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Definition
A (first-order) language L consists of

> 3 mutually disjoint sets: R the set of relation symbols, F the set
of function symbols and C the set of constant symbols; and

» an arity function A : RUF — N.
For any Q@ € R U F, we will refer to A(Q) as the arity of Q.
Definition
An L-structure A is a non-empty set A called the domain of A together
with
(i) a subset R of AMR) for each R € R;
(i) a function FA from AMF) — A for each F € F; and
(iii) an element ¢ € A for each c € C.
For Q € RUF UC, we call Q* the interpretation in A.

Example

Let £ := {o} where o is a binary function symbol. An L-structure is a
magma.



More examples of languages

e The language of abelian groups is L, := {0, 4+, —} where 0 is a
constant symbol, + is a binary function symbol and — is unary
function symbol.

e The language of rings is Lings := {0,1,+, —, -} where O is a
constant symbol, + is a binary function symbol and + and - are
binary function symbols and — is a unary function symbol.

e For R a ring, the language of R-modules is Lg := {0, +, (:r),er}
where 0 is a constant symbol, + is a binary function symbol and for
each r € R, -r is a unary function symbol.

e The language of ordered sets if L< := {<} where < is a binary
relation symbol.



Definition
The alphabet of a language L is the relation, functions and constant
symbols of £ together with a set of logical symbols which are part of
every language consisting of:

Connectives: {—,A,V,—}

Quantifiers: V and 3

The equality symbols =

Brackets “)" and “("

wn

Comma:
A set of variables denoted Vbl := {v; | i € N} U{u,v,w,x,y,z}

Examples of L-formulae:
The Ljngs-formula
(Vvovi-vo=va-vq)

defines the centre of a ring.
The Lings-formula

(Mvi(vi =0V (3va v - v, =1)))

expresses that every non-zero element is invertible.



Define tmg(L) to be the set VblUC. For all k € N, let tmy1(L) be
tmg(L)U{F(t1,ta,...,ta) | FEF, M(F)=nand t1,...,t, € tmy(L)}.
We define the set of L-terms to be

tm(L) = U tmg(L).

keNy

Let Fmlo(L) be the set of strings in the alphabet of £ of the form
ti =1t or R(tl,. R tn)
where t1,...,t, are L-terms and R € R has arity n.

For each k € Ny, let

Fily1(£) := Fmle(L)U{(p = ¢), (pAY), (¢V), ¢ [ @, ¢ € Fmly (L)}
U {(Vx¢), (3xe) | ¢ € Fmli(L) and x € Vbl}.

We define the set of £-formulae to be

Fml(£) := | Fmli(£).

i€ENp



Interpreting formulae in L-structures
Let 6 be an L-formula and

(v ) or (Vv

a substring of 6.

Free variables: An instance of a variable is free if it is not a bound
instance or a quantifier instance. The free variables of a formula 6 are
those variable which occur as free instances.

To indicate that an £-formula 6 has free variables contained in a set
{X1,...,Xn} we write O(xq,...,Xp).

Let M be an L-structure, (xy, ..., x,) be an L-formula and
(m1,...,m,) € M. We say that (my, ..., m,) holds in M if the
expression obtained by replacing every free instance of x; in 6 by m; is
true in M.

A sentence is a formula without free variables.
The £ = {o}-formula

(Vx(Vy(Vz(xoy) oz = x 0 (y 0 2))))

is a sentence.



Interpreting formulae in L-structures
Let 6 be an L-formula and

(Jvi ) or (Vv

a substring of 6.

Free variables: An instance of a variable is free if it is not a bound
instance or a quantifier instance. The free variables of a formula 6 are
those variable which occur as free instances.

To indicate that an £-formula 6 has free variables contained in a set
{X1,...,Xn} we write (xq,...,Xp).

Let M be an L-structure, 0(xy, ..., x,) be an L-formula and
(m1,...,m,) € M. We say that (my, ..., m,) holds in M if the
expression obtained by replacing every free instance of x; in 6 by m; is
true in M.

A sentence is a formula without free variables.
Let 0(v1) be the L;ings-formula

(VVz Vi Vo = Vo Vl)

is not a sentence.



If X is a set of sentences then we say an L-structure M is a model of &
if all sentences in ¥ hold in M.

If X is a class of L-structures then the theory of X, written Th(X), is
the set of all £-sentences which hold in all members of X.

A class X of L-structures is axiomatisable if there is a set of sentences
2 such that the members of X are exactly the models of . Examples

We say L-structures M and A are elementary equivalent, and write
M =N, if Th(M) = Th(N).

Let M be an L-structure with domain M. A subset N C M is an
elementary if for all formulas 6(x,...,x,) and (a1,...,a,) € N of
elements of N, 6(ay,...,a,) holds in N if and only if f(ay,...,a,) holds
in M.



The First Theorem of Model Theory

The Compactness Theorem
Let £ be a language.

(i) A set X of L-sentences has a model if and only if every finite subset
of ¥ has a model.

(ii) Let X be a set of formulas with free variables (vq, va,...).

If for every finite subset Y’ of ¥, there exists an L-structure M and
a tuple of elements 7 such that 6(m) holds in M

then there exists an L-structure M and a tuple of elements m such
that 6(7) holds in M for all 6 € X.



Model Theory of Modules

Let R be a ring and Lg := {0, +, (:r),er} the language of R-modules.

Every Lg-term is equivalent (relative to Th(Mod-R)) to one of the form

n
E Xj- i
i=1

where each x; is a variable and each r; € R for 1 <i < n.

Every atomic formulae is equivalent (relative to Th(Mod-R)) to one of

the form
n
ZX,' = 0
i=1

(or 0 = 0) where xq,...,x, are variables.



A (right) pp-n-formula (over R) is a formula ¢(X) of the form

El}/17~-~7Ym/\ZXJrU +Zyks,k =0

i=1 j=1

where rjj, sy € R and X = (xq, ..., Xp).

For M € Mod-R, we write ¢(M) for the solution set of ¢ in M.

e If my, my € p(M) then my + my € p(M).
e If f: M— L& Mod-R and m € p(M) then f(m) € ¢(L).
e Let N; € Mod-R for i € I. Then

e(®iN;) = @ip(N;).



A (right) pp-n-formula (over R) is a formula ¢(X) of the form

El}/17~-~7Ym/\ZXJfU +Zyks,k =0

i=1 j=1

where rjj, sy € R and X = (xq, ..., Xp).

We write pp} for the set of (right) pp-n-formulae over R where we
identify pp-n-formulae ¢, ¢ if o(M) = ¥ (M) for all M € Mod-R.

ppk is a bounded modular lattice when equipped with the order defined
by
¥ < ¢ if and only if ¥(M) C (M) for all M € Mod-R.

We write ¢ + 1 for the join (l.u.b) and ¢ A ¢ for the meet (g.l.b) in ppi.
For all M € Mod-R,

(¢ + ) (M) = o(M) + (M) and (o A P)(M) = o(M) N (M).
Modular: a < b implies a+ (zAb)=(a+2z)Ab.



Let ¢,% € ppg with ¥ < ¢ and let b € N. We write
lp/v] = b

for the Lg-sentence which expresses in all R-modules M that

lp(M) /(M) = b

Suppose n = 1. Then we may take |¢/¢| > b to be

dz,... zb/\gpz, /\/\ﬁw —ZJ

i<j

The Baur-Monk Theorem
Every formula in the language of R-modules is equivalent to a boolean
combination of pp-formulae and sentences of the form

lo/¥| > b

where b € N and ¢, ¢ are pp-1-formulae such that ¢ < .



Corollary
Let M; N € Mod-R. Then

M =N ifand only it |o(M)/{P(M)| = |p(N)/(N)],
when either is finite, for all ¢ > 1 € ppk.
Examples
e Let N; be a collection of R-modules for i € I, then

P ni =[N

iel iel

e If R is an algebra over an infinite field k then for all M € Mod-R,
M? = M.

e As Z-modules, Z ® Q = Z.

Corollary

A submodule L C M is elementary if and only if L= M and, for all
pp-formulae ¢, (L) = (M) N L.



Purity

Definition
An embedding f : M — N is pure if for all pp-1-formulae ¢,

p(N) N (M) = f(p(M)).

An R-module M is pure-injective if every pure-embedding M — N
splits.

Definition

An R-module M is algebraically compact if any system of
(inhomogeneous) linear equations over R, in arbitrary many variables,
which is finitely solvable in M, has a solution in M.

Equivalently, an R-module M is algebraically compact if for any n € N,
the collection of sets of the form 3+ ¢(M) where ¢ € pp} and 3 is an
n-tuples in M, has the finite intersection property.

Theorem
An R-module is algebraically compact if and only if it is pure-injective.



Modules up to Elementary Equivalence

Write pinjg for the set of indecomposable pure-injective R-modules.
Theorem (Ziegler)

For every R-module M, there exists N; € pinjr such that M is elementary
equivalent to @, N;.

Theorem
Let N, M € pinjg. Then N = M if and only if for all ¢ > 1) € ppk

[p(N)/P(N)| > 1 & [p(M)/p(M)] > 1.
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Reminders

A (right) pp-n-formula (over R) is a formula ¢(X) of the form
Hyl,...,ym/\ijr,J—FZyks,k =0
i=1 j=1

where rjj, sic € R and X = (x1, ..., Xp).

We write pp}, for the set of (right) pp-n-formulae over R. This set is a
lattice when ordered by ¢ > 1 if and only if (M) D (M) for all

M € Mod-R.

Corollary of the Baur-Monk Theorem
Let M, N € Mod-R. Then

M =N ifand onlyif [o(M)/P(M)| = [e(N)/p(N)I,

when either is finite, for all ¢ > ¢ € PP}?.



Pp-types

The pp-type, ppM(m), of an n-tuple m in an R-module M is the set of
all ¢ € pp} such that m € (M).
Observations:

e pp"(m) is non-empty.

e If ¢» < in ppk and ¢ € ppM(m) then o € ppM(m).

o If o1,...,0n € ppM(m) then AL, ¢; € pp" ().
Therefore ppM(m) is a filter in pp/.



Free realisations

Definition (Prest)

Let ¢ be a pp-n-formula. A free realisation of ¢ is a pair (M, m) where
M is a finitely presented R-module and m is an n-tuple of elements of M
such that for all o € ppk, o > ¢ if and only if m € o(M).

Theorem
(i) Let M be a finitely presented R-module and T an n-tuple from M.
Then ppM(m) is generated as a filter by some ¢ € pp} i.e. (M, m)
is a free realisation of .
(ii) Let ¢ € ppk. There exists a finitely presented R-module and an
n-tuple m such that (M, ) is a free realisation of .



The Compactness Theorem
Let R be a ring and let Lg := (0,+, (-r),er) be the language of
R-modules.
(i) Let X be a set of Lg-formulas with free variables (v, va, ..., vy).
If for every finite subset ¥’ of X, there exists an R-modules M and a
tuple of elements 7 € M such that 6(/) holds in M for all § € ¥’

then there exists an R-module M and a tuple of elements m ¢ M
such that 6(m) holds in M for all § € ¥.



Application of the Compactness Theorem

Proposition
Any filter p in ppg is the pp-type of an element of some R-module.

Proof (n=1).

Let T := {p(x) | ¢ € ppk with € p} U {=¢(x) | ¥ € ppk with ¥ & p}.
By the Compactness Theorem, it is enough to show that for all

P15 Pk Epand 7/11a-~-77/’/ ¢pa
there exists M € Mod-R and m € M such that
me pi(M) forall 1<i<k and m¢ (M) forall 1<i<]/.

Since p is a filter, ¢ :== Y1 A ... Ak € p and ¥; ,)f(pforlgigl.
Let (M, m) be a free realisation of . Then, for all o € ppk,

m € g(M) if and only if o > ¢.

Therefore m € (M) forall 1 < i< kand m¢ ¢;(M) for1 <i</[ [O



Modules up to Elementary Equivalence

Definition
An embedding f : M — N is pure if for all pp-1-formulae ¢,

p(N) N F(M) = f(p(M)).
An R-module M is pure-injective if every pure-embedding M — N
splits.
Write pinjg for the set of indecomposable pure-injective R-modules.
Theorem (Ziegler)
For every R-module M, there exists N; € pinjg such that M is elementary

equivalent to @, N;.

Theorem
Let N, M € pinjg. Then N = M if and only if for all ¢ > ) € ppk

[p(N)/$(N)] > 1 < |p(M)/p(M)] > 1.



The Ziegler Spectrum
The Ziegler spectrum, Zgg, of R is the topological space with set of
points pinjr and basis of open sets

(¢/¥) :=={N € pinjg | [p(N)/(N)| > 1}
where ¢ > 1) € ppk.
Definable subcategories of Mod-R are in bijective correspondence with

the closed subsets of the Ziegler spectrum via the map

D DN Zgg.

Properties of Zgp
e N, M € pinjg are topologically indistinguishable if and only if they
are elementary equivalent.
o The sets (/1)) are compact. In particular, Zgr = (x = x/x =0) is
compact.
e Zgp is often not Ty and very rarely has the property that the
intersection of two compact open sets is compact.



An example

The indecomposable pure-injective modules over Z are

e the finite modules Z/p"Z for p prime and n € N,

the p-adic integers Z,,) for p prime,

the p-Priifer group Zye for p prime, and
Q, the field of fractions of Z.

A subset C of Zgy is closed if and only if the following conditions hold:
e If C contains infinitely many finite modules then C contains Q.

e If C contains infinitely many Z/p"Z for fixed prime p then C
contains Z y and Zpeo.

e If C contains Zp) or Zy~ then C contains Q.



Soberness and the Baire property

Definition
We say a topological space has the Baire property if every countable
intersection of open and dense subsets is dense.

Theorem (Herzog - reinterpreted)

Every closed subset of Zgp has the Baire property.
Definition

Let 7 be a topological space.

1. A subset S of 7T is irreducible if whenever S C C; U C, where C; and
C» are closed subsets then S C C; or S C Cs.

2. 7T is sober if every non-empty irreducible closed set is the closure of
a point.

Corollary (Herzog)

If Zgr has a countable basis then Zgg is sober. In particular, if R is
countable then Zgy is sober.



Remark
If T is a topological space with a countable basis of open sets such that
every closed subset of T has the Baire property then T is sober.

Proof.
A topological space V is the closure of a point x if and only if x is a
member of every non-empty open subset of x.

Let V be an irreducible topological space. Every non-empty open subset
U of V is dense because if U NU' = () for U’ C V open then

WV\U)uO\U") = V.

Therefore if V has the Baire property and a countable basis of open sets
then V is the closure of a point. O



Soberness and Duality

We write gpp” for the lattice of left pp-n-formulae and gZg for the left
Ziegler spectrum of R.

Duality for pp-formulae (Prest)
For each n € N, there is an order anti-isomorphism

D : ppgr — rpPP".

For any topological space T, the open subsets of 7 are a (complete)
lattice, denoted O(T), under inclusion.

Duality for Ziegler Spectra (Herzog)
The map on basic open subsets of Zgy, defined by

(¢/¥) = (Dy/Dy),

induces a lattice isomorphism from O(Zgg) to O(rZg).

This implies that if Zgr and rZg are sober there is a homeomorphism

ZgR/TO — RZg/TO



Is the Ziegler Spectrum always sober?

We don't know.

Remark

If an irreducible closed set C contains a point x which is isolated in C
then C is equal to the closure of x. Hence, if a topological space has
Cantor-Bendixson rank then it is sober.

Theorem (Gregory-Puninski)

If R is a Priifer ring then Zgg is sober. If R is a (uni)serial ring then Zgg
is sober.

Remark/Theorem
If Ais a tubular algebra then Zg 4 is sober.

A ring R is von Neumann regular if for all a € R there exists x € R such
that a = axa.

Lemma

If R is a von Neumann regular ring then Zgg is sober if and only if for all
prime ideals P, there exists an irreducible right ideal | such that P is the
largest two-sided ideal contained in .



—Thank you—



An example

Let Xy be the set of all countable ordinals. The subsets (a,R;) C Ry are
the open sets of a topology. The closed sets are [0, o] for &« € Ny and N;.
They are all irreducible.

The sets («, X;) are compact because

(. R1) € [ J(B.Ry)

Bel

if and only if 8 < « if and only if (o, R;) C (5,8;) for some 5 € /.

Every closed subset of R; has the Baire property but Ry is not the closure
of a point because [, ¢y, (o, ¥1) = 0.



Fun with Ziegler spectra of Artin algebras

Let A be an Artin algebra.

The indecomposable finite length modules are exactly the isolated points
in Zg 4. The set of indecomposable finite length modules is dense in Zg 4.

Theorem
If A is not finite representation type then there is a infinite length
indecomposable pure-injective A-module.

Theorem (Herzog)

If there are infinitely many indecomposable modules of endolength n, then
there is an infinite length indecomposable module of endolength < n.

Proof.

The set of indecomposable modules of endolength < nis a closed (and
hence compact) subset of Zg 4. Since this set contains infinitely many
points, it must contain a non-isolated point. O



