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Let R be a (not necessarily commutative) ring. Let D(Mod-R)
(resp. D(R-Mod)) denote the unbounded derived category of right
(resp. left) R-modules.

e For X C D(Mod-R), let
XT<0 = {Y € D(R-Mod) | X @& Y € D=}

e For Y C D(R-Mod), let
T<oy — {X € D(Mod-R) | X @k Y € D=}

Definition

A ®@-structure over R is a pair (X,Y) of subcategories
X € D(Mod-R) and Y C D(R-Mod) such that Y = X< and
X = <oy,
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Definition

A @-structure over R is a pair (X,Y) of subcategories
X € D(Mod-R) and Y C D(R-Mod) such that Y = X< and
x = T<oy,

@ Both the classes X and Y are closed under ¥ 1, extensions,
and homotopy directed colimits.

o The pair (D=0, K=°(R-dgFlat)) is the standard ®-structure.
@ More generally, let (F,C) be a hereditary Tor-pair over R,
that is, a pair of subcategories ¥ C Mod-R and € C R-Mod
maximal with respect to the orthogonality relation
TorR(F,©) = 0 Vi > 0. Then
(X=°(R-dgFlat) « F, K=°(R-dgFlat) x €)

is a ®-structure.
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&®-structures vs. co-t-structures

Given a ®-structure (X,Y), there is a co-t-structure of the form
(X, X1) in D(Mod-R).

o We have X = +(Y*), where (—)T = RHomz(—, Q/Z) is the
character duality.

e It follows by a purification argument that (X, X") is a
co-t-structure cogenerated by a pure-injective object of
D(Mod-R) [Laking-Vitéria '20].

@ This yields a bijection between the set (!) of ®-structures
over R and the set of co-t-structures in D(Mod-R)
cogenerated by dual objects.
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&®-structures vs. t-structures

Let us call a ®@-structure (X, Y) stable if X (equivalently, Y) is
closed under X.

A thick subcategory X C D(Mod-R) fits into a (stable) ®@-structure
(X, Y) if and only if X = Ker(— @k Y) for some Y € D(R-Mod).
(l.e., X is a Bousfield class.)

Proposition
Let (X,Y) be a ®-structure over R. TFAE:
Q Y is a coaisle of a t-structure in D(R-Mod).

©Q Y is closed under products.

In this case, the t-structure (U, Y) in D(R-Mod) is homotopically
smashing, that is, Y is a definable subcategory [Angeleri-Hiigel,
Marks, Vitéria '17].

v
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Compactly generated t-structures

Let (U,Y) be a t-structure in D(R-Mod) generated by a
subcategory 8 of compact objects.

o Let 8* = {RHomg(S,R) | S € 8}, a subcategory of compact
objects of D(Mod-R).

@ Then we have a ®-structure (X,Y) over R generated by 8
(meaning that Y = §T<0),

Proposition

Let R be a ring such that every homotopically smashing t-structure
in D(R-Mod) is compactly generated. Then:

®-structures (X, Y) BN Compactly generated
with Y product closed t-structures in D(R-Mod)

The assumption holds e.g. if R is commutative noetherian
[H-Nakamura '21] or left hereditary [Angeleri-Hugel, H '21].
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Compactly generated ®-structures

Let us call a ®-structure (X,Y) compactly generated if there is a
subcategory 8 of compact objects of D(Mod-R) such that
Y=8T<o,

Proposition (Stovic¢ek-Pospisil '16, Angeleri-Hiigel, H '21)

The following structures are in mutual bijection:
e Compactly generated t-structures in D(R-Mod).
e Compactly generated co-t-structures in D(Mod-R).

o Compactly generated ®-structures over R.
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Definition

Let us call a ®-structure (X,Y) boundly generated if Y = K T<0 for
a subcategory K of K°(Flat-R).

o If there are integers m < n such that D”" CY C D™
(“intermediacy”) then (X,Y) is boundly generated.

@ Any compactly generated t-structure gives rise to a
compactly, and thus boundly, generated ®-structure.

Corollary (of a Theorem of Neeman '92)

e Any localizing subcategory £ of D(R) is a Bousfield class.

@ Each localizing subcategory is of the form
L ={k(p)|pe P} 2={RTy ) Ry | p € P}% for a subset
P C SpecR.

@ In particular, there is a boundly generated ®-structure (X, L).

V
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Proposition

If R is a regular commutative noetherian ring then every
®-structure is boundly generated.

Definition

Let us call a hereditary Tor-pair (F, C) boundly generated if there
is a subcategory S of right R-modules of finite flat dimension such
that € = Ker Tor%, (8, —).

A hereditary Tor-pair (&, C) is boundly generated if and only if the
induced ®-structure is boundly generated.

Let R be a commutative noetherian ring with a dualizing complex
which is not Gorenstein and such that there is a non-trivial
Gorenstein flat R-module. Then the hereditary Tor-pair (§F,C) is
not boundly generated (from either side!).
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Thank you for your attention!
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