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Reminder: decorated derived categories

Let R be an associative ring.

The derived categories of R come in many flavors, the following being a
partial list.

D(R–Mod), D−(R–Mod), D+(R–Mod), Db(R–Mod)
D−(R–mod) Db(R–proj) Db(R–mod)

In all of these categories, the objects are cochain complexes of R-modules

· · · // F−2 // F−1 // F 0 // F 1 // F 2 // · · ·

and the decorations explain what restrictions we place on the complexes.
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Reminder: decorated derived categories, generalized to
schemes

Let X be a scheme. One can form the derived categories

Dqc(X ), D−
qc(X ), D+

qc(X ), Db
qc(X ),

D−
coh(X ), Dperf(X ), Db

coh(X )

or refine to the relative version, where Z ⊂ X is a closed subset

Dqc,Z (X ), D−
qc,Z (X ), D+

qc,Z (X ), Db
qc,Z (X ),

D−
coh,Z (X ), Dperf

Z (X ), Db
coh,Z (X )
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Rickard’s 1989 theorem

Theorem (Rickard, 1989)

Let R and S be sufficiently nice rings.

Then the existence of a triangulated equivalence D2
? (R) ∼= D2

? (S) is
independent of the decorations ? and 2.

Before we spell this out, let us introduce a convention valid only for the
next slide.

If S and T are two triangulated categories, then S ∼= T will mean:
there exists a triangulated equivalence between S and T .
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Rickard’s 1989 theorem, spelt out

Theorem (Rickard, 1989)

Let R and S be sufficiently nice rings. Then the following are equivalent:

1 D(R–Mod) ∼= D(S–Mod).

2 D−(R–Mod) ∼= D−(S–Mod).

3 D+(R–Mod) ∼= D+(S–Mod).

4 Db(R–Mod) ∼= Db(S–Mod).

5 D−(R–mod) ∼= D−(S–mod).

6 Db(R–proj) ∼= Db(S–proj).

7 Db(R–mod) ∼= Db(S–mod).

This can be found in Theorem 1.1 of:

Jeremy Rickard, Derived categories and stable equivalence, J. Pure
and Appl. Algebra 61 (1989), 303–317.
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Henning Krause, Completing perfect complexes, Math. Z. 296 (2020),
no. 3-4, 1387–1427, With appendices by Tobias Barthel, Bernhard
Keller and Krause.

Amnon Neeman, The categories T c and T b
c determine each other,

https://arxiv.org/abs/1806.06471.
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Background: compact generation and t–structures

Assume T is a triangulated category with coproducts.

An object G ∈ T is compact if Hom(G ,−) commutes with coproducts.

Notation to remember: the subcategory of all compact objects will be
denoted T c ⊂ T .

The compact objects in D(R–Mod) identify as

D(R–Mod)c = Db(R–proj).

The compact object G ∈ T generates T if every nonzero object X ∈ T
admits a nonzero map G [i ] −→ X , for some i ∈ Z.

A compact generator G ∈ T is a compact object that generates.

The object R ∈ D(R–Mod) is a compact generator.
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Example (the standard t–structure on D(R–Mod))

We define two full subcategories of D(R–Mod):

D(R–Mod)≤0 = {A ∈ D(R–Mod) | H i (A) = 0 for all i > 0}
D(R–Mod)≥0 = {A ∈ D(R–Mod) | H i (A) = 0 for all i < 0}

Definition

A t–structure on a triangulated category T is a pair of full subcategories(
T ≤0, T ≥0

)
satisfying

T ≤0[1] ⊂ T ≤0 and T ≥0 ⊂ T ≥0[1]

Hom
(
T ≤0[1] , T ≥0

)
= 0

Every object B ∈ T admits a triangle

A −→ B −→ C −→

with A ∈ T ≤0[1] and C ∈ T ≥0.
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‘ ‘

Definition (equivalent t–structures)

Let T be any triangulated category, and let
(
T ≤0
1 , T ≥0

1

)
and

(
T ≤0
2 , T ≥0

2

)
be two t–structures on T . We declare them equivalent if they are a finite
distance from each other.

To spell it out: the two t–structures are equivalent if there exists an
integer A > 0 with

T ≤−A
1 ⊂ T ≤0

2 ⊂ T ≤A
1 .

It is a formal consequence that, for the same integer A > 0, we have

T ≥−A
1 ⊃ T ≥0

2 ⊃ T ≥A
1 .
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Preferred t–structures

Let T be a triangulated category with coproducts, and let G ∈ T be a
compact object. A 2003 theorem of Alonso, Jereḿıas and Souto teaches
us that T has a unique t–structure

(
T ≤0
G , T ≥0

G

)
generated by G .

Among all t–structures
(
T ≤0, T ≥0

)
such that G ∈ T ≤0, there exists a

unique one with minimal T ≤0.

If G and H are two compact generators for T , then the t–structures(
T ≤0
G , T ≥0

G

)
and

(
T ≤0
H , T ≥0

H

)
are equivalent.

We say that a t–structure
(
T ≤0, T ≥0

)
is in the

preferred equivalence class

if it is equivalent to
(
T ≤0
G , T ≥0

G

)
for some compact generator G , hence for

every compact generator.
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‘
Given a t–structure

(
T ≤0, T ≥0

)
it is customary to define the categories

T − =
⋃
n

T ≤n , T + =
⋃
n

T ≥−n , T b = T − ∩ T +

It’s obvious that equivalent t–structures yield identical T −, T + and T b.

Now assume that T has coproducts and there exists a single compact
generator G . Then there is a preferred equivalence class of t–structures,
and a corresponding preferred T −, T + and T b.

These are intrinsic, they’re independent of any choice.

In the remainder of the slides we only consider the “preferred” T −, T +

and T b.
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Definition (the subtler categories T b
c ⊂ T −

c )

Let T be a triangulated category with coproducts, and assume it has a
compact generator G . Choose a t–structure

(
T ≤0, T ≥0

)
in the preferred

equivalence class.

We define:

T −
c =

F ∈ T

∣∣∣∣∣∣∣∣∣∣
For every n > 0 there exists a morphism

φ : E −→ F
with E compact and such that,
in the triangle E −→ F −→ D,

we have D ∈ T ≤−n


We furthermore define T b

c = T b ∩ T −
c .

It’s obvious that the category T −
c is intrinsic. As

T −
c and T b are both intrinsic, so is their intersection T b
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It can be computed that:

Example (The special case T = D(R–Mod), with R a coherent ring)

T + = D+(R–Mod), T − = D−(R–Mod),
T b = Db(R–Mod), T c = Db(R–proj),
T −
c = D−(R–proj), T b

c = Db(R–mod)

Example (The special case T = Dqc,Z (X ), with X a coherent scheme
and Z ⊂ X a closed subset)

T + = D+
qc,Z (X ), T − = D−

qc,Z (X ), T c = Dperf
Z (X ),

T b = Db
qc,Z (X ), T −

c = D−
coh,Z (X ), T b

c = Db
coh,Z (X )

For R not coherent, Db(R–mod) should be replaced by K−,b(R–proj).
The objects are the bounded-above cochain complexes of
finitely-generated projective modules, and the b in the superscript means
that all but finitely many cohomology groups vanish.
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Projective resolutions

Suppose we are given an object F ∗ ∈ D(R–Mod), meaning a cochain
complex

· · · // F−2 // F−1 // F 0 // F 1 // F 2 // · · ·

Assume F ∗ ∈ D(R–Mod)≤0, meaning

H i (F ∗) = 0 for all i > 0.

Then F ∗ has a projective resolution. We can produce a cochain map

· · · // P−2

��

// P−1

��

// P0

��

// 0

��

// 0

��

// · · ·

· · · // F−2 // F−1 // F 0 // F 1 // F 2 // · · ·

inducing an isomorphism in cohomology, and so that the P i are projective.



Projective resolutions—a different perspective

We have found in D(R–Mod) an isomorphism P∗ −→ F ∗. Now consider

· · · // 0

��

// P−n

��

// · · · // P−1

��

// P0

��

// 0

��

// · · ·

· · · // P−n−1

��

// P−n

��

// · · · // P−1

��

// P0

��

// 0

��

// · · ·

· · · // P−n−1 // 0 // · · · // 0 // 0 // 0 // · · ·

This gives in D(R–Mod) triangles

E ∗
n

// F ∗ // D∗
n

//

with D∗
n ∈ D(R–Mod)≤−n−1 and E ∗

n not too complicated.



The black box construction of ⟨G ⟩
[−A,A]

, of ⟨G ⟩
[−A,A]

A , of ⟨G ⟩
(−∞,A]

and of ⟨G ⟩A
Let T be a triangulated category. Let G ∈ T be an object, and let A > 0
be an integer. I ask the audience to accept, as a black box, that there are
sensible constructions of the following four full subcategories of T :

1 ⟨G ⟩A. This is classical, it consists of the objects of T obtainable from
G using no more than A extensions.

2 Assuming T has coproducts: ⟨G ⟩(−∞,A]
. Also classical, the bound is

on the allowed suspensions. The variant ⟨G ⟩[−A,A]
is new but similar.

3 Also assumes T has coproducts: ⟨G ⟩[−A,A]

A . This is new, both the
allowed suspensions and the number of extensions allowed are
bounded.
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Definition (formal definition of weak approximability)

Let T be a triangulated category with coproducts. It is weakly
approximable if

There exists a compact generator G ∈ T , a t–structure (T ≤0, T ≥0) in the
preferred equivalence class, and an integer A > 0 such that

G⊥ contains T ≤−A ∪ T ≥A.

This means: Hom
(
G , T ≤−A ∪ T ≥A

)
= 0.

Equivalently: Hom(G ,G [n]) = 0 for n ≫ 0.

For every object F ∈ T ≤0 there exists a triangle E −→ F −→ D, with

D ∈ T ≤−1 and with E ∈ ⟨G ⟩[−A,A]
.
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Work in progress: purely triangulated results in
combination with enhancement techniques

Let T be a coherent, weakly approximable triangulated category. If either
T c or T b

c has a unique enhancement

T

T − T +

T −
c T b

T cT b
c



Work in progress: purely triangulated results in
combination with enhancement techniques

Let T be a coherent, weakly approximable triangulated category. If either
T c or T b

c has a unique enhancement

T

T − T +

T −
c T b

T cT b
c



Work in progress: purely triangulated results in
combination with enhancement techniques

Let T be a coherent, weakly approximable triangulated category. If either
T c or T b

c has a unique enhancement

T

T − T +

T −
c T b

T cT b
c



Work in progress: purely triangulated results in
combination with enhancement techniques

Let T be a coherent, weakly approximable triangulated category. If either
T c or T b

c has a unique enhancement

T

T − T +

T −
c T b

T cT b
c



Work in progress: purely triangulated results in
combination with enhancement techniques

Let T be a coherent, weakly approximable triangulated category. If either
T c or T b

c has a unique enhancement

T

T − T +

T −
c T b

T cT b
c



How does one recognize the subcategory T b
c in T b or in T +?

In a special case: how does one recognize Db(R–mod) in Db(R–Mod) or
in D+(R–Mod)?

The objects C ∈ T b
c are all compact, meaning Hom(C ,−) commutes with

the coproducts that exist in T + or in T b.

But also: for every object C ∈ T b
c , for every t–structure in the preferred

equivalence class such that T ♡ is a Grothendieck abelian category, and for
every filtered functor F : I −→ T ♡, the natural map

Colim
(
Hom

(
C ,F (−)

))
// Hom

(
C ,ColimF (−)

)
is an isomorphism.
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Work in progress: purely triangulated results in
combination with enhancement techniques
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Example not from representation theory or algebraic
geometry

If T is the homotopy category of spectra:

T

T − T +

T −
c T b

T cT b
c
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Suppose S be a triangulated category. We define

Definition
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satisfying P[1] ⊂ P. Then

1 We declare P, P̃ ∈ P(S) equivalent if there exists an integer A > 0
with

P[A] ⊂ P̃ ⊂ P[−A] .

2 If [P] and [P̃] denote the equivalence classes of P, P̃ ∈ P(S), then we
declare that [P] ≤ [P̃] if there exists an integer A > 0 with P[A] ⊂ P̃.
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1 [PG ] = [T b
c ∩ T ≤0] .

2 [QG ] = [T b
c ∩ T ≥0] .



Explaining the issue

Now suppose T is a weakly approximable triangulated category with
T c ⊂ T b

c , and let G be a classical generator of T c , which is the same
thing as a compact generator of T .

Put S = T b
c , and let PG = PG (S) and QG = QG (S). If

(
T ≤0, T ≥0

)
is a

t-structure in the preferred equivalence class then it can be proved that

1 [PG ] = [T b
c ∩ T ≤0] .

2 [QG ] = [T b
c ∩ T ≥0] .



Explaining the issue

Now suppose T is a weakly approximable triangulated category with
T c ⊂ T b

c , and let G be a classical generator of T c , which is the same
thing as a compact generator of T .

Put S = T b
c , and let PG = PG (S) and QG = QG (S).

If
(
T ≤0, T ≥0

)
is a

t-structure in the preferred equivalence class then it can be proved that

1 [PG ] = [T b
c ∩ T ≤0] .

2 [QG ] = [T b
c ∩ T ≥0] .



Explaining the issue

Now suppose T is a weakly approximable triangulated category with
T c ⊂ T b

c , and let G be a classical generator of T c , which is the same
thing as a compact generator of T .

Put S = T b
c , and let PG = PG (S) and QG = QG (S). If

(
T ≤0, T ≥0

)
is a

t-structure in the preferred equivalence class then it can be proved that

1 [PG ] = [T b
c ∩ T ≤0] .

2 [QG ] = [T b
c ∩ T ≥0] .



Explaining the issue

Now suppose T is a weakly approximable triangulated category with
T c ⊂ T b

c , and let G be a classical generator of T c , which is the same
thing as a compact generator of T .

Put S = T b
c , and let PG = PG (S) and QG = QG (S). If

(
T ≤0, T ≥0

)
is a

t-structure in the preferred equivalence class then it can be proved that

1 [PG ] = [T b
c ∩ T ≤0] .

2 [QG ] = [T b
c ∩ T ≥0] .



Explaining the issue

Now suppose T is a weakly approximable triangulated category with
T c ⊂ T b

c , and let G be a classical generator of T c , which is the same
thing as a compact generator of T .

Put S = T b
c , and let PG = PG (S) and QG = QG (S). If

(
T ≤0, T ≥0

)
is a

t-structure in the preferred equivalence class then it can be proved that

1 [PG ] = [T b
c ∩ T ≤0] .

2 [QG ] = [T b
c ∩ T ≥0] .



Explaining the issue

Suppose T is a weakly approximable triangulated category with T c ⊂ T b
c .

Put S = T b
c and let H ∈ S be any object. We say that H satisfies the

strong hypothesis if

1 For every object X ∈ S there exists an integer B > 0, depending on
X , with

X ∈ PH [−B] ∩ QH [B] .

Moreover there is an integer A > 0 such that the following hold:

1 Hom(PH [A],QH) = 0.

2 For every object F ∈ PH , and every integer m > 0, there exists a
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Passing to the homotopy colimit of the triangles Em −→ F −→ Dm

produces, in the category T −
c , a triangle E −→ F −→ D

, with

D⊥ containing T b
c .

For T = D(R–Mod), a cochain complex D∗ of finitely generated
projective R–modules

· · · // D−2 // D−1 // D0 // 0

such that D⊥ contains T b
c . And in particular Hom(D,R[n]) = 0 for all

n ∈ Z.

If ⊥T b
c ∩ T −

c = {0}, then there is a recipe giving T c as a subcategory of
T b
c .
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The big finitistic dimension conjecture

Let T be a weakly approximable triangulated category with T c ⊂ T b
c , and

let
(
T ≤0, T ≥0

)
be a t-structure in the preferred equivalence class. Put

C(T ) = T −
⋂{ ∞⋃

i=1

(
⊥[T ≤−i ] ∩ [T ≤−i ]⊥

)}
.

It is known that there exists an integer B > 0 with

C(T ) ∩ ⊥[T ≤−m] ⊂ [T ≤−m−B ]⊥ .

The “big” finitistic dimension conjecture says that there exists an integer
B > 0 with

C(T ) ∩ [T ≤−m]⊥ ⊂ ⊥[T ≤−m−B ] .
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Thank you!
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