On generalizations of an old theorem of Rickard's

Amnon Neeman

Università degli Studi di Milano

amnon.neeman@unimi.it

PATHs conference in Centraro

In honor of Manuel Saorin's 65th birthday

17 May 2024

(ロ) (御) (君) (君) (君) 君 のぬの

1 [Background on some classical derived categories](#page-2-0)

(ロ) (御) (唐) (唐) (唐) 2000

- 2 [Rickard's 1989 theorem](#page-8-0)
- 3 [Understanding the object](#page-25-0) $R \in D(R-Mod)$
- 4 [The generalized Rickard theorem](#page-68-0)

Reminder: decorated derived categories

Let R be an associative ring.

Let R be an associative ring.

The derived categories of R come in many flavors, the following being a partial list.

> $\mathsf{D}(R\text{-Mod}), \quad \mathsf{D}^-(R\text{-Mod}), \quad \mathsf{D}^+(R\text{-Mod}), \quad \mathsf{D}^b(R\text{-Mod})$ $\mathbf{D}^{-}(R\text{-mod})$ $\mathbf{D}^{b}(R\text{-proj})$ $\mathbf{D}^{b}(R\text{-mod})$

> > (ロ) (御) (君) (君) (君) 君 のぬの

Let R be an associative ring.

The derived categories of R come in many flavors, the following being a partial list.

> $\mathsf{D}(R\text{-Mod}), \quad \mathsf{D}^-(R\text{-Mod}), \quad \mathsf{D}^+(R\text{-Mod}), \quad \mathsf{D}^b(R\text{-Mod})$ $\mathbf{D}^{-}(R\text{-mod})$ $\mathbf{D}^{b}(R\text{-proj})$ $\mathbf{D}^{b}(R\text{-mod})$

In all of these categories, the objects are cochain complexes of R-modules

$$
\cdots \longrightarrow F^{-2} \longrightarrow F^{-1} \longrightarrow F^{0} \longrightarrow F^{1} \longrightarrow F^{2} \longrightarrow \cdots
$$

(ロ) (御) (君) (君) (君) 君 のぬの

Let R be an associative ring.

The derived categories of R come in many flavors, the following being a partial list.

> $\mathsf{D}(R\text{-Mod}), \quad \mathsf{D}^-(R\text{-Mod}), \quad \mathsf{D}^+(R\text{-Mod}), \quad \mathsf{D}^b(R\text{-Mod})$ $\mathbf{D}^{-}(R\text{-mod})$ $\mathbf{D}^{b}(R\text{-proj})$ $\mathbf{D}^{b}(R\text{-mod})$

In all of these categories, the objects are cochain complexes of R-modules

$$
\cdots \longrightarrow F^{-2} \longrightarrow F^{-1} \longrightarrow F^{0} \longrightarrow F^{1} \longrightarrow F^{2} \longrightarrow \cdots
$$

and the decorations explain what restrictions we place on the complexes.

(ロ) (御) (唐) (唐) (唐) 2000

Reminder: decorated derived categories, generalized to schemes

Let X be a scheme. One can form the derived categories

$$
\begin{array}{ll} D_{qc}(X), & D_{qc}^-(X), & D_{qc}^+(X), & D_{qc}^b(X), \\ D_{coh}^-(X), & D^{perf}(X), & D_{coh}^b(X) \end{array}
$$

(ロ) (御) (君) (君) (君) 君 のぬの

Reminder: decorated derived categories, generalized to schemes

Let X be a scheme. One can form the derived categories

$$
\begin{array}{ll} D_{qc}(X), & D_{qc}^-(X), & D_{qc}^+(X), & D_{qc}^b(X), \\ D_{coh}^-(X), & D^{perf}(X), & D_{coh}^b(X) \end{array}
$$

or refine to the relative version, where $Z \subset X$ is a closed subset

$$
\begin{array}{llll} \mathbf{D}_{\mathsf{qc},Z}(X), & \mathbf{D}_{\mathsf{qc},Z}^-(X), & \mathbf{D}_{\mathsf{qc},Z}^+(X), & \mathbf{D}_{\mathsf{qc},Z}^b(X), \\ \mathbf{D}_{\mathsf{coh},Z}^-(X), & \mathbf{D}_Z^{\mathrm{perf}}(X), & \mathbf{D}_{\mathsf{coh},Z}^b(X) \end{array}
$$

(ロ) (御) (君) (君) (君) 君 のぬの

Let R and S be sufficiently nice rings.

★ ロメ (4 御) > (唐) > (唐) → 唐

Let R and S be sufficiently nice rings.

Then the existence of a triangulated equivalence $\mathbf{D}^{\square}_{?}(R) \cong \mathbf{D}^{\square}_{?}(S)$ is independent of the decorations? and \Box .

Let R and S be sufficiently nice rings.

Then the existence of a triangulated equivalence $\mathbf{D}^{\square}_{?}(R) \cong \mathbf{D}^{\square}_{?}(S)$ is independent of the decorations? and \Box .

Before we spell this out, let us introduce a convention valid only for the next slide.

K ロ ▶ (K@) ▶ (X 글) (K 글) () 글

Let R and S be sufficiently nice rings.

Then the existence of a triangulated equivalence $\mathbf{D}^{\square}_{?}(R) \cong \mathbf{D}^{\square}_{?}(S)$ is independent of the decorations? and \Box .

Before we spell this out, let us introduce a convention valid only for the next slide.

K ロ K K d K K K X X R X X R X R R

 $2Q$

If S and T are two triangulated categories, then $S \cong T$ will mean: there exists a triangulated equivalence between S and T .

Let R and S be sufficiently nice rings. Then the following are equivalent:

★ ロン → 御 > → (할 > → 할 > → 할

Let R and S be sufficiently nice rings. Then the following are equivalent:

★ ロン → 御 > → (할 > → 할 > → 할

 $2Q$

 \bullet D(R–Mod) ≅ D(S–Mod).

Let R and S be sufficiently nice rings. Then the following are equivalent:

★ ロン → 御 > → (할 > → 할 > → 할

つくへ

- \bullet D(R–Mod) ≅ D(S–Mod).
- $\bullet \ \mathsf{D}^-(R\text{-Mod}) \cong \mathsf{D}^-(S\text{-Mod}).$

Let R and S be sufficiently nice rings. Then the following are equivalent:

K ロ K K d K K K X X R X X R X R R

- \bullet D(R–Mod) ≅ D(S–Mod).
- $\bullet \ \mathsf{D}^-(R\text{-Mod}) \cong \mathsf{D}^-(S\text{-Mod}).$
- \bullet D⁺(R–Mod) ≅ D⁺(S–Mod).

Let R and S be sufficiently nice rings. Then the following are equivalent:

メロト メタト メミト メミト

隱

- \bullet D(R–Mod) ≅ D(S–Mod).
- $\bullet \ \mathsf{D}^-(R\text{-Mod}) \cong \mathsf{D}^-(S\text{-Mod}).$
- \bullet D⁺(R–Mod) ≅ D⁺(S–Mod).
- **•** $\mathbf{D}^b(R\text{-Mod}) \cong \mathbf{D}^b(S\text{-Mod}).$

Let R and S be sufficiently nice rings. Then the following are equivalent:

メロト メタト メミト メミト

隱

- \bullet D(R–Mod) ≅ D(S–Mod).
- $\bullet \ \mathsf{D}^-(R\text{-Mod}) \cong \mathsf{D}^-(S\text{-Mod}).$
- \bullet D⁺(R–Mod) ≅ D⁺(S–Mod).
- **•** $\mathbf{D}^b(R\text{-Mod}) \cong \mathbf{D}^b(S\text{-Mod}).$
- \bullet D⁻(R–mod) ≅ D⁻(S–mod).

Let R and S be sufficiently nice rings. Then the following are equivalent:

K ロ K K @ K K X B K X B X → B

- \bullet D(R–Mod) ≅ D(S–Mod).
- $\bullet \ \mathsf{D}^-(R\text{-Mod}) \cong \mathsf{D}^-(S\text{-Mod}).$
- \bullet D⁺(R–Mod) ≅ D⁺(S–Mod).
- **•** $\mathbf{D}^b(R\text{-Mod}) \cong \mathbf{D}^b(S\text{-Mod}).$
- \bullet D⁻(R–mod) ≅ D⁻(S–mod).
- **0** $\mathbf{D}^b(R\text{-proj}) \cong \mathbf{D}^b(S\text{-proj}).$

Let R and S be sufficiently nice rings. Then the following are equivalent:

(ロ) (個) (違) (違) (違)

- \bullet D(R–Mod) ≅ D(S–Mod).
- $\bullet \ \mathsf{D}^-(R\text{-Mod}) \cong \mathsf{D}^-(S\text{-Mod}).$
- \bullet D⁺(R–Mod) ≅ D⁺(S–Mod).
- **•** $\mathbf{D}^b(R\text{-Mod}) \cong \mathbf{D}^b(S\text{-Mod}).$
- \bullet D⁻(R–mod) ≅ D⁻(S–mod).
- **0** D^b(R-proj) \cong D^b(S-proj).
- **D** $\mathsf{D}^b(R\text{-mod}) \cong \mathsf{D}^b(\mathsf{S}\text{-mod}).$

Let R and S be sufficiently nice rings. Then the following are equivalent:

- \bullet D(R–Mod) ≅ D(S–Mod).
- $\bullet \ \mathsf{D}^-(R\text{-Mod}) \cong \mathsf{D}^-(S\text{-Mod}).$
- \bullet D⁺(R–Mod) ≅ D⁺(S–Mod).
- **•** $\mathbf{D}^b(R\text{-Mod}) \cong \mathbf{D}^b(S\text{-Mod}).$
- \bullet D⁻(R–mod) ≅ D⁻(S–mod).
- **0** D^b(R-proj) \cong D^b(S-proj).
- **D** $\mathsf{D}^b(R\text{-mod}) \cong \mathsf{D}^b(\mathsf{S}\text{-mod}).$

This can be found in Theorem 1.1 of:

Jeremy Rickard, Derived categories and stable equivalence, J. Pure and Appl. Algebra 61 (1989), 303–317.

K ロ K K d K K K X X R X X R X R R

Let R and S be sufficiently nice rings. Then the following are equivalent:

- \bullet D(R–Mod) ≅ D(S–Mod).
- $\bullet \ \mathsf{D}^-(R\text{-Mod}) \cong \mathsf{D}^-(S\text{-Mod}).$
- \bullet D⁺(R–Mod) ≅ D⁺(S–Mod).
- **•** $\mathbf{D}^b(R\text{-Mod}) \cong \mathbf{D}^b(S\text{-Mod}).$
- \bullet D⁻(R–mod) ≅ D⁻(S–mod).
- **0** D^b(R-proj) ≅ D^b(S-proj).
- **D** $b(R\text{-mod}) \cong D^b(S\text{-mod}).$

This can be found in Theorem 1.1 of:

Jeremy Rickard, Derived categories and stable equivalence, J. Pure and Appl. Algebra 61 (1989), 303–317.

K ロ K K d K K K X X R X X R X R R

Let R and S be sufficiently nice rings. Then the following are equivalent:

- \bullet D(R–Mod) ≅ D(S–Mod).
- \bullet D⁻(R–Mod) ≅ D⁻(S–Mod).
- \bullet D⁺(R–Mod) ≅ D⁺(S–Mod).
- **•** $\mathbf{D}^b(R\text{-Mod}) \cong \mathbf{D}^b(S\text{-Mod}).$
- \bullet D⁻(R–mod) ≅ D⁻(S–mod).
- **0** D^b(R-proj) ≅ D^b(S-proj).
- **D** $b(R\text{-mod}) \cong D^b(S\text{-mod}).$

Question (Krause 2018): Is there an algorithm to produce $\mathbf{D}^b(R\text{-mod})$ out of $\mathsf{D}^b(R\text{-}\mathrm{proj})$?

K ロ K K d K K K X X R X X R H

F Henning Krause, Completing perfect complexes, Math. Z. 296 (2020), no. 3-4, 1387–1427, With appendices by Tobias Barthel, Bernhard Keller and Krause.

(ロ) (御) (君) (君) (君) 君 のぬの

- - Henning Krause, Completing perfect complexes, Math. Z. 296 (2020), no. 3-4, 1387–1427, With appendices by Tobias Barthel, Bernhard Keller and Krause.

K ロ K K @ K K X B X X B X X B X

 299

Amnon Neeman, *The categories* T^c *and* T_c^b *determine each other*, https://arxiv.org/abs/1806.06471.

Assume T is a triangulated category with coproducts.

An object $G \in \mathcal{T}$ is compact if $\text{Hom}(G, -)$ commutes with coproducts.

Assume T is a triangulated category with coproducts.

An object $G \in \mathcal{T}$ is compact if $\text{Hom}(G, -)$ commutes with coproducts.

Notation to remember: the subcategory of all compact objects will be denoted $\mathcal{T}^c \subset \mathcal{T}$.

Assume $\mathcal T$ is a triangulated category with coproducts.

An object $G \in \mathcal{T}$ is compact if $\text{Hom}(G, -)$ commutes with coproducts.

Notation to remember: the subcategory of all compact objects will be denoted $\mathcal{T}^c \subset \mathcal{T}$.

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q @

The compact objects in $D(R-Mod)$ identify as

 $\mathbf{D}(R-\text{Mod})^c =$

Assume $\mathcal T$ is a triangulated category with coproducts.

An object $G \in \mathcal{T}$ is compact if $\text{Hom}(G, -)$ commutes with coproducts.

Notation to remember: the subcategory of all compact objects will be denoted $\mathcal{T}^c \subset \mathcal{T}$.

The compact objects in $D(R-Mod)$ identify as

 $\mathbf{D}(R-\text{Mod})^c = \mathbf{D}^b(R-\text{proj}).$

Assume $\mathcal T$ is a triangulated category with coproducts.

An object $G \in \mathcal{T}$ is compact if $\text{Hom}(G, -)$ commutes with coproducts.

Notation to remember: the subcategory of all compact objects will be denoted $\mathcal{T}^c \subset \mathcal{T}$.

The compact objects in $D(R-Mod)$ identify as

 $\mathbf{D}(R-\text{Mod})^c = \mathbf{D}^b(R-\text{proj}).$

The compact object $G \in \mathcal{T}$ generates \mathcal{T} if every nonzero object $X \in \mathcal{T}$ admits a nonzero map $G[i] \longrightarrow X$, for some $i \in \mathbb{Z}$.

Assume $\mathcal T$ is a triangulated category with coproducts.

An object $G \in \mathcal{T}$ is compact if $\text{Hom}(G, -)$ commutes with coproducts.

Notation to remember: the subcategory of all compact objects will be denoted $\mathcal{T}^c \subset \mathcal{T}$.

The compact objects in $D(R-Mod)$ identify as

 $\mathbf{D}(R-\text{Mod})^c = \mathbf{D}^b(R-\text{proj}).$

The compact object $G \in \mathcal{T}$ generates \mathcal{T} if every nonzero object $X \in \mathcal{T}$ admits a nonzero map $G[i] \longrightarrow X$, for some $i \in \mathbb{Z}$.

A compact generator $G \in \mathcal{T}$ is a compact object that generates.

Assume $\mathcal T$ is a triangulated category with coproducts.

An object $G \in \mathcal{T}$ is compact if $\text{Hom}(G, -)$ commutes with coproducts.

Notation to remember: the subcategory of all compact objects will be denoted $\mathcal{T}^c \subset \mathcal{T}$.

The compact objects in $D(R-Mod)$ identify as

 $\mathbf{D}(R-\text{Mod})^c = \mathbf{D}^b(R-\text{proj}).$

The compact object $G \in \mathcal{T}$ generates \mathcal{T} if every nonzero object $X \in \mathcal{T}$ admits a nonzero map $G[i] \longrightarrow X$, for some $i \in \mathbb{Z}$.

A compact generator $G \in \mathcal{T}$ is a compact object that generates.

The object $R \in \mathbf{D}(R-\text{Mod})$ is a compact generator.

Example (the standard t -structure on $D(R-\text{Mod}))$

We define two full subcategories of $D(R-\text{Mod})$:

- $\mathsf{D} (R\text{--Mod})^{\leq 0} \quad = \quad \{ A \in \mathsf{D} (R\text{--Mod}) \mid H^i (A) = 0 \text{ for all } i > 0 \}$
- $\mathsf{D} (R\text{--Mod})^{\geq 0} \quad = \quad \{ A \in \mathsf{D} (R\text{--Mod}) \mid H^i (A) = 0 \text{ for all } i < 0 \}$

メロト メ御 トメ 君 トメ 君 トッ 君 し

Example (the standard t -structure on $D(R-\text{Mod}))$)

We define two full subcategories of $D(R-\text{Mod})$:

- $\mathsf{D} (R\text{--Mod})^{\leq 0} \quad = \quad \{ A \in \mathsf{D} (R\text{--Mod}) \mid H^i (A) = 0 \text{ for all } i > 0 \}$
- $\mathsf{D} (R\text{--Mod})^{\geq 0} \quad = \quad \{ A \in \mathsf{D} (R\text{--Mod}) \mid H^i (A) = 0 \text{ for all } i < 0 \}$

Definition

A t-structure on a triangulated category $\mathcal T$ is a pair of full subcategories $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ satisfying

Example (the standard t -structure on $D(R-\text{Mod}))$)

We define two full subcategories of $\mathbf{D}(R-\text{Mod})$:

- $\mathsf{D} (R\text{--Mod})^{\leq 0} \quad = \quad \{ A \in \mathsf{D} (R\text{--Mod}) \mid H^i (A) = 0 \text{ for all } i > 0 \}$
- $\mathsf{D} (R\text{--Mod})^{\geq 0} \quad = \quad \{ A \in \mathsf{D} (R\text{--Mod}) \mid H^i (A) = 0 \text{ for all } i < 0 \}$

Definition

A t-structure on a triangulated category $\mathcal T$ is a pair of full subcategories $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ satisfying

 $\mathcal{T}^{\leq 0}[1]\subset \mathcal{T}^{\leq 0} \qquad \text{ and } \qquad \mathcal{T}^{\geq 0}\subset \mathcal{T}^{\geq 0}[1]$

$$
\bullet\ \mathrm{Hom}\Big(\mathcal{T}^{\leq 0}[1]\ ,\ \mathcal{T}^{\geq 0}\Big)=0
$$

• Every object $B \in \mathcal{T}$ admits a triangle

$$
A\longrightarrow B\longrightarrow C\longrightarrow
$$

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

with $A\in{\cal T}^{\leq 0}[1]$ and $C\in{\cal T}^{\geq 0}$.

Definition (equivalent *t*-structures)

Let ${\cal T}$ be any triangulated category, and let $({\cal T}_1^{\leq 0})$ $\tau_1^{\leq 0}, \tau_1^{\geq 0}$ $\binom{>}{1}$ and $(\mathcal{T}_2^{\leq 0})$ $\tau_2^{\leq 0}, \tau_2^{\geq 0}$ $\binom{20}{2}$ be two *t*-structures on T. We declare them equivalent if they are a finite distance from each other.
Definition (equivalent *t*-structures)

Let ${\cal T}$ be any triangulated category, and let $({\cal T}_1^{\leq 0})$ $\tau_1^{\leq 0}, \tau_1^{\geq 0}$ $\binom{>}{1}$ and $(\mathcal{T}_2^{\leq 0})$ $\tau_2^{\leq 0}, \tau_2^{\geq 0}$ $\binom{20}{2}$ be two *t*-structures on T. We declare them equivalent if they are a finite distance from each other.

To spell it out: the two *t*-structures are equivalent if there exists an integer $A > 0$ with

 $\mathcal{T}_1^{\leq -A}\subset \mathcal{T}_2^{\leq 0}\subset \mathcal{T}_1^{\leq A}.$

K ロ ▶ (K@) ▶ (K D) (K D) / [관

Definition (equivalent *t*–structures)

Let ${\cal T}$ be any triangulated category, and let $({\cal T}_1^{\leq 0})$ $\tau_1^{\leq 0}, \tau_1^{\geq 0}$ $\binom{>}{1}$ and $(\mathcal{T}_2^{\leq 0})$ $\tau_2^{\leq 0}, \tau_2^{\geq 0}$ $\binom{20}{2}$ be two *t*-structures on T . We declare them equivalent if they are a finite distance from each other.

To spell it out: the two *t*-structures are equivalent if there exists an integer $A > 0$ with

 $\mathcal{T}_1^{\leq -A}\subset \mathcal{T}_2^{\leq 0}\subset \mathcal{T}_1^{\leq A}.$

It is a formal consequence that, for the same integer $A > 0$, we have

$$
\mathcal{T}_1^{\geq -A}\supset \mathcal{T}_2^{\geq 0}\supset \mathcal{T}_1^{\geq A}.
$$

K ロ ▶ (K@) ▶ (K D) (K D) / [관

Let $\mathcal T$ be a triangulated category with coproducts, and let $G \in \mathcal T$ be a compact object. A 2003 theorem of Alonso, Jeremías and Souto teaches us that $\mathcal T$ has a unique *t*—structure $(\mathcal T_G^{\leq 0})$ $\vec{\epsilon}^{\leq 0}, \mathcal{T}_{\vec{\epsilon}}^{\geq 0}$ $\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ generated by G.

Let $\mathcal T$ be a triangulated category with coproducts, and let $G \in \mathcal T$ be a compact object. A 2003 theorem of Alonso, Jeremías and Souto teaches us that $\mathcal T$ has a unique *t*—structure $(\mathcal T_G^{\leq 0})$ $\vec{\epsilon}^{\leq 0}, \mathcal{T}_{\vec{\epsilon}}^{\geq 0}$ $\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ generated by G.

Among all *t*–structures $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ such that $\mathcal{G} \in \mathcal{T}^{\leq 0}$, there exists a unique one with minimal $\mathcal{T}^{\leq 0}$.

K ロ K K d K K K B K K B K K B B

 $2Q$

Let $\mathcal T$ be a triangulated category with coproducts, and let $G \in \mathcal T$ be a compact object. A 2003 theorem of Alonso, Jeremías and Souto teaches us that $\mathcal T$ has a unique *t*—structure $(\mathcal T_G^{\leq 0})$ $\vec{\epsilon}^{\leq 0}, \mathcal{T}_{\vec{\epsilon}}^{\geq 0}$ $\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ generated by G.

Among all *t*–structures $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ such that $\mathcal{G} \in \mathcal{T}^{\leq 0}$, there exists a unique one with minimal $\mathcal{T}^{\leq 0}$.

If G and H are two compact generators for $\mathcal T$, then the *t*-structures $(\mathcal{T}_{\mathcal{G}}^{\leq 0}$ $\vec{\epsilon}^{\leq 0}, \mathcal{T}_{\vec{\mathsf{G}}}^{\geq 0}$ $\binom{m}{G}$ and $\left(\mathcal{T}_{H}^{\leq 0}\right)$ $\widetilde{\vec{H}}^{0}, \mathcal{T}_{H}^{\geq 0}$ \mathcal{H}^{20} are equivalent.

Let $\mathcal T$ be a triangulated category with coproducts, and let $G \in \mathcal T$ be a compact object. A 2003 theorem of Alonso, Jeremías and Souto teaches us that $\mathcal T$ has a unique *t*—structure $(\mathcal T_G^{\leq 0})$ $\vec{\epsilon}^{\leq 0}, \mathcal{T}_{\vec{\epsilon}}^{\geq 0}$ $\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ generated by G.

Among all *t*–structures $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ such that $\mathcal{G} \in \mathcal{T}^{\leq 0}$, there exists a unique one with minimal $\mathcal{T}^{\leq 0}$.

If G and H are two compact generators for $\mathcal T$, then the *t*-structures $(\mathcal{T}_{\mathcal{G}}^{\leq 0}$ $\vec{\epsilon}^{\leq 0}, \mathcal{T}_{\vec{\mathsf{G}}}^{\geq 0}$ $\binom{m}{G}$ and $\left(\mathcal{T}_{H}^{\leq 0}\right)$ $\widetilde{\vec{H}}^{0}, \mathcal{T}_{H}^{\geq 0}$ \mathcal{H}^{20} are equivalent.

We say that a *t*—structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is in the

preferred equivalence class

if it is equivalent to $(\mathcal{T}_G^{\leq 0})$ $\vec{\epsilon}^{\leq 0}, \mathcal{T}_{\vec{\mathsf{G}}}^{\geq 0}$ $\binom{p\geq 0}{G}$ for some compact generator G , hence for every compact generator.

 ϵ

$$
\mathcal{T}^- = \bigcup_n \mathcal{T}^{\leq n}, \qquad \mathcal{T}^+ = \bigcup_n \mathcal{T}^{\geq -n}, \qquad \mathcal{T}^b = \mathcal{T}^- \cap \mathcal{T}^+
$$

 ϵ

$$
\mathcal{T}^- = \bigcup_n \mathcal{T}^{\leq n}, \qquad \mathcal{T}^+ = \bigcup_n \mathcal{T}^{\geq -n}, \qquad \mathcal{T}^b = \mathcal{T}^- \cap \mathcal{T}^+
$$

It's obvious that equivalent *t*–structures yield $\overline{\mathsf{identical}}$ $\mathcal{T}^-,$ \mathcal{T}^+ and $\mathcal{T}^b.$

 \mathbf{I}

$$
\mathcal{T}^- = \bigcup_n \mathcal{T}^{\leq n}, \qquad \mathcal{T}^+ = \bigcup_n \mathcal{T}^{\geq -n}, \qquad \mathcal{T}^b = \mathcal{T}^- \cap \mathcal{T}^+
$$

It's obvious that equivalent *t*–structures yield $\overline{\mathsf{identical}}$ $\mathcal{T}^-,$ \mathcal{T}^+ and $\mathcal{T}^b.$

Now assume that T has coproducts and there exists a single compact generator G. Then there is a preferred equivalence class of t -structures, and a corresponding preferred \mathcal{T}^+ , \mathcal{T}^+ and \mathcal{T}^b .

 ϵ

$$
\mathcal{T}^- = \bigcup_n \mathcal{T}^{\leq n}, \qquad \mathcal{T}^+ = \bigcup_n \mathcal{T}^{\geq -n}, \qquad \mathcal{T}^b = \mathcal{T}^- \cap \mathcal{T}^+
$$

It's obvious that equivalent *t*–structures yield $\overline{\mathsf{identical}}$ $\mathcal{T}^-,$ \mathcal{T}^+ and $\mathcal{T}^b.$

Now assume that T has coproducts and there exists a single compact generator G. Then there is a preferred equivalence class of t -structures, and a corresponding preferred \mathcal{T}^+ , \mathcal{T}^+ and \mathcal{T}^b .

These are intrinsic, they're independent of any choice.

 ϵ

$$
\mathcal{T}^- = \bigcup_n \mathcal{T}^{\leq n}, \qquad \mathcal{T}^+ = \bigcup_n \mathcal{T}^{\geq -n}, \qquad \mathcal{T}^b = \mathcal{T}^- \cap \mathcal{T}^+
$$

It's obvious that equivalent *t*–structures yield $\overline{\mathsf{identical}}$ $\mathcal{T}^-,$ \mathcal{T}^+ and $\mathcal{T}^b.$

Now assume that T has coproducts and there exists a single compact generator G. Then there is a preferred equivalence class of t -structures, and a corresponding preferred \mathcal{T}^+ , \mathcal{T}^+ and \mathcal{T}^b .

These are intrinsic, they're independent of any choice. In the remainder of the slides we only consider the "preferred" $\mathcal{T}^{\pm}, \mathcal{T}^{\pm}$ and \mathcal{T}^{b} .

Let T be a triangulated category with coproducts, and assume it has a compact generator G. Choose a *t*—structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ in the preferred equivalence class.

★ ロメ (4 御) > (唐) > (唐) → 唐

 $2Q$

Let T be a triangulated category with coproducts, and assume it has a compact generator G. Choose a *t*—structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ in the preferred equivalence class.

We define:

$$
\mathcal{T}_{c}^{-} = \left\{ F \in \mathcal{T} \middle| \begin{array}{c} \text{For every } n > 0 \text{ there exists a morphism} \\ \varphi : E \longrightarrow F \\ \text{with } E \text{ compact and such that,} \\ \text{in the triangle } E \longrightarrow F \longrightarrow D, \\ \text{we have } D \in \mathcal{T}^{\leq -n} \end{array} \right\}
$$

K ロ K K 御 K K W B K W B K W B B

 $2Q$

Let $\mathcal T$ be a triangulated category with coproducts, and assume it has a compact generator G. Choose a *t*—structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ in the preferred equivalence class.

We define:

$$
\mathcal{T}_{c}^{-} = \left\{ F \in \mathcal{T} \middle| \begin{array}{c} \text{For every } n > 0 \text{ there exists a morphism} \\ \varphi : E \longrightarrow F \\ \text{with } E \text{ compact and such that,} \\ \text{in the triangle } E \longrightarrow F \longrightarrow D, \\ \text{we have } D \in \mathcal{T}^{\leq -n} \end{array} \right\}
$$

K ロ K K 優 K K 활 K K 활 K … 활

 298

We furthermore define $\mathcal{T}_c^b = \mathcal{T}^b \cap \mathcal{T}_c^-$.

Let $\mathcal T$ be a triangulated category with coproducts, and assume it has a compact generator G. Choose a *t*—structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ in the preferred equivalence class.

We define:

$$
\mathcal{T}_{c}^{-} = \left\{ F \in \mathcal{T} \middle| \begin{array}{c} \text{For every } n > 0 \text{ there exists a morphism} \\ \varphi : E \longrightarrow F \\ \text{with } E \text{ compact and such that,} \\ \text{in the triangle } E \longrightarrow F \longrightarrow D, \\ \text{we have } D \in \mathcal{T}^{\leq -n} \end{array} \right\}
$$

K ロ K K @ K K X B X X B X X B X

 298

We furthermore define $\mathcal{T}_c^b = \mathcal{T}^b \cap \mathcal{T}_c^-$.

It's obvious that the category \mathcal{T}_{c}^{-} is intrinsic. As \mathcal{T}_{c}^{-} and \mathcal{T}^{b} are both intrinsic, so is their intersection \mathcal{T}_{c}^{b} .

Example (The special case $\mathcal{T}=\mathsf{D}_{\mathsf{qc},Z}(X)$, with X a coherent scheme and $Z \subset X$ a closed subset)

$$
\begin{array}{ccccccccc}\n\mathcal{T}^+ & = & \mathbf{D}^+_{\mathsf{qc},Z}(X), & \mathcal{T}^- & = & \mathbf{D}^-_{\mathsf{qc},Z}(X), & \mathcal{T}^c & = & \mathbf{D}^{\mathrm{perf}}_Z(X), \\
\mathcal{T}^b & = & \mathbf{D}^b_{\mathsf{qc},Z}(X), & \mathcal{T}^-_c & = & \mathbf{D}^-_{\mathsf{coh},Z}(X), & \mathcal{T}^b_c & = & \mathbf{D}^b_{\mathsf{coh},Z}(X)\n\end{array}
$$

★ ロメ (4 御) > (唐) > (唐) → 唐

Example (The special case $\mathcal{T} = \mathsf{D}_{\mathsf{qc}, Z} (X)$, with X a $\hspace{1cm}$ scheme and $Z \subset X$ a closed subset) \mathcal{T}^+ = $\mathbf{D}^+_{\mathbf{q}\mathbf{q}}$ $_{\mathsf{qc},\mathsf{Z}}^+(X), \qquad \mathcal{T}^- = \mathsf{D}_{\mathsf{qc},\mathsf{Z}}^ \tau_{\mathsf{qc},Z}^-(X), \qquad \mathcal{T}^c = \mathsf{D}_Z^{\text{perf}}$ $Z^{per1}(X),$ \mathcal{T}^b = $\mathsf{D}^b_{\mathsf{qc},Z}(X)$, \mathcal{T}^-_c = $\mathsf{D}^-_{\mathsf{cc}}$

(ロ) (御) (君) (君) (君) 君 のぬの

 $\tau_{\mathsf{coh},Z}^{\mathsf{f}}(X),\qquad \tau_{\mathsf{c}}^{\mathsf{b}}\;\;=\;\;\mathbf{D}_{\mathsf{coh},Z}^{\mathsf{b}}(X)$

Example (The special case $\mathcal{T} = \mathsf{D}_{\mathsf{qc}, Z} (X)$, with X a $\hspace{1cm}$ scheme and $Z \subset X$ a closed subset)

$$
\begin{array}{ccccccccc}\n\mathcal{T}^+ & = & \mathbf{D}^+_{\mathsf{qc},Z}(X), & \mathcal{T}^- & = & \mathbf{D}^-_{\mathsf{qc},Z}(X), & \mathcal{T}^c & = & \mathbf{D}^{\mathrm{perf}}_Z(X), \\
\mathcal{T}^b & = & \mathbf{D}^b_{\mathsf{qc},Z}(X), & \mathcal{T}^-_c & = & \mathbf{D}^-_{\mathsf{coh},Z}(X), & \mathcal{T}^b_c & = & \mathbf{D}^b_{\mathsf{coh},Z}(X)\n\end{array}
$$

メロト メ御 ドメ 老 トメ 老 トリ (者)

 $2Q$

For R not coherent, $\mathbf{D}^{b}(R\text{-mod})$ should be replaced by $\mathbf{K}^{-,b}(R\text{-proj})$.

Example (The special case $\mathcal{T} = \mathsf{D}_{\mathsf{qc}, Z} (X)$, with X a $\hspace{1cm}$ scheme and $Z \subset X$ a closed subset) \mathcal{T}^+ = $\mathbf{D}^+_{\mathbf{q}\mathbf{q}}$ $_{\mathsf{qc},\mathsf{Z}}^+(X), \qquad \mathcal{T}^- = \mathsf{D}_{\mathsf{qc},\mathsf{Z}}^ \tau_{\mathsf{qc},Z}^-(X), \qquad \mathcal{T}^c = \mathsf{D}_Z^{\text{perf}}$ $Z^{per1}(X),$ \mathcal{T}^b = $\mathsf{D}^b_{\mathsf{qc},Z}(X)$, \mathcal{T}^-_c = $\mathsf{D}^-_{\mathsf{cc}}$ $\tau_{\mathsf{coh},Z}^{\mathsf{f}}(X),\qquad \tau_{\mathsf{c}}^{\mathsf{b}}\;\;=\;\;\mathbf{D}_{\mathsf{coh},Z}^{\mathsf{b}}(X)$

For R not coherent, $\mathbf{D}^{b}(R\text{-mod})$ should be replaced by $\mathbf{K}^{-,b}(R\text{-proj})$. The objects are the bounded-above cochain complexes of finitely-generated projective modules, and the b in the superscript means that all but finitely many cohomology groups vanish.

Projective resolutions

Suppose we are given an object $F^*\in{\mathsf D}(R\text{--}{\rm Mod})$, meaning a cochain complex

$$
\cdots \longrightarrow F^{-2} \longrightarrow F^{-1} \longrightarrow F^{0} \longrightarrow F^{1} \longrightarrow F^{2} \longrightarrow \cdots
$$

Assume $F^*\in\mathsf{D} (R\text{--Mod})^{\leq 0}$, meaning

$$
H^i(F^*) = 0 \quad \text{ for all } i > 0.
$$

Then F^* has a projective resolution. We can produce a cochain map

inducing an isomorphism in cohomology, and so that the P^i are projective.

Projective resolutions—a different perspective

We have found in $\mathsf{D} (R\text{--Mod})$ an isomorphism $P^* \longrightarrow F^*.$ Now consider

This gives in $D(R-Mod)$ triangles

$$
E_n^* \longrightarrow F^* \longrightarrow D_n^* \longrightarrow
$$

with $D_n^* \in {\mathsf D}(R\text{--Mod})^{\leq -n-1}$ and E_n^* not too complicated.

Let T be a triangulated category. Let $G \in T$ be an object, and let $A > 0$ be an integer. I ask the audience to accept, as a black box, that there are sensible constructions of the following four full subcategories of \mathcal{T} :

K ロ K K d K K K X X R X X R X R R

 298

 $\mathbf 0$

 2 $\,$

³ Also assumes T has coproducts: ⟨G⟩

Let T be a triangulated category. Let $G \in T$ be an object, and let $A > 0$ be an integer. I ask the audience to accept, as a black box, that there are sensible constructions of the following four full subcategories of \mathcal{T} :

 $\bullet\,\,\left\langle G \right\rangle_{\mathcal{A}^*}$ This is classical, it consists of the objects of $\mathcal T$ obtainable from G using no more than A extensions.

K ロ K K d K K K X X R X X R X R R

 $2Q$

 2 $\,$

³ Also assumes T has coproducts: ⟨G⟩

Let T be a triangulated category. Let $G \in T$ be an object, and let $A > 0$ be an integer. I ask the audience to accept, as a black box, that there are sensible constructions of the following four full subcategories of T :

 $\bullet\,\,\left\langle G \right\rangle_{\mathcal{A}^*}$ This is classical, it consists of the objects of $\mathcal T$ obtainable from G using no more than A extensions.

 $\,$ $\,$ Assuming $\, {\cal T}$ has coproducts: $\, \overline{\langle G\rangle}^{(-\infty,A]}$ \overline{A} Also classical, the bound is on the allowed suspensions.

K ロ K K d K K K B K K B K K B B

³ Also assumes T has coproducts: ⟨G⟩

Let T be a triangulated category. Let $G \in T$ be an object, and let $A > 0$ be an integer. I ask the audience to accept, as a black box, that there are sensible constructions of the following four full subcategories of T :

 $\bullet\,\,\left\langle G \right\rangle_{\mathcal{A}^*}$ This is classical, it consists of the objects of $\mathcal T$ obtainable from G using no more than A extensions.

 $\,$ Assuming ${\cal T}$ has coproducts: $\overline{\langle G\rangle}^{(-\infty,A]}.$ Also classical, the bound is on the allowed suspensions. The variant $\langle G \rangle^1$ $\frac{1}{\sqrt{2}}$ is new but similar.

K ロ K K d K K K B K K B K K B B

 $2Q$

Let T be a triangulated category. Let $G \in T$ be an object, and let $A > 0$ be an integer. I ask the audience to accept, as a black box, that there are sensible constructions of the following four full subcategories of \mathcal{T} :

 $\bullet\,\,\left\langle G \right\rangle_{\mathcal{A}^*}$ This is classical, it consists of the objects of $\mathcal T$ obtainable from G using no more than A extensions.

 $\,$ Assuming ${\cal T}$ has coproducts: $\overline{\langle G\rangle}^{(-\infty,A]}.$ Also classical, the bound is on the allowed suspensions. The variant $\langle G \rangle$ is new but similar.

3 Also assumes ${\cal T}$ has coproducts: $\overline{\langle G \rangle}^{[-{\cal A},{\cal A}]}_A$ \mathcal{A} \mathcal{A} . This is new, both the allowed suspensions and the number of extensions allowed are bounded.

Let T be a triangulated category with coproducts. It is weakly approximable if

Let T be a triangulated category with coproducts. It is weakly approximable if

There exists a compact generator $G\in\mathcal{T}$, a *t*–structure $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ in the preferred equivalence class, and an integer $A > 0$ such that

Let T be a triangulated category with coproducts. It is weakly approximable if

There exists a compact generator $G\in\mathcal{T}$, a *t*–structure $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ in the preferred equivalence class, and an integer $A > 0$ such that

K ロ K K 御 K K W B K W B K W B B

•
$$
G^{\perp}
$$
 contains $T^{\leq -A} \cup T^{\geq A}$.

Let T be a triangulated category with coproducts. It is weakly approximable if

There exists a compact generator $G\in\mathcal{T}$, a *t*–structure $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ in the preferred equivalence class, and an integer $A > 0$ such that

K ロ K K 御 K K W B K W B K W B B

 $2Q$

•
$$
G^{\perp}
$$
 contains $T^{\leq -A} \cup T^{\geq A}$.

This means: $\mathrm{Hom}(\mathsf{G}\,,\,\mathcal{T}^{\leq -A}\cup \mathcal{T}^{\geq A})=0.$

Let T be a triangulated category with coproducts. It is weakly approximable if

There exists a compact generator $G\in\mathcal{T}$, a *t*–structure $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ in the preferred equivalence class, and an integer $A > 0$ such that

K ロ K K 御 K K W B K W B K W B B

 $2Q$

•
$$
G^{\perp}
$$
 contains $T^{\leq -A} \cup T^{\geq A}$.

This means: $\mathrm{Hom}(\mathsf{G}\,,\,\mathcal{T}^{\leq -A}\cup \mathcal{T}^{\geq A})=0.$

Equivalently: $\text{Hom}(G, G[n]) = 0$ for $n \gg 0$.

Let T be a triangulated category with coproducts. It is weakly approximable if

There exists a compact generator $G\in\mathcal{T}$, a *t*–structure $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ in the preferred equivalence class, and an integer $A > 0$ such that

•
$$
G^{\perp}
$$
 contains $T^{\leq -A} \cup T^{\geq A}$.

This means: $\mathrm{Hom}(\mathsf{G}\,,\,\mathcal{T}^{\leq -A}\cup \mathcal{T}^{\geq A})=0.$

Equivalently: $\text{Hom}(G, G[n]) = 0$ for $n \gg 0$.

For every object $F\in \mathcal{T}^{\leq 0}$ there exists a triangle $E\longrightarrow F\longrightarrow D,$ with $D\in\mathcal{T}^{\leq -1}$ and with $E\in\overline{\langle G\rangle}^{[-A,A]}.$

Let T be a coherently approximable triangulated category.

Let T be a coherently approximable triangulated category.

メロメ メ都メ メミメ メミメ 活 299

Let T be a coherent, weakly approximable triangulated category.

(ロ) (個) (星) (星) 重 299

Let T be a coherently approximable triangulated category.

Let T be a coherently approximable triangulated category.

In a special case: how does one recognize $\mathsf{D}^b(R\text{--mod})$ in $\mathsf{D}^b(R\text{--Mod})$ or in $D^+(R\text{--Mod})$?

In a special case: how does one recognize $\mathsf{D}^b(R\text{--mod})$ in $\mathsf{D}^b(R\text{--Mod})$ or in $D^+(R\text{--Mod})$?

The objects $\mathcal{C} \in \mathcal{T}^b_c$ are all compact, meaning $\mathrm{Hom}(\mathcal{C},-)$ commutes with the coproducts that exist in \mathcal{T}^+ or in \mathcal{T}^b .

In a special case: how does one recognize $\mathsf{D}^b(R\text{--mod})$ in $\mathsf{D}^b(R\text{--Mod})$ or in $D^+(R\text{--Mod})$?

The objects $\mathcal{C} \in \mathcal{T}^b_c$ are all compact, meaning $\mathrm{Hom}(\mathcal{C},-)$ commutes with the coproducts that exist in \mathcal{T}^+ or in \mathcal{T}^b .

But also: for every object $\mathcal{C} \in \mathcal{T}^b_c$

In a special case: how does one recognize $\mathsf{D}^b(R\text{--mod})$ in $\mathsf{D}^b(R\text{--Mod})$ or in $D^+(R\text{--Mod})$?

The objects $\mathcal{C} \in \mathcal{T}^b_c$ are all compact, meaning $\mathrm{Hom}(\mathcal{C},-)$ commutes with the coproducts that exist in \mathcal{T}^+ or in \mathcal{T}^b .

But also: for every object $C\in \mathcal{T}^b_c$, for every t–structure in the preferred equivalence class such that \mathcal{T}^\heartsuit is a Grothendieck abelian category

In a special case: how does one recognize $\mathsf{D}^b(R\text{--mod})$ in $\mathsf{D}^b(R\text{--Mod})$ or in $D^+(R\text{--Mod})$?

The objects $\mathcal{C} \in \mathcal{T}^b_c$ are all compact, meaning $\mathrm{Hom}(\mathcal{C},-)$ commutes with the coproducts that exist in \mathcal{T}^+ or in \mathcal{T}^b .

But also: for every object $C\in \mathcal{T}^b_c$, for every t–structure in the preferred equivalence class such that \mathcal{T}^\heartsuit is a Grothendieck abelian category, and for every filtered functor $F: I \longrightarrow T^{\heartsuit}$

In a special case: how does one recognize $\mathsf{D}^b(R\text{--mod})$ in $\mathsf{D}^b(R\text{--Mod})$ or in $D^+(R\text{--Mod})$?

The objects $\mathcal{C} \in \mathcal{T}^b_c$ are all compact, meaning $\mathrm{Hom}(\mathcal{C},-)$ commutes with the coproducts that exist in \mathcal{T}^+ or in \mathcal{T}^b .

But also: for every object $C\in \mathcal{T}^b_c$, for every t–structure in the preferred equivalence class such that \mathcal{T}^\heartsuit is a Grothendieck abelian category, and for every filtered functor $F: I \longrightarrow \mathcal{T}^{\heartsuit}$, the natural map

$$
\mathrm{Colim}\left(\mathrm{Hom}\big(\mathcal{C},\mathcal{F}(-)\big)\right) \longrightarrow \mathrm{Hom}\Big(\mathcal{C},\mathrm{Colim}\,\mathcal{F}(-)\Big)
$$

is an isomorphism.

Let T be a coherently approximable triangulated category.

Let T be a coherently approximable triangulated category.

Let T be a coherent, weakly approximable triangulated category.

triangulated results in combination with enhancement techniques

Let T be a coherent, weakly approximable triangulated category. If either \mathcal{T}^c or \mathcal{T}^b_c has a unique enhancement:

Work in progress: **purely triangulated results in** combination with enhancement techniques

Let T be a coherently approximable triangulated category. If either \mathcal{T}^c or \mathcal{T}^b_c has a unique enhancement:

triangulated results in combination with enhancement techniques

Let X be a noetherian scheme, and let $Z \subset X$ be a closed subset.

Work in progress: **purely triangulated results in** combination with enhancement techniques

Let X be a scheme, and let $Z \subset X$ be a closed subset.

K ロ K K @ K K X 할 K K 할 K (할 K) $2Q$

Example not from representation theory or algebraic geometry

If T is the homotopy category of spectra:

メロト メタト メミト メミト $2Q$ 隱

Back to Rickard's old result

If R is a coherent ring, not necessarily commutative:

K ロ ▶ (K@) ▶ (K@) X (@) / [@]

If R is a coherent ring, not necessarily commutative: $D(R-Mod)$

★ ロメ (4 御) > (唐) > (唐) → 唐

If R is a coherent ring, not necessarily commutative: $D(R-Mod)$ $\mathbf{D}^-(R-\text{Mod})$ $\mathbf{D}^+(R-\text{Mod})$ $D^-(R-mod)$ $\mathbf{D}^b(R-\text{Mod})$ $\mathbf{D}^b(R-\text{proj})$

> K ロ ▶ (K@) ▶ (K@) X (@) / [@] 299

- Amnon Neeman, *Strong generators in* $\mathbf{D}^{\text{perf}}(X)$ *and* $\mathbf{D}^b_{\text{coh}}(X)$, Ann. of Math. (2) 193 (2021), no. 3, 689–732.
- Amnon Neeman, Triangulated categories with a single compact generator and a Brown representability theorem, arXiv:1804.02240.
- 昴 Jesse Burke, Amnon Neeman, and Bregje Pauwels, Gluing approximable triangulated categories, Forum Math. Sigma 11 (2023), Paper No. e110, 18 pages.
	- Amnon Neeman, *The category* $\left[\mathcal{T}^c\right]^{\text{op}}$ *as functors on* \mathcal{T}^b_c *,* arXiv:1806.05777.
- Amnon Neeman, *The categories* T^c *and* T_c^b *determine each other*, arXiv:1806.06471.
- Amnon Neeman, Bounded t–structures on the category of perfect complexes, To appear in ACTA MATHEMATICA, $arXiv:2202.08861$.
- Alberto Canonaco, Amnon Neeman and Paolo Stellari (with appendix by Christian Haesemeyer), The passage among the subcategories of weakly approximable triangulated categories, arXiv:2402.04605.
- Amnon Neeman, *Strong generators in* $\mathbf{D}^{\text{perf}}(X)$ *and* $\mathbf{D}^b_{\text{coh}}(X)$, Ann. of Math. (2) 193 (2021), no. 3, 689–732.
- Amnon Neeman, Triangulated categories with a single compact generator and a Brown representability theorem, arXiv:1804.02240.
- 昴 Jesse Burke, Amnon Neeman, and Bregje Pauwels, Gluing approximable triangulated categories, Forum Math. Sigma 11 (2023), Paper No. e110, 18 pages.
	- Amnon Neeman, *The category* $\left[\mathcal{T}^c\right]^{\text{op}}$ *as functors on* \mathcal{T}^b_c *,* arXiv:1806.05777.
- Amnon Neeman, *The categories* T^c *and* T_c^b *determine each other*, arXiv:1806.06471.
- Amnon Neeman, Bounded t–structures on the category of perfect complexes, To appear in ACTA MATHEMATICA, $arXiv:2202.08861$.
- Alberto Canonaco, Amnon Neeman and Paolo Stellari (with appendix by Christian Haesemeyer), The passage among the subcategories of weakly approximable triangulated categories, arXiv:2402.04605.
- Amnon Neeman, *Strong generators in* $\mathbf{D}^{\text{perf}}(X)$ *and* $\mathbf{D}^b_{\text{coh}}(X)$, Ann. of Math. (2) 193 (2021), no. 3, 689–732.
- Amnon Neeman, Triangulated categories with a single compact generator and a Brown representability theorem, arXiv:1804.02240.
- 昴 Jesse Burke, Amnon Neeman, and Bregje Pauwels, Gluing approximable triangulated categories, Forum Math. Sigma 11 (2023), Paper No. e110, 18 pages.
	- Amnon Neeman, *The category* $\left[\mathcal{T}^c\right]^{\text{op}}$ *as functors on* \mathcal{T}^b_c *,* arXiv:1806.05777.
- Amnon Neeman, *The categories* T^c *and* T_c^b *determine each other*, arXiv:1806.06471.
- Amnon Neeman, Bounded t–structures on the category of perfect complexes, To appear in ACTA MATHEMATICA, $arXiv:2202.08861$.
- Alberto Canonaco, Amnon Neeman and Paolo Stellari (with appendix by Christian Haesemeyer), The passage among the subcategories of weakly approximable triangulated categories, arXiv:2402.04605.
- Amnon Neeman, *Strong generators in* $\mathbf{D}^{\text{perf}}(X)$ *and* $\mathbf{D}^b_{\text{coh}}(X)$, Ann. of Math. (2) 193 (2021), no. 3, 689–732.
- Amnon Neeman, Triangulated categories with a single compact generator and a Brown representability theorem, arXiv:1804.02240.
- 昴 Jesse Burke, Amnon Neeman, and Bregje Pauwels, Gluing approximable triangulated categories, Forum Math. Sigma 11 (2023), Paper No. e110, 18 pages.
	- Amnon Neeman, *The category* $\left[\mathcal{T}^c\right]^{\text{op}}$ *as functors on* \mathcal{T}^b_c *,* arXiv:1806.05777.
- Amnon Neeman, *The categories* T^c *and* T_c^b *determine each other*, arXiv:1806.06471.
- Amnon Neeman, Bounded t–structures on the category of perfect complexes, To appear in ACTA MATHEMATICA, $arXiv:2202.08861$.
- Alberto Canonaco, Amnon Neeman and Paolo Stellari (with appendix by Christian Haesemeyer), The passage among the subcategories of weakly approximable triangulated categories, arXiv:2402.04605.
- Amnon Neeman, *Strong generators in* $\mathbf{D}^{\text{perf}}(X)$ *and* $\mathbf{D}^b_{\text{coh}}(X)$, Ann. of Math. (2) 193 (2021), no. 3, 689–732.
- Amnon Neeman, Triangulated categories with a single compact generator and a Brown representability theorem, arXiv:1804.02240.
- 譶 Jesse Burke, Amnon Neeman, and Bregje Pauwels, Gluing approximable triangulated categories, Forum Math. Sigma 11 (2023), Paper No. e110, 18 pages.
	- Amnon Neeman, *The category* $\left[\mathcal{T}^c\right]^{\text{op}}$ *as functors on* \mathcal{T}^b_c *,* arXiv:1806.05777.
- Amnon Neeman, *The categories* T^c *and* T_c^b *determine each other*, arXiv:1806.06471.
- Amnon Neeman, Bounded t–structures on the category of perfect complexes, To appear in ACTA MATHEMATICA, $arXiv:2202.08861$.
- Alberto Canonaco, Amnon Neeman and Paolo Stellari (with appendix by Christian Haesemeyer), The passage among the subcategories of weakly approximable triangulated categories, arXiv:2402.04605.

Published articles by others, building the theory further

- Mikhail V. Bondarko and S. V. Vostokov, On weakly negative subcategories, weight structures, and (weakly) approximable triangulated categories, Lobachevskii J. Math. 41 (2020), 151–159.
- Martin Kalck, Nebojsa Pavic, and Evgeny Shinder, Obstructions to semiorthogonal decompositions for singular threefolds I: K-theory, Mosc. Math. J. 21 (2021), no. 3, 567–592.
- Joseph Karmazyn, Alexander Kuznetsov, and Evgeny Shinder, Derived categories of singular surfaces, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 2, 461–526.
- **Nongliang Sun and Yaohua Zhang, Ladders and completion of** triangulated categories, Theory Appl. Categ. 37 (2021), Paper No. 4, 95–106.

(ロ) (御) (君) (君) (君) 君 のぬの

Rudradip Biswas, Hongxing Chen, Kabeer Manali Rahul, Chris J. Parker, and Junhua Zheng, Bounded t-structures, finitistic dimensions, and singularity categories of triangulated categories, arXiv:2401.00130.

K ロ K K d K K K X X R X X R X R R

- Mikhail V. Bondarko, Producing "new" semi-orthogonal decompositions in arithmetic geometry, arXiv:2203.07315.
- Yongliang Sun and Yaohua Zhang, Localization theorems for approximable triangulated categories, arXiv:2402.04954.

Definition Let $P(S)$ be the collection of full subcategories $P \in S$ satisfying $P[1] \subset P$. Then

K ロ ▶ (K@) ▶ (대 결 > (제 결 >) (결)

Definition

Let $P(S)$ be the collection of full subcategories $P \in S$ satisfying $P[1] \subset P$. Then

1 We declare $P, \widetilde{P} \in \mathcal{P}(\mathcal{S})$ equivalent if there exists an integer $A > 0$ with

$$
P[A] \subset \widetilde{P} \subset P[-A] .
$$

K ロ K K 御 K K W B K W B K W B B

Definition

Let $P(S)$ be the collection of full subcategories $P \in S$ satisfying $P[1] \subset P$. Then

1 We declare $P, \widetilde{P} \in \mathcal{P}(\mathcal{S})$ equivalent if there exists an integer $A > 0$ with

$$
P[A] \subset \widetilde{P} \subset P[-A] .
$$

2 If $[P]$ and $[\tilde{P}]$ denote the equivalence classes of $P, \tilde{P} \in \mathcal{P(S)}$, then we declare that $[P] \leq [P]$ if there exists an integer $A > 0$ with $P[A] \subset P$.

Definition

Let $\mathcal{Q}(\mathcal{S})$ be the collection of full subcategories $Q \in \mathcal{S}$ satisfying $Q \subset Q[1]$. Then

★ ロメ (4 御) > (唐) > (唐) → 唐

Definition¹

Let $\mathcal{Q}(\mathcal{S})$ be the collection of full subcategories $Q \in \mathcal{S}$ satisfying $Q \subset Q[1]$. Then

■ We declare $Q, \widetilde{Q} \in \mathcal{Q}(\mathcal{S})$ equivalent if there exists an integer $A > 0$ with

 $Q[-A] \subset \widetilde{Q} \subset Q[A]$.

K ロ K K d K K K X X R X X R X R R

Definition

Let $\mathcal{Q}(\mathcal{S})$ be the collection of full subcategories $Q \in \mathcal{S}$ satisfying $Q \subset Q[1]$. Then

1 We declare $Q, \tilde{Q} \in \mathcal{Q}(\mathcal{S})$ equivalent if there exists an integer $A > 0$ with

$$
Q[-A]\subset \widetilde{Q}\subset Q[A] .
$$

2 If $[Q]$ and $[\tilde{Q}]$ denote the equivalence classes of $Q, \tilde{Q} \in \mathcal{Q}(\mathcal{S})$, then we declare that $[Q] \leq [Q]$ if there exists an integer $A > 0$ with $Q \subset \widetilde{Q}[A].$

Suppose S be a triangulated category, and let $H \in S$ be an object.

Definition

We define $P_H(S) \in \mathcal{P}(S)$ and $Q_H(S) \in \mathcal{Q}(S)$ by the formulas

Suppose S be a triangulated category, and let $H \in S$ be an object.

Definition

We define $P_H(S) \in \mathcal{P}(S)$ and $Q_H(S) \in \mathcal{Q}(S)$ by the formulas

 \bullet

$$
P_H(\mathcal{S}) = \bigcap_{i=0}^{\infty} H[-i]^{\perp}
$$

K ロ K K 優 K K 활 K K 활 K … 활

Suppose S be a triangulated category, and let $H \in S$ be an object.

Definition

We define $P_H(S) \in \mathcal{P}(S)$ and $Q_H(S) \in \mathcal{Q}(S)$ by the formulas

\bullet

$$
P_H(\mathcal{S}) = \bigcap_{i=0}^{\infty} H[-i]^{\perp} = H[0,\infty)^{\perp}.
$$

K ロ K K 御 K K W B K W B K W B B
Suppose S be a triangulated category, and let $H \in S$ be an object.

Definition

 \bullet

2

We define $P_H(S) \in \mathcal{P}(S)$ and $Q_H(S) \in \mathcal{Q}(S)$ by the formulas

 $P_H(\mathcal{S}) = \bigcap^{\infty}$ $i=0$ $H[-i]^{\perp} = H[0,\infty)^{\perp}$.

$$
Q_H(\mathcal{S}) = \bigcap_{i=0}^{\infty} H[i]^{\perp}
$$

Suppose S be a triangulated category, and let $H \in S$ be an object.

Definition

 \bullet

2

We define $P_H(S) \in \mathcal{P}(S)$ and $Q_H(S) \in \mathcal{Q}(S)$ by the formulas

 $P_H(\mathcal{S}) = \bigcap^{\infty}$ $i=0$ $H[-i]^{\perp} = H[0,\infty)^{\perp}$.

$$
Q_H(S) = \bigcap_{i=0}^{\infty} H[i]^{\perp} = H(-\infty, 0]^{\perp}.
$$

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Now suppose T is a weakly approximable triangulated category with $\mathcal{T}^{\mathsf{c}} \subset \mathcal{T}^{\mathsf{b}}_{\mathsf{c}}$, and let G be a classical generator of \mathcal{T}^{c}

Put
$$
S = \mathcal{T}_c^b
$$
, and let $P_G = P_G(S)$ and $Q_G = Q_G(S)$.

Put $\mathcal{S}=\mathcal{T}^b_c$, and let $P_G=P_G(\mathcal{S})$ and $Q_G=Q_G(\mathcal{S})$. If $\big(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0}\big)$ is a t-structure in the preferred equivalence class then it can be proved that

Put $\mathcal{S}=\mathcal{T}^b_c$, and let $P_G=P_G(\mathcal{S})$ and $Q_G=Q_G(\mathcal{S})$. If $\big(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0}\big)$ is a t-structure in the preferred equivalence class then it can be proved that

 $\mathbf{D} \left[P_G \right] = \left[\mathcal{T}_c^b \cap \mathcal{T}^{\leq 0} \right]$.

Put $\mathcal{S}=\mathcal{T}^b_c$, and let $P_G=P_G(\mathcal{S})$ and $Q_G=Q_G(\mathcal{S})$. If $\big(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0}\big)$ is a t-structure in the preferred equivalence class then it can be proved that

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

- $\mathbf{D} \left[P_G \right] = \left[\mathcal{T}_c^b \cap \mathcal{T}^{\leq 0} \right]$.
- **2** $[Q_G] = [T_c^b \cap T^{\geq 0}]$.

Suppose ${\cal T}$ is a weakly approximable triangulated category with ${\cal T}^c\subset{\cal T}^b_c$. Put $\mathcal{S} = \mathcal{T}_{c}^{b}$ and let $H \in \mathcal{S}$ be any object. We say that H satisfies the strong hypothesis if

(ロ) (個) (目) (目) (目) 目 のQC

Suppose ${\cal T}$ is a weakly approximable triangulated category with ${\cal T}^c\subset{\cal T}^b_c$. Put $\mathcal{S} = \mathcal{T}_{c}^{b}$ and let $H \in \mathcal{S}$ be any object. We say that H satisfies the strong hypothesis if

1 For every object $X \in \mathcal{S}$ there exists an integer $B > 0$, depending on X , with

 $X \in P_H[-B] \cap Q_H[B]$.

Suppose ${\cal T}$ is a weakly approximable triangulated category with ${\cal T}^c\subset{\cal T}^b_c$. Put $\mathcal{S} = \mathcal{T}_{c}^{b}$ and let $H \in \mathcal{S}$ be any object. We say that H satisfies the strong hypothesis if

1 For every object $X \in \mathcal{S}$ there exists an integer $B > 0$, depending on X , with

$$
X\in P_H[-B]\cap Q_H[B].
$$

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Moreover there is an integer $A > 0$ such that the following hold:

Suppose ${\cal T}$ is a weakly approximable triangulated category with ${\cal T}^c\subset{\cal T}^b_c$. Put $\mathcal{S} = \mathcal{T}_{c}^{b}$ and let $H \in \mathcal{S}$ be any object. We say that H satisfies the strong hypothesis if

1 For every object $X \in \mathcal{S}$ there exists an integer $B > 0$, depending on X , with

$$
X\in P_H[-B]\cap Q_H[B].
$$

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Moreover there is an integer $A > 0$ such that the following hold:

 \bullet Hom($P_H[A], Q_H$) = 0.

Suppose ${\cal T}$ is a weakly approximable triangulated category with ${\cal T}^c\subset{\cal T}^b_c$. Put $\mathcal{S} = \mathcal{T}_{c}^{b}$ and let $H \in \mathcal{S}$ be any object. We say that H satisfies the strong hypothesis if

1 For every object $X \in \mathcal{S}$ there exists an integer $B > 0$, depending on X , with

$$
X\in P_H[-B]\cap Q_H[B].
$$

Moreover there is an integer $A > 0$ such that the following hold:

•
$$
\text{Hom}(P_H[A], Q_H) = 0.
$$

2 For every object $F \in P_H$, and every integer $m > 0$, there exists a triangle $E_m \longrightarrow F \longrightarrow D_m$ with $E_m \in \langle H \rangle^{[1-m-A,A]}$ and with $D_m \in P_H[m]$.

 D^{\perp} containing \mathcal{T}_c^b .

 D^{\perp} containing \mathcal{T}_c^b .

For $\mathcal{T} = \mathbf{D}(R\text{--Mod})$, a cochain complex D^* of finitely generated projective R–modules

 D^{\perp} containing \mathcal{T}_c^b .

For $\mathcal{T} = \mathbf{D}(R\text{--Mod})$, a cochain complex D^* of finitely generated projective R–modules

$$
\cdots \longrightarrow D^{-2} \longrightarrow D^{-1} \longrightarrow D^{0} \longrightarrow 0
$$

 D^{\perp} containing \mathcal{T}_c^b .

For $\mathcal{T} = \mathbf{D}(R\text{--Mod})$, a cochain complex D^* of finitely generated projective R–modules

$$
\cdots \longrightarrow D^{-2} \longrightarrow D^{-1} \longrightarrow D^{0} \longrightarrow 0
$$

(ロ) (御) (君) (君) (君) 君 のぬの

such that D^\perp contains \mathcal{T}_c^b .

 D^{\perp} containing \mathcal{T}_c^b .

For $\mathcal{T} = \mathbf{D}(R\text{--Mod})$, a cochain complex D^* of finitely generated projective R–modules

$$
\cdots \longrightarrow D^{-2} \longrightarrow D^{-1} \longrightarrow D^{0} \longrightarrow 0
$$

such that D^\perp contains \mathcal{T}^b_c . And in particular $\mathrm{Hom}(D,R[n])=0$ for all $n \in \mathbb{Z}$.

 D^{\perp} containing \mathcal{T}_c^b .

For $\mathcal{T} = \mathbf{D}(R\text{--Mod})$, a cochain complex D^* of finitely generated projective R–modules

$$
\cdots \longrightarrow D^{-2} \longrightarrow D^{-1} \longrightarrow D^0 \longrightarrow 0
$$

such that D^\perp contains \mathcal{T}^b_c . And in particular $\mathrm{Hom}(D,R[n])=0$ for all $n \in \mathbb{Z}$.

If ${}^{\perp} \mathcal{T}^b_c \cap \mathcal{T}^-_c = \{0\}$, then there is a recipe giving \mathcal{T}^c as a subcategory of \mathcal{T}_c^b .

Let $\mathcal T$ be a weakly approximable triangulated category with $\mathcal T^c\subset \mathcal T_c^b$, and let $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ be a t -structure in the preferred equivalence class. Put

Let $\mathcal T$ be a weakly approximable triangulated category with $\mathcal T^c\subset \mathcal T_c^b$, and let $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ be a t -structure in the preferred equivalence class. Put

 $\mathfrak{C}(\mathcal{T}) = \mathcal{T}^{-} \bigcap \left\{ \begin{bmatrix} \infty \\ 0 \end{bmatrix} \right\}$ $i=1$ $\left(\pm [\mathcal{T}^{\leq -i}] \cap [\mathcal{T}^{\leq -i}]^{\perp} \right)$

Let $\mathcal T$ be a weakly approximable triangulated category with $\mathcal T^c\subset \mathcal T_c^b$, and let $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ be a t -structure in the preferred equivalence class. Put

$$
\mathfrak{C}(\mathcal{T}) \quad = \quad \mathcal{T}^{-} \bigcap \left\{ \bigcup_{i=1}^{\infty} \left(\pm [\mathcal{T}^{\leq -i}] \cap [\mathcal{T}^{\leq -i}]^{\perp} \right) \right\}
$$

It is known that there exists an integer $B > 0$ with

$$
\mathfrak{C}(\mathcal{T}) \cap {}^{\perp}[\mathcal{T}^{\leq -m}] \qquad \subset \qquad [\mathcal{T}^{\leq -m-B}]^{\perp} .
$$

Let $\mathcal T$ be a weakly approximable triangulated category with $\mathcal T^c\subset \mathcal T_c^b$, and let $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ be a t -structure in the preferred equivalence class. Put

$$
\mathfrak{C}(\mathcal{T}) \quad = \quad \mathcal{T}^{-} \bigcap \left\{ \bigcup_{i=1}^{\infty} \left(\pm [\mathcal{T}^{\leq -i}] \cap [\mathcal{T}^{\leq -i}]^{\perp} \right) \right\}
$$

It is known that there exists an integer $B > 0$ with

$$
\mathfrak{C}(\mathcal{T}) \cap {}^{\perp}[\mathcal{T}^{\leq -m}] \qquad \subset \qquad [\mathcal{T}^{\leq -m-B}]^{\perp} .
$$

The "big" finitistic dimension conjecture says that there exists an integer $B > 0$ with

$$
\mathfrak{C}(\mathcal{T}) \cap [\mathcal{T}^{\leq -m}]^{\perp} \qquad \subset \qquad {}^{\perp}[\mathcal{T}^{\leq -m-B}]\ .
$$

Let $\mathcal T$ be a weakly approximable triangulated category with $\mathcal T^c\subset \mathcal T_c^b$, and let $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ be a t -structure in the preferred equivalence class. Put

Let $\mathcal T$ be a weakly approximable triangulated category with $\mathcal T^c\subset \mathcal T_c^b$, and let $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ be a t -structure in the preferred equivalence class. Put

 $\mathfrak{C}(\mathcal{T}) = \mathcal{T}_c^{-} \bigcap \left\{ \bigcup_{i=1}^{\infty} \right\}$ $i=1$ $\left(\pm [\mathcal{T}^{\leq -i}] \cap [\mathcal{T}^{\leq -i}]^{\perp} \right)$

Let $\mathcal T$ be a weakly approximable triangulated category with $\mathcal T^c\subset \mathcal T_c^b$, and let $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ be a t -structure in the preferred equivalence class. Put

$$
\mathfrak{C}(\mathcal{T}) \quad = \quad \mathcal{T}_c^-\bigcap\left\{\bigcup_{i=1}^\infty\left(\bot[\mathcal{T}^{\leq -i}]\cap[\mathcal{T}^{\leq -i}]^\perp\right)\right\}
$$

It is known that there exists an integer $B > 0$ with

$$
\mathfrak{C}(\mathcal{T}) \cap {}^{\perp}[\mathcal{T}^{\leq -m}] \qquad \subset \qquad [\mathcal{T}^{\leq -m-B}]^{\perp} .
$$

Let $\mathcal T$ be a weakly approximable triangulated category with $\mathcal T^c\subset \mathcal T_c^b$, and let $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0})$ be a t -structure in the preferred equivalence class. Put

$$
\mathfrak{C}(\mathcal{T}) \quad = \quad \mathcal{T}_c^-\bigcap\left\{\bigcup_{i=1}^\infty\left(\bot[\mathcal{T}^{\leq -i}]\cap[\mathcal{T}^{\leq -i}]^\perp\right)\right\}
$$

It is known that there exists an integer $B > 0$ with

$$
\mathfrak{C}(\mathcal{T}) \cap {}^{\perp}[\mathcal{T}^{\leq -m}] \qquad \subset \qquad [\mathcal{T}^{\leq -m-B}]^{\perp} .
$$

The "small" finitistic dimension conjecture says that there exists an integer $B > 0$ with

$$
\mathfrak{C}(\mathcal{T}) \cap [\mathcal{T}^{\leq -m}]^{\perp} \qquad \subset \qquad {}^{\perp}[\mathcal{T}^{\leq -m-B}]\ .
$$

Thank you!

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |