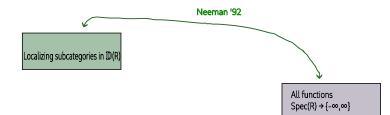
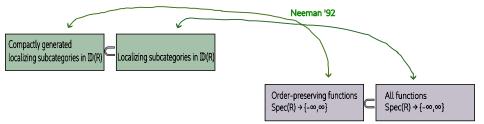
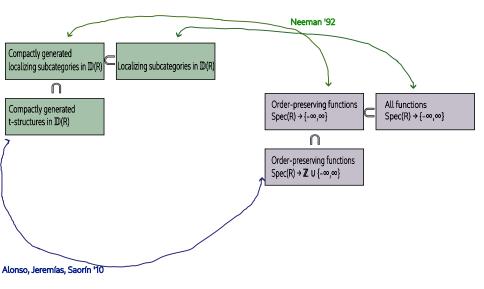
⊗-structures in derived categories (joint with Dolors Herbera and Giovanna Le Gros)

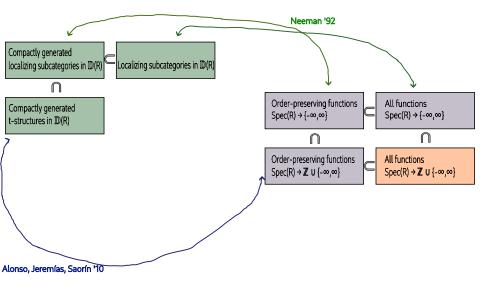
Michal Hrbek

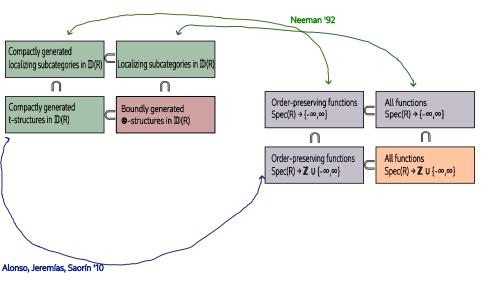
Institute of Mathematics, Czech Academy of Sciences

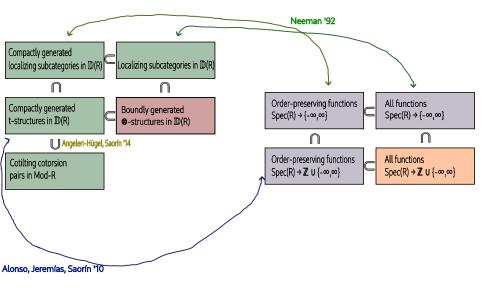


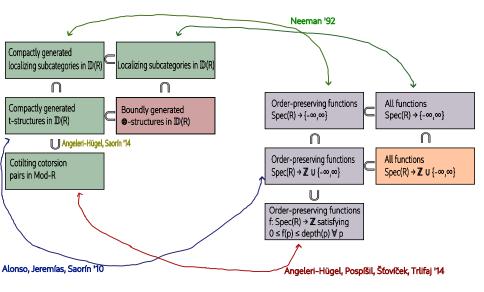


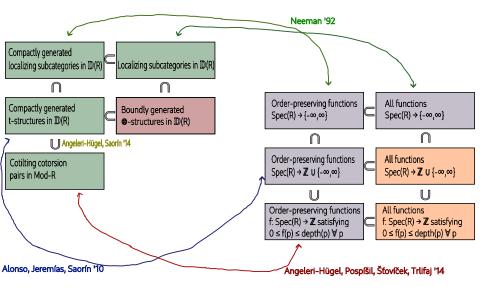


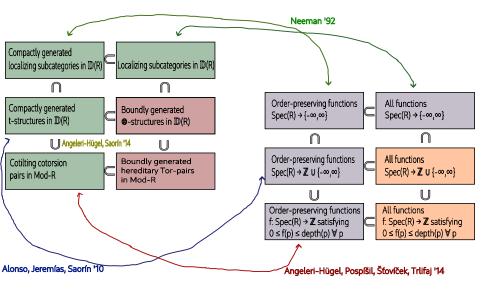












⊗-structures

Let R be a (not necessarily commutative) ring. Let $\mathcal{D}(Mod-R)$ (resp. $\mathcal{D}(R-Mod)$) denote the unbounded derived category of right (resp. left) R-modules.

• For $\mathfrak{X} \subseteq \mathfrak{D}(\mathsf{Mod}\text{-}R)$, let

$$\mathfrak{X}^{ op < 0} = \{ Y \in \mathfrak{D}(R\operatorname{\mathsf{-Mod}}) \mid X \otimes_R^{\mathsf{L}} Y \in \mathfrak{D}^{\geq 0} \}$$

• For $\mathcal{Y} \subseteq \mathcal{D}(R\operatorname{-Mod})$, let

$$^{ op <_0} \mathfrak{Y} = \{X \in \mathfrak{D}(\mathsf{Mod}\text{-}R) \mid X \otimes^{\mathsf{L}}_R Y \in \mathfrak{D}^{\geq 0}\}$$

Definition

A \otimes -structure over R is a pair $(\mathfrak{X}, \mathfrak{Y})$ of subcategories $\mathfrak{X} \subseteq \mathcal{D}(\mathsf{Mod}\text{-}R)$ and $\mathfrak{Y} \subseteq \mathcal{D}(R\text{-}\mathsf{Mod})$ such that $\mathfrak{Y} = \mathfrak{X}^{\top_{<0}}$ and $\mathfrak{X} = {}^{\top_{<0}}\mathfrak{Y}.$

Definition

A \otimes -structure over R is a pair $(\mathcal{X}, \mathcal{Y})$ of subcategories $\mathcal{X} \subseteq \mathcal{D}(\mathsf{Mod}\text{-}R)$ and $\mathcal{Y} \subseteq \mathcal{D}(R\text{-}\mathsf{Mod})$ such that $\mathcal{Y} = \mathcal{X}^{\top_{<0}}$ and $\mathcal{X} = {}^{\top_{<0}}\mathcal{Y}.$

- Both the classes $\mathcal X$ and $\mathcal Y$ are closed under Σ^{-1} , extensions, and homotopy directed colimits.
- The pair $(\mathcal{D}^{\geq 0}, \mathcal{K}^{\geq 0}(R\text{-}\mathrm{dgFlat}))$ is the standard \otimes -structure.
- More generally, let (𝔅, 𝔅) be a hereditary Tor-pair over R, that is, a pair of subcategories 𝔅 ⊆ Mod-R and 𝔅 ⊆ R-Mod maximal with respect to the orthogonality relation Tor^R_i(𝔅, 𝔅) = 0 ∀i > 0. Then

$$(\mathcal{K}^{\geq 0}(R\text{-}\mathrm{dgFlat})\star\mathcal{F},\mathcal{K}^{\geq 0}(R\text{-}\mathrm{dgFlat})\star\mathcal{C})$$

is a \otimes -structure.

Given a \otimes -structure $(\mathfrak{X}, \mathfrak{Y})$, there is a co-t-structure of the form $(\mathfrak{X}, \mathfrak{X}^{\perp})$ in $\mathcal{D}(\mathsf{Mod}\text{-}R)$.

- We have $\mathfrak{X} = {}^{\perp}(\mathfrak{Y}^+)$, where $(-)^+ = \mathbf{R} \operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Q}/\mathbb{Z})$ is the character duality.
- It follows by a purification argument that (X, X[⊥]) is a co-t-structure cogenerated by a pure-injective object of D(Mod-R) [Laking-Vitória '20].
- This yields a bijection between the set (!) of ⊗-structures over R and the set of co-t-structures in D(Mod-R) cogenerated by dual objects.

\otimes -structures vs. t-structures

Let us call a \otimes -structure $(\mathcal{X}, \mathcal{Y})$ stable if \mathcal{X} (equivalently, \mathcal{Y}) is closed under Σ .

Proposition

A thick subcategory $\mathfrak{X} \subseteq \mathfrak{D}(\mathsf{Mod}-R)$ fits into a (stable) \otimes -structure $(\mathfrak{X},\mathfrak{Y})$ if and only if $\mathfrak{X} = \mathsf{Ker}(-\otimes_R^{\mathsf{L}} Y)$ for some $Y \in \mathfrak{D}(R\operatorname{-Mod})$. (I.e., \mathfrak{X} is a Bousfield class.)

Proposition

Let $(\mathfrak{X}, \mathfrak{Y})$ be a \otimes -structure over R. TFAE:

- **1** \mathcal{Y} is a coaisle of a t-structure in $\mathcal{D}(R-Mod)$.
- **2** *Y* is closed under products.

In this case, the t-structure $(\mathfrak{U}, \mathfrak{Y})$ in $\mathfrak{D}(R-Mod)$ is homotopically smashing, that is, \mathfrak{Y} is a definable subcategory [Angeleri-Hügel, Marks, Vitória '17].

Compactly generated t-structures

Let $(\mathcal{U}, \mathcal{Y})$ be a t-structure in D(R-Mod) generated by a subcategory S of compact objects.

- Let $S^* = {\mathbf{R}Hom_R(S, R) \mid S \in S}$, a subcategory of compact objects of $\mathcal{D}(Mod-R)$.
- Then we have a ⊗-structure (X, Y) over R generated by S (meaning that Y = S^T<0).

Proposition

Let R be a ring such that every homotopically smashing t-structure in $\mathcal{D}(R-Mod)$ is compactly generated. Then:

$$\left\{\begin{array}{c} \otimes \text{-structures } (\mathfrak{X}, \mathfrak{Y}) \\ \text{with } \mathfrak{Y} \text{ product closed} \end{array}\right\} \xleftarrow{1-1} \left\{\begin{array}{c} \text{Compactly generated} \\ \text{t-structures in } \mathfrak{D}(R\text{-}\mathsf{Mod}) \end{array}\right\}$$

The assumption holds e.g. if *R* is commutative noetherian [H-Nakamura '21] or left hereditary [Angeleri-Hügel, H '21].

Let us call a \otimes -structure $(\mathfrak{X}, \mathfrak{Y})$ compactly generated if there is a subcategory S of compact objects of $\mathcal{D}(\mathsf{Mod}\text{-}R)$ such that $\mathfrak{Y} = S^{\top_{<0}}$.

Proposition (Šťovíček-Pospíšil '16, Angeleri-Hügel, H '21)

The following structures are in mutual bijection:

- Compactly generated t-structures in $\mathcal{D}(R-Mod)$.
- Compactly generated co-t-structures in $\mathcal{D}(\mathsf{Mod}\text{-}R)$.
- Compactly generated ⊗-structures over *R*.

Definition

Let us call a \otimes -structure $(\mathfrak{X}, \mathfrak{Y})$ boundly generated if $\mathfrak{Y} = \mathfrak{K}^{\top < 0}$ for a subcategory \mathfrak{K} of $\mathfrak{K}^{\mathsf{b}}(\mathsf{Flat-}R)$.

- If there are integers m < n such that $\mathcal{D}^{>n} \subseteq \mathcal{Y} \subseteq \mathcal{D}^{>m}$ ("intermediacy") then $(\mathcal{X}, \mathcal{Y})$ is boundly generated.
- Any compactly generated t-structure gives rise to a compactly, and thus boundly, generated ⊗-structure.

Corollary (of a Theorem of Neeman '92)

- Any localizing subcategory \mathcal{L} of $\mathcal{D}(R)$ is a Bousfield class.
- Each localizing subcategory is of the form $\mathcal{L} = \{k(\mathfrak{p}) \mid \mathfrak{p} \in P\}^{\top_{\mathbb{Z}}} = \{\mathbf{R}\Gamma_{V(\mathfrak{p})} R_{\mathfrak{p}} \mid \mathfrak{p} \in P\}^{\top_{\mathbb{Z}}}$ for a subset $P \subseteq \operatorname{Spec} R.$
- In particular, there is a boundly generated \otimes -structure $(\mathfrak{X}, \mathcal{L})$.

Tor-pairs

Proposition

If R is a regular commutative noetherian ring then every \otimes -structure is boundly generated.

Definition

Let us call a hereditary Tor-pair $(\mathcal{F}, \mathcal{C})$ boundly generated if there is a subcategory \mathcal{S} of right *R*-modules of finite flat dimension such that $\mathcal{C} = \text{Ker Tor}_{>0}^{R}(\mathcal{S}, -)$.

A hereditary Tor-pair $(\mathcal{F}, \mathcal{C})$ is boundly generated if and only if the induced \otimes -structure is boundly generated.

Example

Let *R* be a commutative noetherian ring with a dualizing complex which is **not** Gorenstein and such that there is a non-trivial Gorenstein flat *R*-module. Then the hereditary Tor-pair (\mathcal{GF} , \mathcal{C}) is not boundly generated (from either side!).

Thank you for your attention!