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(3) M'is a coproduct of indecomposable pure-injectives
with local endomorphism rings for any I

(4) M!has d.c.c. on cyclic End(M?)-submodules for any I
Theorem [B-T-Crawley-Boevey, "18]: if A is a string algebra,

and if M is X-pure-injective, then M is a coproduct of string
modules and band modules
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