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Prelude onΣ-pure-injective modules

Setup: M a left module over a ring Λ

Theorem [Grüson–Jensen ’76,’81; Zimmerman, ’77;
Huisgen-Zimmerman, ’79; Angeleri-Hügel–Saorín, ’97]: TFAE
(0) M is Σ-pure-injective, i.e. the coproduct M(I) =

⨿
I M is

pure-injective for any set I
(1) M has d.c.c. on pp-definable subgroups, i.e. solution

sets of a pp-formulas
(2) the canonical map M(I) ↪→ M I =

∏
I M splits for any I

(3) M I is a coproduct of indecomposable pure-injectives
with local endomorphism rings for any I

(4) M I has d.c.c. on cyclic End(M I)-submodules for any I

Theorem [B-T–Crawley-Boevey, ’18]: if Λ is a string algebra,
and if M is Σ-pure-injective, then M is a coproduct of string
modules and band modules
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Annihilator subobjects in Grothendiek categories

Setup: A Grothendieck and locally coherent
Ap subcategory of finitely presented objects
So Ap abelian, A generated by a set G of objects in Ap

Recall: an object is fp-injective if it is injective with respect to
monomorphisms with cokernels in Ap

Definition [Harada, ’73]: for any X, Y ∈ A and S ⊆ A(X, Y) let

annS :=
∩

f∈S ker(f), a Y-annihilator subobject of X

Theorem [Dung–Garcia, ’94]: if Y is fp-injective then TFAE
(1) Y is Σ-injective, i.e. Y(I) =

⨿
I Y is injective for any I

(2) Each X ∈ G has a.c.c. on Y-annihilator subobjects

Next slide: take A = Mod(T c) for T compactly generated
triangulated, then apply results in [Krause, ’00]
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Annihilator subobjects in module categories

Setup: T compactly generated triangulated

T c small subcategory of compact objects
A = Mod(T c) category of additive functors (T c)op → Ab
Ap = mod(T c) category of finitely presented functors
Y : T → A restricted Yoneda functor, preserves coproducts
G = {Y(C) | C ∈ T c}, a subset of Ap that generates A

Lemma [Krause, ’00]: if M ∈ T then Y(M) ∈ A is fp-injective

Remark: if S ⊆ A(Y(C),Y(M)) for M ∈ T and C ∈ T c then

annS(A) = {α ∈ HomT (A,C) | fC(1C)α = 0 for all f ∈ S}

Corollary [Dung–Garcia, ’94; Krause, 00’]: if M ∈ T then TFAE
(0) M is Σ-pure-injective, i.e. M(I) is pure-injective for any I
(1) Y(M) is Σ-injective, i.e. Y(M(I)) is injective for any I
(2) If C ∈ T c then Y(C) has a.c.c. on Y(M)-annihilators
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Triangulated categories and purity: sorted language

Setup: T compactly generated triangulated
T c subcategory of compact objects

Definition [Garkusha–Prest, ’05]: canonical language LT has
a set S = ob(T c) of sorts, indexing the remaining data
a countable set of variables xC, one set for each C ∈ S
a constant symbol 0C, one symbol for each C ∈ S
a ternary function +C of sort (C,C,C), one for each C ∈ S
a unary function - ◦ β of sort (C,B), one for each B,C ∈ S
and each morphism β : B → C in T c

Corollary: any M ∈ T defines an LT -structure, where each
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Homotopy categories of complexes of projectives

Setup: T = K(Λ- Proj), homotopy category of complexes of
projective left modules over a ring Λ

Theorem [Neeman, ’08]: T c can be described, furthermore,
if Λ is right coherent then T is compactly generated

Note: gentle algebras define a class of finite-dimensional
algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, ’03]: if Λ is a gentle algebra
then indecomposables in T c are string or band complexes

strings are left-bounded, and eventually acyclic
bands are given by finite-dimensional k[T, T−1]-modules

Theorem [–, ’20]: if Λ is gentle then Σ-pure-injectives in T
are coproducts of string and band complexes

Proof: uses variant of the functorial filtrations method, and
vitally, the d.c.c. on pp-definable subgroups of sort C ∈ T c □
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Σ-pure injective objects: characterisation

Setup: T compactly generated triangulated

Theorem [B-T, ’23]: if M ∈ T then TFAE
(0) M is Σ-pure-injective
(1) M(N) is pure-injective
(2) M has d.c.c. on pp-definable subgroups of sort C for

each compact object C
(3) the canonical morphism M(I) → M I is a section for any I
(4) M is pure-injective and M I is a coproduct of

indecomposable pure-injectives with local
endomorphism rings for any I

Remark: recall these conditions are also equivalent to
(5) Y(M) is Σ-injective, i.e. Y(M(I)) is injective for any I
(6) If C ∈ T c then Y(C) has a.c.c. on Y(M)-annihilators
There should be more: future work : ) Grazie mille!
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