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Motivation: Salce’s duality for approximations

Salce’s Lemma (1979)

Let (A,B) be a cotorsion pair in the category Mod–R. Then the following
conditions are equivalent:

(i) A is a special precovering class (i.e., for each module M, there is a
short exact sequence of the form 0→ B → A→ M → 0 for some
A ∈ A and B ∈ B);

(ii) B is a special preenveloping class (i.e., for each module M ′, there is a
short exact sequence of the form 0→ M ′ → B ′ → A′ → 0 for some
A′ ∈ A and B ′ ∈ B).

Salce’s proof even gives an easy way of constructing a special preenvelope
from the dual notion of a special precover, and vice versa.
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Set-theoretic tools: Vopěnka’s Principles

The Weak Vopěnka’s Principle (WVP)

There exists no proper class of graphs (Gα | α ∈ Ord) such that for all
ordinals α, β, HomG(Gα,Gβ) 6= ∅, iff α ≥ β.

Vopěnka’s Principle (VP)

There exist no large rigid systems in the category G of all graphs. That is,
there exists no proper class of graphs {Gα | α ∈ Ord} such that
HomG(Gα,Gβ) = ∅ for all ordinals α 6= β and HomG(Gα,Gα) = {idGα} for
each ordinal α.

Adámek-Rosický’1994, Wilson’2020

(i) VP implies WVP, and WVP implies existence of arbitrary large
measurable cardinals.

(ii) WVP does not imply VP. Indeed, if supercompact cardinals exist,
then there is a model of ZFC where WVP holds, but VP fails.
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Preenveloping classes

Let R be a ring and C be a class of modules closed under direct summands.

Consider the following two conditions:

(i) C is preenveloping.

(ii) C is closed under direct products.

Then (i) implies (ii).

[Saoŕın-Šťov́ıček’2011] C is deconstructible, then (ii) is equivalent to (i).

[Adámek-Rosický’1994] If Weak Vopěnka’s Principle holds, then the
equivalence holds for all C.
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Precovering classes

Consider the following two conditions:

(i) C is precovering.

(ii) C is closed under direct sums.

Then (i) implies (ii).

[Saoŕın-Šťov́ıček’2011] If C is deconstructible, then (ii) is equivalent to (i).

However, there exist non-deconstructible classes of modules closed under
direct sums that are not precovering.

Example

Let R be any non-right perfect ring. Then the class of all ℵ1-projective (=
flat Mittag-Leffler) modules is closed under transfinite extensions, but it is
not precovering.
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Adding more closure properties

Consider the following conditions for a class C ⊆ Mod–R.

(i) C is (pre-) enveloping and closed under submodules.

(ii) C is closed under submodules and direct products.

(iii) C = Cog (M) for a module M.

Then (i) is equivalent to (ii), and it is implied by (iii).

However, there exist classes of modules that satisfy (ii), but not (iii).

Example

Let R be a Dedekind domain with a countable spectrum which is not a
complete DVD. Then the class of all ℵ1-projective (= flat Mittag-Leffler)
modules is closed under submodules and direct products, but it is not of
the form Cog (M) for any module M.
Key point of the proof: For each non-zero ℵ1-projective module M there
exists a continuous strictly increasing chain of ℵ1-projective modules
(Mα | α ∈ Ord) such that HomR(Mα,Mβ) = 0 for each β < α.
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The dual setting

Consider the following conditions for a class C ⊆ Mod–R.

(i) C is (pre-) covering and closed under homomorphic images.

(ii) C is closed under homomorphic images and direct sums.

(iii) C = Gen (M) for a module M.

Then (i) is equivalent to (ii), and it is implied by (iii).

If Vopěnka’s Principle holds, then (ii) implies (iii).
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The necessity of large cardinals

Theorem

Assume that each class C of ℵ1-projective groups which is closed under
homomorphic images and direct sums is of the form C = Gen (M) for a
module M. Then Weak Vopěnka’s Principle holds true.

To start the proof, we need to move from graphs to abelian groups:

Przeździecki’2014, Göbel-Przeździecki’2014

(i) There exists a functor G from the category G of all graphs to Mod–Z
which induces for all X ,Y ∈ G a group isomorphism
Z(HomG(X ,Y )) ∼= HomZ(G (X ),G (Y )) natural in both variables.

(ii) The functor G can be constructed so that it takes values in the class
of all ℵ1-projective groups.
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Proof

Assume WVP fails. Then there exists a proper class of graphs
(Xα | α ∈ Ord) such that for all ordinals α, β, HomG(Xα,Xβ) 6= ∅, iff
α ≥ β.

Let C be the subclass of Mod–Z generated by the groups G (Xα)
(α ∈ Ord). W.l.o.g. G (Xα) is ℵ1-projective for each α ∈ Ord. Since C is
closed under direct sums and homomorphic images, C is a covering class.
We will show that there is no abelian group M ∈ C such that
C = Gen (M).

If not, let α be the least ordinal such that M is generated by the groups
G (Xβ) (β < α). Then M is a homomorphic image of a direct sum of
copies of these groups. Since G (Xα) ∈ Gen (M), G (Xα) a homomorphic
image of a direct sum of copies of M. Thus, there is a non-zero
homomorphism from G (Xβ) to G (Xα) for some β < α. Then
HomG(Xβ,Xα) 6= ∅, a contradiction.
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Adding further closure properties

The case of envelopes

The following conditions are equivalent for a class C ⊆ Mod–R:

(i) C is (pre-) enveloping and closed under submodules and homomorphic
images.

(iii) C = Mod–(R/I ) for a two-sided ideal I in R.

The case of covers

The following conditions are equivalent for a class C ⊆ Mod–R:

(i) C is (pre-) covering and closed under submodules and homomorphic
images.

(ii) C = σ[M] for a module M.
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Some of the asymmetries

(i) The conditions in the envelope case above imply those in the cover
case (in ZFC), but not otherwise.

(ii) WVP implies the existence of a proper class of ℵ1-projective groups
(Aα | α ∈ Ord) such that for all ordinals α, β, HomZ(Aα,Aβ) 6= ∅, iff
α ≥ β.

However, the existence of a proper class of ℵ1-projective groups
(Aα | α ∈ Ord) such that for all ordinals α, β, HomZ(Aα,Aβ) 6= ∅, iff
α ≤ β is provable in ZFC.
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References I

M. Cortés-Izurdiaga, Tor-pairs: Products and approximations, Contemp.
Math. 751(2020), 119 – 133.

L. Salce, Cotorsion theories for abelian groups, Symposia Math. 23(1979),
11 – 32.
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T.M. Wilson, Weak Vopěnka’s Principle does not imply Vopěnka’s
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