Closure properties of orthogonal classes associated to cosilting objects

Simion Breaz

Babeş-Bolyai University, Cluj-Napoca

May 2024

 4 and 3 and 4 . The 4 of Ξ is a set of Ξ is a

Let **D** be a triangulated category. For $C \subseteq D$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}}=\{X\in \mathsf{D}\mid \mathrm{Hom}_{\mathsf{D}}(\mathcal{C},X[i])=0, \text{ for all } \mathcal{C}\in \mathcal{C} \text{ and all } i>n\}$

 $\perp_{\geq n} C = \{X \in \mathbf{D} \mid \text{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in \mathcal{C} \text{ and all } i > n\}.$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

 \equiv

Let **D** be a triangulated category. For $C \subseteq D$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}}=\{X\in \mathbf{D}\mid \mathrm{Hom}_{\mathbf{D}}(\mathcal{C},X[i])=0, \text{ for all } \mathcal{C}\in \mathcal{C} \text{ and all } i>n\}$

 $\perp_{\geq n} C = \{X \in \mathbf{D} \mid \text{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in \mathcal{C} \text{ and all } i > n\}.$

Let **D** be a triangulated category. For $C \subseteq D$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}}=\{X\in \mathbf{D}\mid \mathrm{Hom}_{\mathbf{D}}(\mathcal{C},X[i])=0, \text{ for all } \mathcal{C}\in \mathcal{C} \text{ and all } i>n\}$

 $\perp_{\geq n} C = \{X \in \mathbf{D} \mid \text{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in \mathcal{C} \text{ and all } i > n\}.$ Similar definitions are obtained by repacing $> n$ with $> n, \leq n$, $<$ n, n etc.

 $\mathcal{C}^{\perp_{\mathbf{0}}}=\{X\in \mathbf{D}\mid \mathrm{Hom}_{\mathbf{D}}(\mathcal{C},X)=0,\ \text{for all}\ \ \mathcal{C}\in\mathcal{C}\}$

 $4 \cap 3$ $4 \cap 3$ $4 \cap 3$ $4 \cap 5$ $4 \cap 5$ $4 \cap 5$ 5

Let **D** be a triangulated category. For $C \subset D$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}}=\{X\in \mathbf{D}\mid \mathrm{Hom}_{\mathbf{D}}(\mathcal{C},X[i])=0, \text{ for all } \mathcal{C}\in \mathcal{C} \text{ and all } i>n\}$

 $\perp_{\geq n} C = \{X \in \mathbf{D} \mid \text{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in \mathcal{C} \text{ and all } i > n\}.$ Similar definitions are obtained by repacing $> n$ with $> n, \leq n$, $<$ n, n etc. For instance,

 $\mathcal{C}^{\perp_{0}}=\{X\in \mathsf{D}\mid \mathrm{Hom}_{\mathsf{D}}(\mathcal{C},X)=0, \text{ for all }\mathcal{C}\in \mathcal{C}\}$

 $A \cap A \cup A \cap B \cup A \subseteq A \cup A \subseteq A \cup B \cup B \cup A \cap C$

Let **D** be a triangulated category. For $C \subset D$ and $n \in \mathbb{Z}$, we denote

 $\mathcal{C}^{\perp_{>n}}=\{X\in \mathbf{D}\mid \mathrm{Hom}_{\mathbf{D}}(\mathcal{C},X[i])=0, \text{ for all } \mathcal{C}\in \mathcal{C} \text{ and all } i>n\}$

 $\perp_{\geq n} C = \{X \in \mathbf{D} \mid \text{Hom}_{\mathbf{D}}(X, C[i]) = 0, \text{ for all } C \in \mathcal{C} \text{ and all } i > n\}.$ Similar definitions are obtained by repacing $> n$ with $> n, \leq n$, $<$ n, n etc. For instance,

$$
\mathcal{C}^{\perp_0} = \{X \in \mathbf{D} \mid \operatorname{Hom}_{\mathbf{D}}(\mathcal{C}, X) = 0, \text{ for all } \mathcal{C} \in \mathcal{C}\}
$$

 $A \cap A \cup A \cap B \cup A \subseteq A \cup A \subseteq A \cup B \cup B \cup A \cap C$

Torsion Pairs

- A torsion pair in **D** is a pair $(\mathcal{U}, \mathcal{V})$ of subcategories **D** such that: $\mathbf{D} \,\; \mathcal{U}^{\perp_0} = \mathcal{V}$ and $\mathcal{U} = {}^{\perp_0}\mathcal{V}.$
	- **2** For every $X \in \mathbf{D}$ there exists a triangle $U \to X \to V \to U[1]$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.

 $4\overline{m}$ \rightarrow $4\overline{m}$ \rightarrow $4\overline{m}$ \rightarrow

t-structures

A torsion pair $(\mathcal{U}, \mathcal{V})$ is called *t-structure* if in addition \mathcal{U} is closed under positive: $\mathcal{U}[1] \subseteq \mathcal{U}$.

We say that U is the aisle, respectively V is the coaisle of the t-structure $(\mathcal{U}, \mathcal{V})$.

 \bullet U[1] $\subset \mathcal{U} \Leftrightarrow \mathcal{V}[-1] \subset \mathcal{V}$;

 $\mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P}$

A torsion pair (U, V) is called *t-structure* if in addition U is closed under positive: $\mathcal{U}[1] \subseteq \mathcal{U}$. We say that U is the aisle, respectively V is the coaisle of the t-structure $(\mathcal{U}, \mathcal{V})$.

Remark that:

 \bullet U[1] $\subset \mathcal{U} \Leftrightarrow \mathcal{V}[-1] \subset \mathcal{V}$;

 \mathcal{A} and \mathcal{A} in the \mathcal{A} in the \mathcal{A} in the \mathcal{A}

A torsion pair (U, V) is called *t-structure* if in addition U is closed under positive: $\mathcal{U}[1] \subseteq \mathcal{U}$. We say that U is the aisle, respectively V is the coaisle of the t-structure $(\mathcal{U}, \mathcal{V})$.

Remark that:

 $\bullet \mathcal{U}[1] \subseteq \mathcal{U} \Leftrightarrow \mathcal{V}[-1] \subseteq \mathcal{V}$;

 4 and 3 and 2 and 3 and 3 and 3 and 3

A torsion pair (U, V) is called *t-structure* if in addition U is closed under positive: $\mathcal{U}[1] \subseteq \mathcal{U}$. We say that U is the aisle, respectively V is the coaisle of the t-structure $(\mathcal{U}, \mathcal{V})$.

Remark that:

 $\bullet \mathcal{U}[1] \subseteq \mathcal{U} \Leftrightarrow \mathcal{V}[-1] \subseteq \mathcal{V}$;

 4 and 3 and 2 and 3 and 3 and 3 and 3

Silting and cosilting

An object $\mathcal{T} \in \mathbf{D}$ is a *silting object* if the pair $(\mathcal{T}^{\perp_{>0}}, \mathcal{T}^{\perp_{\leq 0}})$ is a t-structure in D.

The object $C \in \mathbf{D}$ is *cosilting* if $({}^{\perp_{\leq 0}}C, {}^{\perp_{> 0}}C)$ is a t-structure.

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ │ 결

Silting and cosilting

An object $\mathcal{T} \in \mathbf{D}$ is a *silting object* if the pair $(\mathcal{T}^{\perp_{>0}}, \mathcal{T}^{\perp_{\leq 0}})$ is a t-structure in D. The object $C \in \mathbf{D}$ is *cosilting* if $({}^{\perp_{\leq 0}}C, {}^{\perp_{> 0}}C)$ is a t-structure.

 $A \cap \overline{A} \cup A \cup \overline{B} \cup A \cup \overline{B} \cup A \cup \overline{B}$

1 [\(Co\)Silting via closure properties](#page-13-0)

Simion Breaz **Closure properties of orthogonal classes associated to cosilting**

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

目

 $2QQ$

Neeman's Theorem

Suppose that D is a well-generated triangulated category.

If $U \in \mathbf{D}$ and $\overline{\langle U\rangle}^{[-\infty,0]}$ is the smallest subcategory that contains U , is closed under positive shifts, coproducts and extensions then the pair $(\overline{\langle U\rangle}^{[-\infty,0]},\,U^{\perp_{\leq 0}})$ is a *t*-structure.

-
-
-

Neeman's Theorem

Suppose that **D** is a well-generated triangulated category.

Theorem (Neeman)

If $U \in \mathbf{D}$ and $\overline{\langle U \rangle}^{[-\infty,0]}$ is the smallest subcategory that contains U , is closed under positive shifts, coproducts and extensions then the pair $(\overline{\langle U\rangle}^{[-\infty,0]},U^{\perp_{\leq 0}})$ is a *t*-structure.

Using this we deduce the following characterization

An object $T \in D$ is silting if and only if

- $T \in \mathcal{T}^{\perp>0}$.
- \bullet $T^{\perp_{>0}}$ is closed under coproducts.
- \bullet T generates **D**, that is $T^{\perp_{\mathbb{Z}}} = \{0\}.$

Neeman's Theorem

Suppose that **D** is a well-generated triangulated category.

Theorem (Neeman)

If $U \in \mathbf{D}$ and $\overline{\langle U \rangle}^{[-\infty,0]}$ is the smallest subcategory that contains U , is closed under positive shifts, coproducts and extensions then the pair $(\overline{\langle U\rangle}^{[-\infty,0]},U^{\perp_{\leq 0}})$ is a *t*-structure.

Using this we deduce the following characterization

Theorem (Angeleri, Hrbek, Marks, Psaroudakis, Saórin, Vitória ...,) An object $T \in \mathbf{D}$ is silting if and only if

 \mathbf{S} $\mathbf{T} \in \mathcal{T}^{\perp>0}$.

- \bullet $\mathcal{T}^{\perp>0}$ is closed under coproducts.
- \bullet T generates **D**, that is $T^{\perp_{\mathbb{Z}}} = \{0\}.$

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
-
-
-

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶ ...

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
- We cannot dualize the above corollary to obtain a similar result for cosilting objects.
- Such a characterization is known when \pm > 0 U is already a
-

◆ロ→ ◆個→ ◆唐→ ◆唐→

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
- We cannot dualize the above corollary to obtain a similar result for cosilting objects.
- Such a characterization is known when \pm > 0 U is already a coaisle of a t-structure, e.g. when U is pure-injective object (in compactly generated categories).
- The aim of this talk is to sketch a proof in general categories

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
- We cannot dualize the above corollary to obtain a similar result for cosilting objects.
- Such a characterization is known when \pm >0 U is already a coaisle of a t-structure, e.g. when U is pure-injective object (in compactly generated categories).
- The aim of this talk is to sketch a proof in general categories with coproducts which can be dualized.

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶ ...

- The proof of Neeman's theorem uses the Brown Representability Theorem.
- It is not known if the well generated categories also satisfy the Brown Representability Theorem for the dual, hence we don't have a dual version for Nemman's Theorem.
- We cannot dualize the above corollary to obtain a similar result for cosilting objects.
- Such a characterization is known when \pm >0 U is already a coaisle of a t-structure, e.g. when U is pure-injective object (in compactly generated categories).
- The aim of this talk is to sketch a proof in general categories with coproducts which can be dualized.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Proposition

Let U be an object from D . Assume that there exists a cocomplete pre-aisle A (i.e. it is closed under extensions, direct sums, direct summands, and positive shifts) in D such that

- 1) $U \in \mathcal{A}$.
- 2) $\text{Hom}_{\mathbf{D}}(U, \mathcal{A}[n]) = 0$ for some positive integer *n*, and
- $(S1.5) \text{ Add}(U) \subseteq U^{\perp_{>0}}.$

Then for every $X \in \mathbf{D}$ there exists a triangle $Y \to X \to Z \to Y[1]$ such that

- $Z \in U^{\perp_{\leq 0}},$
- $\bullet \quad Y \in U^{\perp_{>0}},$
- \bigcirc Hom_D $(Y, U^{\perp_{\leq 0}}) = 0.$

 4 and 3 and 4 . The 4 of Ξ is a set of Ξ is a

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

- \bullet $X_0 = X$:
-

-
-

◆ロ→ ◆個→ ◆唐→ ◆唐→

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

 \bullet $X_0 = X$:

If X_k is constructed then we consider a triangle

 $U[k]^{(l_k)} \stackrel{\alpha_k}{\to} X_k \stackrel{f_k}{\to} X_{k+1}$, where α_k is an $\mathrm{Add}(U[k])$ -preecover.

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶ ...

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

- \bullet $X_0 = X$:
- If X_k is constructed then we consider a triangle $U[k]^{(l_k)} \stackrel{\alpha_k}{\to} X_k \stackrel{f_k}{\to} X_{k+1}$, where α_k is an $\text{Add}(U[k])$ -preecover.

For every $i > k$, we consider the morphism $f_{ki}: X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii}: X_i \rightarrow X_i, \ i\geq 0,$ will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

• if $k \geq 0$ then $\text{Hom}_{\mathbf{D}}(U[j], X_{k+1}) = 0$ for all $j = \overline{0, k}$;

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

 \bullet $X_0 = X$:

If X_k is constructed then we consider a triangle $U[k]^{(l_k)} \stackrel{\alpha_k}{\to} X_k \stackrel{f_k}{\to} X_{k+1}$, where α_k is an $\text{Add}(U[k])$ -preecover.

For every $i > k$, we consider the morphism $f_{ki}: X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii}: X_i \rightarrow X_i, \ i\geq 0,$ will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

From (S1.5) it follows that

• if $k \geq 0$ then $\text{Hom}_{\mathbf{D}}(U[j], X_{k+1}) = 0$ for all $j = \overline{0, k}$;

 $A \cup B \cup A \cup B$

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

 \bullet $X_0 = X$;

If X_k is constructed then we consider a triangle $U[k]^{(l_k)} \stackrel{\alpha_k}{\to} X_k \stackrel{f_k}{\to} X_{k+1}$, where α_k is an $\text{Add}(U[k])$ -preecover.

For every $i > k$, we consider the morphism $f_{ki}: X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii}: X_i \rightarrow X_i, \ i\geq 0,$ will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

From (S1.5) it follows that

• if $k \geq 0$ then $\text{Hom}_{\mathbf{D}}(U[j], X_{k+1}) = 0$ for all $j = \overline{0, k}$;

 \bullet if $k < i$ then $S_{ki} \in \text{Add}(U[k+1]) * \cdots * \text{Add}(U[i]) \subseteq \mathcal{A}[k+1].$

We construct inductively a sequence of morphisms $f_k : X_k \to X_{k+1}$ in the following way:

 \bullet $X_0 = X$;

If X_k is constructed then we consider a triangle $U[k]^{(l_k)} \stackrel{\alpha_k}{\to} X_k \stackrel{f_k}{\to} X_{k+1}$, where α_k is an $\text{Add}(U[k])$ -preecover.

For every $i > k$, we consider the morphism $f_{ki}: X_k \to X_i$ that are obtained as the composition of the morphisms f_k, \ldots, f_{i-1} . Moreover, $f_{ii}: X_i \rightarrow X_i, \ i\geq 0,$ will be the indentity maps. We denote by S_{ki} the cone of f_{ki} .

From (S1.5) it follows that

- if $k \geq 0$ then $\text{Hom}_{\mathbf{D}}(U[j], X_{k+1}) = 0$ for all $j = \overline{0, k}$;
- if $k < i$ then

 $S_{ki} \in \text{Add}(U[k+1]) * \cdots * \text{Add}(U[i]) \subseteq \mathcal{A}[k+1].$

 $4 \cap 3$ $4 \cap 4$ $6 \cap 4$ $7 = 3$ $4 \cap 5$ 8 9 1

Let $k > 0$. There exists a commutative diagram such that all lines and columns are triangles: $\oplus_{i\geq k}X_k \xrightarrow{1-\text{shift}} \oplus_{i\geq k}X_k \xrightarrow{ } X_k$ $\oplus_{i\geq k}$ f_{ki} energy and $\oplus_{i\geq k}$ f_{ki} $\oplus_{i\geq k} X_i \xrightarrow{1-\oplus_{i\geq k} f_i} \oplus_{i\geq k} X_i \longrightarrow \frac{Y}{Z}$ $\begin{array}{ccccccccc}\n&\bullet&&&&&&\downarrow\\
&\bullet&&&&&&\downarrow\\
&$ $\oplus_{i\geq k}S_{ki} \longrightarrow \oplus_{i\geq k}S_{ki} \longrightarrow C_k$

4 ロ > 3 個 > 3 ミ > 3 ミ > ニ ミ

Let $k > 0$.

There exists a commutative diagram such that all lines and

columns are triangles: $\oplus_{i\ge k} X_k \overset{1-\text{shift}}{\xrightarrow{\hspace*{0.5cm}}} \to \infty$ $\oplus_{i≥k}$ f_{ki} ľ $\oplus_{i≥k}X_k$ $\oplus_{i≥k}$ f_{ki} ľ $\cdot X_k$ ŗ $\oplus_{i\geq k}^{\gamma}X_i \xrightarrow{1-\oplus_{i\geq k}f_i} \oplus_{i\geq k}^{\gamma}X_i \longrightarrow \mathbb{Z}$ ľ ľ ŗ $\oplus_{i\geq k}S_{ki} \xrightarrow{\qquad} \oplus_{i\geq k}S_{ki} \longrightarrow C_k$

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i>0}$.

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ │ 결

Let $k > 0$.

There exists a commutative diagram such that all lines and

columns are triangles: $\oplus_{i\ge k} X_k \overset{1-\text{shift}}{\xrightarrow{\hspace*{0.5cm}}} \to \infty$ $\oplus_{i≥k}$ f_{ki} ľ $\oplus_{i≥k}X_k$ $\oplus_{i≥k}$ f_{ki} ľ $\cdot X_k$ ŗ $\oplus_{i\geq k}^{\gamma}X_i \xrightarrow{1-\oplus_{i\geq k}f_i} \oplus_{i\geq k}^{\gamma}X_i \longrightarrow \mathbb{Z}$ ľ ľ ŗ $\oplus_{i\geq k}S_{ki} \xrightarrow{\qquad} \oplus_{i\geq k}S_{ki} \longrightarrow C_k$

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i>0}$.

Using $k > n$ we obtain $Z \in U^{\perp_{\leq 0}}$. Using $k = 0$, we have

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ │ 듣

Let $k > 0$.

There exists a commutative diagram such that all lines and

columns are triangles: $\oplus_{i\ge k} X_k \overset{1-\text{shift}}{\xrightarrow{\hspace*{0.5cm}}} \to \infty$ $\oplus_{i≥k}$ f_{ki} ľ $\oplus_{i≥k}X_k$ $\oplus_{i≥k}$ f_{ki} ľ $\cdot X_k$ ŗ $\oplus_{i\geq k}^{\gamma}X_i \xrightarrow{1-\oplus_{i\geq k}f_i} \oplus_{i\geq k}^{\gamma}X_i \longrightarrow \mathbb{Z}$ ľ ľ ŗ $\oplus_{i\geq k}S_{ki} \xrightarrow{\qquad} \oplus_{i\geq k}S_{ki} \longrightarrow C_k$

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i>0}$. Using $k > n$ we obtain $Z \in U^{\perp_{\leq 0}}$. Using $k = 0$, we have $Y = C_0[-1]$ verifies (b) and (c). Since $X_0 = X$, the proof is

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ │ 결 │

Let $k > 0$.

There exists a commutative diagram such that all lines and

columns are triangles: $\oplus_{i\ge k} X_k \overset{1-\text{shift}}{\xrightarrow{\hspace*{0.5cm}}} \to \infty$ $\oplus_{i≥k}$ f_{ki} ľ $\oplus_{i≥k}X_k$ $\oplus_{i≥k}$ f_{ki} ľ $\cdot X_k$ ŗ $\oplus_{i\geq k}^{\gamma}X_i \xrightarrow{1-\oplus_{i\geq k}f_i} \oplus_{i\geq k}^{\gamma}X_i \longrightarrow \mathbb{Z}$ ľ ľ ŗ $\oplus_{i\geq k}S_{ki} \xrightarrow{\qquad} \oplus_{i\geq k}S_{ki} \longrightarrow C_k$

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i>0}$. Using $k > n$ we obtain $Z \in U^{\perp_{\leq 0}}$. Using $k = 0$, we have $Y = C_0[-1]$ verifies (b) and (c). Since $X_0 = X$, the proof is complete.

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 「重 」 約 9,0

Let $k > 0$.

There exists a commutative diagram such that all lines and

columns are triangles: $\oplus_{i\ge k} X_k \overset{1-\text{shift}}{\xrightarrow{\hspace*{0.5cm}}} \to \infty$ $\oplus_{i≥k}$ f_{ki} ľ $\oplus_{i≥k}X_k$ $\oplus_{i≥k}$ f_{ki} ľ $\cdot X_k$ ŗ $\oplus_{i\geq k}^{\gamma}X_i \xrightarrow{1-\oplus_{i\geq k}f_i} \oplus_{i\geq k}^{\gamma}X_i \longrightarrow \mathbb{Z}$ ľ ľ ŗ $\oplus_{i\geq k}S_{ki} \xrightarrow{\qquad} \oplus_{i\geq k}S_{ki} \longrightarrow C_k$

Up to isomorphism, Z does not depends on k since it is the homotopy colimit of the sequence $(f_i)_{i>0}$. Using $k > n$ we obtain $Z \in U^{\perp_{\leq 0}}$. Using $k = 0$, we have $Y = C_0[-1]$ verifies (b) and (c). Since $X_0 = X$, the proof is complete.

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 「重 」 約 9,0

The characterization for (co)silting

Corollary

Assume the D is a triangulated category with coproducts. An object $U \in \mathbf{D}$ is silting if and only if: $(S1) U \in U^{\perp_{>0}};$ (S2) $U^{\perp_{>0}}$ is closed under direct sums; $(S3) U^{\perp_{\mathbb{Z}}} = 0.$

Assume the **D** is a triangulated category with products. An object $U \in \mathbf{D}$ is cosilting if and only if: $(C1) U \in {}^{\perp_{>0}} U$, $(C2)$ \rightarrow $\frac{1}{v}$ is closed under direct products, **K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯** 重 OQ

The characterization for (co)silting

Corollary

Assume the D is a triangulated category with coproducts. An object $U \in \mathbf{D}$ is silting if and only if: $(S1) U \in U^{\perp_{>0}};$ (S2) $U^{\perp_{>0}}$ is closed under direct sums; $(S3) U^{\perp_{\mathbb{Z}}} = 0.$

Corollary

Assume the D is a triangulated category with products. An object $U \in \mathbf{D}$ is cosilting if and only if: $(C1) U \in {}^{\perp_{>0}} U$, $(C2)$ \rightarrow >0U is closed under direct products, $(C3)$ $\perp z U = 0$.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

 \equiv

Pure-injective cosilting

An object U in C is called (AMV) partial cosilting if the class $\perp > 0$ is a coaisle of a *t*-structure and $U \in {}^{\perp_{>0}}U.$

Proposition

The following are equivalent for an object U in a compactly generated category such that:

- \perp >0U is closed under products and "pure-subobjects";
- \bullet \perp >0U is closed under products, and T is pure-injective;
- \bullet U is a pure injective (AMV) partial silting object.

 $4\Box$ \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow