Exact Structures and Purity

Kevin Schlegel University of Stuttgart

PATHS 2024 Cetraro, May 13-17 $\bullet\,$ Fix locally finitely presented category ${\cal A}$

- $\bullet\,$ Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$

• E.g.
$$\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$$

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$
- E.g. $\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$
- Purity category $\mathbf{P}(\mathcal{A})$

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$
- E.g. $\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$
- Purity category $\mathbf{P}(\mathcal{A})$ $Fp(fp \mathcal{A}, Ab)$

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$

• E.g.
$$\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$$

• Purity category $\mathbf{P}(\mathcal{A}) = \text{Lex}(\text{Fp}(\text{fp}\mathcal{A},\text{Ab}),\text{Ab})$

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$
- E.g. $\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$
- Purity category $\mathbf{P}(\mathcal{A}) = \text{Lex}(Fp(fp \mathcal{A}, Ab), Ab)$

• fp
$$\mathbf{P}(\mathcal{A}) \simeq \mathsf{Fp}(\mathsf{fp}\mathcal{A},\mathsf{Ab})^{\mathsf{op}}$$

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$
- E.g. $\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$
- Purity category $\mathbf{P}(\mathcal{A}) = \text{Lex}(Fp(fp \mathcal{A}, Ab), Ab)$
- fp $\textbf{P}(\mathcal{A})\simeq \mathsf{Fp}(\mathsf{fp}\mathcal{A},\mathsf{Ab})^{\mathsf{op}}\Rightarrow \textbf{P}(\mathcal{A})$ is a Grothendieck category

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$
- E.g. $\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$
- Purity category $\mathbf{P}(\mathcal{A}) = \text{Lex}(Fp(fp \mathcal{A}, Ab), Ab)$
- fp $\textbf{P}(\mathcal{A})\simeq \mathsf{Fp}(\mathsf{fp}\mathcal{A},\mathsf{Ab})^{\mathsf{op}}\Rightarrow \textbf{P}(\mathcal{A})$ is a Grothendieck category

Theorem (Crawley-Boevey)

There exists a fully faithful additive functor

$$\mathsf{ev}\colon \mathcal{A}\longrightarrow \mathbf{P}(\mathcal{A}), \quad X\mapsto \bar{X} \quad \textit{with} \quad \bar{X}(F)=F(X)$$

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$
- E.g. $\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$
- Purity category $\mathbf{P}(\mathcal{A}) = \text{Lex}(Fp(fp \mathcal{A}, Ab), Ab)$
- fp $\textbf{P}(\mathcal{A})\simeq \mathsf{Fp}(\mathsf{fp}\mathcal{A},\mathsf{Ab})^{\mathsf{op}}\Rightarrow \textbf{P}(\mathcal{A})$ is a Grothendieck category

Theorem (Crawley-Boevey)

There exists a fully faithful additive functor

$$\mathsf{ev} \colon \mathcal{A} \longrightarrow \mathbf{P}(\mathcal{A}), \quad X \mapsto \bar{X} \quad \textit{with} \quad \bar{X}(F) = F(X)$$

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$
- E.g. $\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$
- Purity category $\mathbf{P}(\mathcal{A}) = \text{Lex}(Fp(fp \mathcal{A}, Ab), Ab)$
- fp $\textbf{P}(\mathcal{A})\simeq \mathsf{Fp}(\mathsf{fp}\mathcal{A},\mathsf{Ab})^{\mathsf{op}}\Rightarrow \textbf{P}(\mathcal{A})$ is a Grothendieck category

Theorem (Crawley-Boevey)

There exists a fully faithful additive functor

 $\operatorname{\mathsf{Mod}} R \longrightarrow \operatorname{\mathsf{Add}}(\operatorname{\mathsf{mod}} R^{\operatorname{\mathsf{op}}},\operatorname{\mathsf{Ab}}), \quad X \mapsto (-) \otimes_R X$

- \bullet Fix locally finitely presented category ${\cal A}$
- fp $\mathcal{A} = \{X \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(X, -) \text{ commutes with } \varinjlim\}$
- E.g. $\mathcal{A} = \operatorname{Mod} R = \varinjlim \operatorname{Mod} R$
- Purity category $\mathbf{P}(\mathcal{A}) = \text{Lex}(Fp(fp \mathcal{A}, Ab), Ab)$
- fp $\textbf{P}(\mathcal{A})\simeq \mathsf{Fp}(\mathsf{fp}\mathcal{A},\mathsf{Ab})^{\mathsf{op}}\Rightarrow \textbf{P}(\mathcal{A})$ is a Grothendieck category

Theorem (Crawley-Boevey)

There exists a fully faithful additive functor

$$\mathsf{ev} \colon \mathcal{A} \longrightarrow \mathbf{P}(\mathcal{A}), \quad X \mapsto \bar{X} \quad \textit{with} \quad \bar{X}(F) = F(X)$$

•
$$\mathcal{A} \subseteq \mathbf{P}(\mathcal{A})$$
 extension-closed

• $\mathcal{A} \subseteq \mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}

- $\mathcal{A} \subseteq \mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}
- fp $\mathcal{A} \subseteq$ fp $\mathbf{P}(\mathcal{A})$ extension-closed

- $\mathcal{A} \subseteq \mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}
- fp $\mathcal{A} \subseteq$ fp $\mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{split} on fp \mathcal{A}

- $\mathcal{A} \subseteq \mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}
- fp $\mathcal{A} \subseteq$ fp $\mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{split} on fp \mathcal{A}

•
$$\mathcal{A} = \varinjlim \mathsf{fp} \, \mathcal{A} \text{ implies } \mathcal{E}_{\mathsf{pure}} = \varinjlim \mathcal{E}_{\mathsf{split}}$$

- $\mathcal{A} \subseteq \mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}
- fp $\mathcal{A} \subseteq$ fp $\mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{split} on fp \mathcal{A}
- $\mathcal{A} = \varinjlim fp \mathcal{A}$ implies $\mathcal{E}_{pure} = \varinjlim \mathcal{E}_{split}$
- $\mathbf{P}(\mathcal{A})$ has enough injectives

- $\mathcal{A} \subseteq \mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}
- fp $\mathcal{A} \subseteq$ fp $\mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{split} on fp \mathcal{A}
- $\mathcal{A} = \varinjlim fp \mathcal{A}$ implies $\mathcal{E}_{pure} = \varinjlim \mathcal{E}_{split}$
- $\mathbf{P}(\mathcal{A})$ has enough injectives $\Rightarrow (\mathcal{A}, \mathcal{E}_{pure})$ has enough injectives

- $\mathcal{A} \subseteq \mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{pure} on \mathcal{A}
- fp $\mathcal{A} \subseteq$ fp $\mathbf{P}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E}_{split} on fp \mathcal{A}

•
$$\mathcal{A} = \varinjlim \mathsf{fp} \, \mathcal{A} \text{ implies } \mathcal{E}_{\mathsf{pure}} = \varinjlim \mathcal{E}_{\mathsf{split}}$$

- $\mathbf{P}(\mathcal{A})$ has enough injectives $\Rightarrow (\mathcal{A}, \mathcal{E}_{pure})$ has enough injectives
- \bullet Ziegler spectrum of ${\cal A}$

 $\mathsf{Ind}\,\mathcal{A} = \{X \in (\mathcal{A}, \mathcal{E}_{\mathsf{pure}}) \mid X \text{ is indecomposable injective}\}$

There are one to one correspondences [Crawley-Boevey, Herzog, Krause]

 $\left\{ \begin{array}{l} \mathsf{Serre subcategories} \\ \mathcal{S} \text{ of } \mathsf{Fp}(\mathsf{fp}\,\mathcal{A},\mathsf{Ab}) \end{array} \right\}$

$$\left\{\begin{array}{l} \text{Serre subcategories} \\ \mathcal{S} \text{ of } Fp(fp \, \mathcal{A}, Ab) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{Definable subcategories} \\ \mathcal{X} \text{ of } \mathcal{A} \end{array}\right\}$$

Correspondences

```
There are one to one correspondences
[Crawley-Boevey, Herzog, Krause]
```


and an injective assignment [Enomoto]

$$\left\{ \begin{matrix} \mathsf{Exact structures} \\ \mathcal{E} \text{ on } \mathsf{fp} \mathcal{A} \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \mathsf{Serre subcategories} \\ \mathcal{S} \text{ of } \mathsf{Fp}(\mathsf{fp} \mathcal{A}, \mathsf{Ab}) \end{matrix} \right\}$$

Correspondences

There are one to one correspondences [Crawley-Boevey, Herzog, Krause]

and an injective assignment [Enomoto]

$$\left\{ \begin{matrix} \mathsf{Exact structures} \\ \mathcal{E} \text{ on } \mathsf{fp} \mathcal{A} \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \mathsf{Serre subcategories} \\ \mathcal{S} \text{ of } \mathsf{Fp}(\mathsf{fp} \mathcal{A}, \mathsf{Ab}) \end{matrix} \right\}$$

Fix \mathcal{E} and corresponding $\mathcal{S}_{\mathcal{E}}, \mathcal{T}_{\mathcal{E}}, \mathcal{X}_{\mathcal{E}}, \mathcal{U}_{\mathcal{E}}.$

Theorem

There exists a fully faithful additive functor

$$\mathsf{ev}_{\mathcal{E}}\colon \mathcal{A} \xrightarrow{\mathsf{ev}} \mathbf{P}(\mathcal{A}) o \mathbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}$$

Theorem

There exists a fully faithful additive functor

$$\operatorname{ev}_{\mathcal{E}} \colon \mathcal{A} \xrightarrow{\operatorname{ev}} \mathbf{P}(\mathcal{A}) \to \mathbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}$$

Theorem

There exists a fully faithful additive functor

$$\operatorname{ev}_{\mathcal{E}} \colon \mathcal{A} \xrightarrow{\operatorname{ev}} \mathbf{P}(\mathcal{A}) \to \mathbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}$$

whose essential image is closed under extensions.

• $\mathcal{A} \subseteq \mathsf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed

Theorem

There exists a fully faithful additive functor

$$\operatorname{ev}_{\mathcal{E}} \colon \mathcal{A} \xrightarrow{\operatorname{ev}} \mathbf{P}(\mathcal{A}) \to \mathbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}$$

whose essential image is closed under extensions.

• $\mathcal{A} \subseteq \mathsf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure $\overline{\mathcal{E}}$ on \mathcal{A}

Theorem

There exists a fully faithful additive functor

$$\operatorname{ev}_{\mathcal{E}} \colon \mathcal{A} \xrightarrow{\operatorname{ev}} \mathbf{P}(\mathcal{A}) \to \mathbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}$$

- $\mathcal{A} \subseteq \mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure $\overline{\mathcal{E}}$ on \mathcal{A}
- fp $\mathcal{A} \subseteq$ fp $\mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed

Theorem

There exists a fully faithful additive functor

$$\operatorname{ev}_{\mathcal{E}} \colon \mathcal{A} \xrightarrow{\operatorname{ev}} \mathbf{P}(\mathcal{A}) \to \mathbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}$$

- $\mathcal{A} \subseteq \mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure $\overline{\mathcal{E}}$ on \mathcal{A}
- fp $\mathcal{A} \subseteq$ fp $\mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed
 - \Rightarrow induces exact structure ${\mathcal E}$ on fp ${\mathcal A}$

• Relative purity category $\textbf{P}_{\mathcal{E}}(\mathcal{A})=\textbf{P}(\mathcal{A})/\mathcal{T}_{\mathcal{E}}$

Theorem

There exists a fully faithful additive functor

$$\operatorname{ev}_{\mathcal{E}} \colon \mathcal{A} \xrightarrow{\operatorname{ev}} \mathbf{P}(\mathcal{A}) \to \mathbf{P}_{\mathcal{E}}(\mathcal{A}), \quad X \mapsto \bar{X}$$

whose essential image is closed under extensions.

- $\mathcal{A} \subseteq \mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure $\overline{\mathcal{E}}$ on \mathcal{A}
- fp $\mathcal{A} \subseteq$ fp $\mathbf{P}_{\mathcal{E}}(\mathcal{A})$ extension-closed \Rightarrow induces exact structure \mathcal{E} on fp \mathcal{A}

•
$$\mathcal{A} = \varinjlim \operatorname{fp} \mathcal{A}$$
 implies $\overline{\mathcal{E}} = \varinjlim \mathcal{E}$

Relative Purity

Corollary

(a) The exact category $(\mathcal{A}, \overline{\mathcal{E}})$ has enough injectives.

Relative Purity

Corollary

(a) The exact category $(\mathcal{A}, \overline{\mathcal{E}})$ has enough injectives.

(b) Every $X \in (\mathcal{A}, \overline{\mathcal{E}})$ admits an admissable monomorphism $X \to Q$, where Q is a product of indecomposable injectives.

Corollary

(a) The exact category $(\mathcal{A}, \overline{\mathcal{E}})$ has enough injectives.

(b) Every $X \in (\mathcal{A}, \overline{\mathcal{E}})$ admits an admissable monomorphism $X \to Q$, where Q is a product of indecomposable injectives.

Corollary

(a) The indecomposable injective objects in $(\mathcal{A}, \overline{\mathcal{E}})$ form a closed set in Ind \mathcal{A} that coincides with $\mathcal{U}_{\mathcal{E}}$.

Corollary

- (a) The exact category $(\mathcal{A}, \overline{\mathcal{E}})$ has enough injectives.
- (b) Every $X \in (\mathcal{A}, \overline{\mathcal{E}})$ admits an admissable monomorphism $X \to Q$, where Q is a product of indecomposable injectives.

Corollary

- (a) The indecomposable injective objects in $(\mathcal{A}, \overline{\mathcal{E}})$ form a closed set in Ind \mathcal{A} that coincides with $\mathcal{U}_{\mathcal{E}}$.
- (b) The class of fp-injective objects in $(\mathcal{A}, \overline{\mathcal{E}})$ coincides with $\mathcal{X}_{\mathcal{E}}$.

Corollary

(a) The exact category $(\mathcal{A}, \overline{\mathcal{E}})$ has enough injectives.

(b) Every $X \in (\mathcal{A}, \overline{\mathcal{E}})$ admits an admissable monomorphism $X \to Q$, where Q is a product of indecomposable injectives.

Corollary

- (a) The indecomposable injective objects in $(\mathcal{A}, \overline{\mathcal{E}})$ form a closed set in Ind \mathcal{A} that coincides with $\mathcal{U}_{\mathcal{E}}$.
- (b) The class of fp-injective objects in $(\mathcal{A}, \overline{\mathcal{E}})$ coincides with $\mathcal{X}_{\mathcal{E}}$.

Corollary

If \mathcal{A} is abelian, then exact structures on fp \mathcal{A} are one to one with closed sets in Ind \mathcal{A} containing all indecomposable injectives in \mathcal{A} .

• Let $\mathcal{A} = \operatorname{Mod} \mathcal{A}$ for an Artin algebra \mathcal{A}

• Let $\mathcal{A} = \operatorname{Mod} \mathcal{A}$ for an Artin algebra \mathcal{A}

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals \mathcal{I} of mod A and Serre subcategories S of Fp(mod A, Ab).

• Let $\mathcal{A} = \operatorname{Mod} \mathcal{A}$ for an Artin algebra \mathcal{A}

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals \mathcal{I} of mod A and Serre subcategories S of Fp(mod A, Ab).

• Fix exact structure ${\mathcal E}$ on mod A and corresponding ${\mathcal I}_{{\mathcal E}}$

• Let $\mathcal{A} = \operatorname{Mod} \mathcal{A}$ for an Artin algebra \mathcal{A}

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals \mathcal{I} of mod A and Serre subcategories S of Fp(mod A, Ab).

• Fix exact structure ${\mathcal E}$ on mod A and corresponding ${\mathcal I}_{{\mathcal E}}$

$$\Rightarrow \quad \mathcal{I}_{\mathcal{E}} = \langle \mathsf{Inj}\,(\mathsf{Mod}\,\mathcal{A}, \bar{\mathcal{E}}) \rangle_{\mathsf{mod}\,\mathcal{A}}$$

• Let $\mathcal{A} = \operatorname{Mod} \mathcal{A}$ for an Artin algebra \mathcal{A}

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals \mathcal{I} of mod A and Serre subcategories S of Fp(mod A, Ab).

• Fix exact structure ${\mathcal E}$ on mod A and corresponding ${\mathcal I}_{{\mathcal E}}$

$$\Rightarrow \quad \mathcal{I}_{\mathcal{E}} = \langle \mathsf{Inj}\,(\mathsf{Mod}\,A, \bar{\mathcal{E}}) \rangle_{\mathsf{mod}\,A}$$

Theorem

For $X, Y \in \text{mod } A$ there exists a functorial isomorphism

$$\operatorname{Ext}^1_{\operatorname{\mathcal{E}}}(X,Y)\cong D\operatorname{Hom}_{\operatorname{\mathcal{A}}}(Y,\tau X)/\mathcal{I}_{\operatorname{\mathcal{E}}}(Y,\tau X).$$

• Let $\mathcal{A} = \operatorname{Mod} \mathcal{A}$ for an Artin algebra \mathcal{A}

Theorem (Krause)

There exists a one to one correspondence between fp-idempotent ideals \mathcal{I} of mod A and Serre subcategories S of Fp(mod A, Ab).

• Fix exact structure ${\mathcal E}$ on mod A and corresponding ${\mathcal I}_{{\mathcal E}}$

$$\Rightarrow \quad \mathcal{I}_{\mathcal{E}} = \langle \mathsf{Inj}\,(\mathsf{Mod}\,A, \bar{\mathcal{E}}) \rangle_{\mathsf{mod}\,A}$$

Theorem

For $X, Y \in \text{mod } A$ there exists a functorial isomorphism

$$\operatorname{Ext}^1_{\operatorname{\mathcal{E}}}(X,Y)\cong D\operatorname{Hom}_{\operatorname{\mathcal{A}}}(Y, au X)/\mathcal{I}_{\operatorname{\mathcal{E}}}(Y, au X).$$

Proof.

Use defect formula for an injective hull Y o Q in $(Mod A, \overline{\mathcal{E}})$.

Kevin Schlegel University of Stuttgart Exact Structures and Purity

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod }A}$ and $\text{rad}_{A}^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_{A}^{n}$.

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod }A}$ and $\text{rad}_{\mathcal{A}}^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_{\mathcal{A}}^{n}$. Then $\mathcal{I}_{\mathcal{E}} = \text{rad}_{\mathcal{A}}^{\omega} + \langle \text{inj } \mathcal{A} \rangle$

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod }A}$ and $\text{rad}_{\mathcal{A}}^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_{\mathcal{A}}^{n}$. Then $\mathcal{I}_{\mathcal{E}} = \text{rad}_{\mathcal{A}}^{\omega} + \langle \text{inj } \mathcal{A} \rangle$ and

 $\operatorname{Ext}^{1}_{\mathcal{E}}(X,Y) \cong D\operatorname{Hom}_{\mathcal{A}}(Y,\tau X)/\mathcal{I}_{\mathcal{E}}(Y,\tau X)$

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod }A}$ and $\text{rad}_{\mathcal{A}}^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_{\mathcal{A}}^{n}$. Then $\mathcal{I}_{\mathcal{E}} = \text{rad}_{\mathcal{A}}^{\omega} + \langle \text{inj } \mathcal{A} \rangle$ and

$$\operatorname{Ext}^{1}_{\mathcal{E}}(X,Y) \cong D\operatorname{Hom}_{\mathcal{A}}(Y,\tau X)/\mathcal{I}_{\mathcal{E}}(Y,\tau X)$$
$$\cong \begin{cases} D\operatorname{Hom}_{\mathcal{A}}(Y,\tau X)/\operatorname{rad}^{\omega}_{\mathcal{A}}(Y,\tau X) \text{ if } Y \text{ no preinjective direct summand,} \end{cases}$$

Let $\mathcal{E} = \langle \text{almost split sequences} \rangle_{\text{mod }A}$ and $\text{rad}_{\mathcal{A}}^{\omega} = \bigcap_{n=1}^{\infty} \text{rad}_{\mathcal{A}}^{n}$. Then $\mathcal{I}_{\mathcal{E}} = \text{rad}_{\mathcal{A}}^{\omega} + \langle \text{inj } \mathcal{A} \rangle$ and

$$\begin{aligned} \mathsf{Ext}^{1}_{\mathcal{E}}(X,Y) &\cong D \operatorname{Hom}_{\mathcal{A}}(Y,\tau X) / \mathcal{I}_{\mathcal{E}}(Y,\tau X) \\ &\cong \begin{cases} D \operatorname{Hom}_{\mathcal{A}}(Y,\tau X) / \operatorname{rad}^{\omega}_{\mathcal{A}}(Y,\tau X) \stackrel{\text{if } Y \text{ no preinjective}}{\operatorname{direct summand,}} \\ &\operatorname{Ext}^{1}_{\mathcal{A}}(X,Y) \text{ if } \operatorname{rad}^{\omega}_{\mathcal{A}}(Y,\tau X) \subseteq \langle \operatorname{inj} \mathcal{A} \rangle. \end{cases} \end{aligned}$$