A definable approach to tensor triangular geometry

Isaac Bird

Charles University, Prague

Joint work with Jordan Williamson

Throughout T will be a rigidly-compactly generated tensor triangulated category with compact objects T^c .

Throughout T will be a rigidly-compactly generated tensor triangulated category with compact objects T^c .

Define the \otimes -Ziegler topology on T to have closed sets the \otimes -closed definable subcategories; the closure operation corresponds to

$$\mathsf{Def}^{\otimes}(\mathsf{X}) = \mathsf{Def}(c \otimes x : x \in \mathsf{X}, c \in \mathsf{T}^{\mathrm{c}})$$

We let $Zg^{\otimes}(T)$ be the Ziegler spectrum equipped with the \otimes -Ziegler topology.

Definition. A homological prime is a maximal Serre \otimes -ideal of $mod(T^c) = fp Add((T^c)^{op}, Ab).$

Definition. A homological prime is a maximal Serre \otimes -ideal of $mod(T^c) = fp Add((T^c)^{op}, Ab).$

Definition. The *homological spectrum* of T^c , denoted $Spc^h(T^c)$, is a topological space whose points are homological primes, topologised by a basis of closed sets given by

$$\mathsf{supp}^\mathsf{h}(\mathsf{A}) = \{\mathcal{B} \in \mathsf{Spc}^\mathsf{h}(\mathsf{T}^\mathrm{c}) : \mathsf{y}\mathsf{A}
ot\in \mathcal{B}\}$$

as A runs over T^c .

If $\mathcal{B} \in Spc^{h}(T^{c})$, there is a unique pure injective object $E_{\mathcal{B}} \in T$. The localisation adjunction

$$\mathsf{Mod}(\mathsf{T}^{\mathrm{c}}) \xrightarrow{Q} \mathsf{Mod}(\mathsf{T}^{\mathrm{c}}) / \varinjlim \mathcal{B}$$

gives an injective object $R(\mathbb{E}Qy1) \in Mod(T^c)$, which is isomorphic to $yE_{\mathcal{B}}$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

If $\mathcal{B} \in Spc^{h}(T^{c})$, there is a unique pure injective object $E_{\mathcal{B}} \in T$. The localisation adjunction

$$\mathsf{Mod}(\mathsf{T}^{\mathrm{c}}) \xrightarrow{Q} \mathsf{Mod}(\mathsf{T}^{\mathrm{c}}) / \varinjlim \mathcal{B}$$

gives an injective object $R(\mathbb{E}Qy1) \in Mod(T^c)$, which is isomorphic to $yE_{\mathcal{B}}$.

However, $E_{\mathcal{B}}$ need not be indecomposable, so sending \mathcal{B} to $E_{\mathcal{B}}$ does not give a map $\operatorname{Spc}^{h}(T^{c}) \to \operatorname{pinj}(T)$.

Lemma. Let U be any compactly generated triangulated category and S a Serre subcategory of mod(U^c). Then there is an equivalence of categories

$$y^{-1}R \colon \operatorname{Inj}(\operatorname{Mod}(U^{c})/\varinjlim S) \xrightarrow{\simeq} \operatorname{Pinj}(U) \cap \mathcal{D}(S).$$

Lemma. Let U be any compactly generated triangulated category and S a Serre subcategory of $mod(U^c)$. Then there is an equivalence of categories

$$y^{-1}R \colon \operatorname{Inj}(\operatorname{Mod}(U^{c})/\varinjlim S) \xrightarrow{\simeq} \operatorname{Pinj}(U) \cap \mathcal{D}(S).$$

Corollary. Let $\mathcal{B} \in \text{Spc}^{h}(T^{c})$, then $\mathcal{D}(\mathcal{B}) = \text{Def}^{\otimes}(\mathcal{E}_{\mathcal{B}})$, and this is a simple \otimes -closed definable subcategory of T.

We get a well defined map

$$\Phi \colon \mathsf{Spc}^{\mathsf{h}}(\mathsf{T}^c) \to \mathsf{KZg}^{\otimes}(\mathsf{T})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

given by sending \mathcal{B} to [X], where $X \in pinj(T) \cap Def^{\otimes}(\mathcal{E}_{\mathcal{B}})$.

We get a well defined map

$$\Phi \colon \mathsf{Spc}^{\mathsf{h}}(\mathsf{T}^{\mathrm{c}}) \to \mathsf{KZg}^{\otimes}(\mathsf{T})$$

given by sending \mathcal{B} to [X], where $X \in pinj(T) \cap Def^{\otimes}(E_{\mathcal{B}})$.

Theorem. The map Φ gives a bijection

 $\mathsf{Spc}^{\mathsf{h}}(\mathsf{T}^{\mathrm{c}}) \to \mathsf{Cl}(\mathsf{KZg}^{\otimes}(\mathsf{T})).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The inverse is $[X] \mapsto mod(T^c) \cap Ker(yX \otimes -)$.

To make Φ a homeomorphism we need to retopologise $Cl(KZg^{\otimes}(T)).$

To make Φ a homeomorphism we need to retopologise $Cl(KZg^{\otimes}(T)).$

Set

$$(A)_{\otimes} = \{X \in \mathsf{Cl}(\mathsf{KZg}^{\otimes}(\mathsf{T})) : \underline{\mathrm{Hom}}(A, X) = 0\}$$

for $A \in T^c$, and define the GZ-topology to be that having a basis of open sets given by $\{(A)_{\otimes} : A \in T^c\}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

To make Φ a homeomorphism we need to retopologise $Cl(KZg^{\otimes}(T)).$

Set

$$(A)_{\otimes} = \{X \in \mathsf{Cl}(\mathsf{KZg}^{\otimes}(\mathsf{T})) : \underline{\mathrm{Hom}}(A, X) = 0\}$$

for $A \in T^c$, and define the GZ-topology to be that having a basis of open sets given by $\{(A)_{\otimes} : A \in T^c\}$.

Proposition. Φ induces a homeomorphism

$$\operatorname{Spc}^{h}(T^{c}) \simeq \operatorname{Cl}(\operatorname{KZg}^{\otimes}(T))^{\operatorname{GZ}}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Balmer showed there is is a canonical surjective map $\mathsf{Spc}^{\mathsf{h}}(\mathsf{T}^c) \to \mathsf{Spc}(\mathsf{T}^c)$ given by $\mathcal{B} \mapsto \mathsf{y}^{-1}\mathcal{B}$.

Proposition. (Barthel-Heard-Sanders, B.-Williamson) The canonical map is a surjection if and only if $\text{Spc}^{h}(T^{c})$ - equivalently $\text{Cl}(\text{KZg}^{\otimes}(T))^{\text{GZ}}$ - is T_{0} .

Let T and U be big tt-categories. A functor $F: T \rightarrow U$ is definable if it preserves pure triangles, coproducts and products.

Let T and U be big tt-categories. A functor $F: T \rightarrow U$ is definable if it preserves pure triangles, coproducts and products.

Any definable functor gives an adjoint pair

$$\mathsf{Mod}(\mathsf{U^c}) \xrightarrow[\overline{F}]{\Lambda} \mathsf{Mod}(\mathsf{T^c})$$

Let T and U be big tt-categories. A functor $F: T \rightarrow U$ is definable if it preserves pure triangles, coproducts and products.

Any definable functor gives an adjoint pair

$$\mathsf{Mod}(\mathsf{U}^c) \xrightarrow[\overline{F}]{\Lambda} \mathsf{Mod}(\mathsf{T}^c)$$

Consider the following two conditions

(1) Λ preserves cohomological functors;

(2) \overline{F} is lax monoidal and we have the projection formula

$$\overline{F}X \otimes Y \simeq \overline{F}(X \otimes \Lambda Y).$$

Theorem. Let $F: T \to U$ be a definable functor satisfying the above conditions. Then F preserves simple \otimes -closed definable subcategories. Thus, if $\mathcal{B} \in \text{Spc}^{h}(T^{c})$,

$$\mathsf{pure}(\mathsf{FDef}^{\otimes}(\mathsf{E}_{\mathcal{B}})) = \mathsf{Def}^{\otimes}(\mathsf{FE}_{\mathcal{B}})$$

is a simple \otimes -closed definable subcategory of U. In particular, the assignment

$$\mathcal{B} \mapsto \mathsf{Ker}(-\otimes \mathsf{y} \mathit{FE}_{\mathcal{B}}) \cap \mathsf{mod}(\mathsf{U}^{\mathrm{c}})$$

defines a map

$$\operatorname{Spc}^{h}(F) \colon \operatorname{Spc}^{h}(\mathsf{T}^{\operatorname{c}}) \to \operatorname{Spc}^{h}(\mathsf{U}^{\operatorname{c}}).$$