Some aspects of (strong) generation in module categories

Souvik Dey

Charles University, Prague

A B > A B >

A broad motivating question

Given a triangulated category, or subcategory of an abelian category, when can every object be built from a single object by repeatedly taking cones (respectively extensions in the abelian setting), retracts, and suspensions (in the triangulated setting) ?

Definition (Triangulated setting; Bondal-Van den Bergh (2003), Rouquier(2008))

Let \mathcal{T} be a triangulated category and \mathcal{C} be a subcategory of \mathcal{T} . Consider the following additive subcategories of \mathcal{T} :

Definition (Triangulated setting; Bondal-Van den Bergh (2003), Rouquier(2008))

Let \mathcal{T} be a triangulated category and \mathcal{C} be a subcategory of \mathcal{T} . Consider the following additive subcategories of \mathcal{T} :

 add^Σ(C) is the strictly full subcategory of retracts of finite direct sum of shifts of objects in C

Definition (Triangulated setting; Bondal-Van den Bergh (2003), Rouquier(2008))

Let \mathcal{T} be a triangulated category and \mathcal{C} be a subcategory of \mathcal{T} . Consider the following additive subcategories of \mathcal{T} :

- add^Σ(C) is the strictly full subcategory of retracts of finite direct sum of shifts of objects in C
- ${\it Q}\ \langle {\cal C} \rangle_0$ consists of all objects in ${\cal T}$ isomorphic to the zero object

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition (Triangulated setting; Bondal-Van den Bergh (2003), Rouquier(2008))

Let \mathcal{T} be a triangulated category and \mathcal{C} be a subcategory of \mathcal{T} . Consider the following additive subcategories of \mathcal{T} :

- add^Σ(C) is the strictly full subcategory of retracts of finite direct sum of shifts of objects in C
- (C)₀ consists of all objects in T isomorphic to the zero object
 (C)₁ := add^Σ(C)

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition (Triangulated setting; Bondal-Van den Bergh (2003), Rouquier(2008))

Let \mathcal{T} be a triangulated category and \mathcal{C} be a subcategory of \mathcal{T} . Consider the following additive subcategories of \mathcal{T} :

- add^Σ(C) is the strictly full subcategory of retracts of finite direct sum of shifts of objects in C
- ${\it 2} \ \langle {\cal C} \rangle_0$ consists of all objects in ${\cal T}$ isomorphic to the zero object
- $(\mathcal{C})_1 := \mathsf{add}^{\Sigma}(\mathcal{C})$
- $\langle \mathcal{C} \rangle_n := \operatorname{add}^{\Sigma} \{ M \mid \text{there exists an exact triangle } L \to M \to N \rightsquigarrow$ with $L \in \langle \mathcal{C} \rangle_{n-1}$, and $N \in \langle \mathcal{C} \rangle_1 \}$ if $n \ge 2$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition (Triangulated setting; Bondal-Van den Bergh (2003), Rouquier(2008))

Let \mathcal{T} be a triangulated category and \mathcal{C} be a subcategory of \mathcal{T} . Consider the following additive subcategories of \mathcal{T} :

- add^Σ(C) is the strictly full subcategory of retracts of finite direct sum of shifts of objects in C
- ${\it Q}\ \langle {\cal C} \rangle_0$ consists of all objects in ${\cal T}$ isomorphic to the zero object
- $\langle \mathcal{C} \rangle_n := \operatorname{add}^{\Sigma} \{ M \mid \text{there exists an exact triangle } L \to M \to N \rightsquigarrow \text{ with } L \in \langle \mathcal{C} \rangle_{n-1}, \text{ and } N \in \langle \mathcal{C} \rangle_1 \} \text{ if } n \geq 2.$
- We have an ascending chain of subcategories $\langle C \rangle_0 \subseteq \langle C \rangle_1 \subseteq \langle C \rangle_2 \dots$, and their union $\langle C \rangle := \bigcup_{n \ge 0} \langle C \rangle_n$ is the smallest thick subcategory of \mathcal{T} containing C.

イロト 不良 トイヨト イヨト

Let \mathcal{A} be an abelian category and \mathcal{C} be a subcategory of \mathcal{A} . Consider the following additive subcategories of \mathcal{A} :

Let \mathcal{A} be an abelian category and \mathcal{C} be a subcategory of \mathcal{A} . Consider the following additive subcategories of \mathcal{A} :

 add(C) is the strictly full subcategory of retracts of finite direct sum of objects in C

Let A be an abelian category and C be a subcategory of A. Consider the following additive subcategories of A:

- add(C) is the strictly full subcategory of retracts of finite direct sum of objects in C
- ${\it 2}{\it 0}\ |{\cal C}|_0$ consists of all objects in ${\cal T}$ isomorphic to the zero object

Let \mathcal{A} be an abelian category and \mathcal{C} be a subcategory of \mathcal{A} . Consider the following additive subcategories of \mathcal{A} :

- add(C) is the strictly full subcategory of retracts of finite direct sum of objects in C
- 2 $|\mathcal{C}|_0$ consists of all objects in \mathcal{T} isomorphic to the zero object
- $\ \, \textbf{3} \ \, |\mathcal{C}|_1 := \mathsf{add}(\mathcal{C})$

Let \mathcal{A} be an abelian category and \mathcal{C} be a subcategory of \mathcal{A} . Consider the following additive subcategories of \mathcal{A} :

- add(C) is the strictly full subcategory of retracts of finite direct sum of objects in C
- 2 $|C|_0$ consists of all objects in T isomorphic to the zero object
- $\ \, \textbf{0} \ \, |\mathcal{C}|_1 := \mathsf{add}(\mathcal{C})$
- $|\mathcal{C}|_n := \operatorname{add}\{M \mid \text{there exists an exact sequence } 0 \to L \to M \to N \to 0 \text{ with } L \in |\mathcal{C}|_{n-1}, \text{ and } N \in |\mathcal{C}|_1\} \text{ if } n \geq 2.$

Some notions of generation

Definition (Bondal-Van den Bergh (2003), Rouquier(2008))

• A triangulated category \mathcal{T} is said to have a classical generator if there exists an object G in \mathcal{T} such that $\mathcal{T} = \langle G \rangle$, and in this case, such a G is called a classical generator of \mathcal{T} .

Some notions of generation

Definition (Bondal-Van den Bergh (2003), Rouquier(2008))

- A triangulated category T is said to have a classical generator if there exists an object G in T such that T = ⟨G⟩, and in this case, such a G is called a classical generator of T.
- *T* is said to have a strong generator if there exists an object G in T
 such that T = ⟨G⟩_n.

Some notions of generation

Definition (Bondal-Van den Bergh (2003), Rouquier(2008))

- A triangulated category T is said to have a classical generator if there exists an object G in T such that T = ⟨G⟩, and in this case, such a G is called a classical generator of T.
- *T* is said to have a strong generator if there exists an object G in T
 such that T = ⟨G⟩_n.
- Moreover, if ${\mathcal T}$ does admit a strong generator, the Rouquier dimension of ${\mathcal T}$ is defined to be

dim
$$\mathcal{T} := \inf\{n \in \mathbb{N} \mid \mathcal{T} = \langle G \rangle_{n+1} \text{ for some } G \text{ in } \mathcal{T}\}$$

If ${\mathcal T}$ does not have a strong generator, then we set ${\sf dim}\,{\mathcal T}$ to be $\infty.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition (Iyengar-Takahashi)

C is said to have a strong generator if there exists an object G in A such that $\Omega^t C \subseteq |G|_n$ for some $n, t \in \mathbb{N}$.

Definition (Iyengar-Takahashi)

C is said to have a strong generator if there exists an object G in A such that $\Omega^t C \subseteq |G|_n$ for some $n, t \in \mathbb{N}$.

Definition (Dao-Takahashi)

One also defines

size $C := \inf\{n \in \mathbb{N} \mid C \subseteq |G|_{n+1} \text{ for some } G \text{ in } A\}$

Definition (Iyengar-Takahashi)

C is said to have a strong generator if there exists an object G in A such that $\Omega^t C \subseteq |G|_n$ for some $n, t \in \mathbb{N}$.

Definition (Dao-Takahashi)

One also defines

size $C := \inf\{n \in \mathbb{N} \mid C \subseteq |G|_{n+1} \text{ for some } G \text{ in } A\}$

rank $C := \inf\{n \in \mathbb{N} \mid C = |G|_{n+1} \text{ for some } G \text{ in } A\}$

Definition (Iyengar-Takahashi)

C is said to have a strong generator if there exists an object G in A such that $\Omega^t C \subseteq |G|_n$ for some $n, t \in \mathbb{N}$.

Definition (Dao-Takahashi)

One also defines

size
$$C := \inf\{n \in \mathbb{N} \mid C \subseteq |G|_{n+1} \text{ for some } G \text{ in } A\}$$

rank
$$C := \inf\{n \in \mathbb{N} \mid C = |G|_{n+1} \text{ for some } G \text{ in } A\}$$

Both of these quantities can potentially be infinite, and we have the obvious inequality: size $C \leq \operatorname{rank} C$.

 By definition, C has a strong generator if and only if size Ω^tC < ∞ for some t ∈ N.

<日

<</p>

Definition (Iyengar-Takahashi)

C is said to have a strong generator if there exists an object G in A such that $\Omega^t C \subseteq |G|_n$ for some $n, t \in \mathbb{N}$.

Definition (Dao-Takahashi)

One also defines

size
$$C := \inf\{n \in \mathbb{N} \mid C \subseteq |G|_{n+1} \text{ for some } G \text{ in } A\}$$

rank
$$C := \inf\{n \in \mathbb{N} \mid C = |G|_{n+1} \text{ for some } G \text{ in } A\}$$

Both of these quantities can potentially be infinite, and we have the obvious inequality: size $C \leq \operatorname{rank} C$.

- By definition, C has a strong generator if and only if size Ω^tC < ∞ for some t ∈ N.
- C is also said to admit a classical generator if C = thick(G) for some

From now on, let R be a commutative Noetherian ring. The following are due to Rouquier

From now on, let R be a commutative Noetherian ring. The following are due to Rouquier

• If R is Artinian, then $D^{b} (\text{mod } R) = \langle R/J(R) \rangle_{\ell\ell(R)}$, where J(R) is the Jacobson radical, and $\ell\ell(R)$ is the Loewy length.

From now on, let R be a commutative Noetherian ring. The following are due to Rouquier

- If R is Artinian, then $D^{b} (\text{mod } R) = \langle R/J(R) \rangle_{\ell\ell(R)}$, where J(R) is the Jacobson radical, and $\ell\ell(R)$ is the Loewy length.
- If R has finite global dimension d, then $D^{b}(\text{mod } R) = \langle R \rangle_{2+2d}$.

From now on, let R be a commutative Noetherian ring. The following are due to Rouquier

- If R is Artinian, then $D^{b} (\text{mod } R) = \langle R/J(R) \rangle_{\ell\ell(R)}$, where J(R) is the Jacobson radical, and $\ell\ell(R)$ is the Loewy length.
- If R has finite global dimension d, then $D^{b}(\text{mod } R) = \langle R \rangle_{2+2d}$.
- If R is hereditary, i.e., R has global dimension 1, then $D^{b}(\text{mod } R) = \langle R \rangle_{2}$.

From now on, let R be a commutative Noetherian ring. The following are due to Rouquier

- If R is Artinian, then $D^{b} (\text{mod } R) = \langle R/J(R) \rangle_{\ell\ell(R)}$, where J(R) is the Jacobson radical, and $\ell\ell(R)$ is the Loewy length.
- If R has finite global dimension d, then $D^{b}(\text{mod } R) = \langle R \rangle_{2+2d}$.
- If R is hereditary, i.e., R has global dimension 1, then $D^{b}(\text{mod } R) = \langle R \rangle_{2}$.
- If R has global dimension d, then in general, it is conjectured, but only proven when R is a finitely generated algebra over a perfect field, that dim $D^b (mod R) \le d$.

A (1) < A (1) < A (1) </p>

From now on, let R be a commutative Noetherian ring. The following are due to Rouquier

- If R is Artinian, then $D^{b} (\text{mod } R) = \langle R/J(R) \rangle_{\ell\ell(R)}$, where J(R) is the Jacobson radical, and $\ell\ell(R)$ is the Loewy length.
- If R has finite global dimension d, then $D^{b}(\text{mod } R) = \langle R \rangle_{2+2d}$.
- If R is hereditary, i.e., R has global dimension 1, then $D^{b}(\text{mod } R) = \langle R \rangle_{2}$.
- If R has global dimension d, then in general, it is conjectured, but only proven when R is a finitely generated algebra over a perfect field, that dim $D^{b}(\text{mod } R) \leq d$.

In general, finding upper bounds for Rouquier dimension can be quite difficult ...

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

We also have the following connection between the notions of generation in $D^{b}(mod R)$ and mod R

We also have the following connection between the notions of generation in $D^b \pmod{R}$ and $\mod R$

mod R has a classical generator if and only if so does D^b(mod R). (Krause-Stevenson)

We also have the following connection between the notions of generation in $D^{b}(mod R)$ and mod R

- mod R has a classical generator if and only if so does D^b(mod R). (Krause-Stevenson)
- Since for any complex X in $D^b \pmod{R}$, there is an exact triangle $Z(X) \to X \to B(X)[1] \rightsquigarrow$, hence for any s, one also obtains

 $\dim \mathsf{D}^{b}(\operatorname{mod} R) \leq 2 \left(s + \operatorname{size} \Omega^{s}(\operatorname{mod} R) + 1 \right) - 1$

(Iyengar-Takahashi)

・ 戸 ト ・ ヨ ト ・ ヨ ト

We also have the following connection between the notions of generation in $D^b \pmod{R}$ and $\mod R$

- mod R has a classical generator if and only if so does D^b(mod R). (Krause-Stevenson)
- Since for any complex X in $D^b \pmod{R}$, there is an exact triangle $Z(X) \to X \to B(X)[1] \rightsquigarrow$, hence for any s, one also obtains

 $\dim \mathsf{D}^{b}(\operatorname{mod} R) \leq 2 \left(s + \operatorname{size} \Omega^{s}(\operatorname{mod} R) + 1 \right) - 1$

(Iyengar-Takahashi)

In particular, if mod R has a strong generator, then so does D^b(mod R). The converse is not known.

くぼう くほう くほう しほ

Theorem (Dey-Lank-Takahashi)

If R has finite Krull dimension, then the following are equivalent:

Theorem (Dey-Lank-Takahashi)

If R has finite Krull dimension, then the following are equivalent:

() $mod(R/\mathfrak{p})$ has a strong generator for all $\mathfrak{p} \in Spec(R)$.

Theorem (Dey-Lank-Takahashi)

If R has finite Krull dimension, then the following are equivalent:

- $mod(R/\mathfrak{p})$ has a strong generator for all $\mathfrak{p} \in Spec(R)$.
- **2** $\mathsf{D}^{b}(\mathsf{mod}(R/\mathfrak{p}))$ has a strong generator for all $\mathfrak{p} \in \mathsf{Spec}(R)$.

Theorem (Dey-Lank-Takahashi)

If R has finite Krull dimension, then the following are equivalent:

- **9** $\operatorname{mod}(R/\mathfrak{p})$ has a strong generator for all $\mathfrak{p} \in \operatorname{Spec}(R)$.
- **2** $D^b (mod(R/\mathfrak{p}))$ has a strong generator for all $\mathfrak{p} \in Spec(R)$.

Moreover, when the above equivalent conditions hold, it follows that $D^{b}(mod(R/I))$ has a strong generator for any ideal I of R.

Theorem (Dey-Lank-Takahashi)

If R has finite Krull dimension, then the following are equivalent:

- $mod(R/\mathfrak{p})$ has a strong generator for all $\mathfrak{p} \in Spec(R)$.
- **2** $D^{b} (mod(R/\mathfrak{p}))$ has a strong generator for all $\mathfrak{p} \in Spec(R)$.

Moreover, when the above equivalent conditions hold, it follows that $D^{b}(mod(R/I))$ has a strong generator for any ideal I of R.

The proof goes via the notion of cohomology annihilator $ca(R) := \bigcup_{n \ge 0} \bigcap_{M,N \in \text{mod } R} ann \operatorname{Ext}_{R}^{i \ge n}(M,N)$, and in-fact, in the above equivalent conditions, we can also add:

We have obtained

Theorem (Dey-Lank-Takahashi)

If R has finite Krull dimension, then the following are equivalent:

- $mod(R/\mathfrak{p})$ has a strong generator for all $\mathfrak{p} \in Spec(R)$.
- **2** $D^b (mod(R/\mathfrak{p}))$ has a strong generator for all $\mathfrak{p} \in Spec(R)$.

Moreover, when the above equivalent conditions hold, it follows that $D^{b}(mod(R/I))$ has a strong generator for any ideal I of R.

The proof goes via the notion of cohomology annihilator $ca(R) := \bigcup_{n \ge 0} \bigcap_{M,N \in \text{mod } R} ann \operatorname{Ext}_{R}^{i \ge n}(M,N)$, and in-fact, in the above equivalent conditions, we can also add: " $ca(R/\mathfrak{p}) \ne 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ ".

Comparing rank and size

Recall that size C is defined in terms of $C \subseteq |G|_n$, whereas rank C is defined in terms of $C = |G|_n$, so clearly size $C \leq \operatorname{rank} C$, and, trying to reverse this inequality in any sort of way can be quite hopeless ... however, we do have

Comparing rank and size

Recall that size C is defined in terms of $C \subseteq |G|_n$, whereas rank C is defined in terms of $C = |G|_n$, so clearly size $C \leq \operatorname{rank} C$, and, trying to reverse this inequality in any sort of way can be quite hopeless ... however, we do have

 Let R be Cohen–Macaulay, admitting a dualizing module. Then for all n ≥ 0, it holds that

 $\operatorname{rank} \operatorname{CM}(R) \leq (n + \dim R + 1)(\operatorname{size} \Omega^n (\operatorname{mod} R) + 1) - 1$

where CM(R) is the category of maximal Cohen–Macaulay R-modules.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Comparing rank and size

Recall that size C is defined in terms of $C \subseteq |G|_n$, whereas rank C is defined in terms of $C = |G|_n$, so clearly size $C \leq \operatorname{rank} C$, and, trying to reverse this inequality in any sort of way can be quite hopeless ... however, we do have

 Let R be Cohen–Macaulay, admitting a dualizing module. Then for all n ≥ 0, it holds that

$$\operatorname{rank} \operatorname{CM}(R) \le (n + \dim R + 1)(\operatorname{size} \Omega^n (\operatorname{mod} R) + 1) - 1$$

where CM(R) is the category of maximal Cohen–Macaulay *R*-modules. In particular, mod *R* has a strong generator if and only if CM(R) has finite rank. (Dey-Lank-Takahashi)

A (1) < A (2) < A (2) </p>

A little bit more about how generation is often controlled by closed integral subschemes

Theorem (Dey-Lank-Takahashi)

• If Ass(R) = Min(R), then for every $n \ge 0$, we have size $\Omega^{n+1} (\text{mod } R) \le (\sum_{\mathfrak{p} \in Min(R)} \ell \ell(R_{\mathfrak{p}})) (n+1) (1 + \sup_{\mathfrak{p} \in Min(R)} \text{size } \Omega^{n} (\text{mod}(R/\mathfrak{p}))) - 1$

A little bit more about how generation is often controlled by closed integral subschemes

Theorem (Dey-Lank-Takahashi)

- If Ass(R) = Min(R), then for every $n \ge 0$, we have size $\Omega^{n+1} (\text{mod } R) \le (\sum_{\mathfrak{p} \in Min(R)} \ell \ell(R_{\mathfrak{p}})) (n+1) (1 + \sup_{\mathfrak{p} \in Min(R)} \text{size } \Omega^{n} (\text{mod}(R/\mathfrak{p}))) - 1$
- When R is Cohen–Macaulay, one-dimensional, and admits a dualizing module, then

$$\mathsf{rank}\,\mathsf{CM}(R) \leq 2\left(\sum_{\mathfrak{p}\in\mathsf{Min}(R)}\ell\ell(R_\mathfrak{p})\right)\left(1+\sup_{\mathfrak{p}\in\mathsf{Min}(R)}\mathsf{size}\,\mathsf{CM}(R/\mathfrak{p})\right)-1$$

Theorem (Dey-Lank)

For a Noetherian scheme X, the following are equivalent

Souvik Dey (Charles University, Prague) Some aspects of (strong) generation in modu

Theorem (Dey-Lank)

For a Noetherian scheme X, the following are equivalent

The regular locus of every closed integral subscheme of X contains a non-empty open subset.

Theorem (Dey-Lank)

- The regular locus of every closed integral subscheme of X contains a non-empty open subset.
- The regular locus of every closed integral subscheme of X is open.

Theorem (Dey-Lank)

- The regular locus of every closed integral subscheme of X contains a non-empty open subset.
- The regular locus of every closed integral subscheme of X is open.
- D^b_{coh}(Z) admits a classical generator for every closed integral subscheme Z of X.

Theorem (Dey-Lank)

- The regular locus of every closed integral subscheme of X contains a non-empty open subset.
- The regular locus of every closed integral subscheme of X is open.
- D^b_{coh}(Z) admits a classical generator for every closed integral subscheme Z of X.
- D_{sg}(Z) admits a classical generator for every closed integral subscheme Z of X.

Theorem (Dey-Lank)

- The regular locus of every closed integral subscheme of X contains a non-empty open subset.
- The regular locus of every closed integral subscheme of X is open.
- D^b_{coh}(Z) admits a classical generator for every closed integral subscheme Z of X.
- D_{sg}(Z) admits a classical generator for every closed integral subscheme Z of X.
- och Z admits a classical generator for every closed integral subscheme Z of X.

Theorem (Dey-Lank)

For a Noetherian scheme X, the following are equivalent

- The regular locus of every closed integral subscheme of X contains a non-empty open subset.
- **2** The regular locus of every closed integral subscheme of X is open.
- D^b_{coh}(Z) admits a classical generator for every closed integral subscheme Z of X.
- D_{sg}(Z) admits a classical generator for every closed integral subscheme Z of X.
- och Z admits a classical generator for every closed integral subscheme Z of X.

Moreover, if any of these conditions are satisfied, then $D^b_{coh}(Y)$ has a classical generator for any closed subscheme Y of X.

This generalizes, to schemes, the same result proved previously by lyengar-Takahashi, in the affine case.

<日

<</p>

Thank you for listening :)

2