An Introduction to Model Theory for Representation Theory

Lorna Gregory

May 2024

Definition

A (first-order) language $\mathcal L$ consists of

- \triangleright 3 mutually disjoint sets: R the set of **relation symbols**, F the set of function symbols and C the set of constant symbols; and
- **►** an arity function $\lambda : \mathcal{R} \cup \mathcal{F} \rightarrow \mathbb{N}$.

For any $Q \in \mathcal{R} \cup \mathcal{F}$, we will refer to $\lambda(Q)$ as the arity of Q.

Definition

An L-structure A is a non-empty set A called the **domain** of A together with

- (i) a subset $R^{\mathcal{A}}$ of $A^{\lambda(R)}$ for each $R \in \mathcal{R}$;
- (ii) a function $\mathcal{F}^{\mathcal{A}}$ from $\mathcal{A}^{\lambda(\mathcal{F})}\to\mathcal{A}$ for each $\mathcal{F}\in\mathcal{F};$ and
- (iii) an element $c^{\mathcal{A}} \in A$ for each $c \in \mathcal{C}$.

For $Q \in \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$, we call $Q^{\mathcal{A}}$ the **interpretation** in \mathcal{A} .

Example

Let $\mathcal{L} := \{\circ\}$ where \circ is a binary function symbol. An \mathcal{L} -structure is a magma.

More examples of languages

- The language of abelian groups is $\mathcal{L}_{Ab} := \{0, +, -\}$ where 0 is a constant symbol, $+$ is a binary function symbol and $-$ is unary function symbol.
- The language of rings is $\mathcal{L}_{\text{rings}} := \{0, 1, +, -, \cdot\}$ where 0 is a constant symbol, $+$ is a binary function symbol and $+$ and \cdot are binary function symbols and $-$ is a unary function symbol.
- For R a ring, the language of R-modules is $\mathcal{L}_R := \{0, +, (\cdot r)_{r \in R}\}\$ where 0 is a constant symbol, $+$ is a binary function symbol and for each $r \in R$, $\cdot r$ is a unary function symbol.
- The language of ordered sets if $\mathcal{L}_{\leq} := {\leq}$ where \leq is a binary relation symbol.

Definition

The **alphabet** of a language \mathcal{L} is the relation, functions and constant symbols of $\mathcal L$ together with a set of logical symbols which are part of every language consisting of:

Connectives: $\{\rightarrow, \wedge, \vee, \neg\}$ Quantifiers: ∀ and ∃ The equality symbols $=$ Brackets ")" and "(" Comma: ","

A set of variables denoted $\text{Vbl} := \{v_i \mid i \in \mathbb{N}\} \cup \{u, v, w, x, y, z\}$

Examples of L -formulae:

The $\mathcal{L}_{\text{rings}}$ -formula

$$
(\forall v_2 \; v_1 \cdot v_2 = v_2 \cdot v_1)
$$

defines the centre of a ring. The $\mathcal{L}_{\text{rings}}$ -formula

$$
(\forall v_1(v_1=0 \vee (\exists v_2 ~v_1 \cdot v_2=1)))
$$

expresses that every non-zero element is invertible.

Define $\text{tm}_0(\mathcal{L})$ to be the set Vbl∪C. For all $k \in \mathbb{N}$, let $\text{tm}_{k+1}(\mathcal{L})$ be $\tan_k(\mathcal{L}) \cup \{F(t_1,t_2,\ldots,t_n) \mid F \in \mathcal{F}, \lambda(F)=n \text{ and } t_1,\ldots,t_n \in \text{tm}_k(\mathcal{L})\}.$ We define the set of L -terms to be

$$
\textup{tm}(\mathcal L):=\bigcup_{k\in\mathbb N_0}\textup{tm}_k(\mathcal L).
$$

Let $\text{Fml}_0(\mathcal{L})$ be the set of strings in the alphabet of $\mathcal L$ of the form

$$
t_1 = t_2 \quad \text{or} \quad R(t_1, \ldots, t_n)
$$

where t_1, \ldots, t_n are \mathcal{L} -terms and $R \in \mathcal{R}$ has arity n. For each $k \in \mathbb{N}_0$, let

 $\text{Fml}_{k+1}(\mathcal{L}) := \text{Fml}_k(\mathcal{L}) \cup \{(\varphi \to \psi), (\varphi \land \psi), (\varphi \lor \psi), \neg \varphi \mid \varphi, \psi \in \text{Fml}_k(\mathcal{L})\}$ \cup { $(\forall x \varphi)$, $(\exists x \varphi) \mid \varphi \in \text{Fml}_k(\mathcal{L})$ and $x \in \text{Vbl}$.

We define the set of $\mathcal{L}\text{-formulae}$ to be

$$
\mathrm{Fml}(\mathcal{L}):=\bigcup_{i\in\mathbb{N}_0}\mathrm{Fml}_i(\mathcal{L}).
$$

Interpreting formulae in \mathcal{L} -structures

Let θ be an *L*-formula and

$$
(\exists v_i \underline{\hspace{1cm}}) \quad \text{or} \quad (\forall v_i \underline{\hspace{1cm}})
$$

a substring of θ .

Free variables: An instance of a variable is free if it is not a bound instance or a quantifier instance. The free variables of a formula θ are those variable which occur as free instances.

To indicate that an L-formula θ has free variables contained in a set $\{x_1, \ldots, x_n\}$ we write $\theta(x_1, \ldots, x_n)$.

Let M be an L-structure, $\theta(x_1, \ldots, x_n)$ be an L-formula and $(m_1, \ldots, m_n) \in M$. We say that $\theta(m_1, \ldots, m_n)$ holds in M if the expression obtained by replacing every free instance of x_i in θ by m_i is true in M.

A sentence is a formula without free variables.

The $\mathcal{L} = \{\circ\}$ -formula

$$
(\forall x(\forall y(\forall z(x\circ y)\circ z=x\circ (y\circ z))))
$$

is a sentence.

Interpreting formulae in \mathcal{L} -structures

Let θ be an *L*-formula and

$$
(\exists v_i \underline{\hspace{1cm}}) \quad \text{or} \quad (\forall v_i \underline{\hspace{1cm}})
$$

a substring of θ .

Free variables: An instance of a variable is free if it is not a bound instance or a quantifier instance. The free variables of a formula θ are those variable which occur as free instances.

To indicate that an L-formula θ has free variables contained in a set $\{x_1, \ldots, x_n\}$ we write $\theta(x_1, \ldots, x_n)$.

Let M be an L-structure, $\theta(x_1, \ldots, x_n)$ be an L-formula and $(m_1, \ldots, m_n) \in M$. We say that $\theta(m_1, \ldots, m_n)$ holds in M if the expression obtained by replacing every free instance of x_i in θ by m_i is true in M.

A sentence is a formula without free variables.

Let $\theta(v_1)$ be the $\mathcal{L}_{\text{rings}}$ -formula

$$
(\forall v_2\ v_1\cdot v_2=v_2\cdot v_1)
$$

is not a sentence.

If Σ is a set of sentences then we say an $\mathcal L$ -structure $\mathcal M$ is a **model** of Σ if all sentences in Σ hold in M .

If X is a class of \mathcal{L} -structures then the **theory of** X, written $\text{Th}(X)$, is the set of all \mathcal{L} -sentences which hold in all members of X .

A class X of L -structures is axiomatisable if there is a set of sentences Σ such that the members of X are exactly the models of Σ. Examples

We say \mathcal{L} -structures \mathcal{M} and \mathcal{N} are **elementary equivalent**, and write $\mathcal{M} \equiv N$, if Th $(\mathcal{M}) = Th(\mathcal{N})$.

Let M be an $\mathcal L$ -structure with domain M. A subset $N \subset M$ is an elementary if for all formulas $\theta(x_1, \ldots, x_n)$ and $(a_1, \ldots, a_n) \in N$ of elements of N, $\theta(a_1, \ldots, a_n)$ holds in N if and only if $\theta(a_1, \ldots, a_n)$ holds in M.

The First Theorem of Model Theory

The Compactness Theorem

Let $\mathcal L$ be a language.

- (i) A set Σ of $\mathcal L$ -sentences has a model if and only if every finite subset of Σ has a model.
- (ii) Let Σ be a set of formulas with free variables (v_1, v_2, \ldots) . If for every finite subset Σ' of Σ , there exists an \mathcal{L} -structure M and a tuple of elements \overline{m} such that $\theta(\overline{m})$ holds in M then there exists an \mathcal{L} -structure M and a tuple of elements \overline{m} such that $\theta(\overline{m})$ holds in M for all $\theta \in \Sigma$.

Model Theory of Modules

Let R be a ring and $\mathcal{L}_R := \{0, +, (\cdot r)_{r \in R}\}\$ the language of R-modules. Every \mathcal{L}_R -term is equivalent (relative to Th(Mod-R)) to one of the form

$$
\sum_{i=1}^n x_i \cdot r_i
$$

where each x_i is a variable and each $r_i \in R$ for $1 \leq i \leq n$.

Every atomic formulae is equivalent (relative to $\text{Th}(\text{Mod-}R)$) to one of the form

$$
\sum_{i=1}^n x_i \cdot r_i = 0
$$

(or $0 = 0$) where x_1, \ldots, x_n are variables.

A (right) **pp-n-formula** (over R) is a formula $\varphi(\overline{x})$ of the form

$$
\exists y_1,\ldots,y_m\bigwedge_{i=1}^l\sum_{j=1}^n x_jr_{ij}+\sum_{k=1}^m y_ks_{ik}=0
$$

where $r_{ii}, s_{ik} \in R$ and $\overline{x} = (x_1, \ldots, x_n)$.

For $M \in \text{Mod-}R$, we write $\varphi(M)$ for the solution set of φ in M.

- If $m_1, m_2 \in \varphi(M)$ then $m_1 + m_2 \in \varphi(M)$.
- If $f : M \to L \in \mathsf{Mod}\textrm{-}R$ and $\overline{m} \in \varphi(M)$ then $f(m) \in \varphi(L)$.
- Let $N_i \in Mod-R$ for $i \in I$. Then

$$
\varphi(\oplus_i N_i)=\oplus_i\varphi(N_i).
$$

A (right) **pp-n-formula** (over R) is a formula $\varphi(\overline{x})$ of the form

$$
\exists y_1,\ldots,y_m\bigwedge_{i=1}^l\sum_{j=1}^n x_jr_{ij}+\sum_{k=1}^m y_ks_{ik}=0
$$

where $r_{ii}, s_{ik} \in R$ and $\overline{x} = (x_1, \ldots, x_n)$.

We write pp^n_R for the set of (right) $\mathsf{pp}\text{-}n\text{-}$ formulae over R where we identify pp-n-formulae φ, ψ if $\varphi(M) = \psi(M)$ for all $M \in Mod-R$.

 pp^n_R is a bounded modular lattice when equipped with the order defined by

 $\psi \leq \varphi$ if and only if $\psi(M) \subseteq \varphi(M)$ for all $M \in Mod-R$.

We write $\varphi+\psi$ for the join (l.u.b) and $\varphi\wedge\psi$ for the meet (g.l.b) in pp $_R^n.$ For all $M \in Mod-R$.

 $(\varphi + \psi)(M) = \varphi(M) + \psi(M)$ and $(\varphi \wedge \psi)(M) = \varphi(M) \cap \psi(M)$.

Modular: $a \leq b$ implies $a + (z \wedge b) = (a + z) \wedge b$.

Let $\varphi, \psi \in \mathsf{pp}^n_R$ with $\psi \leq \varphi$ and let $b \in \mathbb{N}$. We write

 $|\varphi/\psi| > b$

for the \mathcal{L}_R -sentence which expresses in all R-modules M that

 $|\varphi(M)/\psi(M)| > b.$

Suppose $n = 1$. Then we may take $|\varphi/\psi| > b$ to be

$$
\exists z_1,\ldots,z_b \bigwedge_{i=1}^b \varphi(z_i) \land \bigwedge_{i
$$

The Baur-Monk Theorem

Every formula in the language of R-modules is equivalent to a boolean combination of pp-formulae and sentences of the form

$$
|\varphi/\psi|\geq b
$$

where $b \in \mathbb{N}$ and φ, ψ are pp-1-formulae such that $\psi \leq \varphi$.

Corollary

Let $M, N \in \mathsf{Mod}\text{-}R$. Then

 $M \equiv N$ if and only if $|\varphi(M)/\psi(M)| = |\varphi(N)/\psi(N)|$,

when either is finite, for all $\varphi \geq \psi \in pp_R^1$.

Examples

• Let N_i be a collection of R-modules for $i \in I$, then

$$
\bigoplus_{i\in I}N_i\equiv \prod_{i\in I}N_i.
$$

- If R is an algebra over an infinite field k then for all $M \in Mod-R$. $M^2 = M$
- As \mathbb{Z} -modules, $\mathbb{Z} \oplus \mathbb{Q} \equiv \mathbb{Z}$.

Corollary

A submodule $L \subseteq M$ is elementary if and only if $L \equiv M$ and, for all pp-formulae φ , $\varphi(L) = \varphi(M) \cap L$.

Purity

Definition

An embedding $f : M \hookrightarrow N$ is pure if for all pp-1-formulae φ .

```
\varphi(N) \cap f(M) = f(\varphi(M)).
```
An R-module M is pure-injective if every pure-embedding $M \hookrightarrow N$ splits.

Definition

An R -module M is algebraically compact if any system of (inhomogeneous) linear equations over R , in arbitrary many variables, which is finitely solvable in M, has a solution in M.

Equivalently, an R-module M is algebraically compact if for any $n \in \mathbb{N}$, the collection of sets of the form $\overline{a}+\varphi(\mathit{M})$ where $\varphi\in\mathsf{pp}^n_R$ and \overline{a} is an n -tuples in M , has the finite intersection property.

Theorem

An R-module is algebraically compact if and only if it is pure-injective.

Modules up to Elementary Equivalence

Write pinj ${}_{R}$ for the set of indecomposable pure-injective $R\text{-modules.}$

Theorem (Ziegler)

For every R-module M, there exists $N_i \in \text{pinj}_R$ such that M is elementary equivalent to $\bigoplus_{i\in I}N_i$.

Theorem

Let $N, M \in \mathsf{pinj}_{R}$. Then $N \equiv M$ if and only if for all $\varphi \geq \psi \in \mathsf{pp}^1_R$

 $|\varphi(N)/\psi(N)| > 1 \Leftrightarrow |\varphi(M)/\psi(M)| > 1.$

An Introduction to Model Theory for Representation Theory

Lorna Gregory

May 2024

Reminders

A (right) **pp-n-formula** (over R) is a formula $\varphi(\overline{x})$ of the form

$$
\exists y_1, \ldots, y_m \bigwedge_{i=1}^l \sum_{j=1}^n x_j r_{ij} + \sum_{k=1}^m y_k s_{ik} = 0
$$

where $r_{ii}, s_{ik} \in R$ and $\bar{x} = (x_1, \ldots, x_n)$.

We write pp^n_R for the set of (right) $\mathsf{pp}\text{-}$ n-formulae over $R.$ This set is a lattice when ordered by $\varphi > \psi$ if and only if $\varphi(M) \supset \psi(M)$ for all $M \in Mod-R$.

Corollary of the Baur-Monk Theorem

Let $M, N \in \mathsf{Mod}\text{-}R$. Then

 $M \equiv N$ if and only if $|\varphi(M)/\psi(M)| = |\varphi(N)/\psi(N)|$,

when either is finite, for all $\varphi\geq\psi\in {\sf pp}_R^1.$

p-types

The **pp-type**, $pp^M(\overline{m})$, of an *n*-tuple \overline{m} in an *R*-module *M* is the set of all $\varphi \in pp_R^n$ such that $\overline{m} \in \varphi(M)$. Observations:

- pp^M (\overline{m}) is non-empty.
- If $\psi \leq \varphi$ in pp $^{\prime\prime}_R$ and $\psi \in$ pp $^M(\overline{m})$ then $\varphi \in$ pp $^M(\overline{m})$.
- If $\varphi_1,\ldots,\varphi_n\in pp^M(\overline{m})$ then $\bigwedge_{i=1}^n\varphi_i\in pp^M(\overline{m})$.

Therefore ${\sf pp}^M(\overline{m})$ is a filter in ${\sf pp}^n_R.$

Free realisations

Definition (Prest)

Let φ be a pp-n-formula. A free realisation of φ is a pair (M, \overline{m}) where M is a finitely presented R-module and \overline{m} is an *n*-tuple of elements of M such that for all $\sigma \in pp_R^n$, $\sigma \geq \varphi$ if and only if $\overline{m} \in \sigma(M)$.

Theorem

- (i) Let M be a finitely presented R-module and \overline{m} an n-tuple from M. Then $pp^M(\overline{m})$ is generated as a filter by some $\varphi \in pp_R^n$ i.e. (M, \overline{m}) is a free realisation of φ .
- (ii) Let $\varphi \in pp_R^n$. There exists a finitely presented R-module and an n-tuple \overline{m} such that (M, \overline{m}) is a free realisation of φ .

The Compactness Theorem

Let R be a ring and let $\mathcal{L}_R := (0, +, (\cdot r)_{r \in R})$ be the language of R-modules.

(ii) Let Σ be a set of \mathcal{L}_R -formulas with free variables (v_1, v_2, \ldots, v_n) . If for every finite subset Σ' of Σ , there exists an R-modules M and a tuple of elements $\overline{m} \in M$ such that $\theta(\overline{m})$ holds in M for all $\theta \in \Sigma'$ then there exists an R-module M and a tuple of elements $\overline{m} \in M$ such that $\theta(\overline{m})$ holds in M for all $\theta \in \Sigma$.

Application of the Compactness Theorem

Proposition

Any filter p in pp^n_R is the $pp\text{-type}$ of an element of some R-module.

Proof $(n=1)$.

Let $\Sigma := \{ \varphi(x) \mid \varphi \in pp_R^1 \text{ with } \varphi \in p \} \cup \{ \neg \psi(x) \mid \psi \in pp_R^1 \text{ with } \psi \notin p \}.$ By the Compactness Theorem, it is enough to show that for all

 $\varphi_1, \ldots, \varphi_k \in p$ and $\psi_1, \ldots, \psi_l \notin p$,

there exists $M \in Mod-R$ and $m \in M$ such that

 $m \in \varphi_i(M)$ for all $1 \leq i \leq k$ and $m \notin \psi_i(M)$ for all $1 \leq i \leq l$.

Since p is a filter, $\varphi := \varphi_1 \wedge ... \wedge \varphi_k \in p$ and $\psi_i \not> \varphi$ for $1 \leq i \leq l$. Let (M, m) be a free realisation of φ . Then, for all $\sigma \in pp_R^1$,

 $m \in \sigma(M)$ if and only if $\sigma > \varphi$.

Therefore $m \in \varphi_i(M)$ for all $1 \leq i \leq k$ and $m \notin \psi_i(M)$ for $1 \leq i \leq l$. \Box

Modules up to Elementary Equivalence

Definition

An embedding $f : M \hookrightarrow N$ is pure if for all pp-1-formulae φ ,

 $\varphi(N) \cap f(M) = f(\varphi(M)).$

An R-module M is **pure-injective** if every pure-embedding $M \hookrightarrow N$ splits.

Write pinj ${}_{R}$ for the set of indecomposable pure-injective $R\text{-modules.}$

Theorem (Ziegler)

For every R-module M, there exists $N_i \in \text{pinj}_R$ such that M is elementary equivalent to $\bigoplus_{i\in I}N_i$.

Theorem

Let $N, M \in \mathsf{pinj}_{R}$. Then $N \equiv M$ if and only if for all $\varphi \geq \psi \in \mathsf{pp}^1_R$

 $|\varphi(N)/\psi(N)| > 1 \Leftrightarrow |\varphi(M)/\psi(M)| > 1.$

The Ziegler Spectrum

The $\mathsf{Ziegler}\ \mathsf{spectrum}\ \mathsf{Zg}_R$, of R is the topological space with set of points pinj $_R$ and basis of open sets

$$
(\varphi/\psi) := \{ N \in \text{pinj}_R \mid |\varphi(N)/\psi(N)| > 1 \}
$$

where $\varphi \geq \psi \in \mathsf{pp}_R^1$.

Definable subcategories of Mod-R are in bijective correspondence with the closed subsets of the Ziegler spectrum via the map

$$
\mathcal{D}\mapsto \mathcal{D}\cap \mathsf{Zg}_R.
$$

Properties of Zg_{R}

- $\bullet~~ N, M \in \mathsf{pinj}_{R}$ are topologically indistinguishable if and only if they are elementary equivalent.
- The sets (φ/ψ) are compact. In particular, $Zg_R = (x = x/x = 0)$ is compact.
- \bullet Zg $_R$ is often not \mathcal{T}_0 and very rarely has the property that the intersection of two compact open sets is compact.

An example

The indecomposable pure-injective modules over $\mathbb Z$ are

- the finite modules $\mathbb{Z}/p^n\mathbb{Z}$ for p prime and $n \in \mathbb{N}$,
- the *p*-adic integers $\overline{\mathbb{Z}_{(p)}}$ for *p* prime,
- the p-Prüfer group $\mathbb{Z}_{p^{\infty}}$ for p prime, and
- \bullet \mathbb{Q} , the field of fractions of \mathbb{Z} .

A subset $\mathcal C$ of $\mathsf{Zg}_{\mathbb Z}$ is closed if and only if the following conditions hold:

- If $\mathcal C$ contains infinitely many finite modules then $\mathcal C$ contains $\mathbb Q$.
- If C contains infinitely many $\mathbb{Z}/p^n\mathbb{Z}$ for fixed prime p then C contains $\overline{\mathbb{Z}_{(p)}}$ and $\mathbb{Z}_{p^{\infty}}$.
- If C contains $\overline{\mathbb{Z}_{(p)}}$ or $\mathbb{Z}_{p^{\infty}}$ then C contains Q.

Soberness and the Baire property

Definition

We say a topological space has the **Baire property** if every countable intersection of open and dense subsets is dense.

Theorem (Herzog - reinterpreted)

Every closed subset of Zg_R has the Baire property.

Definition

Let T be a topological space.

- 1. A subset S of T is irreducible if whenever $S \subseteq C_1 \cup C_2$ where C_1 and C_2 are closed subsets then $S \subseteq C_1$ or $S \subseteq C_2$.
- 2. $\mathcal T$ is sober if every non-empty irreducible closed set is the closure of a point.

Corollary (Herzog)

If Zg_R has a countable basis then Zg_R is sober. In particular, if R is countable then Zg_{R} is sober.

Remark

If T is a topological space with a countable basis of open sets such that every closed subset of T has the Baire property then T is sober.

Proof

A topological space V is the closure of a point x if and only if x is a member of every non-empty open subset of x.

Let V be an irreducible topological space. Every non-empty open subset $\mathcal U$ of $\mathcal V$ is dense because if $\mathcal U\cap \mathcal U'=\emptyset$ for $\mathcal U'\subseteq \mathcal V$ open then

$$
(\mathcal{V}\backslash\mathcal{U})\cup(\mathcal{V}\backslash\mathcal{U}')=\mathcal{V}.
$$

Therefore if V has the Baire property and a countable basis of open sets then V is the closure of a point.

Soberness and Duality

We write $_R$ pp $^{\prime\prime}$ for the lattice of left pp- n -formulae and $_R$ Zg for the left Ziegler spectrum of R.

Duality for pp-formulae (Prest) For each $n \in \mathbb{N}$, there is an order anti-isomorphism

$$
D: \mathsf{pp}^n_R \to \mathsf{pp}^n.
$$

For any topological space T, the open subsets of T are a (complete) lattice, denoted $\mathcal{O}(\mathcal{T})$, under inclusion.

Duality for Ziegler Spectra (Herzog) The map on basic open subsets of Zg_{R} , defined by

$$
(\varphi/\psi)\mapsto(D\psi/D\varphi)\,,
$$

induces a lattice isomorphism from $\mathcal{O}(\mathsf{Z}\mathsf{g}_R)$ to $\mathcal{O}({}_R \mathsf{Z}\mathsf{g}).$

This implies that if Zg_R and $_R\mathsf{Zg}$ are sober there is a homeomorphism

$$
\mathsf{Zg}_R/\mathsf{T}_0 \to {_R\mathsf{Zg}}/\mathsf{T}_0.
$$

Is the Ziegler Spectrum always sober?

We don't know.

Remark

If an irreducible closed set C contains a point x which is isolated in C then C is equal to the closure of x. Hence, if a topological space has Cantor-Bendixson rank then it is sober.

Theorem (Gregory-Puninski)

If R is a Prüfer ring then Zg_R is sober. If R is a (uni)serial ring then Zg_R is sober.

Remark/Theorem

If A is a tubular algebra then Zg_{A} is sober.

A ring R is von Neumann regular if for all $a \in R$ there exists $x \in R$ such that $a = axa$.

Lemma

If R is a von Neumann regular ring then Zg_R is sober if and only if for all prime ideals P, there exists an irreducible right ideal I such that P is the largest two-sided ideal contained in I.

–Thank you–

An example

Let \aleph_1 be the set of all countable ordinals. The subsets $(\alpha, \aleph_1) \subseteq \aleph_1$ are the open sets of a topology. The closed sets are $[0, \alpha]$ for $\alpha \in \aleph_1$ and \aleph_1 . They are all irreducible.

The sets (α, \aleph_1) are compact because

$$
(\alpha, \aleph_1) \subseteq \bigcup_{\beta \in I} (\beta, \aleph_1)
$$

if and only if $\beta \leq \alpha$ if and only if $(\alpha, \aleph_1) \subseteq (\beta, \aleph_1)$ for some $\beta \in I$.

Every closed subset of \aleph_1 has the Baire property but \aleph_1 is not the closure of a point because $\bigcap_{\alpha \in \aleph_1} (\alpha, \aleph_1) = \emptyset$.

Fun with Ziegler spectra of Artin algebras

Let A be an Artin algebra.

The indecomposable finite length modules are exactly the isolated points in Zg_A. The set of indecomposable finite length modules is dense in Zg_A.

Theorem

If A is not finite representation type then there is a infinite length indecomposable pure-injective A-module.

Theorem (Herzog)

If there are infinitely many indecomposable modules of endolength n, then there is an infinite length indecomposable module of endolength $\leq n$.

Proof.

The set of indecomposable modules of endolength $\leq n$ is a closed (and hence compact) subset of Zg_A . Since this set contains infinitely many points, it must contain a non-isolated point.