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Abstract representation theory



Why abstract representation theory?

• Several important classification results in representation theory do not

depend on the base field/comm. ring.

• E.g. reflection functors: (v a source, Q ′ = σvQ)

S− : repk Q repk Q
′ : S+⊥ (BGP’73)

y1

x

yn

... 7−→

y1

coker(x → ⊕ yi )

yn

...

LS− : Db(kQ) Db(kQ ′) : RS+≃ (Happel’87)

(tilting)

• How to abstract the (triangulated) coefficients efficiently?

∗ e.g. D(AQ) ≃ D(AQ′
) for A abelian ?

∗ obstructions: D(AQ) ̸≃ D(A)Q (coherent vs. incoherent diagrams)

non-functoriality of the cone...
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Representations over ?

I know you are all thinking...

let’s use stable ∞-categories!
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Representations over stable ∞-categories

∞-categories ≡ framework for homotopy coherent mathematics

∗ HomC(x , y) ∈ Spc

∗ homotopy coherent universal properties ((co)limits, adjunctions, ...)

∗ C enhancement of hC homotopy category

Definition

C stable if: (enhancement of a triangulated category)

1) C is pointed (∃ 0 ∈ C)

2) for every f : x → y in C, there exist

x y

0 z = cof(f )

f

PO and

fib(f ) = w x

0 y

PB f

3) fiber and cofiber sequences coincide.
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Representations over stable ∞-categories
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2) for every f : x → y in C, there exist

x y

0 z = cof(f )

f

PO and

fib(f ) = w x

0 y

PB f

3) fiber and cofiber sequences coincide.

Examples

• derived ∞-category D(A) for A abelian

• stable ∞-category E of a Frobenius category E

• ∞-category of spectra Sp

• any of your favorite stable homotopy theories...
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Representations over stable ∞-categories

We write

CQ = Fun(Q,C) : stable ∞-category of homotopy coherent

representations over C

Key observation

Q finite acyclic and R any ring

⇒ D(R)Q ≃ D(RQ) and Dper(R)Q ≃ Dper(RQ)

Theorem (Abstract reflection functors)

For v a source of Q (finite), and C stable, there is an equivalence

S− : CQ CσvQ : S+≃ (DJW’21, RŠ’18)

y1

x

yn

... 7−→

y1

cof(x → ⊕ yi )

yn

...
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Coherent Auslander-Reiten dia-

grams



Auslander-Reiten quivers

• Auslander-Reiten quiver: one of the central objects in the representa-

tion theory of f.d. algebras

Γ(A) ≡ iso-classes of indA + irreducible morphisms

picture to have in mind: Γ(Db(kD4)) ∼= ZD4

• • P(2) •

· · · • • • P(1) P(3) • • • · · ·

• • P(4) •

• Happel:

ΓQ := Γ(Db(kQ)) ∼= ZQ for Q Dynkin

∼= (Z× ZQ) ⊔ {regular comps} otherwise

7
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Coherent Auslander-Reiten diagrams

• We want to use AR methods in CQ for C stable

∗ e.g. how to interpret τ : ΓQ → ΓQ on CQ , or other symmetries...

∗ e.g. the computation of DPic(kQ) by Miyachi-Yekutiele relies comple-

tely on ΓQ

• Intrinsic way to manipulate the AR quiver:

Db(k)Q ≃ Db(kQ) −−−→ Db(k)ΓQop (coherent AR diags)

X 7−−−→ X̃ = RHom(−,X )

obs RHom(−,X ) evaluated at the P(i)’s recovers X ⇒ this map

extends X from Q to the whole AR quiver

X2

X1 X3

X4

8
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Coherent Auslander-Reiten diagrams

• Intrinsic way to manipulate the AR quiver:

Db(k)Q ≃ Db(kQ) −−−→ Db(k)ΓQop (coherent AR diags)

X 7−−−→ X̃ = RHom(−,X )

V2 W2 X2 Y2

· · · V3 W1 W3 X1 X3 Y1 Y3 Z1 · · ·

V4 W4 X4 Y4

• Why is this useful?

→ makes the AR quiver visible at the level of representations; e.g.:

(τX )i = RHom(P(i), τX ) = RHom(τ−1P(i),X ) = X̃ (τ−1P(i))
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· · · V3 W1 W3 X1 X3 Y1 Y3 Z1 · · ·
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• Note that X̃ (−) = RHom(−,X ) sends meshes in ΓQ to cofiber seqs!

E1

τM M

En

...
7−→ X̃ (M) →

⊕
X̃ (Ei ) → X̃ (τM)
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Mesh representations of the repetitive quiver

• In the abstract setting (C stable), we are able to define a functor:

CQ −−−→ CZQ

X 7−−−→ X̃ : sending meshes to cof-seqs

• This is done by iterated abstract reflection functors
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Mesh representations of the repetitive quiver

• In the abstract setting (C stable), we are able to define a functor:

CQ −−−→ CZQ

X 7−−−→ X̃ : sending meshes to cof-seqs

• This is done by iterated abstract reflection functors

• Denote CZQ,mesh ⊂ CZQ the full subcategory of such representations

Theorem (S.)

Restriction along Q ⊂ ZQ induces an equivalence of ∞-categories

CZQ,mesh ≃ CQ
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Applications



Equivalences induced by the repetitive quiver

TFSH for Q finite acyclic and C stable:

Corollary 1

ZQ ∼= ZQ ′ as translation quivers induces CQ′ ≃ CQ

∗ for σ : ZQ ∼= ZQ ′ pass through σ∗ : CZQ′,mesh ≃ CZQ,mesh

Corollary 2

There is an ∞-action Aut(ZQ)

⟳

CQ

∗ a functor BAut(ZQ) → CAT∞ sending ∗ 7→ CQ and σ 7→ σ−∗

Corollary 2’

There is an ∞-action Aut(ΓirrQ )

⟳

CQ

∗ ΓirrQ
∼= ZQ for Q Dynkin and ΓirrQ

∼= Z× ZQ otherwise

∗ the second case uses a variation of the main Thm:

CQ −−−→ CZQ −−−→ CZ×ZQ

X 7−−−→ X̃ 7−−−→ (ΣnX̃ )n
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Relation to Picard groups

In general, we have produced a group homomorphism

Aut(ΓirrQ ) −−−→ Auteq(hCQ)

• for C = Db(k), this is a section of the canonical map [MY’01]

DPic(kQ) −−−→ Aut(ΓirrQ )

∗ for Q a tree, it is an isomorphism

• for important examples of C = Db(Z),Spfin, ... we expect to get many

interesting elements of the integral and spectral Picard group, i.e.

meaninful versions of τ , nakayama, suspension, etc.
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Thank you for your attention!
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