Σ -pure-injectivity: characterisations and classifications from representation theory

Purity, Approximation Theory and Spectra (Cetraro)

(with Crawley-Boevey) Σ -pure-injective modules for string algebras and linear relations J. Alg. 513 (2018), 177-189

Characterisations of Σ -pure-injectivity in triangulated categories and applications to endocoperfect objects Fund. Math. 261 (2023), 133-155

Annihilator subobjects in Grothendiek categories

Triangulated categories and languages

Homotopy categories for gentle algebras

 Σ -pure-injective objects in triangulated categories

Setup:

Setup: *M* a left module

Setup: *M* a left module over a ring Λ

Setup: *M* a left module over a ring Λ

Setup: *M* a left module over a ring Λ

Setup: *M* a left module over a ring Λ

Theorem [Grüson–Jensen '76,'81; Zimmerman, '77; Huisgen-Zimmerman, '79; Angeleri-Hügel–Saorín, '97]: TFAE

(0) *M* is Σ -pure-injective

Setup: *M* a left module over a ring Λ

Theorem [Grüson–Jensen '76,'81; Zimmerman, '77; Huisgen-Zimmerman, '79; Angeleri-Hügel–Saorín, '97]: TFAE

(0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective

Setup: M a left module over a ring Λ

Theorem [Grüson–Jensen '76,'81; Zimmerman, '77; Huisgen-Zimmerman, '79; Angeleri-Hügel–Saorín, '97]: TFAE

(0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings for any I

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings for any I
- (4) M^I has d.c.c.

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings for any I
- (4) M^I has d.c.c. on cyclic End(M^I)-submodules

Setup: *M* a left module over a ring Λ

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings for any I
- (4) M^I has d.c.c. on cyclic End (M^I) -submodules for any I

Setup: *M* a left module over a ring Λ

Theorem [Grüson–Jensen '76,'81; Zimmerman, '77; Huisgen-Zimmerman, '79; Angeleri-Hügel–Saorín, '97]: TFAE

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings for any I
- (4) M^I has d.c.c. on cyclic End (M^I) -submodules for any I

Theorem [B-T-Crawley-Boevey, '18]:

Setup: *M* a left module over a ring Λ

Theorem [Grüson–Jensen '76,'81; Zimmerman, '77; Huisgen-Zimmerman, '79; Angeleri-Hügel–Saorín, '97]: TFAE

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings for any I
- (4) M^I has d.c.c. on cyclic End (M^I) -submodules for any I

Theorem [B-T–Crawley-Boevey, '18]: if Λ is a string algebra

Setup: *M* a left module over a ring Λ

Theorem [Grüson–Jensen '76,'81; Zimmerman, '77; Huisgen-Zimmerman, '79; Angeleri-Hügel–Saorín, '97]: TFAE

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings for any I
- (4) M^I has d.c.c. on cyclic End (M^I) -submodules for any I

Theorem [B-T–Crawley-Boevey, '18]: if Λ is a *string algebra*, and if *M* is Σ -pure-injective

Setup: *M* a left module over a ring Λ

Theorem [Grüson–Jensen '76,'81; Zimmerman, '77; Huisgen-Zimmerman, '79; Angeleri-Hügel–Saorín, '97]: TFAE

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings for any I
- (4) M^I has d.c.c. on cyclic End (M^I) -submodules for any I

Theorem [B-T–Crawley-Boevey, '18]: if Λ is a *string algebra*, and if *M* is Σ -pure-injective, then *M* is a coproduct

Setup: *M* a left module over a ring Λ

Theorem [Grüson–Jensen '76,'81; Zimmerman, '77; Huisgen-Zimmerman, '79; Angeleri-Hügel–Saorín, '97]: TFAE

- (0) *M* is Σ -*pure-injective*, i.e. the coproduct $M^{(I)} = \coprod_I M$ is pure-injective for any set *I*
- (1) *M* has d.c.c. on *pp-definable* subgroups, i.e. solution sets of a pp-formulas
- (2) the canonical map $M^{(I)} \hookrightarrow M^I = \prod_I M$ splits for any I
- (3) M^I is a coproduct of indecomposable pure-injectives with local endomorphism rings for any I
- (4) M^I has d.c.c. on cyclic End (M^I) -submodules for any I

Theorem [B-T–Crawley-Boevey, '18]: if Λ is a *string algebra*, and if *M* is Σ -pure-injective, then *M* is a coproduct of *string modules* and *band modules*

Setup:

Setup: $\ensuremath{\mathcal{A}}$ Grothendieck and locally coherent

Setup: ${\mathcal A}$ Grothendieck and locally coherent ${\mathcal A}^\rho$

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^p subcategory of finitely presented objects

Setup: A Grothendieck and locally coherent A^{ρ} subcategory of finitely presented objects So A^{ρ} abelian

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{ρ} subcategory of finitely presented objects So \mathcal{A}^{ρ} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{ρ}

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p} Recall:
Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective*

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]:

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^p subcategory of finitely presented objects So \mathcal{A}^p abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^p

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]:

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^p subcategory of finitely presented objects So \mathcal{A}^p abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^p

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if Y is fp-injective

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung-Garcia, '94]: if Y is fp-injective then TFAE

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*, i.e. $Y^{(I)} = \coprod_I Y$ is injective

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*, i.e. $Y^{(I)} = \coprod_I Y$ is injective for any *I*

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^p subcategory of finitely presented objects So \mathcal{A}^p abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^p

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*, i.e. $Y^{(I)} = \coprod_I Y$ is injective for any *I* (2) Each $X \in \mathcal{G}$

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^p subcategory of finitely presented objects So \mathcal{A}^p abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^p

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*, i.e. $Y^{(I)} = \coprod_I Y$ is injective for any *I* (2) Each $X \in \mathcal{G}$ has a.c.c.

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*, i.e. $Y^{(I)} = \coprod_I Y$ is injective for any *I* (2) Each $X \in \mathcal{G}$ has a.c.c. on *Y*-annihilator subobjects

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*, i.e. $Y^{(I)} = \coprod_I Y$ is injective for any *I* (2) Each $X \in \mathcal{G}$ has a.c.c. on *Y*-annihilator subobjects Next slide:

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*, i.e. $Y^{(I)} = \coprod_I Y$ is injective for any *I* (2) Each $X \in \mathcal{G}$ has a.c.c. on *Y*-annihilator subobjects

Next slide: take $\mathcal{A} = Mod(\mathcal{T}^{c})$

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*, i.e. $Y^{(I)} = \coprod_I Y$ is injective for any *I* (2) Each $X \in \mathcal{G}$ has a.c.c. on *Y*-annihilator subobjects

Next slide: take $\mathcal{A} = Mod(\mathcal{T}^c)$ for \mathcal{T} compactly generated triangulated

Setup: \mathcal{A} Grothendieck and locally coherent \mathcal{A}^{p} subcategory of finitely presented objects So \mathcal{A}^{p} abelian, \mathcal{A} generated by a set \mathcal{G} of objects in \mathcal{A}^{p}

Recall: an object is *fp-injective* if it is injective with respect to monomorphisms with cokernels in A^p

Definition [Harada, '73]: for any $X, Y \in A$ and $S \subseteq A(X, Y)$ let

 $\operatorname{ann}_{S} := \bigcap_{f \in S} \operatorname{ker}(f)$, a *Y*-annihilator subobject of *X*

Theorem [Dung–Garcia, '94]: if *Y* is fp-injective then TFAE (1) *Y* is Σ -*injective*, i.e. $Y^{(I)} = \coprod_I Y$ is injective for any *I* (2) Each $X \in \mathcal{G}$ has a.c.c. on *Y*-annihilator subobjects

Next slide: take $A = Mod(T^c)$ for T compactly generated triangulated, then apply results in [Krause, '00]

Setup: $\ensuremath{\mathcal{T}}$ compactly generated triangulated

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p}

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]:

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective Remark:

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(C), \mathbf{Y}(M))$
Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective

Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(\mathbf{C}), \mathbf{Y}(\mathbf{M}))$ for $\mathbf{M} \in \mathcal{T}$ and $\mathbf{C} \in \mathcal{T}^{c}$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(C), \mathbf{Y}(M))$ for $M \in \mathcal{T}$ and $C \in \mathcal{T}^{c}$ then

 $\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}})\alpha = 0 \text{ for all } f \in \mathsf{S} \}$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective

Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(\mathbf{C}), \mathbf{Y}(\mathbf{M}))$ for $\mathbf{M} \in \mathcal{T}$ and $\mathbf{C} \in \mathcal{T}^{c}$ then

$$\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}})\alpha = 0 \text{ for all } f \in \mathsf{S} \}$$

Corollary [Dung-Garcia, '94; Krause, 00']:

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective

Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(\mathbf{C}), \mathbf{Y}(\mathbf{M}))$ for $\mathbf{M} \in \mathcal{T}$ and $\mathbf{C} \in \mathcal{T}^{\mathsf{c}}$ then

$$\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}})\alpha = 0 \text{ for all } f \in \mathsf{S} \}$$

Corollary [Dung–Garcia, '94; Krause, 00']: if $M \in \mathcal{T}$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective

Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(\mathbf{C}), \mathbf{Y}(\mathbf{M}))$ for $\mathbf{M} \in \mathcal{T}$ and $\mathbf{C} \in \mathcal{T}^{c}$ then

$$\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}})\alpha = 0 \text{ for all } f \in \mathsf{S} \}$$

Corollary [Dung–Garcia, '94; Krause, 00']: if $M \in \mathcal{T}$ then TFAE

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective

Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(\mathbf{C}), \mathbf{Y}(\mathbf{M}))$ for $\mathbf{M} \in \mathcal{T}$ and $\mathbf{C} \in \mathcal{T}^{c}$ then

$$\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}})\alpha = 0 \text{ for all } f \in \mathsf{S} \}$$

Corollary [Dung–Garcia, '94; Krause, 00']: if $M \in \mathcal{T}$ then TFAE (0) *M* is Σ -*pure-injective*

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(C), \mathbf{Y}(M))$ for $M \in \mathcal{T}$ and $C \in \mathcal{T}^c$ then

 $\operatorname{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \operatorname{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}})\alpha = 0 \text{ for all } f \in \mathsf{S} \}$

Corollary [Dung–Garcia, '94; Krause, 00']: if $M \in \mathcal{T}$ then TFAE (0) M is Σ -pure-injective, i.e. $M^{(I)}$ is pure-injective for any I

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(C), \mathbf{Y}(M))$ for $M \in \mathcal{T}$ and $C \in \mathcal{T}^{c}$ then

$$\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}})\alpha = 0 \text{ for all } f \in \mathsf{S} \}$$

Corollary [Dung–Garcia, '94; Krause, 00']: if $M \in \mathcal{T}$ then TFAE (0) M is Σ -*pure-injective*, i.e. $M^{(I)}$ is pure-injective for any I(1) Y(M) is Σ -injective

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(C), \mathbf{Y}(M))$ for $M \in \mathcal{T}$ and $C \in \mathcal{T}^c$ then

$$\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}})\alpha = 0 \text{ for all } f \in \mathsf{S} \}$$

Corollary [Dung–Garcia, '94; Krause, 00']: if $M \in \mathcal{T}$ then TFAE (0) M is Σ -*pure-injective*, i.e. $M^{(I)}$ is pure-injective for any I(1) Y(M) is Σ -injective, i.e. $Y(M^{(I)})$ is injective for any I

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(C), \mathbf{Y}(M))$ for $M \in \mathcal{T}$ and $C \in \mathcal{T}^{c}$ then

$$\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}}) \alpha = 0 \text{ for all } f \in \mathsf{S} \}$$

Corollary [Dung–Garcia, '94; Krause, 00']: if $M \in \mathcal{T}$ then TFAE (0) M is Σ -pure-injective, i.e. $M^{(I)}$ is pure-injective for any I(1) Y(M) is Σ -injective, i.e. $Y(M^{(I)})$ is injective for any I

(2) If $C \in \mathcal{T}^{c}$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(C), \mathbf{Y}(M))$ for $M \in \mathcal{T}$ and $C \in \mathcal{T}^{c}$ then

$$\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A},\mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}})\alpha = 0 \text{ for all } f \in \mathsf{S} \}$$

Corollary [Dung–Garcia, '94; Krause, 00']: if $M \in \mathcal{T}$ then TFAE

- (0) *M* is Σ -*pure-injective*, i.e. $M^{(I)}$ is pure-injective for any *I*
- (1) $\mathbf{Y}(\mathbf{M})$ is Σ -injective, i.e. $\mathbf{Y}(\mathbf{M}^{(I)})$ is injective for any I
- (2) If $C \in \mathcal{T}^{c}$ then $\mathbf{Y}(C)$ has a.c.c.

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} small subcategory of compact objects $\mathcal{A} = Mod(\mathcal{T}^{c})$ category of additive functors $(\mathcal{T}^{c})^{op} \rightarrow Ab$ $\mathcal{A}^{p} = mod(\mathcal{T}^{c})$ category of finitely presented functors $\mathbf{Y}: \mathcal{T} \rightarrow \mathcal{A}$ restricted Yoneda functor, preserves coproducts $\mathcal{G} = \{\mathbf{Y}(C) \mid C \in \mathcal{T}^{c}\}$, a subset of \mathcal{A}^{p} that generates \mathcal{A}

Lemma [Krause, '00]: if $M \in \mathcal{T}$ then $\mathbf{Y}(M) \in \mathcal{A}$ is fp-injective Remark: if $S \subseteq \mathcal{A}(\mathbf{Y}(C), \mathbf{Y}(M))$ for $M \in \mathcal{T}$ and $C \in \mathcal{T}^{c}$ then

$$\mathsf{ann}_{\mathsf{S}}(\mathsf{A}) = \{ \alpha \in \mathsf{Hom}_{\mathcal{T}}(\mathsf{A}, \mathsf{C}) \mid f_{\mathsf{C}}(1_{\mathsf{C}}) \alpha = 0 \text{ for all } f \in \mathsf{S} \}$$

Corollary [Dung–Garcia, '94; Krause, 00']: if $M \in \mathcal{T}$ then TFAE (0) M is Σ -pure-injective, i.e. $M^{(I)}$ is pure-injective for any I(1) Y(M) is Σ -injective, i.e. $Y(M^{(I)})$ is injective for any I(2) If $C \in \mathcal{T}^c$ then Y(C) has a.c.c. on Y(M)-annihilators

Setup: $\ensuremath{\mathcal{T}}$ compactly generated triangulated

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]:

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: *canonical language* L_T has

a set $S = ob(T^c)$ of *sorts*

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: *canonical language* L_T has a set $S = ob(T^c)$ of *sorts*, indexing the remaining data

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

a set $S = ob(T^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_C

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

a set $S = ob(T^c)$ of *sorts*, indexing the remaining data

a countable set of *variables* x_C , one set for each $C \in S$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha-Prest, '05]: *canonical language* L_T has

a set $S = ob(T^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_C , one set for each $C \in S$ a *constant symbol* 0_C

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $S = ob(T^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_C , one set for each $C \in S$ a *constant symbol* 0_C , one symbol for each $C \in S$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

a set $S = ob(T^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$

a *constant symbol* 0_C , one symbol for each $C \in S$

a ternary function $+_{C}$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

a set $S = ob(T^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_C , one set for each $C \in S$

a *constant symbol* $\mathbf{0}_{C}$, one symbol for each $C \in S$

a ternary *function* $+_{C}$ of sort (*C*, *C*, *C*)

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $\mathcal{S}=ob(\mathcal{T}^c)$ of sorts, indexing the remaining data

a countable set of *variables* x_C , one set for each $C \in S$

a *constant symbol* 0_C , one symbol for each $C \in S$

a ternary function $+_C$ of sort (C, C, C), one for each $C \in S$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

a set $S = ob(T^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $S = ob(T^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B)

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: *canonical language* L_T has

a set $S = ob(T^{c})$ of *sorts*, indexing the remaining data a countable set of *variables* x_{C} , one set for each $C \in S$

a *constant symbol* 0_C , one symbol for each $C \in S$

a ternary *function* $+_C$ of sort (*C*, *C*, *C*), one for each *C* $\in S$

a unary *function* - $\circ \beta$ of sort (*C*, *B*), one for each *B*, *C* $\in S$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

and each morphism $\beta: B \to C$ in \mathcal{T}^{c}

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $S = ob(T^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: *canonical language* $L_{\mathcal{T}}$ has a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_C$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta: B \to C$ in \mathcal{T}^c

Corollary:

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: *canonical language* $L_{\mathcal{T}}$ has a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$

a unary *function* - $\circ \beta$ of sort (*C*, *B*), one for each *B*, *C* $\in S$ and each morphism $\beta : B \to C$ in \mathcal{T}^{c}

Corollary: any $M \in \mathcal{T}$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: *canonical language* $L_{\mathcal{T}}$ has a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_C$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta: B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta: B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta : B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$ is Hom_{\mathcal{T}}(C, M)

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta: B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$ is Hom_{\mathcal{T}}(C, M), and we interpret
Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta: B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$ is Hom_{\mathcal{T}}(C, M), and we interpret each 0_C as

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta: B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$ is $\text{Hom}_{\mathcal{T}}(C, M)$, and we interpret each 0_C as the additive identity in $\text{Hom}_{\mathcal{T}}(C, M)$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $L_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta: B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$ is $\text{Hom}_{\mathcal{T}}(C, M)$, and we interpret each 0_C as the additive identity in $\text{Hom}_{\mathcal{T}}(C, M)$ each $+_C$ as

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta: B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$ is $\text{Hom}_{\mathcal{T}}(C, M)$, and we interpret each 0_C as the additive identity in $\text{Hom}_{\mathcal{T}}(C, M)$ each $+_C$ as the addition on $\text{Hom}_{\mathcal{T}}(C, M)$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta : B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$ is $\text{Hom}_{\mathcal{T}}(C, M)$, and we interpret each 0_C as the additive identity in $\text{Hom}_{\mathcal{T}}(C, M)$ each $+_C$ as the addition on $\text{Hom}_{\mathcal{T}}(C, M)$ each $-\circ \beta$ as

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta : B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$ is $\text{Hom}_{\mathcal{T}}(C, M)$, and we interpret each 0_C as the additive identity in $\text{Hom}_{\mathcal{T}}(C, M)$ each $+_C$ as the addition on $\text{Hom}_{\mathcal{T}}(C, M)$ each $-\circ \beta$ as $\text{Hom}_{\mathcal{T}}(C, M) \rightarrow \text{Hom}_{\mathcal{T}}(B, M)$

Setup: \mathcal{T} compactly generated triangulated \mathcal{T}^{c} subcategory of compact objects

Definition [Garkusha–Prest, '05]: canonical language $\textbf{L}_{\mathcal{T}}$ has

a set $S = ob(\mathcal{T}^c)$ of *sorts*, indexing the remaining data a countable set of *variables* x_c , one set for each $C \in S$ a *constant symbol* 0_c , one symbol for each $C \in S$ a ternary *function* $+_c$ of sort (C, C, C), one for each $C \in S$ a unary *function* $- \circ \beta$ of sort (C, B), one for each $B, C \in S$ and each morphism $\beta : B \to C$ in \mathcal{T}^c

Corollary: any $M \in \mathcal{T}$ defines an $L_{\mathcal{T}}$ -structure, where each *domain set* of sort $C \in S$ is $\operatorname{Hom}_{\mathcal{T}}(C, M)$, and we interpret each 0_C as the additive identity in $\operatorname{Hom}_{\mathcal{T}}(C, M)$ each $+_C$ as the addition on $\operatorname{Hom}_{\mathcal{T}}(C, M)$ each $-\circ \beta$ as $\operatorname{Hom}_{\mathcal{T}}(C, M) \to \operatorname{Hom}_{\mathcal{T}}(B, M)$, $\gamma \mapsto \gamma \beta$

Lemma [Garkusha, Prest '05]:

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in $\mathbf{L}_{\mathcal{T}}$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in $\mathbf{L}_{\mathcal{T}}$ is equivalent to

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in $\mathbf{L}_{\mathcal{T}}$ is equivalent to $\exists x_C \colon x_B = x_C \circ \beta$ for some *B*, *C* and β

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in \mathbf{L}_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]:

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a pp-definable subgroup

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of sort $B \in \mathcal{T}^c$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of sort $B \in \mathcal{T}^{c}$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall:

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of sort $B \in \mathcal{T}^{c}$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of sort $B \in \mathcal{T}^{c}$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$)

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [–, '23]:

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c.

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B)

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c.

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B Proof:

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort BProof: if $\beta: B \to C$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B)gives a strict d.c. of pp-definable subgroups of M of sort BProof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

ann_S(
$$A$$
) = { α : $A \rightarrow B \mid f_B(1_B)\alpha = 0$ for all $f \in S$ }

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

ann_S(
$$A$$
) = { α : $A \rightarrow B \mid f_B(1_B)\alpha = 0$ for all $f \in S$ }

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta$
Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

ann_S(
$$A$$
) = { α : $A \rightarrow B \mid f_B(1_B)\alpha = 0$ for all $f \in S$ }

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

ann_S(
$$A$$
) = { α : $A \rightarrow B \mid f_B(1_B)\alpha = 0$ for all $f \in S$ }

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots \square$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots \square$

Corollary [-, '23]:

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots \square$

Corollary [–, '23]: $M \in \mathcal{T}$

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

ann_S(
$$A$$
) = { α : $A \rightarrow B \mid f_B(1_B)\alpha = 0$ for all $f \in S$ }

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots \square$

Corollary [–, '23]: $M \in \mathcal{T}$ is Σ -pure-injective

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

ann_S(
$$A$$
) = { α : $A \rightarrow B \mid f_B(1_B)\alpha = 0$ for all $f \in S$ }

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots \square$

Corollary [–, '23]: $M \in \mathcal{T}$ is Σ -pure-injective iff

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

ann_S(
$$A$$
) = { α : $A \rightarrow B \mid f_B(1_B)\alpha = 0$ for all $f \in S$ }

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots \square$

Corollary [–, '23]: $M \in \mathcal{T}$ is Σ -pure-injective iff M has d.c.c.

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots \square$

Corollary [–, '23]: $M \in \mathcal{T}$ is Σ -pure-injective iff M has d.c.c. on pp-definable subgroups

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots \square$

Corollary [–, '23]: $M \in \mathcal{T}$ is Σ -pure-injective iff M has d.c.c. on pp-definable subgroups of sort C

Lemma [Garkusha, Prest '05]: any pp-formula $\varphi(x_B)$ in L_T is equivalent to $\exists x_C : x_B = x_C \circ \beta$ for some *B*, *C* and β

Definition [Garkusha, Prest '05]: a *pp-definable subgroup* of $M \in \mathcal{T}$ of *sort* $B \in \mathcal{T}^c$ has the form $M\beta := \{\gamma\beta \mid \gamma \colon C \to M\}$

Recall: $M \in \mathcal{T}$ is Σ -pure-injective iff each Y(B) has a.c.c. on Y(M)-annihilators ($B \in \mathcal{T}^{c}$). Each such annihilator satisfies

$$\operatorname{ann}_{S}(A) = \{ \alpha \colon A \to B \mid f_{B}(1_{B})\alpha = 0 \text{ for all } f \in S \}$$

Lemma [-, '23]: any strict a.c. of Y(M)-annihilators of Y(B) gives a strict d.c. of pp-definable subgroups of M of sort B

Proof: if $\beta: B \to C$ completes α to $A \to B \to C \to A[1]$ then β is a weak cokernel of α so $\theta \alpha = 0$ implies $\theta \in M\beta \dots \square$

Corollary [–, '23]: $M \in \mathcal{T}$ is Σ -pure-injective iff M has d.c.c. on pp-definable subgroups of sort C for each $C \in \mathcal{T}^{c}$

Setup:

Setup: $\mathcal{T} = \mathcal{K}(\Lambda \text{-} \text{Proj})$

Setup: $\mathcal{T} = \mathcal{K}(\Lambda$ - Proj), homotopy category

Setup: $\mathcal{T} = \mathcal{K}(\Lambda$ - Proj), homotopy category of complexes

Setup: $\mathcal{T} = \mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]:

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: \mathcal{T}^{c} can be described, furthermore, if Λ is right coherent

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: \mathcal{T}^c can be described, furthermore, if Λ is right coherent then \mathcal{T} is compactly generated

Note:

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: gentle algebras

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]:

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^{c}

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in T^c are *string* or *band* complexes strings are left-bounded

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in T^c are *string* or *band* complexes

strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Theorem [–, '20]:

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Theorem [–, '20]: if Λ is gentle
Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Theorem [–, '20]: if Λ is gentle then $\Sigma\text{-pure-injectives}$ in $\mathcal T$

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Theorem [–, '20]: if Λ is gentle then Σ -pure-injectives in ${\cal T}$ are coproducts of string and band complexes

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Theorem [–, '20]: if Λ is gentle then Σ -pure-injectives in ${\cal T}$ are coproducts of string and band complexes

Proof:

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Theorem [–, '20]: if Λ is gentle then $\Sigma\text{-pure-injectives}$ in ${\cal T}$ are coproducts of string and band complexes

Proof: uses variant of the functorial filtrations method

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Theorem [–, '20]: if Λ is gentle then $\Sigma\text{-pure-injectives}$ in ${\cal T}$ are coproducts of string and band complexes

Proof: uses variant of the *functorial filtrations* method, and vitally

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Theorem [–, '20]: if Λ is gentle then Σ -pure-injectives in \mathcal{T} are coproducts of string and band complexes

Proof: uses variant of the *functorial filtrations* method, and vitally, the d.c.c. on pp-definable subgroups of sort $C \in T^c$

Setup: $\mathcal{T}=\mathcal{K}(\Lambda\text{-}\operatorname{Proj}),$ homotopy category of complexes of projective left modules over a ring Λ

Theorem [Neeman, '08]: T^c can be described, furthermore, if Λ is right coherent then T is compactly generated

Note: *gentle algebras* define a class of finite-dimensional algebras that are well-behaved and popular to study

Theorem [Bekkert–Merklen, '03]: if Λ is a gentle algebra then indecomposables in \mathcal{T}^c are *string* or *band* complexes strings are left-bounded, and eventually acyclic bands are given by finite-dimensional $k[T, T^{-1}]$ -modules

Theorem [–, '20]: if Λ is gentle then Σ -pure-injectives in \mathcal{T} are coproducts of string and band complexes

Proof: uses variant of the *functorial filtrations* method, and vitally, the d.c.c. on pp-definable subgroups of sort $C \in T^c \square$

Setup: $\ensuremath{\mathcal{T}}$ compactly generated triangulated

Setup: T compactly generated triangulated Theorem [B-T, '23]:

Setup: \mathcal{T} compactly generated triangulated Theorem [B-T, '23]: if $M \in \mathcal{T}$ then TFAE

Setup: \mathcal{T} compactly generated triangulated Theorem [B-T, '23]: if $M \in \mathcal{T}$ then TFAE (0) M is Σ -pure-injective

Setup: $\mathcal T$ compactly generated triangulated

```
Theorem [B-T, '23]: if M \in \mathcal{T} then TFAE
```

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) M has d.c.c. on pp-definable subgroups of sort C

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^{I}$

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^{I}$ is a section

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^{I}$ is a section for any I
- (4) *M* is pure-injective

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I
- (4) M is pure-injective and M^I is a coproduct

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I
- (4) *M* is pure-injective and *M*^{*I*} is a coproduct of indecomposable pure-injectives

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^{I}$ is a section for any I
- (4) *M* is pure-injective and *M*^{*I*} is a coproduct of indecomposable pure-injectives with local endomorphism rings

Setup: $\mathcal T$ compactly generated triangulated

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I
- (4) *M* is pure-injective and *M^I* is a coproduct of indecomposable pure-injectives with local endomorphism rings for any *I*

Setup: $\mathcal T$ compactly generated triangulated

Theorem [B-T, '23]: if $M \in \mathcal{T}$ then TFAE

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I
- (4) *M* is pure-injective and *M*^{*I*} is a coproduct of indecomposable pure-injectives with local endomorphism rings for any *I*

Remark:

Setup: $\mathcal T$ compactly generated triangulated

Theorem [B-T, '23]: if $M \in \mathcal{T}$ then TFAE

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^{I}$ is a section for any I
- (4) *M* is pure-injective and *M*^{*I*} is a coproduct of indecomposable pure-injectives with local endomorphism rings for any *I*

Remark: recall these conditions are also equivalent to

Setup: $\ensuremath{\mathcal{T}}$ compactly generated triangulated

Theorem [B-T, '23]: if $M \in \mathcal{T}$ then TFAE

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I
- (4) *M* is pure-injective and *M*^{*I*} is a coproduct of indecomposable pure-injectives with local endomorphism rings for any *I*

Remark: recall these conditions are also equivalent to

(5) $\mathbf{Y}(\mathbf{M})$ is Σ -injective, i.e. $\mathbf{Y}(\mathbf{M}^{(I)})$ is injective for any I

Setup: $\ensuremath{\mathcal{T}}$ compactly generated triangulated

Theorem [B-T, '23]: if $M \in \mathcal{T}$ then TFAE

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I
- (4) *M* is pure-injective and *M*^{*I*} is a coproduct of indecomposable pure-injectives with local endomorphism rings for any *I*

Remark: recall these conditions are also equivalent to

- (5) $\mathbf{Y}(\mathbf{M})$ is Σ -injective, i.e. $\mathbf{Y}(\mathbf{M}^{(I)})$ is injective for any I
- (6) If $C \in \mathcal{T}^{c}$ then Y(C) has a.c.c. on Y(M)-annihilators

Setup: $\mathcal T$ compactly generated triangulated

Theorem [B-T, '23]: if $M \in \mathcal{T}$ then TFAE

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I
- (4) *M* is pure-injective and *M*^{*I*} is a coproduct of indecomposable pure-injectives with local endomorphism rings for any *I*

Remark: recall these conditions are also equivalent to

(5) $\mathbf{Y}(\mathbf{M})$ is Σ -injective, i.e. $\mathbf{Y}(\mathbf{M}^{(I)})$ is injective for any I

(6) If $C \in \mathcal{T}^c$ then $\mathbf{Y}(C)$ has a.c.c. on $\mathbf{Y}(M)$ -annihilators There should be more:

Setup: $\ensuremath{\mathcal{T}}$ compactly generated triangulated

Theorem [B-T, '23]: if $M \in \mathcal{T}$ then TFAE

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I
- (4) *M* is pure-injective and *M*^{*I*} is a coproduct of indecomposable pure-injectives with local endomorphism rings for any *I*

Remark: recall these conditions are also equivalent to

(5) $\mathbf{Y}(\mathbf{M})$ is Σ -injective, i.e. $\mathbf{Y}(\mathbf{M}^{(I)})$ is injective for any I

(6) If $C \in \mathcal{T}^c$ then $\mathbf{Y}(C)$ has a.c.c. on $\mathbf{Y}(M)$ -annihilators There should be more: future work :)

Setup: $\ensuremath{\mathcal{T}}$ compactly generated triangulated

Theorem [B-T, '23]: if $M \in \mathcal{T}$ then TFAE

- (0) M is Σ -pure-injective
- (1) $M^{(\mathbb{N})}$ is pure-injective
- (2) *M* has d.c.c. on pp-definable subgroups of sort *C* for each compact object *C*
- (3) the canonical morphism $M^{(I)} \rightarrow M^I$ is a section for any I
- (4) *M* is pure-injective and *M*^{*I*} is a coproduct of indecomposable pure-injectives with local endomorphism rings for any *I*

Remark: recall these conditions are also equivalent to

(5) $\mathbf{Y}(\mathbf{M})$ is Σ -injective, i.e. $\mathbf{Y}(\mathbf{M}^{(I)})$ is injective for any I

(6) If $C \in \mathcal{T}^c$ then Y(C) has a.c.c. on Y(M)-annihilators

There should be more: future work :) Grazie mille!