a field concentrated in degree 0.

(A, d) dg-simple ̸⇒ (A, d) dg-semisimple

A. Zimmermann On the Ring Theory of dg-Rings



dg-simplicity versus dg-semisimplicity

What about semisimplicity ?

Theorem (Aldrich and Garcia-Rozas 2002)

Let (A, d) be a differential graded K -algebra. Then the category of
dg-left modules is semisimple if and only if

(A, d) is acyclic and

ker(d) is gr-semisimple.

What about simplicity ?

Definition

(A, d) is dg-simple if the only twosided dg-ideal of A is 0 and A.

Of course, if A is simple as an algebra, then (A, d) is dg-simple
(Orlov: formally simple) Example: a field concentrated in degree 0.

(A, d) dg-simple ̸⇒ (A, d) dg-semisimple

A. Zimmermann On the Ring Theory of dg-Rings



dg-simplicity versus dg-semisimplicity

What about semisimplicity ?

Theorem (Aldrich and Garcia-Rozas 2002)

Let (A, d) be a differential graded K -algebra. Then the category of
dg-left modules is semisimple if and only if

(A, d) is acyclic and

ker(d) is gr-semisimple.

What about simplicity ?

Definition

(A, d) is dg-simple if the only twosided dg-ideal of A is 0 and A.

Of course, if A is simple as an algebra, then (A, d) is dg-simple
(Orlov: formally simple) Example: a field concentrated in degree 0.

(A, d) dg-simple ̸⇒ (A, d) dg-semisimple

A. Zimmermann On the Ring Theory of dg-Rings



dg-simplicity versus dg-semisimplicity

What about semisimplicity ?

Theorem (Aldrich and Garcia-Rozas 2002)

Let (A, d) be a differential graded K -algebra. Then the category of
dg-left modules is semisimple if and only if

(A, d) is acyclic and

ker(d) is gr-semisimple.

What about simplicity ?

Definition

(A, d) is dg-simple if the only twosided dg-ideal of A is 0 and A.

Of course, if A is simple as an algebra, then (A, d) is dg-simple
(Orlov: formally simple) Example: a field concentrated in degree 0.

(A, d) dg-simple ̸⇒ (A, d) dg-semisimple

A. Zimmermann On the Ring Theory of dg-Rings



dg-simplicity versus dg-semisimplicity

What about semisimplicity ?

Theorem (Aldrich and Garcia-Rozas 2002)

Let (A, d) be a differential graded K -algebra. Then the category of
dg-left modules is semisimple if and only if

(A, d) is acyclic and

ker(d) is gr-semisimple.

What about simplicity ?

Definition

(A, d) is dg-simple if the only twosided dg-ideal of A is 0 and A.

Of course, if A is simple as an algebra, then (A, d) is dg-simple
(Orlov: formally simple)

Example: a field concentrated in degree 0.

(A, d) dg-simple ̸⇒ (A, d) dg-semisimple

A. Zimmermann On the Ring Theory of dg-Rings



dg-simplicity versus dg-semisimplicity

What about semisimplicity ?

Theorem (Aldrich and Garcia-Rozas 2002)

Let (A, d) be a differential graded K -algebra. Then the category of
dg-left modules is semisimple if and only if

(A, d) is acyclic and

ker(d) is gr-semisimple.

What about simplicity ?

Definition

(A, d) is dg-simple if the only twosided dg-ideal of A is 0 and A.

Of course, if A is simple as an algebra, then (A, d) is dg-simple
(Orlov: formally simple) Example: a field concentrated in degree 0.

(A, d) dg-simple ̸⇒ (A, d) dg-semisimple

A. Zimmermann On the Ring Theory of dg-Rings



dg-simplicity versus dg-semisimplicity

What about semisimplicity ?

Theorem (Aldrich and Garcia-Rozas 2002)

Let (A, d) be a differential graded K -algebra. Then the category of
dg-left modules is semisimple if and only if

(A, d) is acyclic and

ker(d) is gr-semisimple.

What about simplicity ?

Definition

(A, d) is dg-simple if the only twosided dg-ideal of A is 0 and A.

Of course, if A is simple as an algebra, then (A, d) is dg-simple
(Orlov: formally simple) Example: a field concentrated in degree 0.

(A, d) dg-simple ̸⇒ (A, d) dg-semisimple

A. Zimmermann On the Ring Theory of dg-Rings



Orlov’s formally simple algebras

Orlov studied finite-dimensional dg-algebras (2020, 2023).

Theorem ((Orlov 2020); independently Z 2022)

Let K be a field and let (A, d) be a finite dimensional
dg-K -algebra which is simple as an algebra.
Then there is a skew-field D and a bounded complex (C , δ) of
finite dimensional D-modules such that

(A, d) ≃ (End•D((C , δ)), dHom).

Here: If (M, δM) =: M• and (N, δN) =: N• are dg-(A, d)-module,
then

(Hom•
A(M

•,N•))(n) = {f : M −→ N | f (Mk) ⊆ Nn+k ;

f (am) = (−1)|a||f |af (m)
}

dHom(f ) = δN ◦ f − (−1)|f |f ◦ δM
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Further dg-simple algebras

Example

K [X ]/X 2 with d(X ) = 1 and d(1) = 0 is a dg-algebra.

It is simple and semisimple (since acyclic and ker(d) = K ) .

Are there further constructions ?
Goldie’s theorem gives simple algebras. Is there a dg-Goldie’s
theorem ?

A prime ideal is a twosided ideal P with

IJ ⊆ P ⇒ I ⊆ P or J ⊆ P

An algebra is prime if 0 is a prime ideal.

A is left Goldie if there is no infinite direct sum of left ideals,
and A satisfies the ACC on left annihilators.
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Goldie’s theorem

Theorem

Let A be a prime left Goldie ring. Then the left Ore localisation Q
at the regular elements is a simple algebra.

There is a graded version.

Theorem (Goodearl and Stafford (2000))

Let A be an algebra graded by an abelian group, suppose that A is
graded-prime left graded-Goldie ring. Then the left Ore localisation
Q at the homogeneous regular elements is a graded-simple algebra.
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dg-Ore

Theorem

Let (A, d) be a dg-algebra, and let S be a multiplicative set of
regular homogeneous elements.
Then

d(b, s) := (−1)|s|+1(d(s), s) · (b, s) + (−1)|s|(d(b), s)

defines a differential graded structure on the left Ore localisation
AS , and the natural homomorphism is a dg ring homomorphism
λ : (A, d) −→ (AS , dS)

There is a more technical version for S being not necessarily
regular.
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dg-Goldie

Theorem

Let R be a commutative ring and let (A, d) be a differential graded
R-algebra. Suppose that ker(d) is a gr-prime ring and suppose
that ker(d) is left gr-Goldie.

If (A, d) is dg-Noetherian as bimodule, then the localisation
AS of A at the homogeneous regular elements S of A is
dg-simple.

If the homogeneous regular elements Sker(d) in ker(d) form a
left Ore set in A, then the localisation ASker(d) of (A, d) at
Sker(d) is dg-simple.

Get an injective (by dg-simplicity) dg ring homomorphism

(ASker(d) , dSker(d)) −→ (AS , dS)
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dg-Goldie

Example

A = K [X ] with |X | = −1.
d(X 2n+1) = X 2n and d(X 2n) = 0 is a dg-algebra.

It satisfies the hypothesis of the dg-Goldie Theorem.

The Ore localisation AS at the homogeneous regular elements
S is K [X ,X−1].

Ore localisation ASker(d) at the homogeneous regular elements

Sker(d) is K [X ]X 2 = K [X ,X−1].

ker(dS) = K [X 2,X−2] is graded-simple.

Hence by the dg-Goldie Theorem (AS , dS) is dg-simple and
by Aldrich and Garcia-Rozas (AS , dS) is dg-semisimple.
(H(AS) = 0)
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Example

Let

(A, d) = (End•K (K
1−→ K ), dHom) =

(
K K
K K

)
.

d(

(
0 0
1 0

)
) =

(
1 0
0 1

)
and d(

(
a 0
0 b

)
) =

(
0 b − a
0 0

)

ker(d) = K [X ]/X 2 with |X | = 1 and X =

(
0 1
0 0

)
is not

gr-simple (non trivial ideal XK [X ]/X 2).

(A, d) is simple hence dg-simple (or take K = Z and consider
localisation at Sker(d) ⊆ Z (A))

Hence converse of our dg-Goldie theorem is not true.
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Happy birthday Manolo !
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