
Exact Structures and Purity

Kevin Schlegel
University of Stuttgart

PATHS 2024
Cetraro, May 13-17

Kevin Schlegel University of Stuttgart Exact Structures and Purity



Preliminaries

Fix locally finitely presented category A

fpA = {X ∈ A | HomA(X ,−) commutes with lim−→}
E.g. A = ModR = lim−→modR

Purity category P(A)

= Lex(Fp(fpA,Ab),Ab)

fpP(A) ≃ Fp(fpA,Ab)op

⇒ P(A) is a Grothendieck category

Theorem (Crawley-Boevey)

There exists a fully faithful additive functor whose essential image
is closed under extensions.
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Relative Purity

Relative purity category PE(A) = P(A)/TE

Theorem

There exists a fully faithful additive functor

evE : A
ev−→ P(A) → PE(A), X 7→ X̄

whose essential image is closed under extensions.

A ⊆ P(A) extension-closed

⇒ induces exact structure Ē on A
fpA ⊆ fpPE(A) extension-closed

⇒ induces exact structure E on fpA

A = lim−→ fpA implies Ē = lim−→E
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Relative Purity

Corollary

(a) The exact category (A, Ē) has enough injectives.

(b) Every X ∈ (A, Ē) admits an admissable monomorphism
X → Q, where Q is a product of indecomposable injectives.

Corollary

(a) The indecomposable injective objects in (A, Ē) form a closed
set in IndA that coincides with UE .

(b) The class of fp-injective objects in (A, Ē) coincides with XE .

Corollary

If A is abelian, then exact structures on fpA are one to one with
closed sets in IndA containing all indecomposable injectives in A.
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The Case of an Artin Algebra

Let A = ModA for an Artin algebra A

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent
ideals I of modA and Serre subcategories S of Fp(modA,Ab).

Fix exact structure E on modA and corresponding IE
⇒ IE = ⟨Inj (ModA, Ē)⟩modA

Theorem

For X ,Y ∈ modA there exists a functorial isomorphism

Ext1E(X ,Y ) ∼= D HomA(Y , τX )/IE(Y , τX ).

Proof.

Use defect formula for an injective hull Y → Q in (ModA, Ē).
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Kevin Schlegel University of Stuttgart Exact Structures and Purity



The Case of an Artin Algebra

Let A = ModA for an Artin algebra A

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent
ideals I of modA and Serre subcategories S of Fp(modA,Ab).

Fix exact structure E on modA and corresponding IE
⇒ IE = ⟨Inj (ModA, Ē)⟩modA
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The Case of an Artin Algebra

Example

Let E = ⟨almost split sequences⟩modA and radωA =
⋂∞

n=1 rad
n
A.

Then IE = radωA + ⟨injA⟩ and

Ext1E(X ,Y ) ∼= D HomA(Y , τX )/IE(Y , τX )

∼=

{
D HomA(Y , τX )/radωA(Y , τX ) if Y no preinjective

direct summand,
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n=1 rad
n
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Then IE = radωA + ⟨injA⟩ and

Ext1E(X ,Y ) ∼= D HomA(Y , τX )/IE(Y , τX )

∼=

{
D HomA(Y , τX )/radωA(Y , τX ) if Y no preinjective

direct summand,
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