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Preliminaries

o A C P(A) extension-closed
= induces exact structure Eyyre on A

o fp A C fp P(.A) extension-closed
= induces exact structure Egyie on fp A

o A= Ii_m>fp,4 implies Epyre = Ii_m>55p|;t
e P(A) has enough injectives
= (A, Epure) has enough injectives

@ Ziegler spectrum of A

Ind A = {X € (A, Epure) | X is indecomposable injective}
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Preliminaries

Correspondences

There are one to one correspondences
[Crawley-Boevey, Herzog, Krause]

Serre subcategories Definable subcategories
{ S of Fp(fp.A,Ab) } { X of A }

I |

Hereditary torsion classes {C|osed sets}
T of finite type in P(A) U in Ind A

and an injective assignment [Enomoto]

Exact structures Serre subcategories
EonfpA } > { S of Fp(fp.A,Ab)

Fix £ and corresponding Sg, Te, Xe, Us.
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Relative Purity

@ Relative purity category Pg(A) = P(A)/T¢

There exists a fully faithful additive functor

eve: A L P(A) = Pe(A4), XX
whose essential image is closed under extensions.

o A C Pg(A) extension-closed
= induces exact structure £ on A

o fp A C fpPg(.A) extension-closed
= induces exact structure £ on fp A

o A= Ii_m}pr implies & = Ii_>m8
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Relative Purity

Corollary

(a) The exact category (A, &) has enough injectives.

(b) Every X € (A, &) admits an admissable monomorphism
X — @, where Q is a product of indecomposable injectives.

Corollary

(a) The indecomposable injective objects in (A, &) form a closed
set in Ind A that coincides with Us.

(b) The class of fp-injective objects in (A, &) coincides with X .

Corollary

If A is abelian, then exact structures on fp A are one to one with
closed sets in Ind A containing all indecomposable injectives in A.
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= Tg = (Inj(Mod A, €))mod A
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The Case of an Artin Algebra

o Let A = Mod A for an Artin algebra A

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent
ideals T of mod A and Serre subcategories S of Fp(mod A, Ab).

o Fix exact structure £ on mod A and corresponding Z¢

= Tg = (Inj(Mod A, €))mod A

For X, Y € mod A there exists a functorial isomorphism

Ext}(X,Y) = DHoma(Y,7X)/Ze(Y, 7X).

Use defect formula for an injective hull Y — Q in (Mod A,&). [
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The Case of an Artin Algebra

Let & = (almost split sequences)moda and radi = (72 ; rad}.
Then Zg = rad4 + (inj A) and

Ext}(X,Y) = DHoma(Y,7X)/Ze(Y,7X)
{D HomA(Y, TX)/rad%(Y, TX) if Y no preinjective

direct summand,

Exth(X, Y) if rad5(Y,7X) C (inj A).
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