Closure properties of orthogonal classes associated to cosilting objects

Simion Breaz

Babeş-Bolyai University, Cluj-Napoca

May 2024

Let **D** be a triangulated category. For $C \subseteq \mathbf{D}$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}} = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(C, X[i]) = 0, \text{ for all } C \in \mathcal{C} \text{ and all } i > n\}$

 $^{\perp > n}C = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in C \text{ and all } i > n\}.$ Similar definitions are obtained by repacing > n with $\ge n, \le n, < n, n$ etc. For instance,

 $\mathcal{C}^{\perp_0} = \{X \in \mathbf{\mathsf{D}} \mid \operatorname{Hom}_{\mathbf{\mathsf{D}}}(\mathcal{C},X) = \mathsf{0}, ext{ for all } \mathcal{C} \in \mathcal{C}\}$

Let **D** be a triangulated category. For $C \subseteq \mathbf{D}$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}} = \{ X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(\mathcal{C}, X[i]) = 0, \text{ for all } \mathcal{C} \in \mathcal{C} \text{ and all } i > n \}$

 $^{\perp > n}C = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in C \text{ and all } i > n\}.$ Similar definitions are obtained by repacing > n with $\ge n, \le n$, < n, n etc. For instance,

 $\mathcal{C}^{\perp_0} = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(\mathcal{C}, X) = 0, ext{ for all } \mathcal{C} \in \mathcal{C}\}$

Let **D** be a triangulated category. For $C \subseteq \mathbf{D}$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}} = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(\mathcal{C}, X[i]) = 0, \text{ for all } \mathcal{C} \in \mathcal{C} \text{ and all } i > n\}$

 $^{\perp > n}C = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in C \text{ and all } i > n\}.$ Similar definitions are obtained by repacing > n with $\ge n, \le n, < n, n$ etc. For instance,

 $\mathcal{C}^{\perp_0} = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(\mathcal{C}, X) = 0, ext{ for all } \mathcal{C} \in \mathcal{C}\}$

Let **D** be a triangulated category. For $C \subseteq \mathbf{D}$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}} = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(\mathcal{C}, X[i]) = 0, \text{ for all } \mathcal{C} \in \mathcal{C} \text{ and all } i > n\}$

 $^{\perp > n}C = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in C \text{ and all } i > n\}.$ Similar definitions are obtained by repacing > n with $\ge n, \le n, < n, n$ etc. For instance,

 $\mathcal{C}^{\perp_0} = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(\mathcal{C}, X) = 0, ext{ for all } \mathcal{C} \in \mathcal{C}\}$

Let **D** be a triangulated category. For $C \subseteq \mathbf{D}$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}} = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(\mathcal{C}, X[i]) = 0, \text{ for all } \mathcal{C} \in \mathcal{C} \text{ and all } i > n\}$

 $^{\perp > n}C = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in C \text{ and all } i > n\}.$ Similar definitions are obtained by repacing > n with $\ge n, \le n, < n, n$ etc. For instance,

$$\mathcal{C}^{\perp_0} = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(\mathcal{C}, X) = 0, ext{ for all } \mathcal{C} \in \mathcal{C}\}$$

Torsion Pairs

- A torsion pair in **D** is a pair $(\mathcal{U}, \mathcal{V})$ of subcategories **D** such that: • $\mathcal{U}^{\perp_0} = \mathcal{V}$ and $\mathcal{U} = {}^{\perp_0}\mathcal{V}$.
 - **2** For every $X \in \mathbf{D}$ there exists a triangle $U \to X \to V \to U[1]$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.

イロト イポト イヨト イヨト 二日

t-structures

A torsion pair $(\mathcal{U}, \mathcal{V})$ is called *t-structure* if in addition \mathcal{U} is closed under positive: $\mathcal{U}[1] \subseteq \mathcal{U}$.

We say that \mathcal{U} is the aisle, respectively \mathcal{V} is the coaisle of the t-structure $(\mathcal{U}, \mathcal{V})$.

Remark that:

• $\mathcal{U}[1] \subseteq \mathcal{U} \Leftrightarrow \mathcal{V}[-1] \subseteq \mathcal{V};$

(日)

A torsion pair $(\mathcal{U}, \mathcal{V})$ is called *t-structure* if in addition \mathcal{U} is closed under positive: $\mathcal{U}[1] \subseteq \mathcal{U}$. We say that \mathcal{U} is the aisle, respectively \mathcal{V} is the coaisle of the t-structure $(\mathcal{U}, \mathcal{V})$.

Remark that:

• $\mathcal{U}[1] \subseteq \mathcal{U} \Leftrightarrow \mathcal{V}[-1] \subseteq \mathcal{V};$

A torsion pair $(\mathcal{U}, \mathcal{V})$ is called *t-structure* if in addition \mathcal{U} is closed under positive: $\mathcal{U}[1] \subseteq \mathcal{U}$. We say that \mathcal{U} is the aisle, respectively \mathcal{V} is the coaisle of the t-structure $(\mathcal{U}, \mathcal{V})$.

Remark that:

• $\mathcal{U}[1] \subseteq \mathcal{U} \Leftrightarrow \mathcal{V}[-1] \subseteq \mathcal{V};$

イロン (個) (注) (注) [

A torsion pair $(\mathcal{U}, \mathcal{V})$ is called *t-structure* if in addition \mathcal{U} is closed under positive: $\mathcal{U}[1] \subseteq \mathcal{U}$. We say that \mathcal{U} is the aisle, respectively \mathcal{V} is the coaisle of the t-structure $(\mathcal{U}, \mathcal{V})$.

Remark that:

• $\mathcal{U}[1] \subseteq \mathcal{U} \Leftrightarrow \mathcal{V}[-1] \subseteq \mathcal{V};$

イロン (個) (注) (注) [

Silting and cosilting

An object $T \in \mathbf{D}$ is a *silting object* if the pair $(T^{\perp>0}, T^{\perp\leq 0})$ is a t-structure in **D**. The object $C \in \mathbf{D}$ is conjuting if $(\perp < 0, C \perp > 0, C)$ is a t-structure.

Silting and cosilting

An object $T \in \mathbf{D}$ is a *silting object* if the pair $(T^{\perp>0}, T^{\perp\leq 0})$ is a t-structure in \mathbf{D} . The object $C \in \mathbf{D}$ is *cosilting* if $(^{\perp\leq 0}C, ^{\perp>0}C)$ is a t-structure.

(Co)Silting via closure properties

Simion Breaz Closure properties of orthogonal classes associated to cosilting

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Neeman's Theorem

Suppose that **D** is a well-generated triangulated category.

Theorem (Neeman)

If $U \in \mathbf{D}$ and $\overline{\langle U \rangle}^{[-\infty,0]}$ is the smallest subcategory that contains U, is closed under positive shifts, coproducts and extensions then the pair $(\overline{\langle U \rangle}^{[-\infty,0]}, U^{\perp \leq 0})$ is a *t*-structure.

Using this we deduce the following characterization

Theorem (Angeleri, Hrbek, Marks, Psaroudakis, Saórin, Vitória ...,

An object $T \in \mathbf{D}$ is silting if and only if

- $T \in T^{\perp_{>0}}.$
- $\mathfrak{Y}^{\perp_{>0}}$ is closed under coproducts.
- \bigcirc T generates **D**, that is $T^{\perp_{\mathbb{Z}}} = \{0\}$

Neeman's Theorem

Suppose that **D** is a well-generated triangulated category.

Theorem (Neeman)

If $U \in \mathbf{D}$ and $\overline{\langle U \rangle}^{[-\infty,0]}$ is the smallest subcategory that contains U, is closed under positive shifts, coproducts and extensions then the pair $(\overline{\langle U \rangle}^{[-\infty,0]}, U^{\perp \leq 0})$ is a *t*-structure.

Using this we deduce the following characterization

Theorem (Angeleri, Hrbek, Marks, Psaroudakis, Saórin, Vitória ...,

An object $\mathcal{T}\in \mathbf{D}$ is silting if and only if

```
  T \in T^{\perp_{>0}}.
```

 ${}^{\textcircled{O}}$ $\mathcal{T}^{\perp_{>0}}$ is closed under coproducts.

 \bigcirc T generates ${f D}$, that is $T^{\perp_{\mathbb Z}}=\{0\}.$

Neeman's Theorem

Suppose that **D** is a well-generated triangulated category.

Theorem (Neeman)

If $U \in \mathbf{D}$ and $\overline{\langle U \rangle}^{[-\infty,0]}$ is the smallest subcategory that contains U, is closed under positive shifts, coproducts and extensions then the pair $(\overline{\langle U \rangle}^{[-\infty,0]}, U^{\perp_{\leq 0}})$ is a *t*-structure.

Using this we deduce the following characterization

Theorem (Angeleri, Hrbek, Marks, Psaroudakis, Saórin, Vitória ...,)

An object $T \in \mathbf{D}$ is silting if and only if

$$T \in T^{\perp_{>0}}.$$

- $\mathfrak{Y}^{\perp_{>0}}$ is closed under coproducts.
- ${f 3}$ T generates ${f D}$, that is $T^{\perp_{\mathbb Z}}=\{0\}.$

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
- We cannot dualize the above corollary to obtain a similar result for cosilting objects.
- Such a characterization is known when [⊥]>₀U is already a coaisle of a t-structure, e.g. when U is pure-injective object (in compactly generated categories).
- The aim of this talk is to sketch a proof in general categories with coproducts which can be dualized.

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
- We cannot dualize the above corollary to obtain a similar result for cosilting objects.
- Such a characterization is known when [⊥]>₀ U is already a coaisle of a t-structure, e.g. when U is pure-injective object (in compactly generated categories).
- The aim of this talk is to sketch a proof in general categories with coproducts which can be dualized.

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
- We cannot dualize the above corollary to obtain a similar result for cosilting objects.
- Such a characterization is known when [⊥]>₀ U is already a coaisle of a t-structure, e.g. when U is pure-injective object (in compactly generated categories).
- The aim of this talk is to sketch a proof in general categories with coproducts which can be dualized.

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
- We cannot dualize the above corollary to obtain a similar result for cosilting objects.
- Such a characterization is known when [⊥]>₀ U is already a coaisle of a t-structure, e.g. when U is pure-injective object (in compactly generated categories).
- The aim of this talk is to sketch a proof in general categories with coproducts which can be dualized.

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
- We cannot dualize the above corollary to obtain a similar result for cosilting objects.
- Such a characterization is known when [⊥]>₀ U is already a coaisle of a t-structure, e.g. when U is pure-injective object (in compactly generated categories).
- The aim of this talk is to sketch a proof in general categories with coproducts which can be dualized.

Proposition

Let U be an object from **D**. Assume that there exists a cocomplete pre-aisle \mathcal{A} (i.e. it is closed under extensions, direct sums, direct summands, and positive shifts) in **D** such that

1) $U \in \mathcal{A}$,

2) Hom_D($U, \mathcal{A}[n]$) = 0 for some positive integer n, and 5) $A = U(U) \subset U(u)$

(S1.5) Add $(U) \subseteq U^{\perp_{>0}}$.

Then for every $X \in \mathbf{D}$ there exists a triangle $Y \to X \to Z \to Y[1]$ such that

() $Z\in U^{\perp_{\leq 0}}$,

$$Y \in U^{\perp_{>0}}$$

イロト イヨト イヨト

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

- $X_0 = X;$
- If X_k is constructed then we consider a triangle $U[k]^{(I_k)} \xrightarrow{\alpha_k} X_k \xrightarrow{f_k} X_{k+1}$, where α_k is an Add(U[k])-preecover.

For every i > k, we consider the morphism $f_{ki} : X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii} : X_i \to X_i$, $i \ge 0$, will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

From (S1.5) it follows that

- if $k \geq 0$ then $\operatorname{Hom}_{\mathbf{D}}(\mathit{U}[j], X_{k+1}) = 0$ for all $j = \overline{0,k};$
- if k < i then

 $S_{ki} \in \operatorname{Add}(U[k+1]) * \cdots * \operatorname{Add}(U[i]) \subseteq \mathcal{A}[k+1]$

・ロト ・回ト ・ヨト ・ヨト

We construct inductively a sequence of morphisms $f_k: X_k \to X_{k+1}$ in the following way:

- $X_0 = X;$
- If X_k is constructed then we consider a triangle $U[k]^{(I_k)} \xrightarrow{\alpha_k} X_k \xrightarrow{f_k} X_{k+1}$, where α_k is an Add(U[k])-preecover.

For every i > k, we consider the morphism $f_{ki} : X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii} : X_i \to X_i$, $i \ge 0$, will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

From (S1.5) it follows that

• if $k \geq 0$ then $\operatorname{Hom}_{\mathbf{D}}(U[j], X_{k+1}) = 0$ for all $j = \overline{0, k}$;

• if k < i then

 $S_{ki} \in \operatorname{Add}(U[k+1]) * \cdots * \operatorname{Add}(U[i]) \subseteq \mathcal{A}[k+1]$

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

- $X_0 = X;$
- If X_k is constructed then we consider a triangle $U[k]^{(I_k)} \xrightarrow{\alpha_k} X_k \xrightarrow{f_k} X_{k+1}$, where α_k is an Add(U[k])-preecover.

For every i > k, we consider the morphism $f_{ki} : X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii} : X_i \to X_i$, $i \ge 0$, will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

From (S1.5) it follows that

• if $k \geq 0$ then $\operatorname{Hom}_{\operatorname{\mathsf{D}}}(U[j],X_{k+1})=0$ for all $j=\overline{0,k};$

• if k < i then

 $S_{ki} \in \operatorname{Add}(U[k+1]) * \cdots * \operatorname{Add}(U[i]) \subseteq \mathcal{A}[k+1].$

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

• $X_0 = X;$

• If X_k is constructed then we consider a triangle $U[k]^{(I_k)} \xrightarrow{\alpha_k} X_k \xrightarrow{f_k} X_{k+1}$, where α_k is an Add(U[k])-preecover.

For every i > k, we consider the morphism $f_{ki} : X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii} : X_i \to X_i$, $i \ge 0$, will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

From (S1.5) it follows that

• if $k \ge 0$ then $\operatorname{Hom}_{\mathbf{D}}(U[j], X_{k+1}) = 0$ for all $j = \overline{0, k}$;

• if k < i then

 $S_{ki} \in \operatorname{Add}(U[k+1]) * \cdots * \operatorname{Add}(U[i]) \subseteq \mathcal{A}[k+1].$

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

• $X_0 = X;$

• If X_k is constructed then we consider a triangle $U[k]^{(I_k)} \xrightarrow{\alpha_k} X_k \xrightarrow{f_k} X_{k+1}$, where α_k is an Add(U[k])-preecover.

For every i > k, we consider the morphism $f_{ki} : X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii} : X_i \to X_i$, $i \ge 0$, will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

From (S1.5) it follows that

• if $k \ge 0$ then $\operatorname{Hom}_{\mathbf{D}}(U[j], X_{k+1}) = 0$ for all $j = \overline{0, k}$;

• if k < i then

 $S_{ki} \in \operatorname{Add}(U[k+1]) * \cdots * \operatorname{Add}(U[i]) \subseteq \mathcal{A}[k+1].$

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

• $X_0 = X;$

• If X_k is constructed then we consider a triangle $U[k]^{(I_k)} \xrightarrow{\alpha_k} X_k \xrightarrow{f_k} X_{k+1}$, where α_k is an Add(U[k])-preecover.

For every i > k, we consider the morphism $f_{ki} : X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii} : X_i \to X_i$, $i \ge 0$, will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

From (S1.5) it follows that

- if $k \ge 0$ then $\operatorname{Hom}_{\mathbf{D}}(U[j], X_{k+1}) = 0$ for all $j = \overline{0, k}$;
- if k < i then

 $S_{ki} \in \operatorname{Add}(U[k+1]) * \cdots * \operatorname{Add}(U[i]) \subseteq \mathcal{A}[k+1].$

Let k > 0. There exists a commutative diagram such that all lines and columns are triangles: $\bigoplus_{i \ge k} X_k \xrightarrow{1-\text{shift}} \bigoplus_{i \ge k} X_k \longrightarrow X_k$

Let $k \geq 0$.

There exists a commutative diagram such that all lines and

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i\geq 0}$. Using k > n we obtain $Z \in U^{\perp \leq 0}$. Using k = 0, we have $Y = C_0[-1]$ verifies (b) and (c). Since $X_0 = X$, the proof is complete.

Let $k \geq 0$.

There exists a commutative diagram such that all lines and

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i\geq 0}$.

 $Y = C_0[-1]$ verifies (b) and (c). Since $X_0 = X$, the proof is complete.

Let $k \geq 0$.

There exists a commutative diagram such that all lines and

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i\geq 0}$. Using k > n we obtain $Z \in U^{\perp \leq 0}$. Using k = 0, we have $Y = C_0[-1]$ verifies (b) and (c). Since $X_0 = X$, the proof is complete.

Let $k \geq 0$.

There exists a commutative diagram such that all lines and

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i\geq 0}$. Using k > n we obtain $Z \in U^{\perp \leq 0}$. Using k = 0, we have $Y = C_0[-1]$ verifies (b) and (c). Since $X_0 = X$, the proof is complete.

Let $k \geq 0$.

There exists a commutative diagram such that all lines and

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i\geq 0}$. Using k > n we obtain $Z \in U^{\perp \leq 0}$. Using k = 0, we have $Y = C_0[-1]$ verifies (b) and (c). Since $X_0 = X$, the proof is complete.

The characterization for (co)silting

Corollary

Assume the **D** is a triangulated category with coproducts. An object $U \in \mathbf{D}$ is silting if and only if: (S1) $U \in U^{\perp > 0}$; (S2) $U^{\perp > 0}$ is closed under direct sums; (S3) $U^{\perp \mathbb{Z}} = 0$.

Corollary

Assume the **D** is a triangulated category with products. An object $U \in \mathbf{D}$ is cosilting if and only if: (C1) $U \in {}^{\perp>0}U$, (C2) ${}^{\perp>0}U$ is closed under direct products, (C3) ${}^{\perp_{\mathbb{Z}}}U = 0$.

・ロト ・回ト ・ヨト ・ヨト

э.

The characterization for (co)silting

Corollary

Assume the **D** is a triangulated category with coproducts. An object $U \in \mathbf{D}$ is silting if and only if: (S1) $U \in U^{\perp_{>0}}$; (S2) $U^{\perp_{>0}}$ is closed under direct sums; (S3) $U^{\perp_{\mathbb{Z}}} = 0$.

Corollary

Assume the **D** is a triangulated category with products. An object $U \in \mathbf{D}$ is cosilting if and only if: (C1) $U \in {}^{\bot>0}U$, (C2) ${}^{\bot>0}U$ is closed under direct products, (C3) ${}^{\bot_{\mathbb{Z}}}U = 0$.

・ロト ・回ト ・ヨト ・ヨト

э

Pure-injective cosilting

An object U in C is called (AMV) *partial cosilting* if the class ${}^{\perp_{>0}}U$ is a coaisle of a *t*-structure and $U \in {}^{\perp_{>0}}U$.

Proposition

The following are equivalent for an object U in a compactly generated category such that:

- $\bot_{>0} U$ is closed under products and "pure-subobjects";
- 2 $\perp_{>0} U$ is closed under products, and T is pure-injective;
- \bigcirc U is a pure injective (AMV) partial silting object.