Abstract representation theory via coherent
Auslander-Reiten diagrams

Purity, Approximation Theory and Spectra in Cetraro

Alvaro Sanchez
May 15, 2024

Universidad de Murcia and Charles University of Prague



1. Abstract representation theory
2. Coherent Auslander-Reiten diagrams

3. Applications



Abstract representation theory



Why abstract representation theory?

e Several important classification results in representation theory do not
depend on the base field/comm. ring.



Why abstract representation theory?

e Several important classification results in representation theory do not
depend on the base field/comm. ring.

e E.g. reflection functors: (v a source, Q" = 5, Q)



Why abstract representation theory?

e Several important classification results in representation theory do not
depend on the base field/comm. ring.

e E.g. reflection functors: (v a source, Q" = 5, Q)

ST irep, Q@ L 'rep, @ : ST (BGP'73)
n 7
T et
X : : coker(x = @ y;
Ny
Yn Yn



Why abstract representation theory?

e Several important classification results in representation theory do not
depend on the base field/comm. ring.

e E.g. reflection functors: (v a source, Q" = 5, Q)

ST irep, Q@ L 'rep, @ : ST (BGP'73)
n 7
T ok )
X : : coker(x = @ y;
~
Yn Yn
LS™ :D®(kQ) — = D’(kQ’):RS* (Happel'87)
(tilting)



Why abstract representation theory?

e Several important classification results in representation theory do not
depend on the base field/comm. ring.

e E.g. reflection functors: (v a source, Q" = 5, Q)

ST irep, Q@ L 'rep, @ : ST (BGP'73)
n 7
T ok )
X : : coker(x = @ y;
~
Yn Yn
LS™ :D®(kQ) — = D’(kQ’):RS* (Happel'87)
(tilting)

e How to abstract the (triangulated) coefficients efficiently?



Why abstract representation theory?

e Several important classification results in representation theory do not
depend on the base field/comm. ring.

e E.g. reflection functors: (v a source, Q" = 5, Q)

ST irep, Q@ L 'rep, @ : ST (BGP'73)
n 7
T ok )
X : : coker(x = @ y;
~
Yn Yn
LS™ :D®(kQ) — = D’(kQ’):RS* (Happel'87)
(tilting)

e How to abstract the (triangulated) coefficients efficiently?
+ e.g. D(A%) ~ D(A?Q') for A abelian ?



Why abstract representation theory?

e Several important classification results in representation theory do not
depend on the base field/comm. ring.

e E.g. reflection functors: (v a source, Q" = 5, Q)

ST irep, Q@ L 'rep, @ : ST (BGP'73)
n 7
T ok )
X : : coker(x = @ y;
~
Yn Yn
LS™ :D®(kQ) — = D’(kQ’):RS* (Happel'87)
(tilting)

e How to abstract the (triangulated) coefficients efficiently?
+ e.g. D(A%) ~ D(A?Q') for A abelian ?
% obstructions: D(A®) 2£ D(A)?  (coherent vs. incoherent diagrams)
non-functoriality of the cone...
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Definition
C stable if: (enhancement of a triangulated category)
1) Cis pointed (30 € @)

2) for every f : x — y in C, there exist
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3) fiber and cofiber sequences coincide.

Examples
e derived oo-category D(A) for A abelian
e stable co-category € of a Frobenius category &
e oo-category of spectra Sp

e any of your favorite stable homotopy theories... 5
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Representations over stable co-categories

We write
€@ = Fun(@Q, C) : stable co-category of homotopy coherent
representations over C

Key observation
Q finite acyclic and R any ring

=  D(R)? ~ D(RQ) and DP'(R)? ~ DP(RQ)

Theorem (Abstract reflection functors)

For v a source of Q (finite), and C stable, there is an equivalence

S—:eQ° "= @5t (DJW'21, RS'18)
L
n Y1
e :
X : = : cof(x = & y;)
~ e
Yn Yn
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e Auslander-Reiten quiver: one of the central objects in the representa-
tion theory of f.d. algebras

M(A) = iso-classes of ind A + irreducible morphisms

picture to have in mind: r(o b(kD4)) =~ 7D,

\/\/\/\

e —— e —— e —— P(1) — P(3)

NN

e Happel:
Mo :=r(D°(kQ)) = ZQ for @ Dynkin
= (Z x ZQ) U {regular comps} otherwise
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Coherent Auslander-Reiten diagrams

e [ntrinsic way to manipulate the AR quiver:
Db(K)? ~ DP(kQ) —— DP(k) e (coherent AR diags)
X +—— X =RHom(—,X)

NN NN

Vs — W) — W3 — X1 — X5 — Y] — Y3 — 243

7 Wy Xa Y
e Note that X(—) = RHom(—, X) sends meshes in [ to cofiber seqs!
E;
AN
™™ : M
\ ] /

— X(M) = @ X(E) — X(rM)

10
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Mesh representations of the repetitive quiver

e In the abstract setting (C stable), we are able to define a functor:

GQ ; GZQ

X — X : sending meshes to cof-seqs
e This is done by iterated abstract reflection functors

e Denote CZQ mesh — @ZQ the full subcategory of such representations

Theorem (S.)

Restriction along @ C ZQ induces an equivalence of co-categories

GZQ’ mesh ~ eQ
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Equivalences induced by the repetitive quiver

TFSH for Q finite acyclic and € stable:

Corollary 1
Z.Q = Z Q' as translation quivers induces ¥ ~ eQ

Corollary 2
There is an co-action Aut(ZQ) C €%

Corollary 2’
There is an co-action Aut(Fg) C cQ

* I'ig = 7.Q for @ Dynkin and I'ig ~ 7 x ZQ otherwise
+ the second case uses a variation of the main Thm:

GQ GZQ GZXZQ
X —s X +— (Z”)?),,

14
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Relation to Picard groups

In general, we have produced a group homomorphism

Aut(T's) —— Auteq(hC?)

e for € = Db(k), this is a section of the canonical map [MY'01]
DPic(kQ) — Aut(I'g)
x for Q a tree, it is an isomorphism

e for important examples of @ = D?(Z), Sp™, ... we expect to get many
interesting elements of the integral and spectral Picard group, i.e.
meaninful versions of 7, nakayama, suspension, etc.

15



Thank you for your attention!
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