An Introduction to Model Theory for Representation Theory

Lorna Gregory

May 2024

Definition

A (first-order) language \mathcal{L} consists of

- ▶ 3 mutually disjoint sets: *R* the set of **relation symbols**, *F* the set of **function symbols** and *C* the set of **constant symbols**; and
- an arity function $\lambda : \mathcal{R} \cup \mathcal{F} \to \mathbb{N}$.

For any $Q \in \mathcal{R} \cup \mathcal{F}$, we will refer to $\lambda(Q)$ as the **arity** of Q.

Definition

An $\mathcal L\text{-}\mathbf{structure}\ \mathcal A$ is a non-empty set A called the \mathbf{domain} of $\mathcal A$ together with

- (i) a subset $R^{\mathcal{A}}$ of $A^{\lambda(R)}$ for each $R \in \mathcal{R}$;
- (ii) a function $F^{\mathcal{A}}$ from $A^{\lambda(F)} \to A$ for each $F \in \mathcal{F}$; and
- (iii) an element $c^{\mathcal{A}} \in A$ for each $c \in C$.

For $Q \in \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$, we call $Q^{\mathcal{A}}$ the **interpretation** in \mathcal{A} .

Example

Let $\mathcal{L}:=\{\circ\}$ where \circ is a binary function symbol. An $\mathcal{L}\text{-structure}$ is a magma.

More examples of languages

- The language of abelian groups is L_{Ab} := {0, +, -} where 0 is a constant symbol, + is a binary function symbol and is unary function symbol.
- The language of rings is $\mathcal{L}_{rings} := \{0, 1, +, -, \cdot\}$ where 0 is a constant symbol, + is a binary function symbol and + and \cdot are binary function symbols and is a unary function symbol.
- For R a ring, the language of R-modules is L_R := {0, +, (·r)_{r∈R}} where 0 is a constant symbol, + is a binary function symbol and for each r ∈ R, ·r is a unary function symbol.
- The language of ordered sets if $\mathcal{L}_{\leq}:=\{\leq\}$ where \leq is a binary relation symbol.

Definition

The **alphabet** of a language \mathcal{L} is the relation, functions and constant symbols of \mathcal{L} together with a set of logical symbols which are part of every language consisting of:

Connectives: $\{\rightarrow, \land, \lor, \neg\}$ Quantifiers: \forall and \exists The equality symbols = Brackets ")" and "(" Comma: ","

A set of variables denoted $Vbl := \{v_i \mid i \in \mathbb{N}\} \cup \{u, v, w, x, y, z\}$

Examples of \mathcal{L} -formulae:

The \mathcal{L}_{rings} -formula

$$(\forall v_2 \ v_1 \cdot v_2 = v_2 \cdot v_1)$$

defines the centre of a ring. The $\mathcal{L}_{\textit{rings}}\text{-}\mathsf{formula}$

$$(\forall v_1(v_1=0 \lor (\exists v_2 \ v_1 \cdot v_2=1)))$$

expresses that every non-zero element is invertible.

Define $\operatorname{tm}_0(\mathcal{L})$ to be the set $\operatorname{Vbl} \cup \mathcal{C}$. For all $k \in \mathbb{N}$, let $\operatorname{tm}_{k+1}(\mathcal{L})$ be $\operatorname{tm}_k(\mathcal{L}) \cup \{F(t_1, t_2, \ldots, t_n) \mid F \in \mathcal{F}, \ \lambda(F) = n \text{ and } t_1, \ldots, t_n \in \operatorname{tm}_k(\mathcal{L})\}.$ We define the set of \mathcal{L} -terms to be

$$\operatorname{tm}(\mathcal{L}) := igcup_{k\in\mathbb{N}_0} \operatorname{tm}_k(\mathcal{L}).$$

Let $\operatorname{Fml}_0(\mathcal{L})$ be the set of strings in the alphabet of \mathcal{L} of the form

$$t_1 = t_2$$
 or $R(t_1,\ldots,t_n)$

where t_1, \ldots, t_n are \mathcal{L} -terms and $R \in \mathcal{R}$ has arity n. For each $k \in \mathbb{N}_0$, let

$$\begin{split} \operatorname{Fml}_{k+1}(\mathcal{L}) &:= \operatorname{Fml}_k(\mathcal{L}) \cup \{ (\varphi \to \psi), (\varphi \land \psi), (\varphi \lor \psi), \neg \varphi \mid \varphi, \psi \in \operatorname{Fml}_k(\mathcal{L}) \} \\ & \cup \{ (\forall x \varphi), (\exists x \varphi) \mid \varphi \in \operatorname{Fml}_k(\mathcal{L}) \text{ and } x \in \operatorname{Vbl} \}. \end{split}$$

We define the set of \mathcal{L} -formulae to be

$$\operatorname{Fml}(\mathcal{L}) := \bigcup_{i \in \mathbb{N}_0} \operatorname{Fml}_i(\mathcal{L}).$$

Interpreting formulae in *L*-structures

Let θ be an $\mathcal L\text{-formula}$ and

$$(\exists v_i _) \text{ or } (\forall v_i _)$$

a substring of θ .

Free variables: An instance of a variable is **free** if it is not a bound instance or a quantifier instance. The **free variables** of a formula θ are those variable which occur as free instances.

To indicate that an \mathcal{L} -formula θ has free variables contained in a set $\{x_1, \ldots, x_n\}$ we write $\theta(x_1, \ldots, x_n)$.

Let *M* be an \mathcal{L} -structure, $\theta(x_1, \ldots, x_n)$ be an \mathcal{L} -formula and $(m_1, \ldots, m_n) \in M$. We say that $\theta(m_1, \ldots, m_n)$ holds in *M* if the expression obtained by replacing every free instance of x_i in θ by m_i is true in *M*.

A sentence is a formula without free variables.

The $\mathcal{L} = \{\circ\}$ -formula

$$(\forall x (\forall y (\forall z (x \circ y) \circ z = x \circ (y \circ z))))$$

is a sentence.

Interpreting formulae in *L*-structures

Let θ be an $\mathcal L\text{-formula}$ and

$$(\exists v_i _) \text{ or } (\forall v_i _)$$

a substring of θ .

Free variables: An instance of a variable is **free** if it is not a bound instance or a quantifier instance. The **free variables** of a formula θ are those variable which occur as free instances.

To indicate that an \mathcal{L} -formula θ has free variables contained in a set $\{x_1, \ldots, x_n\}$ we write $\theta(x_1, \ldots, x_n)$.

Let *M* be an \mathcal{L} -structure, $\theta(x_1, \ldots, x_n)$ be an \mathcal{L} -formula and $(m_1, \ldots, m_n) \in M$. We say that $\theta(m_1, \ldots, m_n)$ holds in *M* if the expression obtained by replacing every free instance of x_i in θ by m_i is true in *M*.

A sentence is a formula without free variables.

Let $\theta(v_1)$ be the \mathcal{L}_{rings} -formula

$$(\forall v_2 \ v_1 \cdot v_2 = v_2 \cdot v_1)$$

is not a sentence.

If Σ is a set of sentences then we say an \mathcal{L} -structure \mathcal{M} is a **model** of Σ if all sentences in Σ hold in \mathcal{M} .

If X is a class of \mathcal{L} -structures then the **theory of** X, written Th(X), is the set of all \mathcal{L} -sentences which hold in all members of X.

A class X of \mathcal{L} -structures is **axiomatisable** if there is a set of sentences Σ such that the members of X are exactly the models of Σ . Examples

We say \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementary equivalent, and write $\mathcal{M} \equiv N$, if $\operatorname{Th}(\mathcal{M}) = \operatorname{Th}(\mathcal{N})$.

Let \mathcal{M} be an \mathcal{L} -structure with domain M. A subset $N \subseteq M$ is an **elementary** if for all formulas $\theta(x_1, \ldots, x_n)$ and $(a_1, \ldots, a_n) \in N$ of elements of N, $\theta(a_1, \ldots, a_n)$ holds in N if and only if $\theta(a_1, \ldots, a_n)$ holds in M.

The First Theorem of Model Theory

The Compactness Theorem

Let ${\mathcal L}$ be a language.

(i) A set Σ of $\mathcal L\text{-sentences}$ has a model if and only if every finite subset of Σ has a model.

(ii) Let Σ be a set of formulas with free variables $(v_1, v_2, ...)$. If for every finite subset Σ' of Σ , there exists an \mathcal{L} -structure M and a tuple of elements \overline{m} such that $\theta(\overline{m})$ holds in Mthen there exists an \mathcal{L} -structure M and a tuple of elements \overline{m} such that $\theta(\overline{m})$ holds in M for all $\theta \in \Sigma$.

Model Theory of Modules

Let R be a ring and $\mathcal{L}_R := \{0, +, (\cdot r)_{r \in R}\}$ the language of R-modules. Every \mathcal{L}_R -term is equivalent (relative to $\operatorname{Th}(\operatorname{Mod}-R)$) to one of the form

$$\sum_{i=1}^n x_i \cdot r_i$$

where each x_i is a variable and each $r_i \in R$ for $1 \le i \le n$.

Every atomic formulae is equivalent (relative to Th(Mod-R)) to one of the form

$$\sum_{i=1}^n x_i \cdot r_i = 0$$

(or 0 = 0) where x_1, \ldots, x_n are variables.

A (right) **pp**-*n*-formula (over *R*) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1,\ldots,y_m\bigwedge_{i=1}^l\sum_{j=1}^n x_jr_{ij}+\sum_{k=1}^m y_ks_{ik}=0$$

where $r_{ij}, s_{ik} \in R$ and $\overline{x} = (x_1, \ldots, x_n)$.

For $M \in Mod-R$, we write $\varphi(M)$ for the solution set of φ in M.

- If $m_1, m_2 \in \varphi(M)$ then $m_1 + m_2 \in \varphi(M)$.
- If $f: M \to L \in Mod-R$ and $\overline{m} \in \varphi(M)$ then $f(m) \in \varphi(L)$.
- Let $N_i \in Mod-R$ for $i \in I$. Then

$$\varphi(\oplus_i N_i) = \oplus_i \varphi(N_i).$$

A (right) **pp**-*n*-formula (over *R*) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1,\ldots,y_m\bigwedge_{i=1}^l\sum_{j=1}^n x_jr_{ij}+\sum_{k=1}^m y_ks_{ik}=0$$

where $r_{ij}, s_{ik} \in R$ and $\overline{x} = (x_1, \ldots, x_n)$.

We write pp_R^n for the set of (right) pp-*n*-formulae over *R* where we identify pp-*n*-formulae φ, ψ if $\varphi(M) = \psi(M)$ for all $M \in Mod-R$.

 pp_R^n is a bounded modular lattice when equipped with the order defined by

 $\psi \leq \varphi$ if and only if $\psi(M) \subseteq \varphi(M)$ for all $M \in Mod-R$.

We write $\varphi + \psi$ for the join (l.u.b) and $\varphi \wedge \psi$ for the meet (g.l.b) in ppⁿ_R. For all $M \in Mod-R$,

 $(\varphi + \psi)(M) = \varphi(M) + \psi(M)$ and $(\varphi \wedge \psi)(M) = \varphi(M) \cap \psi(M)$. Modular: $a \le b$ implies $a + (z \wedge b) = (a + z) \wedge b$.

 \frown

Let $\varphi, \psi \in pp_R^n$ with $\psi \leq \varphi$ and let $b \in \mathbb{N}$. We write

 $|\varphi/\psi| \ge b$

for the \mathcal{L}_R -sentence which expresses in all R-modules M that

 $|\varphi(M)/\psi(M)| \ge b.$

Suppose n=1. Then we may take $|arphi/\psi|\geq b$ to be

$$\exists z_1,\ldots,z_b\bigwedge_{i=1}^b\varphi(z_i)\wedge\bigwedge_{i< j}\neg\psi(z_i-z_j).$$

The Baur-Monk Theorem

Every formula in the language of R-modules is equivalent to a boolean combination of pp-formulae and sentences of the form

$$|\varphi/\psi| \ge b$$

where $b \in \mathbb{N}$ and φ, ψ are pp-1-formulae such that $\psi \leq \varphi$.

Corollary

Let $M, N \in Mod-R$. Then

 $M \equiv N$ if and only if $|\varphi(M)/\psi(M)| = |\varphi(N)/\psi(N)|$,

when either is finite, for all $\varphi \ge \psi \in pp_R^1$.

Examples

• Let N_i be a collection of *R*-modules for $i \in I$, then

$$\bigoplus_{i\in I}N_i\equiv\prod_{i\in I}N_i.$$

- If R is an algebra over an infinite field k then for all $M \in Mod-R$, $M^2 \equiv M$.
- As \mathbb{Z} -modules, $\mathbb{Z} \oplus \mathbb{Q} \equiv \mathbb{Z}$.

Corollary

A submodule $L \subseteq M$ is elementary if and only if $L \equiv M$ and, for all pp-formulae φ , $\varphi(L) = \varphi(M) \cap L$.

Purity

Definition

An embedding $f: M \hookrightarrow N$ is **pure** if for all pp-1-formulae φ ,

```
\varphi(N) \cap f(M) = f(\varphi(M)).
```

An *R*-module *M* is **pure-injective** if every pure-embedding $M \hookrightarrow N$ splits.

Definition

An R-module M is **algebraically compact** if any system of (inhomogeneous) linear equations over R, in arbitrary many variables, which is finitely solvable in M, has a solution in M.

Equivalently, an *R*-module *M* is algebraically compact if for any $n \in \mathbb{N}$, the collection of sets of the form $\overline{a} + \varphi(M)$ where $\varphi \in pp_R^n$ and \overline{a} is an *n*-tuples in *M*, has the finite intersection property.

Theorem

An R-module is algebraically compact if and only if it is pure-injective.

Modules up to Elementary Equivalence

Write $pinj_R$ for the set of indecomposable pure-injective *R*-modules.

Theorem (Ziegler)

For every *R*-module *M*, there exists $N_i \in \text{pinj}_R$ such that *M* is elementary equivalent to $\bigoplus_{i \in I} N_i$.

Theorem

Let $N, M \in \text{pinj}_R$. Then $N \equiv M$ if and only if for all $\varphi \ge \psi \in \text{pp}_R^1$

 $|\varphi(N)/\psi(N)| > 1 \Leftrightarrow |\varphi(M)/\psi(M)| > 1.$

An Introduction to Model Theory for Representation Theory

Lorna Gregory

May 2024

Reminders

A (right) **pp**-*n*-formula (over *R*) is a formula $\varphi(\overline{x})$ of the form

$$\exists y_1,\ldots,y_m\bigwedge_{i=1}^l\sum_{j=1}^n x_jr_{ij}+\sum_{k=1}^m y_ks_{ik}=0$$

where $r_{ij}, s_{ik} \in R$ and $\overline{x} = (x_1, \ldots, x_n)$.

We write pp_R^n for the set of (right) pp-*n*-formulae over *R*. This set is a lattice when ordered by $\varphi \ge \psi$ if and only if $\varphi(M) \supseteq \psi(M)$ for all $M \in \text{Mod-}R$.

Corollary of the Baur-Monk Theorem

Let $M, N \in Mod-R$. Then

 $M \equiv N$ if and only if $|\varphi(M)/\psi(M)| = |\varphi(N)/\psi(N)|$,

when either is finite, for all $\varphi \geq \psi \in pp_R^1$.

Pp-types

The **pp-type**, $pp^{M}(\overline{m})$, of an *n*-tuple \overline{m} in an *R*-module *M* is the set of all $\varphi \in pp_{R}^{n}$ such that $\overline{m} \in \varphi(M)$. **Observations:**

- $pp^{M}(\overline{m})$ is non-empty.
- If $\psi \leq \varphi$ in pp_R^n and $\psi \in pp^M(\overline{m})$ then $\varphi \in pp^M(\overline{m})$.
- If $\varphi_1, \ldots, \varphi_n \in pp^M(\overline{m})$ then $\bigwedge_{i=1}^n \varphi_i \in pp^M(\overline{m})$.

Therefore $pp^{M}(\overline{m})$ is a filter in pp_{R}^{n} .

Free realisations

Definition (Prest)

Let φ be a pp-*n*-formula. A **free realisation** of φ is a pair (M, \overline{m}) where M is a finitely presented R-module and \overline{m} is an *n*-tuple of elements of M such that for all $\sigma \in pp_R^n$, $\sigma \ge \varphi$ if and only if $\overline{m} \in \sigma(M)$.

Theorem

- (i) Let M be a finitely presented R-module and m
 m an n-tuple from M. Then pp^M(m
 m) is generated as a filter by some φ ∈ ppⁿ_R i.e. (M,m
 m) is a free realisation of φ.
- (ii) Let $\varphi \in pp_R^n$. There exists a finitely presented R-module and an *n*-tuple \overline{m} such that (M, \overline{m}) is a free realisation of φ .

The Compactness Theorem

Let R be a ring and let $\mathcal{L}_R := (0, +, (\cdot r)_{r \in R})$ be the language of R-modules.

(ii) Let Σ be a set of \mathcal{L}_R -formulas with free variables (v_1, v_2, \ldots, v_n) .

If for every finite subset Σ' of Σ , there exists an *R*-modules *M* and a tuple of elements $\overline{m} \in M$ such that $\theta(\overline{m})$ holds in *M* for all $\theta \in \Sigma'$ then there exists an *R*-module *M* and a tuple of elements $\overline{m} \in M$ such that $\theta(\overline{m})$ holds in *M* for all $\theta \in \Sigma$.

Application of the Compactness Theorem

Proposition

Any filter p in pp_R^n is the pp-type of an element of some R-module.

Proof (n=1).

Let $\Sigma := \{\varphi(x) \mid \varphi \in pp_R^1 \text{ with } \varphi \in p\} \cup \{\neg \psi(x) \mid \psi \in pp_R^1 \text{ with } \psi \notin p\}.$ By the Compactness Theorem, it is enough to show that for all

 $\varphi_1, \ldots, \varphi_k \in p \text{ and } \psi_1, \ldots, \psi_l \notin p,$

there exists $M \in \mathsf{Mod}\text{-}R$ and $m \in M$ such that

 $m \in \varphi_i(M)$ for all $1 \le i \le k$ and $m \notin \psi_i(M)$ for all $1 \le i \le l$.

Since p is a filter, $\varphi := \varphi_1 \land \ldots \land \varphi_k \in p$ and $\psi_i \not\geq \varphi$ for $1 \leq i \leq l$. Let (M, m) be a free realisation of φ . Then, for all $\sigma \in pp_R^1$,

 $m \in \sigma(M)$ if and only if $\sigma \geq \varphi$.

Therefore $m \in \varphi_i(M)$ for all $1 \le i \le k$ and $m \notin \psi_i(M)$ for $1 \le i \le l$. \Box

Modules up to Elementary Equivalence

Definition

An embedding $f: M \hookrightarrow N$ is **pure** if for all pp-1-formulae φ ,

$$\varphi(N)\cap f(M)=f(\varphi(M)).$$

An *R*-module *M* is **pure-injective** if every pure-embedding $M \hookrightarrow N$ splits.

Write $pinj_R$ for the set of indecomposable pure-injective *R*-modules.

Theorem (Ziegler)

For every R-module M, there exists $N_i \in pinj_R$ such that M is elementary equivalent to $\bigoplus_{i \in I} N_i$.

Theorem

Let $N, M \in \text{pinj}_R$. Then $N \equiv M$ if and only if for all $\varphi \ge \psi \in \text{pp}_R^1$

 $|\varphi(N)/\psi(N)| > 1 \Leftrightarrow |\varphi(M)/\psi(M)| > 1.$

The Ziegler Spectrum

The **Ziegler spectrum**, Zg_R , of *R* is the topological space with set of points pinj_{*R*} and basis of open sets

$$(\varphi/\psi) := \{ \mathsf{N} \in \mathsf{pinj}_{\mathsf{R}} \mid |\varphi(\mathsf{N})/\psi(\mathsf{N})| > 1 \}$$

where $\varphi \geq \psi \in pp_R^1$.

Definable subcategories of Mod-R are in bijective correspondence with the closed subsets of the Ziegler spectrum via the map

$$\mathcal{D} \mapsto \mathcal{D} \cap \mathsf{Zg}_R.$$

Properties of Zg_R

- N, M ∈ pinj_R are topologically indistinguishable if and only if they are elementary equivalent.
- The sets (φ/ψ) are compact. In particular, $\operatorname{Zg}_R = (x = x/x = 0)$ is compact.
- Zg_R is often not T₀ and very rarely has the property that the intersection of two compact open sets is compact.

An example

The indecomposable pure-injective modules over $\ensuremath{\mathbb{Z}}$ are

- the finite modules $\mathbb{Z}/p^n\mathbb{Z}$ for p prime and $n \in \mathbb{N}$,
- the *p*-adic integers $\overline{\mathbb{Z}_{(p)}}$ for *p* prime,
- the *p*-Prüfer group $\mathbb{Z}_{p^{\infty}}$ for *p* prime, and
- \mathbb{Q} , the field of fractions of \mathbb{Z} .

A subset ${\mathcal C}$ of $\mathsf{Zg}_{\mathbb Z}$ is closed if and only if the following conditions hold:

- If ${\mathcal C}$ contains infinitely many finite modules then ${\mathcal C}$ contains ${\mathbb Q}.$
- If C contains infinitely many $\mathbb{Z}/p^n\mathbb{Z}$ for fixed prime p then C contains $\overline{\mathbb{Z}_{(p)}}$ and $\mathbb{Z}_{p^{\infty}}$.
- If \mathcal{C} contains $\overline{\mathbb{Z}_{(p)}}$ or $\mathbb{Z}_{p^{\infty}}$ then \mathcal{C} contains \mathbb{Q} .

Soberness and the Baire property

Definition

We say a topological space has the **Baire property** if every countable intersection of open and dense subsets is dense.

Theorem (Herzog - reinterpreted)

Every closed subset of Zg_R has the Baire property.

Definition

Let \mathcal{T} be a topological space.

- 1. A subset S of T is irreducible if whenever $S \subseteq C_1 \cup C_2$ where C_1 and C_2 are closed subsets then $S \subseteq C_1$ or $S \subseteq C_2$.
- 2. ${\mathcal T}$ is sober if every non-empty irreducible closed set is the closure of a point.

Corollary (Herzog)

If Zg_R has a countable basis then Zg_R is sober. In particular, if R is countable then Zg_R is sober.

Remark

If \mathcal{T} is a topological space with a countable basis of open sets such that every closed subset of \mathcal{T} has the Baire property then \mathcal{T} is sober.

Proof.

A topological space \mathcal{V} is the closure of a point x if and only if x is a member of every non-empty open subset of x.

Let \mathcal{V} be an irreducible topological space. Every non-empty open subset \mathcal{U} of \mathcal{V} is dense because if $\mathcal{U} \cap \mathcal{U}' = \emptyset$ for $\mathcal{U}' \subseteq \mathcal{V}$ open then

$$(\mathcal{V} \setminus \mathcal{U}) \cup (\mathcal{V} \setminus \mathcal{U}') = \mathcal{V}.$$

Therefore if \mathcal{V} has the Baire property and a countable basis of open sets then \mathcal{V} is the closure of a point.

Soberness and Duality

We write $_{R}pp^{n}$ for the lattice of left pp-*n*-formulae and $_{R}Zg$ for the left Ziegler spectrum of R.

```
Duality for pp-formulae (Prest)
For each n \in \mathbb{N}, there is an order anti-isomorphism
```

```
D: pp_R^n \to {}_R pp^n.
```

For any topological space \mathcal{T} , the open subsets of \mathcal{T} are a (complete) lattice, denoted $\mathcal{O}(\mathcal{T})$, under inclusion.

Duality for Ziegler Spectra (Herzog) The map on basic open subsets of Zg_R, defined by

$$(\varphi/\psi)\mapsto (D\psi/D\varphi),$$

induces a lattice isomorphism from $\mathcal{O}(Zg_R)$ to $\mathcal{O}(_RZg)$.

This implies that if Zg_R and RZg are sober there is a homeomorphism

$$\operatorname{Zg}_R/T_0 \to {}_R\operatorname{Zg}/T_0.$$

Is the Ziegler Spectrum always sober?

We don't know.

Remark

If an irreducible closed set C contains a point x which is isolated in C then C is equal to the closure of x. Hence, if a topological space has Cantor-Bendixson rank then it is sober.

Theorem (Gregory-Puninski)

If R is a Prüfer ring then Zg_R is sober. If R is a (uni)serial ring then Zg_R is sober.

Remark/Theorem

If ${\mathcal A}$ is a tubular algebra then $\mathsf{Zg}_{\mathcal A}$ is sober.

A ring R is von Neumann regular if for all $a \in R$ there exists $x \in R$ such that a = axa.

Lemma

If R is a von Neumann regular ring then Zg_R is sober if and only if for all prime ideals P, there exists an irreducible right ideal I such that P is the largest two-sided ideal contained in I.

-Thank you-

An example

Let \aleph_1 be the set of all countable ordinals. The subsets $(\alpha, \aleph_1) \subseteq \aleph_1$ are the open sets of a topology. The closed sets are $[0, \alpha]$ for $\alpha \in \aleph_1$ and \aleph_1 . They are all irreducible.

The sets (α, \aleph_1) are compact because

$$(\alpha, \aleph_1) \subseteq \bigcup_{\beta \in I} (\beta, \aleph_1)$$

if and only if $\beta \leq \alpha$ if and only if $(\alpha, \aleph_1) \subseteq (\beta, \aleph_1)$ for some $\beta \in I$.

Every closed subset of \aleph_1 has the Baire property but \aleph_1 is not the closure of a point because $\bigcap_{\alpha \in \aleph_1} (\alpha, \aleph_1) = \emptyset$.

Fun with Ziegler spectra of Artin algebras

Let ${\mathcal A}$ be an Artin algebra.

The indecomposable finite length modules are exactly the isolated points in Zg_A. The set of indecomposable finite length modules is dense in Zg_A.

Theorem

If A is not finite representation type then there is a infinite length indecomposable pure-injective A-module.

Theorem (Herzog)

If there are infinitely many indecomposable modules of endolength n, then there is an infinite length indecomposable module of endolength $\leq n$.

Proof.

The set of indecomposable modules of endolength $\leq n$ is a closed (and hence compact) subset of Zg_A . Since this set contains infinitely many points, it must contain a non-isolated point.