Twist equivalence arising from a (partially) minimal projective resolution.

Marina Godinho

Introduction

Given an object X in a Frobenius exact category satisfying mild conditions, this work constructs a derived autoequivalence of the endomorphism algebra of X. The idea is that properties of the stable endomorphism algebra of Xare sufficient to specify properties of X and of its endomorphism algebra. As an application, it is possible to obtain a new non-trivial derived autoequivalence for very singular varieties.

Setup

Setup 1. Let \mathcal{E} be an \mathcal{R} -linear Frobenius exact category with a an object P such that add $P = \operatorname{proj} \mathcal{E}$. The stable category \mathcal{D} is triangulated and write its suspension functor as \sum .

Assume in addition that $\mathcal R$ be a Cohen-Macaulay noetherian local ring of dimension d with coefficient field k and canonical module ω_R .

Setup 2. With the assumptions as in 1, let $X \in \mathcal{E}$ be such that

- 1. The object P is a summand of X,
- 2. X has infinite projective dimension in \mathcal{E}_{i} ,
- 3. $\operatorname{add}_{\mathcal{D}}(X) \subset \mathcal{D}$ is Krull-Schmidt,
- 4. X is basic in \mathcal{D} .

Notation 3. With the X and \mathcal{E} as in Setup 2, let

- 1. $\Lambda := \operatorname{End}_{\mathcal{E}}(X)$ and $\Lambda_{\operatorname{con}} = \operatorname{End}_{\mathcal{E}}(X)$.
- 2. $[\operatorname{proj} \mathcal{E}]$ is the ideal in Λ of maps $X \to X$ which factor through a projective object in \mathcal{E} .

Under set up 2, Λ has the dualizing complex

 $\omega_{\Lambda} := \mathbf{R} \operatorname{Hom}_{\mathcal{R}}(\Lambda, \omega_{\mathcal{R}}).$

Notation 4. Let \mathcal{E} and X be as in setup 2. let

 $0 \rightarrow$

i > 0.

Partialy minimal projective resolution

$$\mathcal{S} = \bigoplus_i S_i$$

where $\{S_i\}_i$ is representative set of simple Λ_{con} -modules.

Definition 5 (Donovan, Wemyss [DW19]). Λ_{con} is *d*-relatively spherical if $\operatorname{Ext}^{i}_{\Lambda}(\Lambda_{\operatorname{con}}, \mathfrak{S}) = 0$ for all $i \neq 0, d$.

Definition 6. Let $X \in \mathcal{D}$ and $n \in \mathbb{Z}$ with n < 0. We say that X is *n*-rigid if $\operatorname{Ext}^{i}_{\mathcal{D}}(X, X) = 0$ for all $n \leq i \leq -1$.

Theorem 7. Let \mathcal{E} and X be as in setup 2 with $d \ge 3$. If Λ_{con} is self-injective and $\Lambda_{con} \otimes^{\mathbf{L}} \omega_{\Lambda} \cong \Lambda_{con}$, then the following are equivalent

1. Λ_{con} is perfect over Λ and d-relatively spherical. 2. $\Sigma^{-d+1}X \cong X$ in \mathcal{D} and X is (-d+2)-rigid in \mathcal{D} .

The key point in the proof of theorem 7 is that any $X \in \mathcal{E}$ which satisfies the assumptions of theorem 7 is such that $\Lambda_{\rm con}$ admits the following projective resolution

$$Q_d \oplus \operatorname{Hom}_{\mathcal{E}}(X, X) \xrightarrow{f_d} Q_{d-1} \xrightarrow{f_{d-1}} Q_{d-2} \to \cdots \to$$
$$Q_1 \xrightarrow{f_1} Q_0 \oplus \operatorname{Hom}_{\mathcal{E}}(X, X) \xrightarrow{f_0} \Lambda_{\operatorname{con}} \to 0$$

where $Q_i \in \operatorname{add} \operatorname{Hom}_{\mathcal{E}}(X, P)$ and $\operatorname{Hom}_{\Lambda}(f_i, S) = 0$ for all

Autoequivalence

Notation 8. Fix $k \in \mathbb{Z}$ with $-d+2 \leq k \leq 0$. We denote 1. the algebra $\Lambda_{\Sigma^k} := \operatorname{End}_{\mathcal{E}}(P \oplus \Sigma^k X)$, 2. the $\Lambda_{\Sigma^{k-1}}$ - Λ_{Σ^k} bimodules

Corollary 9. For $k \in \mathbb{Z}$ with $-d + 2 \leq k \leq 0$, the $\Lambda_{\Sigma^{k-1}}-\Lambda_{\Sigma^k}$ bimodule T_k is tilting.

Therefore, the functors

 $\Phi_k \colon \mathbf{R} \operatorname{Hom}_{\Lambda_{\Sigma^k}}(T_k, -) \colon \operatorname{D^b}(\operatorname{mod} \Lambda_{\Sigma^k}) \to \operatorname{D^b}(\operatorname{mod} \Lambda_{\Sigma^{k-1}})$

for $k \in \mathbb{Z}$ with $-d+2 \leq k \leq 0$ are equivalences and, thus, so is their composition

 \mathbf{R} Hom_{Λ} (T_{-d+2})

Now since $\Sigma^{-d+1}X \cong X$, this composition is a derived autoequivalence of Λ which turns out to be functoially isomorphic to the noncommutative twist functor

 $\mathfrak{T} := \mathbf{R} \operatorname{Hom}_{\Lambda}([\operatorname{proj} \mathcal{E}], -) \colon \operatorname{D^b}(\operatorname{mod} \Lambda) \to \operatorname{D^b}(\operatorname{mod} \Lambda).$

defined by Donovan and Wemyss [DW16].

References

 $T_k := \operatorname{Hom}_{\mathcal{E}}(P \oplus \Sigma^k X, P \oplus \Sigma^{k-1} X).$

$${}_{2} \otimes^{\mathbf{L}}_{\Lambda_{\Sigma^{-d+2}}} T_{-d+3} \otimes^{\mathbf{L}}_{\Lambda_{\Sigma^{-d+3}}} \cdots \otimes^{\mathbf{L}}_{\Lambda_{\Sigma^{-1}}} T_{0}, -) :$$
$$\mathrm{D^{b}}(\mathrm{mod}\,\Lambda) \to \mathrm{D^{b}}(\mathrm{mod}\,\Lambda_{\Sigma^{-d+1}}).$$

[[]DW16] W. Donovan and M. Wemyss. Noncommutative deformations and flops. *Duke* Math. J. 165.8 (2016), pp. 1397–1474.

[[]DW19] W. Donovan and M. Wemyss. Noncommutative enhancements of contractions. Advances in Mathematics 344 (2019), pp. 99-136.