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@ Background on some classical derived categories
© Rickard's 1989 theorem

© Understanding the object R € D(R-Mod)

@ The generalized Rickard theorem

© The relation with finitistic dimension
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The derived categories of i come in many flavors, the following being a
partial list.

D(R-Mod), D~(R-Mod), D*(R-Mod), DP(R-Mod)
D~ (R-mod) D?(R-proj) D?(R-mod)

In all of these categories, the objects are cochain complexes of R-modules

F—2 F~ 1 FO Fl F2

and the decorations explain what restrictions we place on the complexes.
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Reminder: decorated derived categories, generalized to

schemes

Let X be a scheme. One can form the derived categories

[)qc()<)’ [)aé()<)7 [);E()<)v [)gc()<)7
Dgon(X), DP(X), DZp(X)

coh coh

or refine to the relative version, where Z C X is a closed subset

DQQZ(X)? D;(;’%(X)v D:(;’Z(X)v Dgc,Z(X)a
D;oh,Z(X)v DEer(X)v D(I:)oh,Z(X)
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Theorem (Rickard, 1989)
Let R and S be sufficiently nice rings.

~

Then the existence of a triangulated equivalence D?D(R) = D?D(S ) is
independent of the decorations ? and O. ' '

Before we spell this out, let us introduce a convention valid only for the
next slide.

If S and T are two triangulated categories, then S = 7 will mean:
there exists a triangulated equivalence between S and T .
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Theorem (Rickard, 1989)

Let R and S be sufficiently nice rings. Then the following are equivalent:

Q@ D(R-Mod) = D(S-Mod).

@ D (R-Mod) =2 D~ (5-Mod).
© D' (R-Mod) = D*(5-Mod).
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© D (R-mod) = D~ (S-mod).
@ D’(R—proj) = DP(S—proj).
@ D’(R-mod) = D?(S-mod).

This can be found in Theorem 1.1 of:
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Theorem (Rickard, 1989)

Let R and S be sufficiently nice rings. Then the following are equivalent:

D(R-Mod) = D(S-Mod).
D~ (R-Mod) = D~ (S-Mod).
D" (R-Mod) = D*(S-Mod).
D®(R-Mod) = D*(S-Mod).
D~ (R-mod) = D~ (S5-mod).
D(R-proj) = D?(S—proj).
D?(R-mod) = D?(S-mod).

000000

s there an algorithm to produce D?(R-mod)
out of D?(R-proj)?



[§ Henning Krause, Completing perfect complexes, Math. Z. 296 (2020),
no. 3-4, 1387-1427, With appendices by Tobias Barthel, Bernhard
Keller and Krause.



[§ Henning Krause, Completing perfect complexes, Math. Z. 296 (2020),
no. 3-4, 1387-1427, With appendices by Tobias Barthel, Bernhard
Keller and Krause.

ﬁ Amnon Neeman, The categories T ¢ and ch determine each other,
https://arxiv.org/abs/1806.06471.
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Assume 7T is a triangulated category with coproducts.
An object G € T is compact if Hom(G, —) commutes with coproducts.

Notation to remember: the subcategory of all compact objects will be
denoted 7 C T.

The compact objects in D(R-Mod) identify as
D(R-Mod)¢ = D?(R-proj).

The compact object G € T generates T if every nonzero object X € T
admits a nonzero map G[i] — X, for some i € Z.

A compact generator G € T is a compact object that generates.

The object R € D(R-Mod) is a compact generator.
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Example (the standard on D(R-Mod))

We define two full subcategories of D(R-Mod):
o D(R-Mod)=® = {A & D(R-Mod) | H/(A) =0 for all i > 0}
e D(R-Mod)=® = {A & D(R-Mod) | H/(A) =0 for all i <0}

Definition

A on a triangulated category T is a pair of full subcategories
(T=0,729) satisfying

o T[] c T=O and 720 c 72O1]

° Hom(TSO[l] , 7'20> =0

o Every object B € T admits a triangle

A—B—C—

with A € T<C[1] and C € T=°.
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Definition (equivalent t-structures)

Let 7 be any triangulated category, and let (7;=°,7;°%) and (75-°,7,°°)
be two t-structures on 7. We declare them if they are a finite
distance from each other.

To spell it out: the two t—structures are equivalent if there exists an
integer A > 0 with
TE A e T

It is a formal consequence that, for the same integer A > 0, we have

eSS T
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Preferred t—structures

Let 7 be a triangulated category with coproducts, and let G € T be a
compact object. A 2003 theorem of Alonso, Jeremias and Souto teaches
us that 7 has a unique t—structure (TGSO,TGEO) generated by G.

Among all t-structures (7'30,7'20) such that G € T=0, there exists a
unique one with minimal 7=0.

If G and H are two compact generators for 7, then the t—structures
(TGSO,TGZO) and (THSO,’THZO) are equivalent.

We say that a t=structure (7=°,7=0) is in the

preferred equivalence class

if it is equivalent to (TGSO,’TGZO) for some compact generator G, hence for
every compact generator.

u]
8
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Given a t-structure (7=0,7=0) it is customary to define the categories
T =7, Tr=yrr, 7P=7nT"
n n

It's obvious that equivalent t-structures yield identical 7=, 7+ and 7.

Now assume that 7 has coproducts and there exists a single compact
generator G. Then there is a preferred equivalence class of t—structures,
and a corresponding preferred 7—, T+ and TP.

These are intrinsic, they're independent of any choice.

In the remainder of the slides we only consider the “preferred” 7, T+
and 7°.
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Definition (the subtler categories 72> C 7.)

Let 7 be a triangulated category with coproducts, and assume it has a
compact generator G. Choose a t-—structure ('TSO,TZO) in the preferred

equivalence class.

We define:
For every n > 0 there exists a morphism
p:E— F
TS = FeT with E compact and such that,

in the triangle E — F — D,
we have D € T=7"

We furthermore define 72 = 72N 7.

It's obvious that the category 7. is intrinsic. As
7. and TP are both intrinsic, so is their intersection 72.
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T+ = D*(R-Mod), 7~ = D~ (R-Mod),
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T+ = DJ ,(X), T~ = Dy z(X), T¢ = DY¥(X),

|
X

Tt = Dgc,Z(X)> T = coh,z(X)a Te = Dsoh,z(X)
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7+ = D*(R-Mod), 7- = D~ (R-Mod),
Tb = Db(R-Mod), T¢ = DP(R-proj),
7o = D™ (R-proj), T2 = D’(R-mod)

Example (The special case 7 = D, ,(X), with X a scheme

and Z C X a closed subset)

= ch(X) = = ch(X) T = Dgerf(x)7
Tb = ch(X) 7-6_ - coh,Z(X)’ 7-cb = D(I:)oh,Z(X)

|
S0

For R not coherent, D?(R—mod) should be replaced by K—*(R-proj).



It can be computed that:

Example (The special case 7 = D(R-Mod), with R a

T+ = D*(R-Mod), 7~ = D~ (R-Mod),

TP = DP(R-Mod), T¢ = D"(R-proj),

7o = D™ (R-proj), T2 = D’(R-mod)
Example (The special case 7 = D, ,(X), with X a scheme
and Z C X a closed subset)

T+ = QCZ(X) T_ = ch(X) Tc = Dgerf(x)7
Th = ch(X) T& = Dgon z(X), T2 = Dtl:)oh,Z(X)

For R not coherent, D?(R—mod) should be replaced by K—*(R-proj).
The objects are the bounded-above cochain complexes of
finitely-generated projective modules, and the b in the superscript means
that all but finitely many cohomology groups vanish.



Projective resolutions

Suppose we are given an object F* € D(R-Mod), meaning a cochain
complex

F—2 F-1 Fo Fl F2
Assume F* € D(R-Mod)<?, meaning
H'(F*)=0 forall i>0.
Then F* has a projective resolution. We can produce a cochain map

P2 pl PO 0

L

F—2 F—l FO Fl 2

inducing an isomorphism in cohomology, and so that the P’ are projective.



Projective resolutions—a different perspective

We have found in D(R-Mod) an isomorphism P* — F*. Now consider

IO
D

This gives in D(R-Mod) triangles

Ex F*

with D} € D(R-Mod)<~"~ and E} not too complicated.

(o
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The black box construction of @PAA],

and of (G) ,

oG

(—00,A]

of@

The variant is new but similar.




The black box construction of @PAA]

and of (G) ,

, of @[;A*A], of @

(7305’4]

The variant is new but similar.

This is new, both the
allowed suspensions and the number of extensions allowed are
bounded.
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Definition (formal definition of weak approximability)

Let 7 be a triangulated category with coproducts. It is
if

There exists a compact generator G € T, a t-structure (79, 72°)
and an integer A > 0 such that

e G contains T=—AUT2A

This means: Hom (G, TS"AUT=2A) = 0.

Equivalently: Hom(G, G[n]) = 0 for n > 0.

@ For every object F € T=0 there exists a triangle E — F — D, with
—[-AA
D € T=71 and with E € (G)[ A
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How does one recognize the subcategory 7. in 72 or in 717

In a special case: how does one recognize D?(R-mod) in D?(R-Mod) or
in D+ (R-Mod)?

The objects C € T2 are all compact, meaning Hom(C, —) commutes with
the coproducts that exist in 71 or in 7.

But also: for every object C € T2, for every t-structure in the preferred

equivalence class such that 7 is a Grothendieck abelian category, and for
every filtered functor F : | — T, the natural map

Colim <H(')111(C. /:(7))) —— Hom (C. Colim F(7)>

is an isomorphism.
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triangulated results in

combination with enhancement techniques

Let 7 be a coherent, weakly approximable triangulated category. If either
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Let X be a scheme, and let Z C X be a closed subset.

Dqc,z(X)

N

D;c,z(X) D:QZ(X)

| l

D;)h,Z(X) qc Z(X)




Example not from representation theory or algebraic

geometry

If T is the homotopy category of spectra:

| |

o T
| —
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Suppose S be a triangulated category, and let H € S be an object.

Definition

We define Py(S) € P(S) and Qx(S) € Q(S) by the formulas
o

Pu(S) = ﬁ H[—i]t= H[0,0)" .
i=0

Qu(S) = [ HIil* = H(—o0,0]" .

i=0
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Now suppose T is a weakly approximable triangulated category with
T°C 7'Cb, and let G be a classical generator of 7€, which is the same
thing as a compact generator of 7.

Put S =72, and let Pg = Pg(S) and Qg = Qg(S). If (7. 7-") isa

t-structure in the preferred equivalence class then it can be proved that
@ [Pl =[T2NT= .

@ [Qc] =[T2NT=7].
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Explaining the issue

Suppose T is a weakly approximable triangulated category with 7¢ C T2.

Put S = 72 and let H € S be any object. We say that H satisfies the
strong hypothesis if

@ For every object X € S there exists an integer B > 0, depending on
X, with

X € Pu[=B] N Qu[B] .
Moreover there is an integer A > 0 such that the following hold:

o HOHI(PH[A], QH) =0.

@ For every object F € Py, and every integer m > 0, there exists a
triangle Ep — F — Dy with E, € (Y244 and with
D, € PH[m]
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Passing to the homotopy colimit of the triangles E,, — F — D,
produces, in the category 7., a triangle £ —— F —— D, with

D+ containing TE

For T = D(R-Mod), a cochain complex D* of finitely generated
projective R—modules

D2 D1 DO 0

such that D+ contains 72. And in particular Hom(D, R[n]) = 0 for all
necZ.

If £72 17 = {0}, then there is a recipe giving 7 as a subcategory of
TE.
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Let 7 be a weakly approximable triangulated category with 7¢ C 72, and
let (7'50,7'20) be a t-structure in the preferred equivalence class. Put

1) = T‘ﬂ{@(ﬂ’rﬁfm[ﬁf]i)}.
i=1

It is known that there exists an integer B > 0 with
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It is known that there exists an integer B > 0 with
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The finitistic dimension conjecture

Let 7 be a weakly approximable triangulated category with 7¢ C 72, and
let (7'50,7'20) be a t-structure in the preferred equivalence class. Put

«T) = ’/;—ﬂ{[](lrrﬁfmvffli)}.
i=1

It is known that there exists an integer B > 0 with

S(T)NEH[T="m] C [T<—m-B]- .

The “small” finitistic dimension conjecture says that there exists an
integer B > 0 with

e(T)N[T="m+ C Lirs—m-5].
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Thank you!
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