Exact Structures and Purity

Kevin Schlegel University of Stuttgart

PATHS 2024 Cetraro, May 13-17

Kevin Schlegel University of Stuttgart [Exact Structures and Purity](#page-52-0)

 \bullet Fix locally finitely presented category ${\mathcal A}$

- Fix locally finitely presented category A
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$
- Fix locally finitely presented category A
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$

• E.g.
$$
A = Mod R = \varinjlim mod R
$$

- Fix locally finitely presented category $\mathcal A$
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$
- E.g. $\mathcal{A} = \mathsf{Mod}\,R = \varinjlim \mathsf{mod}\,R$
- Purity category $P(A)$
- Fix locally finitely presented category $\mathcal A$
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$
- E.g. $\mathcal{A} = \mathsf{Mod}\,R = \varinjlim \mathsf{mod}\,R$
- Purity category $\mathsf{P}(\mathcal{A})$ Fp(fp $\mathcal{A}, A\mathsf{b}$)
- Fix locally finitely presented category $\mathcal A$
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$

• E.g.
$$
A = Mod R = \varinjlim mod R
$$

Purity category $\mathbf{P}(\mathcal{A}) = \text{Lex}(\mathsf{Fp}(\mathsf{fp}\,\mathcal{A},\mathsf{Ab}),\mathsf{Ab})$

- Fix locally finitely presented category $\mathcal A$
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$
- E.g. $\mathcal{A} = \mathsf{Mod}\,R = \varinjlim \mathsf{mod}\,R$
- Purity category $P(A) = \text{Lex}(Fp(fp A, Ab), Ab)$

$$
\bullet \ \ \mathsf{fp} \ \mathbf{P}(\mathcal{A}) \simeq \mathsf{Fp}(\mathsf{fp}\mathcal{A},\mathsf{Ab})^\mathsf{op}
$$

- Fix locally finitely presented category $\mathcal A$
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$
- E.g. $\mathcal{A} = \mathsf{Mod}\,R = \varinjlim \mathsf{mod}\,R$
- Purity category $P(A) = \text{Lex}(Fp(fp A, Ab), Ab)$
- fp $P(A) \simeq$ Fp(fpA, Ab)^{op} \Rightarrow $P(A)$ is a Grothendieck category

- Fix locally finitely presented category $\mathcal A$
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$
- E.g. $\mathcal{A} = \mathsf{Mod}\,R = \varinjlim \mathsf{mod}\,R$
- Purity category $P(A) = \text{Lex}(Fp(fp A, Ab), Ab)$
- fp $P(A) \simeq Fp(fpA, Ab)^{op} \Rightarrow P(A)$ is a Grothendieck category

Theorem (Crawley-Boevey)

There exists a fully faithful additive functor

$$
\text{ev}\colon \mathcal{A}\longrightarrow \textbf{P}(\mathcal{A}),\quad X\mapsto \bar{X}\quad \text{with}\quad \bar{X}(F)=F(X)
$$

- Fix locally finitely presented category $\mathcal A$
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$
- E.g. $\mathcal{A} = \mathsf{Mod}\,R = \varinjlim \mathsf{mod}\,R$
- Purity category $P(A) = \text{Lex}(Fp(fp A, Ab), Ab)$
- fp $P(A) \simeq$ Fp(fp.A, Ab)^{op} \Rightarrow $P(A)$ is a Grothendieck category

Theorem (Crawley-Boevey)

There exists a fully faithful additive functor

$$
\text{ev} \colon \mathcal{A} \longrightarrow \mathbf{P}(\mathcal{A}), \quad X \mapsto \bar{X} \quad \text{with} \quad \bar{X}(F) = F(X)
$$

- Fix locally finitely presented category $\mathcal A$
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$
- E.g. $\mathcal{A} = \mathsf{Mod}\,R = \varinjlim \mathsf{mod}\,R$
- Purity category $P(A) = \text{Lex}(Fp(fp A, Ab), Ab)$
- fp $P(A) \simeq Fp(fpA, Ab)^{op} \Rightarrow P(A)$ is a Grothendieck category

Theorem (Crawley-Boevey)

There exists a fully faithful additive functor

Mod $R \longrightarrow$ Add(mod $R^{\mathsf{op}},$ Ab), $\quad X \mapsto (-) \otimes_R X$

- Fix locally finitely presented category $\mathcal A$
- $\operatorname{\sf fp}\nolimits{\mathcal A}=\{X\in\mathcal A\mid\operatorname{\sf Hom}\nolimits_{\mathcal A}(X,-)\text{ commutes with }\varinjlim\}$
- E.g. $\mathcal{A} = \mathsf{Mod}\,R = \varinjlim \mathsf{mod}\,R$
- Purity category $P(A) = \text{Lex}(Fp(fp A, Ab), Ab)$
- fp $P(A) \simeq$ Fp(fp.A, Ab)^{op} \Rightarrow $P(A)$ is a Grothendieck category

Theorem (Crawley-Boevey)

There exists a fully faithful additive functor

$$
\text{ev} \colon \mathcal{A} \longrightarrow \mathbf{P}(\mathcal{A}), \quad X \mapsto \bar{X} \quad \text{with} \quad \bar{X}(F) = F(X)
$$

 \bullet $\mathcal{A} \subseteq \mathsf{P}(\mathcal{A})$ extension-closed

 \bullet $\mathcal{A} \subseteq \mathsf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}_{max}

- \bullet $\mathcal{A} \subseteq \mathsf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on A
- fp $A \subseteq$ fp $P(A)$ extension-closed

- \bullet $\mathcal{A} \subseteq \mathsf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on A
- fp $A \subseteq$ fp $P(A)$ extension-closed
	- \Rightarrow induces exact structure $\mathcal{E}_{\text{split}}$ on fp A

- \bullet $\mathcal{A} \subseteq \mathsf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on A • fp $A \subseteq$ fp $P(A)$ extension-closed
- \Rightarrow induces exact structure $\mathcal{E}_{\text{split}}$ on fp A

•
$$
A = \varinjlim
$$
 fp A implies $\mathcal{E}_{pure} = \varinjlim \mathcal{E}_{split}$

- \bullet $\mathcal{A} \subseteq \mathsf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}
- fp $A \subseteq$ fp $P(A)$ extension-closed \Rightarrow induces exact structure $\mathcal{E}_{\text{split}}$ on fp A
- $\mathcal{A} = \varinjlim \mathfrak{fp} \, \mathcal{A}$ implies $\mathcal{E}_{\mathsf{pure}} = \varinjlim \mathcal{E}_{\mathsf{split}}$
- \bullet P(\mathcal{A}) has enough injectives

- \bullet $\mathcal{A} \subseteq \mathsf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}
- fp $A \subseteq$ fp $P(A)$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{split} on fp A
- $\mathcal{A} = \varinjlim \mathfrak{fp} \, \mathcal{A}$ implies $\mathcal{E}_{\mathsf{pure}} = \varinjlim \mathcal{E}_{\mathsf{split}}$
- \bullet P(A) has enough injectives \Rightarrow (A, \mathcal{E}_{pure}) has enough injectives

- \bullet $\mathcal{A} \subseteq \mathsf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}
- fp $A \subseteq$ fp $P(A)$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{split} on fp A

•
$$
A = \varinjlim
$$
 fp A implies $\mathcal{E}_{pure} = \varinjlim \mathcal{E}_{split}$

- \bullet P(A) has enough injectives \Rightarrow (A, \mathcal{E}_{pure}) has enough injectives
- Ziegler spectrum of A

Ind $A = \{X \in (\mathcal{A}, \mathcal{E}_{pure}) | X$ is indecomposable injective}

There are one to one correspondences [Crawley-Boevey, Herzog, Krause]

 $\left\{\n \begin{array}{l}\n \text{Serre subcategories} \\
 \text{S of } Fp(\text{fp } A, \text{Ab})\n \end{array}\n \right\}$

$$
\begin{Bmatrix} \text{Serre subcategories} \\ \text{S of Fp}(\text{fp}\text{ }A,\text{Ab}) \end{Bmatrix} \longleftrightarrow \begin{Bmatrix} \text{Definable subcategories} \\ \text{ }X \text{ of } \text{ }A \end{Bmatrix}
$$

Correspondences

```
There are one to one correspondences
[Crawley-Boevey, Herzog, Krause]
```


and an injective assignment [Enomoto]

$$
\left\{\begin{matrix}\text{Exact structures} \\ \mathcal{E} \text{ on } \text{fp } \mathcal{A}\end{matrix}\right\} \xrightarrow{\longleftrightarrow} \left\{\begin{matrix}\text{Serre subcategories} \\ \mathcal{S} \text{ of } \text{Fp}(\text{fp } \mathcal{A}, \text{Ab})\end{matrix}\right\}.
$$

Correspondences

There are one to one correspondences [Crawley-Boevey, Herzog, Krause]

and an injective assignment [Enomoto]

$$
\{\begin{array}{c}\n\text{Exact structures} \\
\& \text{ on } \mathfrak{fp} \mathcal{A}\n\end{array}\n\} \longleftrightarrow \begin{array}{c}\n\text{Serre subcategories} \\
\& \text{ of } \mathsf{Fp}(\mathfrak{fp} \mathcal{A}, \mathsf{Ab})\n\end{array}\n\}
$$

.

Fix $\mathcal E$ and corresponding $\mathcal S_{\mathcal E}, \mathcal T_{\mathcal E}, \mathcal X_{\mathcal E}, \mathcal U_{\mathcal E}$.

Theorem

There exists a fully faithful additive functor

$$
\text{ev}_{\mathcal{E}}\colon \mathcal{A} \xrightarrow{\text{ev}} \textbf{P}(\mathcal{A}) \to \textbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}
$$

Theorem

There exists a fully faithful additive functor

$$
\text{ev}_{\mathcal{E}}\colon \mathcal{A} \xrightarrow{\text{ev}} \textbf{P}(\mathcal{A}) \to \textbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}
$$

Theorem

There exists a fully faithful additive functor

$$
\text{ev}_{\mathcal{E}}\colon \mathcal{A} \xrightarrow{\text{ev}} \textbf{P}(\mathcal{A}) \to \textbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}
$$

whose essential image is closed under extensions.

 \bullet $\mathcal{A} \subseteq \mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed

Theorem

There exists a fully faithful additive functor

$$
\text{ev}_{\mathcal{E}}\colon \mathcal{A} \xrightarrow{\text{ev}} \textbf{P}(\mathcal{A}) \to \textbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}
$$

whose essential image is closed under extensions.

 \bullet $\mathcal{A} \subseteq \mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure $\bar{\mathcal{E}}$ on \mathcal{A}

Theorem

There exists a fully faithful additive functor

$$
\text{ev}_{\mathcal{E}}\colon \mathcal{A} \xrightarrow{\text{ev}} \textbf{P}(\mathcal{A}) \to \textbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}
$$

- \bullet $\mathcal{A} \subseteq \mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure $\bar{\mathcal{E}}$ on A
- fp $A \subseteq$ fp $P_{\mathcal{E}}(A)$ extension-closed

Theorem

There exists a fully faithful additive functor

$$
\text{ev}_{\mathcal{E}}\colon \mathcal{A} \xrightarrow{\text{ev}} \textbf{P}(\mathcal{A}) \to \textbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}
$$

- \bullet $\mathcal{A} \subseteq \mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure $\bar{\mathcal{E}}$ on \mathcal{A}
- fp $A \subseteq$ fp $P_{\mathcal{E}}(A)$ extension-closed \Rightarrow induces exact structure $\mathcal E$ on fp $\mathcal A$

Theorem

There exists a fully faithful additive functor

$$
\text{ev}_{\mathcal{E}}\colon \mathcal{A} \xrightarrow{\text{ev}} \textbf{P}(\mathcal{A}) \to \textbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}
$$

- \bullet $\mathcal{A} \subseteq \mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure $\bar{\mathcal{E}}$ on \mathcal{A}
- fp $A \subseteq$ fp $P_{\mathcal{E}}(A)$ extension-closed \Rightarrow induces exact structure $\mathcal E$ on fp $\mathcal A$

•
$$
A = \varinjlim
$$
 fp A implies $\bar{\mathcal{E}} = \varinjlim \mathcal{E}$

Relative Purity

Corollary

(a) The exact category (A, \bar{E}) has enough injectives.

Relative Purity

Corollary

- (a) The exact category (A, \bar{E}) has enough injectives.
- (b) Every $X \in (A, \overline{E})$ admits an admissable monomorphism $X \rightarrow Q$, where Q is a product of indecomposable injectives.

Corollary

- (a) The exact category $(\mathcal{A}, \bar{\mathcal{E}})$ has enough injectives.
- (b) Every $X \in (\mathcal{A}, \bar{\mathcal{E}})$ admits an admissable monomorphism $X \rightarrow Q$, where Q is a product of indecomposable injectives.

Corollary

(a) The indecomposable injective objects in (A, \overline{E}) form a closed set in Ind A that coincides with $\mathcal{U}_{\mathcal{E}}$.

Corollary

- (a) The exact category $(\mathcal{A}, \bar{\mathcal{E}})$ has enough injectives.
- (b) Every $X \in (A, \overline{E})$ admits an admissable monomorphism $X \rightarrow Q$, where Q is a product of indecomposable injectives.

Corollary

- (a) The indecomposable injective objects in $(\mathcal{A}, \overline{\mathcal{E}})$ form a closed set in Ind A that coincides with u_{ε} .
- (b) The class of fp-injective objects in (A, \overline{E}) coincides with χ_{ε} .

Corollary

- (a) The exact category $(\mathcal{A}, \bar{\mathcal{E}})$ has enough injectives.
- (b) Every $X \in (A, \overline{E})$ admits an admissable monomorphism $X \rightarrow Q$, where Q is a product of indecomposable injectives.

Corollary

- (a) The indecomposable injective objects in $(\mathcal{A}, \overline{\mathcal{E}})$ form a closed set in Ind A that coincides with u_{ε} .
- (b) The class of fp-injective objects in (A, \overline{E}) coincides with χ_{ε} .

Corollary

If A is abelian, then exact structures on fp A are one to one with closed sets in $Ind A$ containing all indecomposable injectives in A .

• Let $A = Mod A$ for an Artin algebra A

• Let $A = Mod A$ for an Artin algebra A

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals I of mod A and Serre subcategories S of Fp (mod A, Ab).

• Let $A = Mod A$ for an Artin algebra A

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals I of mod A and Serre subcategories S of $Fp(\text{mod }A, Ab)$.

• Fix exact structure $\mathcal E$ on mod A and corresponding $\mathcal I_{\mathcal E}$

• Let $A = Mod A$ for an Artin algebra A

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals I of mod A and Serre subcategories S of $Fp(\text{mod }A, Ab)$.

• Fix exact structure $\mathcal E$ on mod A and corresponding $\mathcal I_{\mathcal E}$

$$
\Rightarrow\quad \mathcal{I}_{\mathcal{E}}=\langle\mathsf{Inj}\,(\mathsf{Mod}\,A,\bar{\mathcal{E}})\rangle_\mathsf{mod}\,{}_{A}
$$

• Let $A = Mod A$ for an Artin algebra A

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals I of mod A and Serre subcategories S of Fp (mod A, Ab).

• Fix exact structure $\mathcal E$ on mod A and corresponding $\mathcal I_{\mathcal E}$

$$
\Rightarrow\quad \mathcal{I_E}=\langle \mathsf{Inj}\,(\mathsf{Mod}\,A,\bar{\mathcal{E}})\rangle_{\mathsf{mod}\,A}
$$

Theorem

For $X, Y \in \text{mod } A$ there exists a functorial isomorphism

$$
\mathsf{Ext}^1_{\mathcal{E}}(X,Y) \cong D \operatorname{Hom}_A(Y,\tau X)/\mathcal{I}_{\mathcal{E}}(Y,\tau X).
$$

• Let $A = Mod A$ for an Artin algebra A

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals I of mod A and Serre subcategories S of Fp (mod A, Ab).

• Fix exact structure $\mathcal E$ on mod A and corresponding $\mathcal I_{\mathcal E}$

$$
\Rightarrow \quad \mathcal{I_E} = \langle \mathsf{Inj}\,(\mathsf{Mod}\,A,\bar{\mathcal{E}})\rangle_{\mathsf{mod}\,A}
$$

Theorem

For $X, Y \in \text{mod } A$ there exists a functorial isomorphism

$$
\mathsf{Ext}^1_{\mathcal{E}}(X,Y) \cong D \operatorname{Hom}_A(Y,\tau X)/\mathcal{I}_{\mathcal{E}}(Y,\tau X).
$$

Proof.

Use defect formula for an injective hull $Y \rightarrow Q$ in (Mod A, \overline{E}).

 \Box

Kevin Schlegel University of Stuttgart [Exact Structures and Purity](#page-0-0)

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod A}}$ and $\text{rad}_A^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_A^n$.

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod A}}$ and $\text{rad}_A^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_A^n$. Then $\mathcal{I}_{\mathcal{E}} = \mathsf{rad}^{\omega}_A + \langle \mathsf{inj} \, A \rangle$

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod A}}$ and $\text{rad}_A^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_A^n$. Then $\mathcal{I}_{\mathcal{E}} = \mathsf{rad}^{\omega}_A + \langle \mathsf{inj} \, A \rangle$ and

 $\mathsf{Ext}^1_{\mathcal{E}}(X,Y) \cong D\operatorname{\mathsf{Hom}}_A(Y,\tau X)/\mathcal{I}_{\mathcal{E}}(Y,\tau X)$

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod A}}$ and $\text{rad}_A^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_A^n$. Then $\mathcal{I}_{\mathcal{E}} = \mathsf{rad}^{\omega}_A + \langle \mathsf{inj} \, A \rangle$ and

$$
\operatorname{Ext}_{\mathcal{E}}^1(X, Y) \cong D \operatorname{Hom}_A(Y, \tau X)/\mathcal{I}_{\mathcal{E}}(Y, \tau X)
$$

$$
\cong \begin{cases} D \operatorname{Hom}_A(Y, \tau X)/\operatorname{rad}_A^{\omega}(Y, \tau X) \xrightarrow{\text{if } Y \text{ no preinjective}} \end{cases}
$$

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod A}}$ and $\text{rad}_A^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_A^n$. Then $\mathcal{I}_{\mathcal{E}} = \mathsf{rad}^{\omega}_A + \langle \mathsf{inj} \, A \rangle$ and

$$
\begin{aligned} \text{Ext}^1_{\mathcal{E}}(X,Y) &\cong D\operatorname{Hom}_A(Y,\tau X)/\mathcal{I}_{\mathcal{E}}(Y,\tau X) \\ &\cong \begin{cases} D\operatorname{Hom}_A(Y,\tau X)/\operatorname{rad}_A^\omega(Y,\tau X) \stackrel{\text{if } Y \text{ no preinjective}}{\text{direct summand,}} \\ \operatorname{Ext}^1_A(X,Y) \text{ if } \operatorname{rad}_A^\omega(Y,\tau X) \subseteq \langle \operatorname{inj} A \rangle. \end{cases} \end{aligned}
$$